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Abstract

Neural Radiance Fields (NeRFs) are neural networks — typically multilayer percep-
trons (MLPs) — that represent the geometry and appearance of objects, with applica-
tions in vision, graphics, and robotics. Recent works propose understanding NeRFs
with natural language using Multimodal Large Language Models (MLLMs) that
directly process the weights of a NeRF’s MLP. However, these approaches rely on
a global representation of the input object, making them unsuitable for spatial rea-
soning and fine-grained understanding. In contrast, we propose weights2space,
a self-supervised framework featuring a novel meta-encoder that can compute a
sequence of spatial tokens directly from the weights of a NeRF. Leveraging this
representation, we build Spatial LLaNA, a novel MLLM for NeRFs, capable of
understanding details and spatial relationships in objects represented as NeRFs.
We evaluate Spatial LLaNA on NeRF captioning and NeRF Q&A tasks, using
both existing benchmarks and our novel Spatial ObjaNeRF dataset consisting of
100 manually-curated language annotations for NeRFs. This dataset features 3D
models and descriptions that challenge the spatial reasoning capability of MLLMs.
Spatial LLaNA outperforms existing approaches across all tasks.

1 Introduction

Neural Radiance Fields (NeRFs) [45] can encode the 3D geometry and photorealistic appearance of
an object compactly within the weights of a neural network, typically implemented as a Multi-Layer
Perceptron (MLP). The ability of NeRFs to capture intricate visual details has led to widespread
adoption in vision, graphics, and robotics [21, 59].

With NeRFs emerging as an effective and popular modality to represent 3D objects, what if one could
effortlessly interact through words with an Al assistant capable of providing detailed information
about a complex object stored in a computer as a NeRF? For instance, one may ask the assistant
to describe specific parts of the object or to explain intricate spatial relationships precisely. Such
intuitive, language-based interaction with NeRF representations has recently been investigated by
LLaNA [6, 7]. LLaNA employs a meta-encoder [53] to extract a global embedding of an object
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Figure 1: (left) LLaNA relies on a single global representation of the input NeRF. (right) S-LLaNA
processes multiple spatially-aware tokens extracted by our new meta-encoder and, thus, can provide
detailed descriptions that capture the relationships between objects. In particular, the answer of
Spatial LLaNA contains more fine-grained information (e.g., it hints at the “wooden shelf with a
red ceramic pot” and enumerates the “four wheels” and the “three wooden benches’) while also
reasoning spatially (e.g., it discriminates between objects “on one side” and objects “inside the
carriage”).

stored as a NeRF by directly processing the weigts of the MLP. Compared to rendering views from
the given NeRF so as to feed them to a Vision-Language Model, the strategy introduced by LLaNA
is remarkably faster and avoids decisions that impact object understanding, such as the number of
views to render and their resolution. The global representation computed by the meta-encoder is then
projected into the embedding space of a Large Language Model (LLM) and prepended to a language
instruction to realize NeRF-Language reasoning. However, we reckon that reliance on a single token
to represent a whole NeRF limits the ability of LLaNA to capture fine-grained details and understand
precise spatial relationships among objects, as illustrated in Figure 1, left.

Multimodal Large Language Models (MLLMs) that operate on explicit spatial representations, such
as images [4, 8, 15, 32, 33, 39, 63, 70] and point clouds [49, 50, 62], typically achieve fine-grained
spatial reasoning by dividing inputs into localized regions — images into patches and point clouds
into sets — in order to extract localized, spatially-aware tokens that capture geometric and visual
context. However, the weights of a NeRF inherently lack such explicit spatial structure, as the spatial
information is distributed across all of them, without any weight being directly associated with any
specific object part. Consequently, traditional spatially-aware tokenization approaches are not directly
applicable to NeRF representations.

This observation raises an intriguing research question: Is it possible to elicit spatially-aware
representations from the information distributed across the weights of a NeRF?

To answer this question, we propose a novel self-supervised framework, weights2space, trained
to reorganize the information encoded within the weights of a NeRF into spatially-aware tokens.
Specifically, weights2space employs a novel Transformer-based meta-encoder that ingests the MLP
weights and outputs a sequence of tokens that are reorganized into a tri-plane [13] structure during
training, so as to associate each token with a specific, localized spatial region. The meta-encoder
is trained alongside a decoder to render images from the tri-plane representations. This approach
allows the meta-encoder to extract a localized, spatially-grounded representation of the input NeRF.
By leveraging this novel representation, we introduce Spatial LLaNA (S-LLaNA), a novel Multimodal
Large Language Model for NeRFs, capable of reasoning about fine-grained object details and spatial
relationships, as shown in Figure 1, right.

To validate our approach, we thoroughly evaluate Spatial LLaNA on the existing NeRF-Language
datasets: ShapeNeRF-Text [53], HST [5], and ObjaNeRF-Text [7]. Moreover, we propose a novel
benchmark, Spatial ObjaNeRF, consisting of 100 NeRF models from Objaverse [ 18] paired with
detailed language descriptions focusing on object parts and their spatial relations. Experimental
results show a substantial improvement in NeRF-Language reasoning with our approach.



In summary, we make the following contributions:

e weights2space: a self-supervised framework featuring a novel Transformer-based meta-encoder
capable of extracting spatially-aware token representations directly from the weights of a NeRF.

o Spatial LLaNA: a novel MLLM for NeRFs that leverages the localized representations from the
weights2space meta-encoder to achieve detailed spatial reasoning.

e Spatial ObjaNeRF: a new manually annotated dataset of 100 NeRFs explicitly designed to evaluate
detailed spatial reasoning tasks involving NeRFs.

e Spatial LLaNA achieves state-of-the-art performance on the new spatial reasoning tasks of our
dataset as well as on existing benchmarks for NeRF captioning and NeRF Q&A, demonstrating the
effectiveness of our approach.

2 Related work

Deep learning on neural networks. Processing the weights of a neural network poses distinct
challenges compared to standard input formats, primarily due to the high dimensionality of the
weight space, inherent symmetries [23], and the influence of randomness on the convergence point
of training [3, 20]. Early approaches to meta-networks use group theory to design architectures
equivariant to permutation symmetries in network weights [46, 69], but were limited to specific
architectures like MLPs or CNNs. To generalize across architectures, Graph Meta-Networks (GMNs)
were introduced [3 1, 37], reframing the problem as one of converting neural networks into graphs,
which GMNss can process due to their inherent permutation equivariance. nf2vec [53] is the first
method to perform tasks on NeRFs by directly processing its weights. This model computes a
global embedding from the weights of the NeRF’s MLP, leveraging an encoder-decoder architecture
supervised with a rendering loss. LLaNA [6] uses the feature vector computed by this encoder to
perform NeRF-Language tasks, such as NeRF captioning and NeRF Q&A. While nf2vec is designed
to ingest MLPs, [1 1] proposes a method to process a NeRF architecture consisting of a tri-plane
structure,performing the tasks of classification and segmentation on NeRF data. All these methods
compute a single feature vector from the weights of the input NeRF, encapsulating global information
about the object. In contrast, the weights2space meta-encoder proposed in this work extracts
spatially-aware tokens from the weights of the input NeRF, providing a richer set of information.

Multimodal Large Language Models. Multimodal Large Language Models (MLLMs) expand
the capabilities of existing LLMs [1, 29, 52, 56, 68] by combining language with other modalities
like images, audio, or 3D data. Vision-language models [4, 8, 15, 32, 33, 39, 63, 70] encode images
using pre-trained Vision Transformers (ViT) [51] that convert image patches into sequences of visual
tokens. These local representations capture fine-grained spatial information across the image. 3D
MLLMs [25, 49, 50, 62] divide the input point cloud into local patches. Transformer-based encoders
like Point-BERT [64] and Recon++ [49] compute discrete token sequences that preserve spatial
relationships. MLLMs for audio [19, 26, 65] split acoustic inputs into temporal patches and encode
them using audio-specific encoders [ 4], producing sequences of tokens that retain temporal structure.
Similarly, MLLMs for video-language understanding [34, 41, 43, 44, 66] use visual encoders to
compute local features on each video frame, preserving both spatial and temporal information. In
contrast to these local representation approaches, the only existing MLLM for Neural Radiance
Fields (NeRFs), LLaNA [0], computes a single global embedding from the weights of a NeRF’s
MLP. Although this approach enables basic language tasks on NeRFs, it critically overlooks spatial
information since it does not adopt the local token-based representation strategy successfully used in
other modalities. In this work, we propose S-LLaNA, a novel MLLM framework for NeRF which
relies on our new weights2space meta-encoder to compute a set of spatial tokens from the weights
of the input NeRF’s MLP, preserving crucial spatial information while also allowing to extract richer
and more detailed information from the input NeRF.

