
NOSMOG: Learning Noise-robust and
Structure-aware MLPs on Graphs

Yijun Tian1, Chuxu Zhang2, Zhichun Guo1, Xiangliang Zhang1, Nitesh V. Chawla1

1 Department of Computer Science, University of Notre Dame, USA
2 Department of Computer Science, Brandeis University, USA

yijun.tian@nd.edu, chuxuzhang@brandeis.edu, {zguo5, xzhang33, nchawla}@nd.edu

Abstract

While Graph Neural Networks (GNNs) have demonstrated their efficacy in
dealing with non-Euclidean structural data, they are difficult to be deployed
in real applications due to the scalability constraint imposed by multi-hop data
dependency. Existing methods attempt to address this scalability issue by training
multi-layer perceptrons (MLPs) exclusively on node content features using labels
derived from trained GNNs. Even though the performance of MLPs can be
significantly improved, two issues prevent MLPs from outperforming GNNs and
being used in practice: the ignorance of graph structural information and the
sensitivity to node feature noises. In this paper, we propose to learn NOise-
robust Structure-aware MLPs On Graphs (NOSMOG) to overcome the challenges.
Specifically, we first complement node content with position features to help MLPs
capture graph structural information. We then design a novel representational
similarity distillation strategy to inject structural node similarities into MLPs.
Finally, we introduce the adversarial feature augmentation to ensure stable learning
against feature noises and further improve performance. Extensive experiments
demonstrate that NOSMOG outperforms GNNs and the state-of-the-art method in
both transductive and inductive settings across seven datasets, while maintaining a
competitive inference efficiency.

1 Introduction

Graph Neural Networks (GNNs) have shown exceptional effectiveness in handling non-Euclidean
structural data and have achieved state-of-the-art performance across a broad range of graph mining
tasks [8, 14, 27]. The success of modern GNNs relies on the usage of message passing architecture,
which aggregates and learns node representations based on their (multi-hop) neighborhood [30, 40].
However, message passing is time-consuming and computation-intensive, making it challenging
to apply GNNs to real large-scale applications that are always constrained by latency and require
the deployed model to infer fast [37, 12]. To meet the latency requirement, multi-layer perceptrons
(MLPs) continue to be the first choice [38], despite the fact that they perform poorly in non-euclidean
graph data and focus exclusively on the node content information.

Inspired by the performance advantage of GNNs and the latency advantage of MLPs, researchers
start wondering if they could combine GNNs and MLPs together to enjoy the advantages of both
[11, 38, 39, 2]. To combine them, one effective approach is to use knowledge distillation (KD) [9, 7],
where the learned knowledge is transferred from GNNs to MLPs through soft labels [24]. Then
only MLPs are deployed for inference, with node content features as input. In this way, MLPs can
perform well by mimicking the output of GNNs without requiring explicit message passing, and thus
obtaining a fast inference speed [11]. Nevertheless, existing methods have two major drawbacks:
(1) MLPs cannot fully capture the graph structural information or explicitly learn node relations

NeurIPS 2022 New Frontiers in Graph Learning Workshop (NeurIPS GLFrontiers 2022).

with only node content features as input; and (2) MLPs are sensitive to node feature noises that can
easily destroy the performance. We thus ask: Can we learn MLPs that are graph structure-aware and
insensitive to node feature noises, meanwhile performing better than GNNs and inferring fast?

To address these issues and answer the question, we propose to learn NOise-robust Structure-aware
MLPs On Graphs (NOSMOG) with remarkable performance and inference speed. Specifically, we
first extract node position features from the graph and combine them with node content features as
the input of MLPs. Thus MLPs can fully capture the graph structure as well as the node positional
information. Then, we design a novel representational similarity distillation strategy to transfer the
node similarity information from GNNs to MLPs, so that MLPs can encode the structural node
affinity and learn more effectively from GNNs through hidden layer representations. After that, we
introduce the adversarial feature augmentation to make MLPs noise-resistant and further improve the
performance. To fully evaluate our model, we conduct extensive experiments on 7 public benchmark
datasets in both transductive and inductive settings. We conclude that NOSMOG can capture graph
structure and become robust to noises by incorporating position features, representational similarity,
and training with adversarial learning. At the same time, NOSMOG can improve the state-of-the-art
method and even outperform GNNs, while maintaining a fast inference speed. Particularly, NOSMOG
improves GNNs by 2.05%, MLPs by 25.22%, and existing state-of-the-art method by 6.63%,
averaged across 7 datasets and 2 settings. In the meantime, NOSMOG achieves comparable efficiency
to the state-of-the-art method and is 833× faster than GNNs with the same number of layers. To
summarize, the contributions of this paper are as follows:

• We point out that existing GNNs-MLPs KD frameworks suffer from two major issues that
undermine their applicability and reliability: the ignorance of graph structural information and the
sensitivity to node feature noises.

• To address the challenges, we propose to learn Noise-robust and Structure-aware MLPs on Graphs.
The proposed model contains three key components: the incorporation of position features,
representational similarity distillation, and adversarial feature augmentation.

• Extensive experiments demonstrate that NOSMOG can easily outperform GNNs and the state-of-
the-art method. In addition, we present robustness analysis, efficiency comparison, ablation studies,
and theoretical explanation to better understand the effectiveness of the proposed model.

