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Abstract

As one of the most popular machine learning models today, graph neural networks
(GNNs) have attracted intense interest recently, and so does their explainability.
Unfortunately, today’s evaluation frameworks for GNN explainability often rely
on few inadequate synthetic datasets, leading to conclusions of limited scope due
to a lack of complexity in the problem instances. As GNN models are deployed
to more mission-critical applications, we are in dire need for a common evalu-
ation protocol of explainability methods of GNNs. In this paper, we propose,
to our best knowledge, the first systematic evaluation framework for GNN ex-
plainability GRAPHFRAMEX, considering explainability on three different “user
needs”. We propose a unique metric, the characterization score, which combines
the fidelity measures and classifies explanations based on their quality of being
sufficient or necessary. We scope ourselves to node classification tasks and com-
pare the most representative techniques in the field of input-level explainability for
GNNs. We found that personalized PageRank has the best performance for syn-
thetic benchmarks, but gradient-based methods outperform for tasks with complex
graph structure. However, none dominates the others on all evaluation dimensions
and there is always a trade-off. We further apply our evaluation protocol in a case
study for frauds explanation on eBay transaction graphs to reflect the production
environment.

1 Introduction
As machine learning models are being deployed to mission critical applications and are having
increasingly profound impact on our society, interpreting machine learning models has become cru-
cially important [9, 17]. At the same time, graph neural networks (GNNs) are of growing interest
and are ubiquitous in many learning systems across various areas[8, 13, 15, 18, 33, 47]). Due to the
complex data representation and non-linear transformation, explaining decisions made by GNNs
is challenging. The past decade has witnessed the rise of new methods to explain GNN predic-
tions [2, 3, 6, 7, 22–24, 30, 35, 38, 43, 46, 51, 52, 54, 55].

How do these GNN explanation methods compare with each other? How should we evaluate these
GNN explanation methods? These two questions, unfortunately, are still open today. Today’s GNN
explainability methods are often evaluated on the inadequate synthetic datasets introduced by [51],
later referred as type 1 (see AppendixA.6 for the types of synthetic data) - where groundtruth is
available and often on different grounds — as shown in Table 1. Furthermore, they only consider
a small subset of metrics to evaluate their method and this choice is very different from method to
method. Most papers do not consider the aspect of computing time. They also evaluate their method
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Table 1: XAI LITERATURE FOR GNN NODE CLASSIFICATION. "Acc" defines the accuracy (F1-
score) measured with respect to the groundtruth, "Fid+" and "Fid-" refer to the fidelity metrics
as defined in [53] (see Appendix A.4). The column "Time" indicates if the paper has run a
comparative analysis of the computation time of the explainability methods. The final column
"GNN accuracy" shows if the authors have reported the testing accuracy of their model.

Paper Type Year Explainer Use type 1 Synthetic Real Time GNN Accuracy

syn data** Acc Fid- Fid+ Acc Fid- Fid+

Method [7] 2019 LRP ✓ ✓

Method [51] 2019 GNNExplainer ✓ ✓ > 0.90

Method [24] 2020 PGExplainer ✓ ✓ ✓ 0.92 − 1.00

Method [55] 2020 RelEx ✓ ✓

Method [43] 2020 PGM-Explainer ✓ ✓ ✓ 0.85 − 1.00

Method [38] 2021 RG-Explainer ✓ ✓

Method [3] 2021 ZORRO ✓* 0.48 − 0.79

Method [54] 2021 SubgraphX ✓ ✓ ✓ 0.86 − 0.99

Method [23] 2021 CF-GNNExplainer ✓ ✓ ✓ > 0.87

Method [6] 2021 RCExplainer ✓ ✓ ✓ ✓ 0.84 − 0.99

Method [22] 2021 Gem ✓ ✓* ✓

Taxonomy [53]
(Yuan et al.)

2020
GNNExplainer,PGExplainer

SubgraphX,DeepLift
GNN-LRP,Grad-CAM,XGNN

✓ ✓ ✓ ✓

Taxonomy [11]
(Faber et al)

2021
Saliency,Occlusion,IntegratedGrad

GNNExplainer,PGM-Explainer
✓ ✓ 0.81-1.00

Taxonomy [21]
(Li et al)

2022
GraphMask

GNNExplainer,PGExplainer
✓*

Taxonomy [1]
(Agarwal et al)

2022

VanillaGrad,IntegratedGrad
GraphMask,GraphLIME

GNNExplainer,PGExplainer
PGMExplainer

✓*

* Different denomination in the paper, but the same evaluation mechanism as ours.
** Type 1: [51]; Type 2: [11]; Type 3: MUTAG [26], MoleculeNet [48],... See Appendix A.6 for the full synthetic data classification.

on an almost accurate GNN model, without considering the influence of GNN accuracy on explain-
ability. As a result, insights obtained in these different papers often do not reflect their performance
on real-world applications! Most method papers (see upper section of Table 1) have inconsistent
rankings when evaluation the methods on type 1 synthetic datasets or on real datasets. Only the tax-
onomy survey [11] that proposes three novel synthetic benchmarks - type 2 - has consistent results
with real data.