Language and Neural Radiance Fields. Given a textual description of an object, generative models
produce realistic objects represented as NeRFs [28, 48, 60, 67]. Similarly, other approaches focus on
editing an input scene represented as a NeRF, through text control [17, 55, 57, 58]. The interaction
between NeRF and language is also leveraged for 3D semantic understanding. On this task, LeRF [30]
predicts language features for each spatial location alongside density and color. While the primary
focus of LeRF is on object localization, 3D-OVS [40] distills the reasoning capability of CLIP [51]
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Figure 2: weights2space overview. Figure 3: Spatial LLaNA overview.
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and DINO [12] into a NeREF, to perform 3D segmentation. However, these methods train a semantic
neural field, relying on the noisy and view-inconsistent semantics from CLIP. In contrast to this
methods, OV-NeRF [36] addresses the task of open-vocabulary 3D segmentation by leveraging a
regularization technique to improve the single-view semantics and a self-enhancement strategy for
cross-view semantics. The neural field adopted by these methods is parametrized by a neural network.
The first method to perform captioning and Q&A tasks on NeRF is LLaNA [6] while [7] expands the
capabilities of LLaNA to a larger dataset, ObjaNeRF-Text, by scaling its underlying LLM.

3 weights2space: spatially-aware NeRF weights tokenization

Our goal is to compute a spatially-aware representation of an object directly from the weights of its
NeRF model. The only existing MLLM for NeRF, LLaNA [6], utilizes a global representation of the
input NeRF, in the form of a single embedding. In contrast, state-of-the-art MLLMs typically operate
on spatially-aware, token-based representations computed by Transformer encoders [49, 51, 64].
These architectures allow the model to capture localized features crucial for detailed understanding
and downstream language tasks.

Inspired by these approaches, we introduce a novel self-supervised framework, weights2space,
that learns how to transform the weights of a NeRF into a sequence of spatially-aware embeddings,
as shown in Figure 2 — more implementation details are in the Appendix.

NeRF encoding. Similarly to LLaNA [6], we assume NeRFs to be MLPs consisting of L hidden
layers with H neurons, an input layer, and an output layer. The input layer has a weight matrix
W, € RI*H and biases b; € R, where I depends on the frequency encoding [45] used to encode
the input coordinates. Hidden layers have the same number of input and output neurons, H, thus their
squared weight matrix has dimension W; € R¥*H and biases b; € R¥. The output layer, which
predicts the RG' B colour and density o at a given 3D coordinate, has a weight matrix of W, € R x4
and biases b, € R*. The parameters of this MLP are packed as in nf2vec [53] to provide the input
to the meta-encoder. In particular, the weight matrices and biases of the input MLP are stacked along
the row dimension to form a matrix W € R¥*# where S = I + L * (H + 1) + H + 2. The weights
and biases of the output layer, W, and b,, are padded with zeros to obtain H columns.

Meta-encoder. It processes the parameters of the input MLP packed into matrix W through two
components: a weights2seq module and a seq2space module.

The weights2seq module, consisting of a series of linear layers — 4 in our experiments —, batch
normalizations [27] and ReLU activations [2], processes each row of W independently for efficient
computation. The module yields a set of tokens V € RS*&  each representing a row of parameters
in the input MLP, with S = 336 and G = 1024 in our setup. We note that this per-row processing
module is the same as nf2vec [53], yet with one key modification: our architecture does not perform
a final max-pooling to aggregate all row-level features into a single global representation. We
conjecture that the pooled vector, which is the sole input utilized by LLaNA [6] to represent a NeRF,



contains compact and coarse information on the underlying object. Instead, by skipping this pooling
step, we aim at retaining more comprehensive and fine-grained information.

In standard MLLM pipelines for visual or 3D modalities, the encoder [5 1, 64] computes a sequence
of spatially localized tokens, each representing a specific image patch or set of 3D points. However,
the tokens computed by the weights2seq module have no direct correspondence to any specific spatial
location or object part.

To elicit spatial information from the weights of the NeRF, we deploy the seq2space module, a
Transformer decoder with 12 decoder layers, where the keys and values of the cross-attention layers
are obtained from the sequence of tokens V. Input to seg2space is a sequence of learnable queries
X = (x1,X2,...,xy) € RVXC where N is the number of queries and C is the feature dimension.
The Transformer decoder, hence, outputs a new sequence of tokens Y = (y1,y2,...,yn) € RVXC,
In our experiments, we employ N = 3072 and C = 516.

Tri-plane representation and decoder. To force each token of Y to contain localized information,
we reshape the N tokens of Y into a tri-plane feature map [13], defined as M = (Fyy, Fop, Fy,).
Each plane F € RF*WXC wwhere H, W are the spatial dimensions, is obtained by arranging a
subset of the tokens into a 2D grid. In particular, we reshape the 3072 tokens into three 32 x 32 spatial
planes. In this way, each token of Y corresponds to a specific location in one of the three orthogonal
planes. This design introduces spatial structure and locality into the otherwise unstructured token
sequence originally obtained by the weights2seq module.

Given a 3D point p € R3, we can obtain its 3D feature by projecting it onto the three orthogonal
planes to its corresponding 2D coordinates: pxy, Pxz,Pyz. Then, for each projection, bilinear
interpolation is performed on the four nearest neighbors’ features within the corresponding plane
to extract three vectors of dimension C: fyy, fx,, fy,,. These are summed element-wise to obtain a
unified point-wise feature vector f € R®. The detailed explanation of this step is reported in the
Appendix.

This feature vector is then concatenated with a positional encoding [45] of p, PE(p), and fed into an
MLP decoder ®(-) that predicts the radiance field value g = ®(p, #), consisting of color and density
components (R, G, B, o). ® consists of 4 linear layers as the decoder used in [53].

Training. All modules of weights2space are optimized end-to-end using differentiable volumetric
rendering [35]. At each training step, a set of camera poses is sampled. For each pose, multiple rays
are cast — together forming a training batch R — and 3D points are sampled along these rays. Each
point is processed through the tri-plane module and the decoder as described above. The predicted
radiance and density values are then aggregated along each ray using volumetric rendering to produce
final RGB values. The framework is supervised using a smooth L1 loss between rendered and ground
truth colors:

Liender = Y _ SmoothL1(C(r) — C*(r)) (1)

reR

where C*(r) is the ground truth RGB color for ray r and C/(r) is the predicted color by the decoder.
Since NeRF can be a standalone modality with ground truth images unavailable, we adopt a self-
supervised approach. Specifically, we render images directly from the input NeRFs using volumetric
rendering. These pseudo ground-truth images serve as reference images, making the entire training
protocol fully self-supervised in the standalone NeRF scenario. The model is trained on 300K NeRFs
from ShapeNeRF-Text and ObjaNeRF-Text for 500 epochs with a learning rate of 0.00001, as done
in LLaNA [7]. The training needs ~2 days on four 64GB A100 GPUs to reach convergence.

4 Spatial LLaNA: spatially-aware MLLM for NeRF

Architecture. S-LLaNA is the MLLM that performs NeRF-Language tasks by taking as input the
NeRF tokens Y € RVX® computed by the weights2space meta-encoder. Inspired by [6], we
process these tokens with a shared projector network ¥, composed of a stack of 2 trainable linear
layers, interleaved with Ge LU activation functions [24]. This network maps each NeRF token into
the internal embedding space of the language model, LLaMA-2 [56]. The input to the LLM consists
of the projected NeRF tokens, encapsulated between two learnable special tokens <t_start> and
<t_end>, and concatenated with a sequence of k language tokens corresponding to the user’s prompt.



The language model LLaMA processes the combined sequence to autoregressively generate relevant
textual output.

Training. We adopt the training protocol introduced in [7], using the ShapeNeRF-Text and ObjaNeRF-
Text datasets. In the first stage, S-LLaNA is trained using brief textual descriptions, optimizing only
the projection layers ¥ and the trainable special tokens <t_start> and <t_end>. In the second
stage, the full model, including the LLM, is fine-tuned using both brief and detailed descriptions, as
well as Q&A annotations. Importantly, the encoder responsible for computing the NeRF tokens Y is
kept frozen during both training stages. The total training set consists of approximately 300K NeRFs
with textual annotations. We supervise S-LLaNA by minimizing the negative log-likelihood of the
text token at each position:

T
Lop=—Y_log P(wy | ho..., 2,1, ¥(Y)) 2
t=1

where P(wy | Wg..., Ws—2, Wi—1, ¥(Y)) is the probability assigned by the LLM to the correct token
w; at step ¢, conditioned on the previously predicted tokens and the projected NeRF token sequence
U(Y).