2 Related Work

Graph Neural Networks. Many graph neural networks [14, 27, 8, 18, 3] were proposed to encode
the graph-structure data. They take advantage of the message passing paradigm by aggregating
neighborhood information to learn node embeddings. For example, GCN [14] introduces a layer-wise
propagation rule to learn node features. GAT [27] incorporates an attention mechanism to aggregate
features from neighbors with different weights. GraphSAGE [8] applies an efficient aggregation
function to learn node features from the local neighborhood. DeepGCNs [18] and GCNII [3] utilize
residual connections to aggregate neighbors from multi-hop and further address the over-smoothing
problem. However, These message passing GNNs only leverage local graph structure and have been
demonstrated to be no more powerful than the WL graph isomorphism test [32, 22]. Recent works
propose to empower graph learning with positional encoding techniques such as Laplacian Eigenmap
and DeepWalk [36, 29, 19, 23], so that the node’s position within the broader context of the graph
structure can be detected. Inspired by these studies, we incorporate position features to fully capture
the graph structure and node positional information.

Knowledge Distillation on Graph. Knowledge Distillation (KD) has been applied widely in graph-
based research and GNNs [17, 35, 33, 34]. Previous works apply KD primarily to learn student
GNNs with fewer parameters but perform as well as the teacher GNNs. However, time-consuming
message passing with multi-hop neighborhood fetching is still required during the learning process.
For example, LSP [35] and TinyGNN [33] fetch and aggregate neighbor information by introducing
the local structure-preserving and peer-aware modules that rely heavily on message passing. To
overcome the latency issues, recent works start focusing on learning an MLP-based student model that
does not require message passing [11, 38, 39]. Specifically, MLP student is trained with node content
features as input and soft labels from GNN teacher as targets. Although MLP can mimic GNN’s
prediction, the graph structural information is explicitly overlooked from the input, resulting in
incomplete learning, and the student is highly susceptible to noises that may be present in the feature.

2

In our work, we address these concerns. Correspondingly, since adversarial learning has shown great
performance in handling feature noises and enhancing modle learning capability [13, 31, 16, 42], we
introduce the adversarial feature augmentation to ensure stable learning against noises and further
improve performance.

3 Preliminary

Notations. A graph is usually denoted as G = (V, E ,C), where V represents the node set, E
represents the edge set, C ∈ RN×dc stands for the dc-dimensional node content attributes, and N
is the total number of nodes. In the node classification task, the model tries to predict the category
probability for each node v ∈ V , supervised by the ground truth node category Y ∈ RK , where K is
the number of categories. We use superscript L to mark the properties of labeled nodes (i.e., VL, CL,
and Y L), and superscript U to mark the properties of unlabeled nodes (i.e., VU , CU , and Y U).

Graph Neural Networks. For a given node v ∈ V , GNNs aggregate the messages from node
neighbors N (v) to learn node embedding hv ∈ Rdn with dimension dn. Specifically, the node
embedding in l-th layer h(l)

v is learned by first aggregating (AGG) the neighbor embeddings and then
combining (COM) it with the embedding from the previous layer. The whole learning process can be
denoted as: h(l)

v = COM(h
(l−1)
v , AGG({h(l−1)

u : u ∈ N (v)})).

4 Proposed Model

In this section, we present the details of NOSMOG. An overview of the proposed model is shown
in Figure 1. We introduce NOSMOG by first introducing the background of training MLPs with
GNNs distillation, and then illustrating three key components in NOSMOG, i.e., the incorporation of
position features (Figure 1 (b)), representational similarity distillation (Figure 1 (c)), and adversarial
feature augmentation (Figure 1 (d)).

Training MLPs with GNNs Distillation. The key idea of training MLPs with the knowledge distilled
from GNNs is simple. Given a cumbersome pre-trained GNN, the ground truth label yv for any
labeled node v ∈ VL, and the soft label zv learned by the teacher GNN for any node v ∈ V , the goal
is to train a lightweight MLP using both ground truth labels and soft labels. The objective function
can be formulated as:

L =
∑
v∈VL

LGT (ŷv,yv) + λ
∑
v∈V

LSL(ŷv, zv), (1)

where LGT is the cross-entropy loss between the student prediction ŷv and the ground truth label yv ,
LSL is the KL-divergence loss between the student prediction ŷv and the soft labels zv, and λ is a
trade-off weight for balancing two losses.

Incorporating Node Position Features. To empower graph learning and assist MLP in capturing
node positions on graph, we propose to enrich node content by positional encoding techniques such as
DeepWalk [23]. By simply concatenating the node content features with the learned position features,
MLP is able to capture node positional information within a broader context of the graph structure.
The idea of incorporating position features is straightforward, yet as we will see, extremely effective.
Specifically, we first learn position feature Pv for node v ∈ V by running DeepWalk algorithm on
G. Noticed that there are no node content features involved in this step, so the position features are
solely determined by the graph structure and the node positions in the graph. Then, we concatenate
(CONCAT) the content feature Cv and position feature Pv to form the final node feature Xv . After
that, we send the concatenated node feature into MLP to obtain the category prediction ŷv . The entire
process is formulated as:

Xv = CONCAT(Cv,Pv), ŷv = MLP(Xv). (2)

Later, ŷv is leveraged to calculate LGT and LSL (Equation 1).