Evaluation Framework. In this paper, we aim at overcoming these limitations and propose
GRAPHFRAMEX, the first systematic framework for evaluating explainability methods in the con-
text of node classification. We consider three aspects of users’ needs in our evaluation protocol. Our
framework further distinguishes two types of explanations, according to whether they are necessary
or sufficient. For evaluation, we combine the two fidelity measures, Fid+ and Fid-, that capture the
two explanation types, into one single performance metric: the characterization score. Our evalu-
ation method does not require groundtruth from synthetic datasets and can be applied to any graph
datasets in practice. This paper is the first to study the relation between accuracy and explainability.
We evaluate a variety of explainability methods on type 1 synthetic datasets of [51] and ten real
datasets. We show the limitations of these specific synthetic datasets. To reflect the production en-
vironment, we run a fraud explanation study for eBay transaction graphs. Because runtime is also
important, our analysis further compares methods on their average mask computation time. This is
also the first paper interested in explaining inaccurate GNN models and the first to investigate the
influence of GNN accuracy on the explainer performance.

Moving Forward. As an early attempt to systematically investigate evaluation of GNN ex-
plainability, this paper also aims to facilitate the assessment of future explainability methods and
shed light on how to build more effective explainability methods that would incorporate the ad-
vantages of existing methods. We have created an online platform for people to compete and
compare their method to a standard leaderboard with our proposed evaluation and a selected set
of representative methods. They also have the possibility to integrate their method to the final
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leaderboard. It also opens new doors to create synthetic datasets that better reflect the complex-
ity of real ones, which we will discuss in Section 5.2.4. Our code is anonymously available
at https://anonymous.4open.science/r/GraphFramEx-E054/.

2 Related work
Confronted to a rapid increase of XAI methods, researchers have tried to identify a list of properties
desired of explainable systems and developed concrete tools to help compare and evaluate all of the
methods [28, 39]. Following these systematic XAI evaluation reviews, recent studies have proposed
to systematically evaluate the performance of explainability methods for GNNs [1, 11, 21, 53].
Unlike [11], our framework evaluates explainers regardless of the existence of groundtruth. None of
the papers studies the relation between accuracy and explainability. Moreover, they do not consider
other mask transformation than sparsity.

3 Problem setup
Let G = (V, E) represent the graph with V = {v1, v2...vN} denoting the node set and E ⊆ V × V
as the edge set. Edges may be directed or undirected. The numbers of nodes and edges are denoted
by N and M , respectively. A graph can be described by an adjacency matrix A ∈ {0, 1}N×N , with
aij = 1 if there is an edge connecting node i and j, and aij = 0 otherwise. In addition, nodes in V
are associated with d-dimensional features, denoted by X ∈ RN×d.

In the context of node classification, a GNN can be written as a function f : V −→ Y , which
assigns to nodes in V labels from a finite set Y . The GNN model is trained with an objective
function L : Y × Y → R that computes a cross-entropy loss s = L(y, ŷ) by comparing the
model’s prediction ŷ to a ground-truth label y. To fuse the information of both node features and
graph structure in node representation vectors, GNN models utilize a message passing scheme to
aggregate information from neighboring nodes.

Given a pre-trained classifier f , our objective is to obtain an explanation model. An “explanation” in
the domain of GNNs is a mask or a subgraph of the initial graph, i.e., a set of weighted nodes, edges
and possibly node features. The weights on those graph entities relate to their inherent importance
for explaining the model outcomes. The explainer model usually performs a feature attribution
operation which associates each feature of a computation graph GC with a weight or relevance
score for the classifier’s prediction. The computation graph GC might be the initial graph G or a
subgraph around the target node vt since some methods only look at a k-hop neighbourhood to do
predictions. We focus on the contribution of the structural features, namely the edges. To explain
each node vt, all the methods compared in this paper generate a mask ME(E , f, vt, yt) ∈ R|V|×|V|,
each element of which is the importance score of the edges to the prediction class yt of the target
node vt. The more complex methods also generate a mask MNF (V, f, vt, ct) on the node features
(see Table 5 in Appendix B). At the end, an explanation corresponds to a mask ME on the edges and
sometimes a mask MNF on the node features, that operate on the initial graph to form a subgraph
GS with adjacency matrix AS = ME ⊙ A and features XS = MNF ⊙ X, where ⊙ denotes
elementwise multiplication. We denote by yGS

t and y
GC\S
t the model’s predictions for node vt when

taking as input respectively the explanatory or masked graph GS and its complement or masked-out
graph GC\S .

Scope. Our framework only compares post-hoc explainability methods since our focus is on ex-
plaining any GNN model. We restricted our study to input-level methods because there are currently
limited model-level explainability methods [51, 52]. We evaluate both model-aware and model-
agnostic methods in the context of node classification tasks. See Appendix A for the full definitions
and taxonomy.

4 Method
This section presents the three design choices made by the users and the evaluation metrics used to
assess explainers performance.