Implementation details. S-LLaNA shares the same LLM backbone as LLaNA [7], i.e. the 7B
Vicuna and 13B Vicuna [16] of LLaMA-2 [56]. For experimental fairness, S-LLaNA follows the same
training protocol as [7] and is trained on 300K samples from ShapeNeRF-Text and ObjaNeRF-Text
for 3 epochs for each training stage. The projection network ¥ has 2 trainable linear layers which
bring each token from dimension C'=516 to the hidden dimension of the LLM, i.e., 4096 for LLaMA-
7B and 5192 for LLaMa-13B. S-LLaNA is implemented in PyTorch and trained on NVIDIA A100
GPUs with 64GB of VRAM each. The 7B model requires 8 GPUs for training, while the 13B model
requires 16 GPUs. Training either version of the model takes approximately one day.

Ablation experiments on the tri-plane resolution and tokens dimensionality can be found in the
Appendix.

S Experimental setup

Baselines. The only direct competitor of S-LLaNA is LLaNA [7], as this is the only MLLM
performing NeRF-Language tasks without rendering any 2D image or extracting an explicit 3D
structure from input NeRFs. We evaluate also the same reference baselines as LLaNA [7], i.e.,
state-of-the-art MLLMs ingesting images or 3D explicit data like point clouds and meshes, with
these models processing explicit data rendered or extracted from the input NeRF. As for 3D MLLMs,
included baselines are GPT4Point [50], PointLLM [62], 3D-LLM [25] and ShapeL.LM [49]. As for
2D MLLMs, we consider LLaVA-1.6 [39] and BLIP-2 [33]. Since multiple views can be rendered
from an input NeRF, these 2D baselines are evaluated using different viewpoints, i.e. front-view (FV),
back-view (BV), random-view (RV), and in a multi-view (MV) scenario where we concatenate image
tokens from /N = 3 images rendered from random viewpoints. For each method, we report standard
metrics employed in MLLM literature [7, 50, 62]: Sentence-BERT [54] and SimCSE [22] based on
pre-trained encoders; BLEU-1 [47], ROUGE-L [38], and METEOR [9] based on n-gram statistics.

NeRF-Language datasets. As in [7], we evaluate the baselines on the test sets of the existing NeRF-
Language datasets ShapeNeRF-Text and ObjaNeRF-Text. Two different test sets for ObjaNeRF-Text
are considered to ensure fair comparison with PointLLM and GPT4Point models. Results on these
datasets are divided into three tasks: brief captioning, detailed captioning, and single-round Q&A
conversations. In addition, within the brief captioning task, we evaluate the performance the methods
on HST [5], a subset of ShapeNeRF-Text objects with manually annotated short captions.

Spatial ObjaNeRF. To rigorously evaluate the ability of NeRF-Language models to move beyond
simple object recognition and capture complex spatial relationships, we introduce Spatial ObjaNeRF,
a manually curated benchmark. This dataset consists of 100 human-annotated 3D models from
ObjaNeRF-Text. Crucially, to fully assess the spatial reasoning capability of Multi-modal Large
Language Models (MLLMs) within a realistic context, every data sample represents a complex scene
featuring an arrangement of multiple interacting objects. For each scene, we created a detailed textual



Table 1: NeRF brief captioning on ShapeNeRF-Text and HST datasets. Best results are in bold,
runner-up is underlined. (FV: front-view, BV: back-view, MV: multi-view)

| ShapeNeRF-Text | HST
Model Modality | S-BERT SimCSE BLEU-1 ROUGE-L METEOR | S-BERT SimCSE BLEU-1 ROUGE-L METEOR
LLaVA-vicuna-7b Image (FV) 59.85 62.35 22.67 23.24 23.35 54.31 56.28 10.08 14.71 14.53
LLaVA-vicuna-7b Image (BV) 55.68 58.46 21.97 22.46 22.50 51.75 52.29 8.13 13.96 14.18
LLaVA-vicuna-7b Image (MV) 59.77 61.42 23.16 22.68 23.01 54.15 56.87 10.32 12.76 15.13
BLIP-2 FlanT5-xx1 Image (FV) 56.13 58.21 5.46 18.69 9.67 57.11 59.43 8.21 18.02 12.14
BLIP-2 FlanT5-xx1 Image (BV) 52.48 54.05 5.67 18.20 9.50 54.11 56.37 9.09 17.38 11.79
LLaVA-vicuna-13b Image (FV) 61.00 61.16 14.30 20.00 23.31 55.62 55.56 6.56 11.81 14.52
LLaVA-vicuna-13b Image (BV) 54.35 56.09 21.94 21.67 22.09 50.00 50.79 9.39 12.76 14.46
LLaVA-vicuna-13b Image (MV) 59.64 61.01 22.84 22.17 23.08 54.25 55.56 9.78 14.13 14.99
3D-LLM FlanT5-x1 Mesh + MV 59.46 56.42 12.69 21.49 14.32 56.07 52.13 15.94 20.71 15.22
GPT4Point-Opt-2.7b  Point cloud 41.85 40.22 11.76 16.54 11.63 43.15 4222 12.02 18.73 13.69
PointLLM-7b Point cloud 49.59 48.84 16.74 17.92 14.56 43.40 44.50 8.53 11.64 9.97
ShapeLLM-7b Point cloud 39.16 38.34 20.71 21.35 17.50 32.72 35.66 9.39 11.33 9.76
PointLLM-13b Point cloud 51.54 50.35 17.20 18.51 14.92 45.41 46.39 9.57 12.38 11.92
ShapeLLM-13b Point cloud 42.29 40.18 21.59 21.87 17.96 25.09 38.24 10.03 13.26 9.94
LLaNA-7b NeRF 74.94 76.41 42.73 43.64 41.95 64.78 65.01 20.65 23.24 24.10
S-LLaNA-Tb NeRF 7891 7991 47.81 49.08 47.58 67.76 68.63 20.31 23.61 24.47
LLaNA-13b NeRF 75.09 76.45 42.83 43.70 42.21 65.66 66.09 20.80 24.28 25.90
S-LLaNA-13b NeRF 78.98 79.98 47.97 49.22 47.87 67.43 68.26 2091 23.86 25.03

Table 2: NeRF brief captioning on ObjaNeRF-Text. Best results are in bold, runner-up is
underlined. (RV: random view, MV: multi-view)

‘ ObjaNeRF-Text (PointLLM test set) ‘ ObjaNeRF-Text (GPT4Point test set)

Model Modality ‘ S-BERT SimCSE BLEU-1 ROUGE-L METEOR ‘ S-BERT SimCSE BLEU-1 ROUGE-L METEOR
LLaVA-vicuna-7b Image (RV) 39.29 40.93 5.22 8.35 12.49 41.59 42.38 7.24 11.74 16.01
LLaVA-vicuna-7b Image (MV) | 40.15 41.09 5.62 9.07 13.22 4234 4321 8.59 11.94 18.52
BLIP-2 FlanT5-xx1 Image (RV) 35.48 35.19 7.69 13.75 11.68 37.24 37.32 10.63 16.87 14.69
LLaVA-vicuna-13b Image (RV) 38.57 39.05 4.62 7.63 11.85 42.08 41.04 6.53 10.57 15.67
LLaVA-vicuna-13b  Image (MV) | 41.01 41.10 4.87 8.03 12.35 44.15 43.19 6.75 10.86 16.10
3D-LLM FlanT5-x1 ~ Mesh + MV 38.22 39.60 547 7.29 10.75 41.26 37.74 11.08 12.26 15.58
GPT4Point-Opt-2.7b  Point cloud - - - - - 34.42 31.89 8.76 13.62 13.55
PointLLM-7b Point cloud 38.81 40.11 5.55 8.39 11.24 - - - - -
ShapeLLM-7b Point cloud 30.13 3242 5.80 7.72 11.38 25.92 25.57 8.04 9.60 13.23
PointLLM-13b Point cloud 39.64 40.63 5.94 843 11.63 - - - - -
ShapeLLM-13b Point cloud 31.44 32.69 6.01 7.59 11.66 26.87 27.03 831 9.65 14.10
LLaNA-7b NeRF 41.36 4228 13.21 16.93 15.63 43.73 43.09 20.22 25.15 2221
S-LLaNA-Tb NeRF 45.23 45.80 1572 19.98 17.70 50.12 49.55 24.49 30.72 26.15
LLaNA-13b NeRF 42.08 42.40 13.86 17.51 16.18 44.26 43.75 20.61 25.62 22.36
S-LLaNA-13b NeRF 45.44 46.18 15.78 20.17 17.61 50.68 50.30 24.53 30.52 26.41

description that emphasizes spatial structure, highlighting the size, shape, and relative positioning of
specific objects.

Examples of such annotations and their comparison with those present in ObjaNeRF-Text are provided
in the Appendix.