Representational Similarity Distillation. To improve MLP’s ability to learn from GNN and further
capture the structural node similarity, we propose the Representational Similarity Distillation (RSD)
to encourage MLP to learn from GNN’s representation space. RSD maintains the representation space
by preserving the similarity between node embeddings, and leverages mean squared error to measure

3

Figure 1: (a) The overall framework of NOSMOG: A GNN teacher is trained on the graph to obtain the
representational node similarity and soft labels. Then, an MLP student is trained on node content features and
position features, guided by the learned representational node similarity and soft labels. We also introduce
the adversarial feature augmentation to ensure stable learning against feature noises and improve performance.
(b) The acquisition of node position features: capturing node positional information by positional encoding
techniques. (c) Representational Similarity Distillation: enforcing MLP to learn node similarity from GNN’s
representation space. (d) Adversarial Feature Augmentation: learning adversarial features by generating
adversarial perturbation for input features.

the similarity discrepancy between GNN and MLP. Compared to soft labels, the relative similarity
between intermediate representations of different nodes serves as a more flexible and appropriate
guidance from the teacher model [26]. Specifically, given the learned GNN representations HG ∈
RN×dG and the MLP representations HM ∈ RN×dM , where dG and dM indicate the representation
dimension of GNN and MLP respectively, we define the intra-model representational similarity
SGNN , SMLP for GNN and MLP as:

SGNN = HG ·HG and SMLP = H ′
M ·H ′

M , H ′
M = σ(WM ·HM), (3)

where WM ∈ RdM×dM is the transformation matrix to map MLP representations into GNN
representation space, σ is the activation function (we use ReLU in this work), and H ′

M is the
transformed MLP representations. We then define the RSD loss LRSD to minimize the inter-model
representation similarity:

LRSD(SGNN , SMLP) = ||SGNN − SMLP ||2F , (4)

where || · ||F is the Frobenius norm.

Adversarial Feature Augmentation. MLP is highly susceptible to feature noises [6] if only considers
the explicit feature information associated with each node. To enhance MLP’s robustness to noises,
we introduce the adversarial feature augmentation to leverage the regularization power of adversarial
features [4, 16]. In other words, adversarial feature augmentation makes MLP invariant to small
fluctuations in the features and generalizes to out-of-distribution samples, with the ability to further
boost performance [28, 5]. Compared to the vanilla training that we send original node content
features C into MLP to obtain the category prediction, adversarial training learns the perturbation
δ and sends maliciously perturbed features C + δ as input for MLP to learn. This process can be
formulated as the following min-max optimization problem:

min
θ

[
max

∥δ∥p≤ϵ
(−Y log(MLP(C + δ)))

]
, (5)

where θ represents the model parameters, δ is the perturbation, ∥ · ∥p is the ℓp-norm distance metric,
and ϵ is the perturbation range. Specifically, we choose Projected Gradient Descent [21] as the default
attacker to generate adversarial perturbation iteratively:

δt+1 = Π∥δ∥∞≤ϵ [δt + s · sign (∇δ (−Y log(MLP(C + δt))))] , (6)

4

where s is the perturbation step size and ∇δ is the calculated gradient given δ. For maximum
robustness, the final perturbation δ = δT is learned by updating Equation 6 for T times to generate
the worst-case noises. Finally, to accommodate KD, we perform adversarial training using both
ground truth labels yv for labeled nodes (v ∈ VL), and soft labels zv for all nodes in graph (v ∈ V).
Therefore, we can reformulate the objective in Equation 5 as follows:

C ′
v = Cv + δ, ŷ′

v = MLP(C ′
v),

LADV = max
δ∈ϵ

[−
∑
v∈VL

yv log(ŷ
′
v)−

∑
v∈V

zv log(ŷ
′
v)].

(7)

The final objective function L is defined as the weighted combination of ground truth cross-entropy
loss LGT , soft label distillation loss LSL, representational similarity distillation loss LRSD and
adversarial learning loss LADV :

L = LGT + λLSL + µLRSD + ηLADV , (8)

where λ, µ and η are trade-off weights for balancing LSL, LRSD and LADV , respectively.

5 Experiments

In this section, we conduct extensive experiments to validate the effectiveness of the proposed model
and answer the following questions: 1) Can NOSMOG outperform GNNs, MLPs, and other GNNs-
MLPs methods? 2) Can NOSMOG work well under both inductive and transductive settings? 3) Can
NOSMOG work well with noisy features? 4) How does NOSMOG perform in terms of inference time?
5) How does NOSMOG perform with different model components? 6) How does NOSMOG perform
with different teacher GNNs? 7) How can we explain the superior performance of NOSMOG? More
experiments on the parameter sensitivity are provided in Section C of the Appendix.

5.1 Experiment Settings

Datasets. We use five widely used public benchmark datasets [38, 34] (i.e., Cora, Citeseer,
Pubmed, A-computer, and A-photo), and two large OGB datasets [10] (i.e., Arxiv and Products)
to evaluate the proposed model. Detailed descriptions are provided in Section A of the Appendix.
Model Architectures. For a fair comparison, we follow the paper [38] to use GraphSAGE [8] with
GCN aggregation as the teacher model. However, we also show the impact of other teacher models
including GCN [14], GAT [27] and APPNP [15] in Section 5.7.
Evaluation Protocol. For experiments, we report the mean and standard deviation of ten separate runs
with different random seeds. We adopt accuracy to measure the model performance, use validation
data to select the optimal model, and report the results on test data.
Two Settings: Transductive vs. Inductive. To fully evaluate the model, we conduct node
classification in two settings: transductive (tran) and inductive (ind). For tran, we train models on
G, XL, and Y L, while evaluate them on XU and Y U . We generate soft labels for every nodes
in the graph (i.e., zv for v ∈ V). For ind, we follow previous work [38] to randomly select out
20% test data for inductive evaluation. Specifically, we separate the unlabeled nodes VU into two
disjoint observed and inductive subsets (i.e., VU = VU

obs ⊔VU
ind), which leads to three separate graphs

G = GL ⊔ GU
obs ⊔ GU

ind with no shared nodes. The edges between GL ⊔ GU
obs and GU

ind are removed
during training but are used during inference to transfer position features by average operator [8].
Node features and labels are partitioned into three disjoint sets, i.e., X = XL ⊔XU

obs ⊔XU
ind and

Y = Y L ⊔ Y U
obs ⊔ Y U

ind. We generate soft labels for nodes in the labeled and observed subsets (i.e.,
zv for v ∈ VL ⊔ VU

obs). Further experimental details are reported in Section B of the Appendix. Our
code is provided in the attachment.

5.2 Can NOSMOG outperform GNNs, MLPs, and other GNNs-MLPs methods?

We compare our model NOSMOG to GNN, MLP, and the state-of-the-art methods with the same
experimental settings. We first consider the standard transductive setting, so our results in Table 1
are directly comparable to those reported in previous literatures [38, 10, 34]. As shown in Table 1,
NOSMOG outperforms both teacher model and baseline methods on all datasets. Compared to the
teacher GNN, NOSMOG improves the performance by 2.46% on average across different datasets,

5

Table 1: NOSMOG outperforms GNN, MLP, and the state-of-the-art method GLNN on all datasets under the
standard setting. ∆GNN , ∆MLP , ∆GLNN represents the difference between the NOSMOG and GNN, MLP,
GLNN, respectively. Results show accuracy (higher is better).

Datasets SAGE MLP GLNN NOSMOG ∆GNN ∆MLP ∆GLNN

Cora 80.64 ± 1.57 59.18 ± 1.60 80.26 ± 1.66 83.04 ± 1.26 ↑ 2.98% ↑ 40.32% ↑ 3.46%
Citeseer 70.49 ± 1.53 58.50 ± 1.86 71.22 ± 1.50 73.78 ± 1.54 ↑ 4.67% ↑ 26.12% ↑ 3.59%
Pubmed 75.56 ± 2.06 68.39 ± 3.09 75.59 ± 2.46 77.34 ± 2.36 ↑ 2.36% ↑ 13.09% ↑ 2.32%
A-computer 82.82 ± 1.37 67.62 ± 2.21 82.71 ± 1.18 84.04 ± 1.01 ↑ 1.47% ↑ 24.28% ↑ 1.61%
A-photo 90.85 ± 0.87 77.29 ± 1.79 91.95 ± 1.04 93.36 ± 0.69 ↑ 2.76% ↑ 20.79% ↑ 1.53%
Arxiv 70.73 ± 0.35 55.67 ± 0.24 63.75 ± 0.48 71.65 ± 0.29 ↑ 1.30% ↑ 28.70% ↑ 12.39%
Products 77.17 ± 0.32 60.02 ± 0.10 63.71 ± 0.31 78.45 ± 0.38 ↑ 1.66% ↑ 30.71% ↑ 23.14%

which demonstrates that NOSMOG can capture better structural information than GNN without
explicit graph structure input. Compared to MLP, NOSMOG improves the performance by 26.29%
on average across datasets, while the state-of-the-art method GLNN [38] can only improve MLP by
18.55%, which shows the efficacy of KD and demonstrates that NOSMOG can capture additional
information that GLNN cannot. Compared to GLNN, NOSMOG improves the performance by 6.86%
on average across datasets. Specifically, GLNN performs poorly in large OGB datasets (the last 2
rows) while NOSMOG learns well and shows an improvement of 12.39% and 23.14%, respectively.
This further demonstrates the effectiveness of NOSMOG. The analyses of the capability of each model
component and the expressiveness of NOSMOG are shown in Sections 5.6 and 5.8, respectively.

5.3 Can NOSMOG work well under both inductive and transductive settings?

To better understand the effectiveness of NOSMOG, we conduct experiments in a realistic production
(prod) scenario that involves both inductive (ind) and transductive (tran) settings (see Table 2). We
find that NOSMOG can achieve superior or comparable performance to the teacher model and baseline
methods across all datasets and settings. Specifically, compared to GNN, NOSMOG achieves better
performance in all datasets and settings, except for ind on Arxiv and Products where NOSMOG can
only achieve comparable performance. Considering these two datasets have a significant distribution
shift between training data and test data [38], this is understandable that NOSMOG cannot outperform
GNN without explicit graph structure input. However, compared to GLNN which can barely learn on
these two datasets, NOSMOG improves the performance extensively, i.e., 18.72% and 11.01% on
these two datasets, respectively. This demonstrates the capability of NOSMOG in capturing graph
structural information on large-scale datasets, despite the significant distribution shift. In addition,
NOSMOG outperforms MLP and GLNN by great margins in all datasets and settings, with an average
of 24.15% and 6.39% improvement, respectively. Therefore, we conclude that NOSMOG can achieve
exceptional performance in the production environment with both inductive and transductive settings.

5.4 Can NOSMOG work well with noisy features?

Figure 2: Accuracy vs. Feature Noises.