6 Experiments

Results on ShapeNeRF-Text, HST, and ObjaNeRF-Text. We evaluate S-LLaNA on the tasks of
NeRF brief captioning, detailed captioning, and Q&A, using the datasets ShapeNeRF-Text, HST, and
ObjaNeRF-Text. Results are presented in Tables | to 4. Across all benchmarks and tasks, S-LLaNA
consistently outperforms LLaNA and all other 2D and 3D MLLM baselines, often by substantial
margins. The 13B variant of S-LLaNA achieves the highest performance in nearly every setting, while
the 7B variant is typically the second-best model, outperforming all the other baselines. These results
demonstrate the effectiveness of the NeRF spatially-aware tokenized representation learned by our
weights2space meta-encoder in existing public NeRF-Language datasets. On the brief captioning
task, reported in Tables 1 and 2, S-LLaNA outperforms LLaNA by approximately ~ 4 points on
Sentence-BERT and SimCSE metrics, consistently across all datasets and model sizes. This indicates
that even in tasks requiring high-level object descriptions, the spatially-aware NeRF tokens produced
by the weights2space meta-encoder provide more discriminative and semantically rich input than
the global representation of LLaNA. Table 4 shows that, on the Q&A task, S-LLaNA outperforms
LLaNA with performance improvements comparable to those observed in brief captioning. This
suggests that the ability to reason over object structure and part-level features, supported by our
spatial encoding, is also beneficial to this task. We observe larger gains on the detailed captioning task,
in Table 3, where S-LLaNA surpasses LLaNA by up to 6 points on Sentence-BERT and SimCSE and
over 10 points on reference-based metrics. These results confirm that the rich, fine-grained geometric



Table 3: NeRF detailed captioning on Table 4: NeRF single-round Q&A on
ShapeNeRF-Text. Best results are in bold, ShapeNeRF-Text. Best results are in bold,
runner-up is underlined. (FV: front-view, BV:  runner-up is underlined. (FV: front-view, BV:

back-view, MV: multi-view) back-view, MV: multi-view)
Model Modality S-BERT SimCSE BLEU-1 ROUGE-L METEOR Model Modality S-BERT SimCSE BLEU-1 ROUGE-L METEOR
LLaVA-vicuna-7b Image (FV) 57.55 57.68 14.99 22.82 14.36 LLaVA-vicuna-7b Image (FV) 71.79 71.96 25.79 34.04 34.86
LLaVA-vicuna-7b Image (BV) 53.11 54.46 14.73 2247 14.05 Image (BV) 70.88 70.93 25.17 3330 3422
LLaVA-vicuna-7b Image (MV) 55.26 58.46 15.07 24.05 14.85 Image (MV) 72.26 70.67 24.09 34.67 35.64
BLIP-2 FlanT5-xx1 Image (FV) 41.27 40.69 0.18 7.83 2.60 Image (FV) 45.20 47.92 11.50 20.16 13.49
BLIP-2 FlanT5-xx1 Image (BV) 38.49 37.89 0.19 172 2.58 Image (BV) 45.06 47.66 11.50 19.98 13.44
LLaVA-vicuna-13b Image (FV) 59.08 58.87 23.63 23.55 2255 LLaVA-vicuna-13b Image (FV) 71.61 70.98 20.19 30.42 3253
LLaVA-vicuna-13b Tmage (BV) 50.09 50.33 13.77 21.36 13.18 LLaVA-vicuna-13b Image (BV) 68.25 69.06 20.03 29.84 3227
LLaVA-vicuna-13b Image (MV) 60.21 59.51 15.07 32.16 14.64 LLaVA-vicuna-13b Image (MV) 71.84 71.16 20.04 30.20 33.46
3D-LLM FlanT5-x1 Mesh + MV 58.00 53.91 1.58 14.40 5.28 3D-LLM FlanT5-x1 Mesh + MV 69.62 67.55 32.19 40.95 35.83
GPT4Point-Opt-2.7b  Point cloud 42.44 38.33 372 921 5.13 GPT4Point-Opt-2.7b  Point cloud 27.62 3141 6.26 9.38 541
PointLLM-7b Point cloud 59.02 58.30 10.28 19.26 10.55 PointLLM-7b Point cloud 74.70 74.40 36.81 44.41 39.76
ShapeLLM-7b Point cloud 43.45 40.92 8.18 18.47 10.15 ShapeLLM-7b Point cloud 46.60 46.32 19.47 17.13 12.83
PointLLM-13b Point cloud 59.64 58.55 10.52 19.44 10.83 PointLLM-13b Point cloud 74.65 74.18 37.16 44.86 40.13
ShapeLLM-13b Point cloud 43.26 40.98 10.47 18.42 10.20 ShapeL.LM-13b Point cloud 47.22 46.59 20.03 17.45 13.22
LLaNA-7b NeRF 75.25 77.42 19.57 32.96 2045 LLaNA-7b NeRF 81.03 81.61 45.98 53.27 49.97
S-LLaNA-Tb NeRF 81.03 83.00 44.74 40.08 36.03 S-LLaNA-Tb NeRF 83.49 84.06 50.89 5839 54.52
LLaNA-13b NeRF 75.51 77.63 19.87 3293 20.46 LLaNA-13b NeRF 81.05 81.60 46.08 53.44 49.98
S-LLaNA-13b NeRF 80.98 82.90 44.78 40.09 36.24 S-LLaNA-13b NeRF 83.60 84.17 50.86 58.25 5458

Table 5: Detailed spatial captioning on Figure 4: Qualitative examples on

Spatial ObjaNeRF. Best results are in bold, Spatial ObjaNeRF

runner-up is underlined. (RV: random view, MV:

multi-view) @<6 ot @< ,*
Model Modality S-BERT SimCSE BLEU-1 ROUGE-L METEOR — -

LLaVA-vicuna-7b Image (RV) 70.11 73.25 2195 24.26 20.09
LLaVA-vicuna-7b Image (MV) 72.13 74.98 2244 26.87 21.33
BLIP-2 FlanT5-xx1 Image (RV) 54.12 60.23 8.47 10.23 6.59
LLaVA-vicuna-13b Image (RV) 70.55 75.82 21.31 29.45 19.74
LLaVA-vicuna-13b Image (MV) 73.42 71.06 24.20 30.85 20.47
3D-LLM FlanT5-x1 Mesh + MV 53.24 54.69 12.05 14.57 16.88
GPT4Point-Opt-2.7b  Point cloud 40.08 40.72 4.65 11.71 5.88
PointLLM-7b Point cloud 72.67 73.93 25.90 24.75 19.05
ShapeLLM-7b Point cloud 62.48 64.64 9.26 21.55 17.69
PointLLM-13b Point cloud 73.08 75.07 26.39 25.02 19.18
ShapeLLM-13b Point cloud 64.22 67.98 9.55 21.07 16.84
LLaNA-7b NeRF 70.61 71.77 25.61 25.66 19.21
S-LLaNA-Tb NeRF 75.01 71.30 29.43 28.85 21.70
LLaNA-13b NeRF 73.20 74.76 26.78 29.15 20.37
S-LLaNA-13b NeRF 78.25 80.58 32.34 31.03 24.56

information captured by the weights2space meta-encoder helps guide the language model toward
more complete and structured descriptions. All the MLLMs operating on explicit data structures, i.e.,
Vision Language Models and 3D MLLMs, show significantly worse performance than LLaNA and
S-LLaNA, highlighting the effectiveness of building NeRF-Language models operating directly on
NERF weights. Additional qualitative examples are in the Appendix.

Results on Spatial ObjaNeRF. Unlike previous captioning tasks, Spatial ObjaNeRF targets ex-
plicitly the understanding of relative positions, part-whole hierarchies, and size comparisons: skills
that require a structured and localized representation of geometry. This benchmark, described in Sec-
tion 5, is proposed as a key tool to assess whether NeRF-Language models can achieve fine-grained
3D understanding. Quantitative results on Spatial ObjaNeRF are reported in Table 5. S-LLaNA-13b
achieves the best performance across all metrics, followed by S-LLaNA-7b. The performance gap
between S-LLaNA and LLaNA highlights the importance of explicitly modeling spatial features
within the representation provided as input to the LLM. While LLaNA relies on a global embedding
computed by processing the weights of the NeRF’s MLP with linear layers, S-LLaNA benefits from
spatially-aware tokens extracted by the weights2space meta-encoder. Qualitative examples in
Figure 4 illustrate this advantage. In the first example, only S-LLaNA accurately recognizes the
objects on the table and correctly describes their spatial arrangement. Indeed, it notes that the book
is “next to the bowl”. LLaNA mistakenly reports the presence of “two bowls” and “two books” and
describes their relative position by stating that the books are “under the bowl of fruit”. In the second
example, S-LLaNA demonstrates precise part-level reasoning, describing the hat of the character as
a “regal crown”, while LLaNA incorrectly describes it as a “sombrero”. These examples further
demonstrate the superior ability of S-LLaNA to interpret complex scenes with fine-grained details,
particularly when multiple objects interact spatially. More qualitative examples are in the Appendix,
together with experiments on the generalization capabilities of S-LLaNA.

Ablation on LLM finetuning. As described in Section 5, both LLaNA and S-LLaNA are trained
in two stages: first, the projection network W is trained independently; then, it is jointly fine-



Table 6: Experiments on LLM finetuning. Best results are in bold, runner-up is underlined. (SN-T:
ShapeNeRF-Text, ON-T: ObjaNeRF-Text PointLLM test set)

SN-T brief captioning | ON-T brief captioning | SN-T detailed captioning | SN-T Q&A | Spatial test
Model LLM Finetuned # Trainable params | S-BERT ~ SimCSE | S-BERT  SimCSE | S-BERT SimCSE | S-BERT SimCSE | S-BERT  SimCSE
LLaNA-7b v 6.75B 74.94 76.41 41.36 42.28 75.25 77.42 81.03 81.61 70.61 7177
LLaNA-7b 143M 67.75 68.88 33.26 33.73 71.25 71.74 71.25 71.74 62.48 61.44
S-LLaNA-Tb v 6.75B 78.91 79.91 45.23 45.80 81.03 83.00 83.49 84.06 73.20 74.76
S-LLaNA-Tb 140M 79.29 80.36 45.17 45.81 81.03 82.90 82.43 83.01 73.27 70.99
LLaNA-13b v 13.03B 75.09 76.45 42.08 42.40 75.51 77.63 81.05 81.60 75.01 77.30
LLaNA-13b 178M 70.48 68.85 35.21 36.68 72.66 70.41 7224 72.62 62.34 61.50
S-LLaNA-13b v 13.03B 78.98 79.98 45.44 46.18 80.98 82.90 83.60 84.17 78.25 80.58
S-LLaNA-13b 175M 79.05 80.17 44.87 45.41 80.63 82.50 82.10 82.67 77.72 80.47
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Figure 5: Visualization of the self-attention maps of the LLM (LLaMA 2)

tuned with the LLM. This protocol, common among state-of-the-art MLLMs [39, 62], leads to
high computational costs, particularly prohibitive when using large LLMs with tens of billions of
parameters. This section investigates whether comparable performance can be achieved without
fine-tuning the LLM, by optimizing only the projection network ¥ on the full dataset. Results are
shown in Table 6, where rows marked "LLM Finetuned" correspond to the two-stage protocol, while
the remaining rows represent models trained solely with the first stage on the full dataset. For the
brief captioning task on ObjaNeRF-Text, we evaluate the models on the PointLLM test set, which
is larger than the GPT4Point test set. Interestingly, S-LLaNA maintains excellent performance even
without finetuning LLaMA. In fact, the non-finetuned S-LLaNA-7b and S-LLaNA-13b closely match
their finetuned counterparts with performance gaps consistently under 1 point across all metrics. In
some cases, the non-finetuned variants even outperform the fine-tuned ones. For instance, on the
brief captioning task of ShapeNeRF-Text, the Sentence-BERT score improves from 78.91 to 79.29
for S-LLaNA-7B, and from 78.98 to 79.05 for S-LLaNA-13B. In contrast, LLaNA struggles without
LLM fine-tuning. Its non-finetuned versions exhibit substantial drops across all benchmarks, with
gaps exceeding 10 points on challenging tasks like Spatial ObjaNeRF. This trend persists even for
the larger 13B model. We hypothesize that the failure of LLaNA in the non-finetuned regime stems
from the global NeRF representation used as input to the LLM. This representation cannot be directly
mapped to a specific language token, making fine-tuning of the LLM — and thus adaptation of its
input token space — a crucial step. In contrast, to represent objects, S-LLaNA uses N = 3072 spatial
tokens that encode more local and lower-level concepts. Thus, it is more likely that the projector
can learn a mapping from these tokens to the LLM’s input space without requiring LLM fine-tuning.
This property of S-LLaNA allows for significantly faster and more cost-effective training, while
still achieving comparable performance. In the Appendix, a discussion on the general language
understanding of our model is proposed.

Visualization of attention maps in LLaMA. In Figure 5, we visualize the self-attention maps
within the LLM of S-LLaNA-13b when prompted with questions designed to force the model to
focus on specific object parts of a NeRF from the ObjaNeRF test set. Specifically, we extract
the self-attention maps computed on the input sequence fed into LLaMa-13b, which consists of
N = 3072 NeRF tokens, concatenated with the text tokens of the question, for a total of B tokens.
For visualization, we focus on the final decoder layer of LLaMA-13b and average the attention scores
across all 40 attention heads, obtaining a matrix A € RZ*5_ We visualize the part of a column in
A corresponding to the attention between a word in the question and the 3072 spatial tokens. To
better visualize these scores, we reshape them into three images corresponding to each tri-plane of
dimension H x W, where H = W = 32. Several patterns emerge from these attention maps. First,
in each plane of the tri-plane, the outline of the object is distinctly visible. This indicates that the
supervision of the weights2space meta-encoder successfully injects spatial object information into
the NeRF token representation. Moreover, attention is clearly localized: tokens with the highest
attention scores to a given word correspond to spatial regions where the referenced element is located.
For instance, in the right example, the word “flower” activates tokens in the upper region of the



object, and “vase” focuses attention on the lower portion. These visualizations highlight the ability of
S-LLaNA to ground linguistic concepts into spatially localized NeRF representations.

7 Conclusions

In this work, we demonstrated that extracting spatially-aware tokens directly from the weights of a
NeRF’s MLP is possible, enabling fine-grained language interaction on NeRF data. To achieve this
goal, we introduced weights2space, a self-supervised framework featuring a novel meta-encoder
that computes a sequence of spatial tokens, and S-LLaNA, a novel Multimodal Large Language
Model for NeRF. Our model significantly outperforms existing methods on NeRF-Language tasks,
whether they operate directly on NeRFs or use explicit representations. Notably, S-LLaNA achieves
strong performance even without finetuning its underlying LLM, making it extremely efficient to
train. Moreover, we propose Spatial ObjaNeRF, a benchmark designed to evaluate fine-grained
spatial understanding in NeRF-Language tasks. Finally, we show qualitatively that our approach
leads to interpretable and meaningful attention patterns. This work contributes to the nascent field of
Multimodal Large Language Models for Radiance Fields.

Limitations and Future work. Our spatially-aware representation may have the potential to address
additional tasks, such as spatial Q&A on 3D scenes, 3D grounding, and 3D object detection. At
present, the scarcity of large-scale NeRF-text datasets limits progress in these directions. Expanding
this representation to such tasks remains a promising direction for future research.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: the claims made in the article are also highlighted in the abstract and introduc-
tion.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: the limitations of the proposed approach are detailed in section 7.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
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used reliably to provide closed captions for online lectures because it fails to handle
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* The authors should discuss the computational efficiency of the proposed algorithms
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will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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a complete (and correct) proof?

Answer: [NA]
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Justification: the article does not introduce new theoretical results.
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* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: we provide all the information related to the training protocol used in our
experiments and the implementation details in Section 3, Section 4, and Section 5. Moreover,
we provide additional details in the appendix.
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* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
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be necessary to either make it possible for others to replicate the model with the same
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nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: all our experiments have been conducted on publicly available data,
i.e., ShapeNeRF-Text, HST and ObjaNeRF-Text. Our newly introduced dataset,
Spatial ObjaNeRF, the source code and the weights for all our models will be publicly
released in case of acceptance.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: all the training and test details are reported in Section 3, Section 4, and
Section 5.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer:

Justification: we did not conduct multiple trials for each model training and evaluation due
to the large computational requirements needed to fine-tune the LLMs employed in our
approach.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Section 3 and Section 4, we provide all the details about the computational
resources of our experiments.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: we reviewed the guidelines listed in the NeurIPS Code of Ethics and we
confirm that our approach does not violate them.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: we do not foresee any direct path to using our solution for negative applications
as it pertains describing digital twins of single objects.

Guidelines:
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» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: the large language models employed in our approach, i.e., LLaMA2-7b and
LLaMAZ2-13b, are already equipped with safeguards mechanisms, and our finetuning does
not affect such features. Indeed, the datasets we used for training are not scraped from the
web. They contain only textual annotations on safe contexts curated by humans.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In the Appendix, we provide details about the licenses for: (i) the large
language models used in our approach, (ii) the employed open source codebases and (iii)
the datasets used in all our experiments.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: our Spatial ObjaNeRF dataset will be made publicly available, in case of
acceptance, together with the documentation required for reproducing the experiments.
Moreover, in case of acceptance, we will also release the source code of our solution.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: the development of our core method did not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Bilinear Interpolation of tri-plane Features

In this Section, we describe the algorithm used to obtain feature vectors from our tri-plane representa-
tion, introduced in Section 3.

Inputs:

* Tri-plane feature maps: three orthogonal 2D feature planes (Fy,, Fy., F.) of dimension
RHEXWXC .