Considering that MLP and GLNN are sensitive to feature
noises and may not perform well when the labels are
uncorrelated with the node content, we further evaluate
the performance of NOSMOG with regards to noise levels
in Figure 2. Experiment results are averaged across
various datasets. Specifically, we add different levels
of Gaussian noises to content features by replacing C
with C̃ = (1− α)C + αn, where n represents Gaussian
noises that independent from C, and α ∈ [0, 1] incates
the noise level. We find that NOSMOG achieves better
or comparable performance to GNNs across different α,
which demonstrates the superior efficacy of NOSMOG,
especially when GNNs can mitigate the impact of noises
by leveraging information from neighbors and surrounding
subgraphs, whereas NOSMOG only relies on content and position features. GLNN and MLP, however,
drop their performance quickly as α increases. In the extreme case when α equals 1, the input features

6

Table 2: NOSMOG outperforms GNN, MLP, and the state-of-the-art method GLNN in a production scenario
with both inductive and transductive settings. ind indicates the results on VU

ind, tran indicates the results on
VU
tran, and prod indicates the interpolated production results of both ind and tran.

Datasets Eval SAGE MLP GLNN NOSMOG ∆GNN ∆MLP ∆GLNN

Cora
prod 79.53 59.18 77.82 81.02 ↑ 1.87% ↑ 36.90% ↑ 4.11%
ind 81.03 ± 1.71 59.44 ± 3.36 73.21 ± 1.50 81.36 ± 1.53 ↑ 0.41% ↑ 36.88% ↑ 11.13%
tran 79.16 ± 1.60 59.12 ± 1.49 78.97 ± 1.56 80.93 ± 1.65 ↑ 2.24% ↑ 36.89% ↑ 2.48%

Citeseer
prod 68.06 58.49 69.08 70.60 ↑ 3.73% ↑ 20.70% ↑ 2.20%
ind 69.14 ± 2.99 59.31 ± 4.56 68.48 ± 2.38 70.30 ± 2.30 ↑ 1.68% ↑ 18.53% ↑ 2.66%
tran 67.79 ± 2.80 58.29 ± 1.94 69.23 ± 2.39 70.67 ± 2.25 ↑ 4.25% ↑ 21.24% ↑ 2.08%

Pubmed
prod 74.77 68.39 74.67 75.82 ↑ 1.40% ↑ 10.86% ↑ 1.54%
ind 75.07 ± 2.89 68.28 ± 3.25 74.52 ± 2.95 75.87 ± 3.32 ↑ 1.07% ↑ 11.12% ↑ 1.81%
tran 74.70 ± 2.33 68.42 ± 3.06 74.70 ± 2.75 75.80 ± 3.06 ↑ 1.47% ↑ 10.79% ↑ 1.47%

A-computer
prod 82.73 67.62 82.10 83.85 ↑ 1.35% ↑ 24.00% ↑ 2.13%
ind 82.83 ± 1.51 67.69 ± 2.20 80.27 ± 2.11 84.36 ± 1.57 ↑ 1.85% ↑ 24.63% ↑ 5.10%
tran 82.70 ± 1.34 67.60 ± 2.23 82.56 ± 1.80 83.72 ± 1.44 ↑ 1.23% ↑ 23.85% ↑ 1.41%

A-photo
prod 90.45 77.29 91.34 92.47 ↑ 2.23% ↑ 19.64% ↑ 1.24%
ind 90.56 ± 1.47 77.44 ± 1.50 89.50 ± 1.12 92.61 ± 1.09 ↑ 2.26% ↑ 19.59% ↑ 3.48%
tran 90.42 ± 0.68 77.25 ± 1.90 91.80 ± 0.49 92.44 ± 0.51 ↑ 2.23% ↑ 19.66% ↑ 0.70%

Arxiv
prod 70.69 55.35 63.50 70.90 ↑ 0.30% ↑ 28.09% ↑ 11.65%
ind 70.69 ± 0.58 55.29 ± 0.63 59.04 ± 0.46 70.09 ± 0.55 ↓ -0.85% ↑ 26.77% ↑ 18.72%
tran 70.69 ± 0.39 55.36 ± 0.34 64.61 ± 0.15 71.10 ± 0.34 ↑ 0.58% ↑ 28.43% ↑ 10.05%

Products
prod 76.93 60.02 63.47 77.33 ↑ 0.52% ↑ 28.84% ↑ 21.84%
ind 77.23 ± 0.24 60.02 ± 0.09 63.38 ± 0.33 77.02 ± 0.19 ↓ -0.27% ↑ 28.32% ↑ 11.01%
tran 76.86 ± 0.27 60.02 ± 0.11 63.49 ± 0.31 77.41 ± 0.21 ↑ 0.72% ↑ 28.97% ↑ 21.93%

are completely noises and C̃ and C are independent. We observe that NOSMOG can still perform as
good as GNNs by considering the position features, while GLNN and MLP perform poorly.

5.5 How does NOSMOG perform in terms of inference time?

Figure 3: Accuracy vs. Inference Time.