* A 3D point p = (z,y, z) € R3.

* Axis-aligned bounding box for coordinate normalization: aabbyyiy,, aabbyay € R3.
Output: Interpolated feature vector at point p, f € RC.

A.1 Coordinate Normalization

The 3D point p is normalized to the unit cube [0, 1]3:

p— aabbmin

coordsg; = € [0,1] 3)

aabbyax — aabbyin

A.2 Projection to 2D Triplane Coordinates

The normalized 3D point is projected onto the three feature planes:

Pay = (Uay, Vay) = (coordsor.x, coordso.y), 4
Paz = (Uzz, Vzy) = (coordso;.x, coordsp:.z), 5)
Dyz = (Uyz, Vyz) = (coordsgr.y, coordsp .z). 6)

A.3 Bilinear Interpolation on Each Plane
Given a feature plane F;,, and the projected coordinate p;,,:
Step 1: Map to image grid coordinates
Uimg = Ugy(W — 1),  Vimg = Ugy(H — 1) @)

Step 2: Compute integer and fractional parts
1= Luing7 .] = Lving (8)

Oy = Uimg — i, Oy = Vimg —J 9

Step 3: Retrieve four neighboring features

Joo = Fzy[]a i, :] (top-left)

fio = Fayly, i + 1,1 (top-right)
Jor = Foylj + 1,4, (bottom-left)
fu=Fylj+1,i+1,] (bottom-right)

Step 4: Compute bilinear interpolation

f = (1 - 5“)(1 - 5v)f00 + 5u(1 - 5U)f10 + (1 - 6u)6vf01 + 6u5vf11 (10)

Steps 1-4 are repeated for the other planes to obtain f. and f,..
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A.4 Feature Combination

The final feature vector is obtained by summing the interpolated features from the three planes:

f = foy+ for + fy. €RC (11)

B Additional implementation details

B.1 weights2space: spatially-aware NeRF weights tokenization

NeRF encoding. Each NeRF is implemented as an MLP composed of an input layer, L = 3 hidden
layers with H = 64 neurons each, and an output layer. The input to the network is a /-dimensional
vector, with I = 75, obtained by applying frequency encoding [45] to the input coordinates. The
input layer has a weight matrix W; € R7*%4 and bias vector b; € R4, Each hidden layer uses
weights W; € R4*54 and biases b; € R5%. The output layer, which predicts RGB values and
density o, has weight matrix W, € R%4*4 and bias vector b, € R*. The weights2seq module takes
as input all weight matrices and bias vectors, stacked row-wise into a matrix W &€ RS*H  where
H=64and S=T+L(H+1)+ H+ 2= 336.

Tri-plane representation. The sequence of tokens Y = (y1,ya,...,yn) € RVXC with N = 3072
and C' = 516 , produced by seq2space, is reshaped into a tri-plane feature representation M =
(Fuy, Foz, Fy). Each plane F is a tensor of shape R7*W*C where H = W = 32 and C' = 516.

Decoder. The decoder ® consists of 4 linear layers. A skip connection is applied after the second
layer by adding a projection of the input. Each linear layer is followed by a ReLU activation, except
for the final output layer, which is followed by a sigmoid for RG B and a shifted exponential for o.

Training. At each training step, for every camera pose, 55000 rays are cast, forming a training
batch R.

B.2 Spatial LLaNA: spatially-aware MLLM for NeRF

Training. S-LLaNA-7B and S-LLaNA-13B are trained on NVIDIA A100 GPUs following a two
stages protocol as described in the main manuscript. The hyperparameters of each training stage are
the following:

* Stage 1: Training on brief textual descriptions from ShapeNeRF-Text and ObjaNeRF-Text
for 3 epochs, using a learning rate of 0.002. We leverage AdamW [42] as optimizer, and a
cosine learning rate scheduler.

 Stage 2: Training on brief and detailed textual descriptions, along with Q&A conversations
from the same datasets, for 3 epochs, with a learning rate of 0.00002. We leverage AdamW
[42] as optimizer, and a cosine learning rate scheduler.

Datasets. The full training set of Spatial LLaNA includes approximately 300K NeRFs with textual
annotations. While the ObjaNeRF-Text training set [7] contains annotations across all categories
—brief, detailed, and Q& A—its test sets (PointLLM test set and GPT4Point test set) include only
manually annotated brief descriptions. Therefore, in the main paper, the brief captioning task is
evaluated on both ShapeNeRF-Text and ObjaNeRF-Text, while the other tasks are evaluated solely on
ShapeNeRF-Text. Spatial ObjaNeRF provides detailed spatial annotations for a subset of 100 NeRFs
from the GPT4Point test set of ObjaNeRF-Text. The question paired to each ground-truth annotation
of this dataset is: “Provide a very detailed description of the object. Focus on the relative position of
the parts of the object. Include as many details as possible.” This question does not belong to the
training set of S-LLaNA.

C Ablation experiment on tri-plane resolution and token dimensionality

We conducted several experiments to analyze the sensitivity of Spatial LLaNA to the number of
queries N (and consequently tri-plane resolution) and token dimensionality C. We report results in
Table 7, where the first row refers to the official version of S-LLaNA presented in the main paper.
The second row shows an experiment to analyze the impact of the number of queries, and thus of the
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Table 7: Ablation on tri-plane and token configurations. Best results are in bold, runner-up is
underlined. (SN-T: ShapeNeRF-Text, ON-T: ObjaNeRF-Text PointLLM test set)

SN-T brief captioning | ON-T brief captioning | SN-T detailed captioning | SN-T Q&A | Spatial ObjaNeRF
Model Tri-plane Res.  Token Dim. | S-BERT ~ SimCSE | S-BERT SimCSE | S-BERT SimCSE | S-BERT SimCSE | S-BERT SimCSE
S-LLaNA-13b 32 516 78.98 79.98 45.44 46.18 80.98 82.90 83.60 84.17 78.25 80.58
S-LLaNA-13b 16 516 76.65 77.68 41.77 42.11 76.74 78.69 83.36 83.83 75.48 77.26
S-LLaNA-13b 32 252 76.77 76.33 42.25 42.36 76.47 78.07 83.27 83.49 76.62 78.43

tri-plane resolution. weights2seq and S-LLaNA were trained using N=768 queries. As each plane is
obtained by reshaping the queries into 3 planes of spatial dimension H x W, with H = W in our
768 _

et =
the sensitivity of our model to the token dimensionality C'. S-LLaNA was trained with N = 3072
tokens (i.e., tri-plane resolution 32) as in the main paper, yet with a smaller token dimensionality
C = 252.

Each column reports the S-BERT and SimCSE results on various tasks and datasets: ShapeNeRF-Text
(SN-T) brief and detailed captioning and QA, ObjaNeRF-Text (ON-T) brief captioning, and Spatial
ObjaNeRF.

We observe that reducing the tri-plane resolution or token dimensionality leads to a marginal perfor-
mance drop (around 2% across all metrics). This behaviour suggests that models with higher capacity
(i.e., higher resolution and dimensionality) can encode richer and more fine-grained features from
the input NeRF. However, the relatively small drop also indicates that S-LLaNA remains robust and
effective even with more compact and computationally efficient representations.

experiments, the corresponding tri-plane resolution is 16. Finally, the third row analyzes

D Ablation experiment on multi-token NeRF-Language Models

In this section, we report a set of experiments designed to isolate the impact of the spatial information
encoded within multi-token NeRF representations for NeRF-Language Models. Originally, LLaNA
[7] leverages a single-token representation computed from the nf2vec encoder [53]. To investigate
on the impact of our proposed spatially-aware NeRF encoding, we train LLaNA after removing the
max-pooling layer at the end of this encoder, resulting in a multi-token representation. However, these
tokens lack explicit spatial information, unlike those in Spatial LLaNA, where the spatial information
is encoded within the NeRF tokens thanks to the specific training methodology of the weights2space
meta-encoder. The purpose of this experiment is to determine whether the superior performance of
Spatial LLaNA compared to LLaNA stems primarily from the multi-token representation or from the
spatial information that is explicitly encoded within the NeRF tokens. The results of this experiment
are reported in Table 8. Once again, S-LLaNA emerges as the best performing model. For LLaNA, the
transition to multiple tokens yields minimal performance improvements and, in most tasks, actually
degrades performance. The only exception is the detailed captioning task on ShapeNeRF-Text, where
multiple tokens produce limited gains of approximately 2 points in Sentence-BERT and 0.20 in
SimCSE metrics. A marginal 1-point improvement in Sentence-BERT is also observed for the Q&A
task on ShapeNeRF-Text. Overall, these results suggest that employing multi-token representations
for the multimodal input instead of single-token representations contributes negligibly to performance
improvements in NeRF-Language tasks. In contrast, the spatially-aware tokens utilized by S-LLaNA
prove crucial for achieving superior performance across the considered tasks. These findings strongly
suggest that the ability to extract spatially-aware representations from the weights of the input NeRF
is significantly more important than increasing the number of tokens in the representation.

Table 8: Ablation experiment on multi-token representation Best results are in bold, runner-up is
underlined. (SN-T: ShapeNeRF-Text, ON-T: ObjaNeRF-Text PointLLM test set)

SN-T brief captioning | ON-T brief captioning | SN-T detailed captioning | SN-T Q&A | Spatial ObjaNeRF
Model | SBERT SimCSE | S-BERT  SimCSE | S-BERT  SimCSE | S-BERT SimCSE | S-BERT SimCSE
S-LLaNA-13b 78.98 79.98 45.44 46.18 80.98 82.90 83.60 84.17 78.25 80.58
LLaNA-13b 75.09 76.45 42.08 42.40 75.51 77.63 81.05 81.60 75.01 77.30
LLaNA-13b multi-token 74.06 74.84 36.31 38.62 77.02 77.83 82.04 81.51 74.69 76.88
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Table 9: Zero-shot NeRF classification task on ShapeNeRF-Text. Best results are in bold.

Model Input modality Accuracy (%)
LLaNA-7b NeRF 67.56
S-LLaNA-Tb NeRF 68.67
LLaNA-13b NeRF 69.27
S-LLaNA-13b NeRF 71.85

E Experiments on the general language understanding of Spatial LLaNA

While our primary focus is spatial reasoning, we have included downstream tasks that go beyond
spatial understanding to assess whether S-LLaNA retains general reasoning capabilities. First, the
brief captioning task on ShapeNeRF-Text, HST, and ObjaNeRF-Text involves generating concise
textual descriptions focused on identifying the main subject of a scene. This task primarily evaluates
global scene understanding, rather than spatial reasoning. As shown in the main paper, in this
setting, S-LLaNA consistently outperforms LLaNA, demonstrating its ability to preserve a holistic
understanding of the input NeRF.

Furthermore, we evaluated S-LLaNA on a zero-shot NeRF classification task on ShapeNeRF-Text
following the protocol in [6], where the model must infer the object class based on its multimodal
input. This task does not require fine-grained spatial reasoning. Table 9 provides results on this task.

These results confirm that S-LLaNA does not sacrifice holistic visual or linguistic understanding.
Finally, the ablation study on LLM finetuning of Section 6 demonstrates that S-LLaNA performs
robustly even without this step, achieving results comparable to the finetuned variant. Consequently,
in this version of our framework, the pre-trained LLM remains untouched, and thus certainly preserves
its original reasoning capabilities and world knowledge.

F Examples from Spatial ObjaNeRF

Figure 6 presents a comparison between the textual annotations from the test set of ObjaNeRF-
Text [7] and those from Spatial ObjaNeRF. Specifically, since Spatial ObjaNeRF includes 100
annotated NeRFs from the GPT4Point test split of ObjaNeRF-Text, we provide examples from this
subset. The annotations of Spatial ObjaNeRF clearly offer rich descriptions with spatial relationships
between the objects in the scene. In contrast, the original ObjaNeRF-Text test set provides brief
descriptions that focus primarily on the main subject of the scene. For completeness, we include a
JSON file alongside this document that contains all textual annotations from Spatial ObjaNeRF, each
paired with the corresponding object_id of the 3D model from the Objaverse dataset [18].

Input ObjaNeRF-Text Spatial ObjaNeRF Input ObjaNeRF-Text Spatial ObjaNeRF

carriage with . The object is a stylized,

Figure 6: Comparison between ObjaNeRF-Text (GPT4Point test set) and Spatial ObjaNeRF annota-
tions. In , the fine-grained and spatial details.

25



G Real-world generalization of Spatial LLaNA

Although ObjaNeRF-Text already includes 3D models of real scenes, to further test the real-world
generalization of S-LLaNA, we perform qualitative experiments on OmniObject3D [61] and mip-
NeRF360 [10] datasets. The former provides meshes of real-scanned objects, captured in a controlled
environment with neutral lighting and background, while the latter includes complex real-world
unbounded scenes. mip-NeRF360 is one of the most commonly used datasets for novel view
synthesis tasks. Figure 7 shows qualitative examples on OmniObject3D. Such predictions highlight
the generalization ability of S-LLaNA, which is able to provide meaningful and spatially-grounded
descriptions even for scenes that do not belong to the training distribution of the model. In Figure 8,
we can notice how S-LLaNA has the potential to generalize to unbounded in-the-wild NeRF scenes.
Such data are extremely different from the training set of the model, from different points of view.
First of all, our training data are purely object-centric with a single large object in the center, while in
this case the vase of flowers on the table is quite far from the camera view. Secondly, the 3D models
of our training set have a neutral back background, while in-the-wild scenes have very complex
backgrounds with rich details. Such features make the task of generalizing to in-the-wild scenes very
challenging. Despite this, S-LLaNA is able to recognize the main subjects of the scene ("a round
wooden table with a vase of flowers on top") and their spatial relations ("A vase is placed on top of the
table"). Interestingly, S-LLaNA can also provide some information about the background of the scene
("The background is green, covered with plants."), which has never seen in any training example.

USER: Provide a very detailed description of the object. Focus on the relative position of the

parts of the object.

S-LLaNA @
2

This is a 3D model of a cartoon-style
predominantly brown in color, with a

Include as many details as possible.

(@)
ground-truth @

The house has a main building and an annex

Input

building,

distinctive pink facade. A large coconut tree
is behind the building. The structure appears
to be a whimsical representation of a
building, possibly from a children's animated
show or game. The yellow roof adds a playful
touch, making the building appear less
realistic and more imaginative.

with doors on the left and right sides, a man
standing in front of the main door and a
coconut tree behind it. The main part of the
bouse is mainly brown in color and the eaves
are yellow, pointed, triangular and not
symmetrical.

This is a 3D model of a cartoon-style, green-
colored train. At the front of the train, a
cartoon-style head is visible.

green color makes it eye-catching. This type

Its vibrant

of object could be used in various
applications such as animation, video game
design, or digital art due to its playful and
modern aesthetic.

This toy train is overall green, the front is
a cartoon face head, the back is dark green
and with a small bump, the rear part is green
with gold stripes, there is also a small bump,
there are some irregular patterns on the side,
the front and rear each have a bump, a total
of six wheels, four small, two large, the

overall structure of the axis of symmetry.

Figure 7: Qualitative examples of S-LLaNA on OmniObject3D

Input

USER: Provide a very detailed

possible.

description of the object. Focus on the
relative position of the parts of the
object. Include as many details as

S-LLaNA @

This is a 3D model of an outdoor scene from a
park or a garden. It features a round wooden
table with a vase of flowers on top. The

background is green, covered with plants. The
scene suggests a peaceful, rural life setup.

table?

USER: What is placed on top of the

‘ A vase is placed on top of the table.

scene?

USER: Where is the vase placed in the

The vase is placed on a table, which is
positioned at the center of the scene.

Figure 8: Qualitative examples of S-LLaNA on Mip-NeRF 360
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The object is a unique and
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marine organism, specifically a .
J A detailed 3D model of a pink

The 3D object model represents a
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arms have been carefully °
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Figure 9: Qualitative evaluation on Spatial ObjaNeRF. In red, the hallucinations generated by the
MLLMs. In green, the correct fine-grained and spatial details.

H Qualitative results on ShapeNeRF-Text, ObjaNeRF-Text and
Spatial ObjaNeRF

Figure 9 shows qualitative results from the evaluation of the baselines on Spatial ObjaNeRF. This
dataset contains a large set of scenes involving multiple objects, as shown in the Figure (first,
second, and fourth row). It can be noticed how Spatial LLaNA (S-LLaNA in short) is capable of
generating detailed and accurate descriptions of the input scenes, including fine-grained spatial
information, without exhibiting signs of hallucination. In contrast, the baseline methods either omit
such details or produce incorrect descriptions. The ground-truth annotation column further confirms
that Spatial ObjaNeRF provides rich and comprehensive textual descriptions of the input 3D models.
Figures 10 to 12 report qualitatives examples on the language tasks evaluated on the test sets of
ShapeNeRF-Text and ObjaNeRF-Text [7]. In particular, since the test set of ObjaNeRF-Text contains
only brief descriptions, this is the only task evaluated on this dataset, as in the experiments reported in
the main paper. Results show that also on these tasks Spatial LLaNA is able to recognize and describe
very specific details about the input scene, while the competing baselines are not able to do so.
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Input S-LLaNA @ LLaNA @ PointLLM Q LLaVA f‘vf ground-truth
o . ) R

ne has two propellers,
each side.