To demonstrate the efficiency of NOSMOG, we analyze
the capacity of NOSMOG by visualizing the trade-off
between prediction accuracy and model inference time
on Products dataset in Figure 3. We find that NOSMOG
can achieve high accuracy (78%) while maintaining a
fast inference time (1.35ms). Specifically, compared
to other models with similar inference time, NOSMOG
performs significantly better, while GLNN and MLPs can
only achieve 64% and 60% accuracy, respectively. For
those models that have close or similar performance as
NOSMOG, they need a considerable amount of time for
inference, e.g., 2 layers GraphSAGE (SAGE-L2) needs
144.47ms and 3 layers GraphSAGE (SAGE-L3) needs
1125.43ms, which is not applicable in real applications.
This makes NOSMOG 107× faster than SAGE-L2 and 833× faster than SAGE-L3. In addition, since
increasing the hidden size of GLNN may improve the performance, we compare NOSMOG with
GLNNw4 (4-times wider than GLNN) and GLNNw8 (8-times wider than GLNN). Results show
that although GLNNw4 and GLNNw8 can improve GLNN, they still perform worse than NOSMOG
and even require more time for inference. We thus conclude that NOSMOG is superior to existing
methods and GNNs in terms of both accuracy and inference time.

5.6 How does NOSMOG perform with different model components?

Since NOSMOG contains various essential components (i.e., node position features (POS),
representational similarity distillation (RSD), and adversarial feature augmentation (ADV)), we
conduct ablation studies to analyze the contributions of different components by removing each
of them independently (see Table 3). From the table, we find that the performance drops when a
component is removed, indicating the efficiency of each component. In general, the incorporation of

7

Table 3: Accuracy of different model variants. The decreasing performance of these model variants demonstrates
the effectiveness of each component in enhancing the model.

Datasets w/o POS w/o RSD w/o ADV NOSMOG ∆POS ∆RSD ∆ADV

Cora 80.44 ± 1.51 82.11 ± 1.33 82.43 ± 1.42 83.04 ± 1.26 ↑ 3.23% ↑ 1.13% ↑ 0.74%
Citeseer 73.31 ± 1.55 71.61 ± 1.84 72.11 ± 1.68 73.78 ± 1.54 ↑ 0.64% ↑ 3.03% ↑ 2.32%
Pubmed 75.55 ± 2.54 77.15 ± 2.31 77.02 ± 2.58 77.34 ± 2.36 ↑ 2.37% ↑ 0.25% ↑ 0.42%
A-computer 82.94 ± 0.87 84.00 ± 1.65 83.15 ± 1.21 84.04 ± 1.01 ↑ 1.33% ↑ 0.05% ↑ 1.07%
A-photo 92.76 ± 0.58 92.97 ± 0.70 92.24 ± 0.98 93.36 ± 0.69 ↑ 0.65% ↑ 0.42% ↑ 1.21%
Arxiv 62.69 ± 0.64 71.59 ± 0.27 71.53 ± 0.30 71.65 ± 0.29 ↑ 14.29% ↑ 0.08% ↑ 0.17%
Products 63.75 ± 0.21 78.38 ± 0.36 78.35 ± 0.40 78.45 ± 0.38 ↑ 23.06% ↑ 0.09% ↑ 0.13%

position features contributes the most, especially on Arxiv and Products datasets. By integrating the
position features, NOSMOG can learn from the node positions and achieve exceptional performance.
RSD contributes little to the overall performance across different datasets. This is because the
goal of RSD is to distill more information from GNN to MLP, while MLP already learns well by
mimicking GNN through soft labels. ADV contributes moderately across datasets, given that it
mitigates overfitting and improves generalization. Finally, NOSMOG achieves the best performance
on all datasets, demonstrating the effectiveness of the proposed model.

5.7 How does NOSMOG perform with different teacher GNNs?

Figure 4: Accuracy vs. Teacher GNN
Architectures.

We use GraphSAGE to represent the teacher GNNs so
far. However, different GNN architectures may have
different performances across datasets, we thus study
if NOSMOG can perform well with other GNNs. In
Figure 4, we show average performance with different
teacher GNNs (i.e., GCN, GAT, and APPNP) across the
five benchmark datasets. From the figure, we conclude
that the performance of all four teachers is comparable,
and NOSMOG can always learn from different teachers
and outperform them, albeit with slightly diminished
performance when distilled from APPNP, indicating that
APPNP provides the least benefit for student. This is due to
the fact that the APPNP uses node features for prediction
prior to the message passing on the graph, which is very similar to what the student MLP does, and
therefore provides MLP with little additional information than other teachers. However, NOSMOG
consistently outperforms GLNN, which further demonstrates the effectiveness of the proposed model.

5.8 How can we explain the superior performance of NOSMOG?

In this section, we analyze the superior performance and expressiveness of NOSMOG from several
perspectives, including the comparison with GLNN and GNNs from information theoretic perspective,
and the consistency measure of model predictions and graph topology based on Min-Cut.

The expressiveness of NOSMOG compared to GLNN and GNNs. The goal of node classification
task is to fit a function f on the rooted graph G[v] with label yv (a rooted graph G[v] is the graph
with one node v in G[v] designated as the root) [2]. From the information theoretic perspective,
learning f by minimizing cross-entropy loss is equivalent to maximizing the mutual information
(MI) [25], i.e., I(G[v];yi). If we consider G[v] as a joint distribution of two random variables X [v]

and E [v], that represent the node features and edges in G[v] respectively, we have: I(G[v];yv) =
I(X [v], E [v];yv) = I(E [v];yv) + I(X [v];yv|E [v]), where I(E [v];yv) is the MI between edges and
labels, which indicates the relevance between labels and graph structure, and I(X [v];yv|E [v]) is the
MI between features and labels given edges E [v]. To compare the effectiveness of NOSMOG, GLNN
and GNNs, we start by analyzing the objective of GNNs. For a given node v, GNNs aim to learn an
embedding function fGNN that computes the node embedding zv , where the objective is to maximize
the likelihood of the conditional distribution P (yv|z[v]) to approximate I(G[v];yv). Generally, the
embedding function fGNN takes the node features X [v] and its multi-hop neighbourhood subgraph