S-LLaNA @ LLaNA @ PointLLM Q LLaVA ‘Za" ground-truth @g‘

No, the car does not appear to be

No, the car is not a convertible.

and a black soft top.

Figure 10: Qualitative evaluation of the single-round Q&A task on ShapeNeRF-Text. In red, the

hallucinations generated by the MLLMs. In , the correct fine-grained and spatial details.
Input S-LLaNA @ LLaNA @ PointLLM ; LLaVA A.',: ground-truth @

A 3D model of a yellow and black
motorcycle tire with a yellow rim.

Figure 11: Qualitative evaluation of the brief captioning task on ShapeNeRF-Text and ObjaNeRF-
Text. In red, the hallucinations generated by the MLLMs. In , the correct fine-grained and
spatial details.

I Failure cases of Spatial LLaNA

Figure 13 presents some failure cases of Spatial LLaNA on Spatial ObjaNeRF. These failures can
be broadly categorized into two main categories: (i) the model fails to recognize the main object
in the scene (first and second row), or (ii) the model generates short descriptions lacking specific
details (third row). Such failures may happen in cases where out-of-distribution objects are provided
as input to the model. For example, in the first row, the model is fooled by the unusual shape of the
teapot, leading to the weird description “a square device for making tea”, while the “pink teapot”
had already been correctly included in the answer. In the second row, since most of the snowmen of
ObjaNeRF-Text are simple white snowballs with outstretched arms made of sticks, this particular
snowman is incorrectly described as a “cartoon character”. Another interesting case appears in the
last row, where Spatial LLaNA correctly detects a “blue toy truck” but omits any distinctive features
in the generated description. This may be attributed to the complexity or uniqueness of the object,
which challenges the ability of Spatial LLaNA to generate a detailed description.

J Additional visualization examples of the attention maps in LLaMA

In this section, we report additional visualization examples of the self-attention maps of LLaMA, the
underlying LLM of Spatial LLaNA. While in the main manuscript we present the attention patterns
from a single question word to the 3072 spatial NeRF tokens, here we show the opposite. More
precisely, for a given NeRF token at a specific object location, we visualize the normalized attention
scores to each text token in the question (Figure 14). These maps are derived from the final decoder
layer of LLaMA-13B, with attention scores averaged across all 40 heads. These attention maps
confirm the ability of the weights2space meta-encoder to generate spatially-aware tokens from the
weights of the input NeRF. As shown in the first row of the Figure, tokens located at the base of
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LLaNA @

PointLLM

gromnd-irutn ()

S-LLaNA @*

The object is a gular wooden
speaker with a light brown color,

featuring a
with a

le grain pattern, giving it
a natural and warm appearance. The

the speaker are straight
indicating a well-crafted design.
The speaker has a simple and
functional design, with no visible
branding or text, and appears to
be a high-quality, handcrafted
item

The object is a rectangular box
with a brown top and sides, made
of a material that could be wood
or a sinilar material, featuring a
white label on the front with the
word \"DOS\" written in pink
letters, and a white border around
the label. The box has a flat top
and bottom, with a rectangular
shape and a visible seam on the
side where the 1id mests the body
of the box.

A 3D model of a cartoon-style
ventilator, primarily colored in
white. This object is designed to
aid in air circulation, typically
found in hospitals or residential
settings to assist in breathing.

LLaVA ﬁ

The object is a rectangular wooden

speaker with a s ular

speaker

featuring a natural finish and a
visible grain pattern. The wood
appears to be a light-colored

wood, possibly pine or fir, with a

The image shows a 3D model of a
bench. The bench has a traditional
design with a rectangular shape.
The bench is depicted against a

The ventilator is d by
a white metallic structure of
square shape and a round grey fan
in the middle.

black which highlights
its shape and design.

flat top and bottom, and straight

ndar
small

circular design w

round, black center

The object is a large commercial
airplane, likely a passenger jet,
with a predominantly black body
yellow tail and

and a distincf
stripe running along the side. It
has two
engines

vertical

is prominent, and the landing gear
is retracted, indicating the plane
s flying. The aircraft has a
cockpit and a fuselage with

s, and the tail
a yellow and blue
cheme.

A large commercial airplane,
likely a passenger jet, with a
sleek and aerodynamic design,
features a pointed nose cone,

swept-back wings with two engines

on each wing,
with vertical stabilizers.

and a tail section
The
fuselage is predominantly white
with a darker stripe running along
the side, and the tail is also
white with a darker stripe. The
airplane appears to be in flight,
with its landing gear ret
and has a modern design with a
long, pointed nose and a
horizontal stabilizer.

The 3D object model represents a
child's toy airplane. The design
is simplistic yet attractive with
vibrant yellow and white
coloration. The plane features two
engines, located at the rear
Uniquely, the body and the wings
of the airplane are yellow, while
the tail is white. This is a toy
representing a large c
airplane for long flights.

ommercial

A large commercial airliner,
typically a modern jetliner, is
The image appears to be a characterized by i
graphical representation of an
airplane flying through the sky.
In the image, the colors of the
airplane are not clearly visible.
It looks like a large commercial
airplanes used for long-haul
flights. The cockpit i
visible, but it is prob
equipped with all the
technological features needed to
£ly for extended periods of time.

likely = d, as the plane
appears to be in flight. The
overall design is a classic
representation of a commercial
airliner, with a clean and simple
aesthetic.

Figure 12: Qualitative evaluation of the detailed captioning task on ShapeNeRF-Text. In red, the
hallucinations generated by the MLLMs. In green, the correct fine-grained and spatial details.

USER:

Provide a very detailed description of the object.
parts of the object.

Include as many details as possible.

Focus on the relative position of the

Input

S-LLaN. 4?;!3

ground-truth @

A 3D model of a small pink teapot placed on a
possibly accompanied by a square
device for making tea.

grey table,

The teapot is a three-dimensional object with
a matte finish.
four legs,

spouts,

It has a square shape with
a handle on one side and three
Each
spout has a different geometric shape. One is

one on each of the other sides.
rounded, one is straight with a square cross
and the last is straight with a

circular cross section.

section,
The 1id is a separate
piece with a knob on the top. The color of the
teapot is a constant shade of pink, and there
are no visible textures or patterns.

A 3D model of a cartoon character wearing a

hat, sunglasses,

scarf,

and sweater.

The snowman model is composed of two main

parts: the head and the body. Each part is

made by a large snowball. The head is white

The body

is green with a blue scarf and a sweater with

green and blue color scheme. The rest of the
body is white.

with a blue hat and green sunglasses.

3D model of a blue toy truck with a wooden
bed.

The object is a toy truck with a
predominantly blue colour. It is made of metal
and the platform is surrounded by a wooden
frame. On the platform, there is a stack of
The wheels are black with a
blue rim. The body of the truck has an aged
appearance with rust and chipped paint. The
design of the truck includes details such as
the grille, headlights and taillights. On the
front grille of the vehicle is a yellow plate
'2'. On the right door is
the route 66 emblem in yellow. On the tip of
the hood are the horns of a bull.

cardboard boxes.

with the inscription

Figure 13: Examples of failure cases of Spatial LLaNA on Spatial ObjaNeRF. In red, the hallucina-
tions generated by the model. In green, the correct fine-grained and spatial details.

the cup and on the vase of the flower exhibit the strongest attention to the words “base” and “vase”,
respectively, while showing much lower scores for the remaining words. Similarly, in the second
row, tokens covering the top of the objects correlate most strongly with the words “cup” and “flower”.
These visualizations further highlight the ability of S-LLaNA to connect the words of the question
with the NeRF tokens representing specific parts of the object.
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Figure 14: Visualization of the normalized self-attention scores of single NeRF tokens towards the
text tokens of the question. In yellow, surrounded by a red circle, the reference NeRF token.

K Details about datasets, models and source code licenses

This section provides details about the datasets, models, and source code licenses used in the work,
ensuring proper credit to the creators or original owners, and adherence to license terms.

Datasets: the datasets employed in our work and the relative licenses are listed below:

Models:

ShapeNeRF-Text: licensed under MIT License.

ObjaNeRF-Text: licensed under MIT License.

ShapeNet: licensed under GNU Affero General Public License v3.0.

Objaverse: licensed under Open Data Commons Attribution License v1.0 (ODC-By v1.0).

GPT2Shape HST: licensed under Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.

the models used in our experiments and their relative licenses are detailed below:

LLaNA: licensed under MIT License.
nf2vec: licensed under MIT License.

PointLLM: licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License.

GPT4Point: licensed under Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International License.

ShapeLLM: licensed under Apache License 2.0.

3D-LLM: licensed under MIT License.

BLIP-2: licensed under BSD 3-Clause License.

LLAVA: licensed under Apache License 2.0.

LLAMA-2: licensed under META LLAMA 2 COMMUNITY LICENSE AGREEMENT'.

'https://ai.meta.com/llama/license/
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