8

S[v] as input, which can be written as z[v] = fGNN (X [v], S[v]). Correspondingly, the process of
maxmizing likelihood P (yv|z[v]) can be expressed as the process of minimizing the objective function
L1(fGNN (X [v], S[v]),yv). Since S[v] contains the multi-hop neighbours, optimizing L1 captures
both node features and the surrounding structure information, which approximating I(X [v];yv|E [v])
and I(E [v];yv), respectively.

GLNN leverages the objective functions described in Eq. 1, which approximates I(G[v];yv) by
only maxmizing I(X [v];yv|E [v]), while ignoring I(E [v];yv). However, there are situations that
node labels are not strongly correlated to node features, or labels are mainly determined by the
node positions or graph structure, e.g., node degrees [20, 41]. In these cases, GLNN won’t be
able to fit. Alternatively, NOSMOG focuses on modeling both I(E [v];yv) and I(X [v];yv|E [v]) by
jointly considering node position features and content features. In particular, I(E [v];yv) is optimized
by the objective functions L2(fMLP (X

[v], P [v]),yv) and L3(fMLP (X
[v], P [v]), fGNN (X [v], S[v]))

by extending LGT and LSL in Equation 8 that incorporates position features. Here fMLP is the
embedding function that NOSMOG learns given the content feature X [v] and position feature P [v].
Essentially, optimizing L3 forces MLP to learn from GNN’s output and eventually achieve comparable
performance as GNNs. In the meanwhile, optimizing L2 allows MLP to capture node positions that
may not be learned by GNNs, which is important if the label yv is correlated to the node positional
information. Therefore, there is no doubt that NOSMOG can perform better, considering that yv is
always correlated with E [v] in graph data. Even in the extreme case that when yv is uncorrelated
with I(X [v];yv|E [v]), NOSMOG can still achieve superior or comparable performance to GNNs, as
demonstrated in Section 5.4.

Table 4: The cut value. NOSMOG predictions are more
consistent with the graph topology than GNN, MLP, and
the state-of-the-art method GLNN.

Datasets SAGE MLP GLNN NOSMOG

Cora 0.9385 0.7203 0.8908 0.9480
Citeseer 0.9535 0.8107 0.9447 0.9659
Pubmed 0.9597 0.9062 0.9298 0.9641
A-computer 0.8951 0.6764 0.8579 0.9047
A-photo 0.9014 0.7099 0.9063 0.9084
Arxiv 0.9052 0.7252 0.8126 0.9066
Products 0.9400 0.7518 0.7657 0.9456
Average 0.9276 0.7572 0.8725 0.9348

The consistency measure of model
predictions and graph topology. To
further validate that NOSMOG is superior to
GNNs, MLPs, and GLNN in encoding graph
structural information, we design the cut value
CV ∈ [0, 1] to measure the consistency between
model predictions and graph topology [38],
based on the approximation for the min-cut
problem [1]. The min-cut problem divides
nodes V into K disjoint subsets by removing the
minimum number of edges. Correspondingly,
the min-cut problem can be expressed as:
max 1

K

∑K
k=1(C

T
k ACk)/(C

T
k DCk), where

C is the node class assignment, A is the
adjacency matrix, and D is the degree matrix. Therefore, we design the cut value as follows:
CV = tr(Ŷ TAŶ)/tr(Ŷ TDŶ), where Ŷ is the model prediction output, and the cut value CV
indicates the consistency between the model predictions and the graph topology. The bigger the
value is, the predictions are more consistent with the graph topology, and the model is more capable
of capturing graph structural information. The cut values for different models in transductive setting
are shown in Table 4. We find that the average CV for NOSMOG is 0.9348, while the average CV for
SAGE, MLP, and GLNN are 0.9276, 0.7572, and 0.8725, respectively. We conclude that NOSMOG
achieves the highest cut value, demonstrating the superior expressiveness of NOSMOG in capturing
graph topology compared to GNN, MLP, and GLNN.

6 Conclusion and Future Work

In this paper, we address two issues that the existing GNNs-MLPs framework has, i.e., the ignorance
of graph structural information and the sensitivity to node feature noises. Specifically, we propose to
learn Noise-robust and Structure-aware MLPs on Graphs (NOSMOG) that considers position features,
representational similarity distillation, and adversarial feature augmentation. Extensive experiments
on seven datasets demonstrate that NOSMOG can improve GNNs by 2.05%, MLPs by 25.22%,
and the state-of-the-art method by 6.63%, meanwhile maintaining a fast inference speed of 833×
compared to GNNs. In addition, we present robustness analysis, efficiency comparison, ablation
studies, and theoretical explanation to better understand the effectiveness of the proposed model.

9

References
[1] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Mincut pooling in graph neural

networks. arXiv preprint arXiv:1907.00481, 2019.

[2] Lei Chen, Zhengdao Chen, and Joan Bruna. On graph neural networks versus graph-augmented
mlps. In ICLR, 2021.

[3] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In ICML, 2020.

[4] Tianlong Chen, Yu Cheng, Zhe Gan, Jianfeng Wang, Lijuan Wang, Zhangyang Wang, and
Jingjing Liu. Adversarial feature augmentation and normalization for visual recognition. arXiv
preprint arXiv:2103.12171, 2021.

[5] Zhijie Deng, Yinpeng Dong, and Jun Zhu. Batch virtual adversarial training for graph
convolutional networks. arXiv preprint arXiv:1902.09192, 2019.

[6] Prasenjit Dey, Kaustuv Nag, Tandra Pal, and Nikhil R Pal. Regularizing multilayer perceptron
for robustness. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017.

[7] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International Journal of Computer Vision, 2021.

[8] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NeurIPS, 2017.

[9] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[10] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
NeurIPS, 2020.

[11] Yang Hu, Haoxuan You, Zhecan Wang, Zhicheng Wang, Erjin Zhou, and Yue Gao. Graph-mlp:
node classification without message passing in graph. arXiv preprint arXiv:2106.04051, 2021.

[12] Zhihao Jia, Sina Lin, Rex Ying, Jiaxuan You, Jure Leskovec, and Alex Aiken. Redundancy-free
computation for graph neural networks. In KDD, 2020.

[13] Ziyu Jiang, Tianlong Chen, Ting Chen, and Zhangyang Wang. Robust pre-training by adversarial
contrastive learning. In NeurIPS, 2020.

[14] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[15] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In ICLR, 2019.

[16] Kezhi Kong, Guohao Li, Mucong Ding, Zuxuan Wu, Chen Zhu, Bernard Ghanem, Gavin Taylor,
and Tom Goldstein. Flag: Adversarial data augmentation for graph neural networks. CVPR,
2022.

[17] Seunghyun Lee and Byung Cheol Song. Graph-based knowledge distillation by multi-head
attention network. arXiv preprint arXiv:1907.02226, 2019.

[18] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep
as cnns? In ICCV, 2019.

[19] Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design
provably more powerful neural networks for graph representation learning. NeurIPS, 2020.

[20] Derek Lim, Xiuyu Li, Felix Hohne, and Ser-Nam Lim. New benchmarks for learning on
non-homophilous graphs. In WWW, 2021.

10

[21] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In ICLR, 2018.

[22] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural
networks. In AAAI, 2019.

[23] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social
representations. In KDD, 2014.

[24] Mary Phuong and Christoph Lampert. Towards understanding knowledge distillation. In ICML,
2019.

[25] Zhenyue Qin, Dongwoo Kim, and Tom Gedeon. Rethinking softmax with cross-entropy: Neural
network classifier as mutual information estimator. arXiv preprint arXiv:1911.10688, 2019.

[26] Frederick Tung and Greg Mori. Similarity-preserving knowledge distillation. In ICCV, 2019.

[27] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

[28] Dilin Wang, Chengyue Gong, and Qiang Liu. Improving neural language modeling via
adversarial training. In ICML, 2019.

[29] Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. Equivariant and stable positional
encoding for more powerful graph neural networks. ICLR, 2022.

[30] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 2020.

[31] Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang, Alan L Yuille, and Quoc V Le.
Adversarial examples improve image recognition. In CVPR, 2020.

[32] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

[33] Bencheng Yan, Chaokun Wang, Gaoyang Guo, and Yunkai Lou. Tinygnn: Learning efficient
graph neural networks. In KDD, 2020.

[34] Cheng Yang, Jiawei Liu, and Chuan Shi. Extract the knowledge of graph neural networks and
go beyond it: An effective knowledge distillation framework. In WWW, 2021.

[35] Yiding Yang, Jiayan Qiu, Mingli Song, Dacheng Tao, and Xinchao Wang. Distilling knowledge
from graph convolutional networks. In CVPR, 2020.

[36] Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. In ICML,
2019.

[37] Dalong Zhang, Xin Huang, Ziqi Liu, Zhiyang Hu, Xianzheng Song, Zhibang Ge, Zhiqiang
Zhang, Lin Wang, Jun Zhou, Yang Shuang, et al. Agl: A scalable system for industrial-purpose
graph machine learning. arXiv preprint arXiv:2003.02454, 2020.

[38] Shichang Zhang, Yozen Liu, Yizhou Sun, and Neil Shah. Graph-less neural networks: Teaching
old mlps new tricks via distillation. In ICLR, 2022.

[39] Wenqing Zheng, Edward W Huang, Nikhil Rao, Sumeet Katariya, Zhangyang Wang, and
Karthik Subbian. Cold brew: Distilling graph node representations with incomplete or missing
neighborhoods. ICLR, 2022.

[40] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and
applications. AI Open, 2020.

11

[41] Jiong Zhu, Ryan A Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K Ahmed, and Danai
Koutra. Graph neural networks with heterophily. In AAAI, 2021.

[42] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural
networks for graph data. In KDD, 2018.

12

	Introduction
	Related Work
	Preliminary
	Proposed Model
	Experiments
	Experiment Settings
	Can NOSMOG outperform GNNs, MLPs, and other GNNs-MLPs methods?
	Can NOSMOG work well under both inductive and transductive settings?
	Can NOSMOG work well with noisy features?
	How does NOSMOG perform in terms of inference time?
	How does NOSMOG perform with different model components?
	How does NOSMOG perform with different teacher GNNs?
	How can we explain the superior performance of NOSMOG?

	Conclusion and Future Work