4.1 Multi-objectives for explainability
To build GRAPHFRAMEX, we start from the perspective of the data subject. Users design the
framework based on their expectations on the produced explanations. They can make choices on
three dimensions: the explanation focus, the mask nature and the mask transformation strategy.
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5.1 Experimental settings
We describe the setup and implementation details for the explainability procedure. See Appendix B
for more details on the datasets statistics, the methods and the experimental protocol.

Datasets.

• Synthetic datasets We use type 1 synthetic datasets introduced by [51]. We refer the reader to
Appendix A.6 to learn more about the 3 classes of existing synthetic datasets in explainability
for GNNs. Ground truth explanations are available.

• Real datasets We use 10 publicly available datasets to evaluate our framework on real graphs:
the citation network datasets [50], the Facebook Page-Page network dataset [32], the actor-only
induced subgraph of the film-director-actor-writer network [29], the WebKB datasets [29], and
the Wikipedia networks [32]. We use the code accessible in Pytorch geometric.

• eBay We test our evaluation framework on a real-world eBay transaction graph dataset. This
is a binary node classification task where transaction nodes are labeled as legit or fraudulent.
The objective is to explain fraudulent nodes. The eBay graph dataset is a very large sampled
real-world dataset with 289k nodes (208k transaction nodes) and 1% of all nodes (1.48% of
transaction nodes) are fraudulent. This is a typical example of a rare event detection task.

GNN models. By default, we use the graph convolutional networks (GCN) [20]. Besides GCN, we
also evaluate explainability methods on graph attention networks (GAT) [42] and graph isomorphism
networks (GIN) [49]. Results using GAT and GIN models are presented in Appendix C.

Explainers. To explain the decisions made by the GNNs, we adopt different classes of explainers in-
cluding structure-based methods, gradient/feature-based methods and perturbation-based methods.
We refer the reader to Appendix A.3 for the full taxonomy and to Appendix B.2 for more details on
the explainability methods. In our experiments, we compare the following methods: Random gives
every edge and node feature a random value between 0 and 1; Distance assigns higher importance
to edges that have lower distance to the target node; PageRank measures the importance of edges
following the personalized PageRank strategy with automatic restart on the target node [10, 45];
Saliency (SA) measures node importance as the weight on every node after computing the gradient
of the output with respect to node features [7]; Integrated Gradient (IG) avoids the saturation prob-
lem of the gradient-based method Saliency by accumulating gradients over the path from a baseline
input (zero-vector) and the input at hand [40]; Grad-CAM is a generalization of class activation
maps (CAM) [36]; Occlusion attributes the importance of an edge as the difference of the model
initial prediction prediction on the graph after removing this edge [11]; GNNExplainer computes
the importance of graph entities (node/edge/node feature) using the mutual information [51]; We
also try Basic GNNExplainer that considers only edge importance; PGExplainer is very simi-
lar to GNNExplainer, but generates explanations only for the graph structure (nodes/edges) using
the reparameterization trick to overcome computation intractability [24]; PGM-Explainer perturbs
the input and uses probabilistic graphical models to find the dependencies between the nodes and
the output [43]; and SubgraphX explores possible explanatory subgraphs with Monte Carlo Tree
Search and assigns them a score using the Shapley value [54].

Protocol. In this work, we focus on node classification tasks and compare local, that is input-level,
explainability methods. We train one of the three GNN models. Once trained, we use the GNN to do
predictions on a testing set. Explanations are then eventually transformed with the topk strategy. We
evaluate the methods with the fidelity measures and the characterization score with equal weights
w+ = w− = 0.5 in four different settings defined as the combinations of the two possible focus,
phenomenon and model, and mask nature, hard or soft masks.

5.2 Main results
5.2.1 Explainer efficiency and type of explanation on real datasets

The legend of figure 3 shows the overall ranking of each explainability method. We rank them on
their characterization score averaged on all real datasets for explanations of size 10 edges in the four
settings (phenomenon / model, hard / soft mask). Saliency has the highest overall characterization
score. More generally, gradient/feature-based methods are better than perturbation-based methods.

The overall characterization score of the twelve explainers on the real datasets is also evaluated
against their average computation time of an explanatory mask. Left plot of Figure 3 shows that, in
addition to having the best characterization score, Saliency is also the most efficient. In the setting
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A Background and foundational concepts

A.1 Interpretability, explainability and transparency

There is a general misunderstanding of the terms explainability and interpretability. While inter-
pretability is the common term in the philosophical literature, the scientific community prefers the
term explainability. For this reason, we will only make use of terms that come from the same ety-
mology as “explain”. An explanation is the process (and its product) aiming at making something
intelligible through the provision of structured information. Thus, the word explanation can be mis-
leading as it refers to both the method and the result. Note that, for practical reasons, we explicitly
use the term "method" to designate the method ("explainability method" or "explanation method")
and the term "explanation" to describe the result of this method. As opposed to general explana-
tions, scientific explanations answer only why-questions, where premises are always followed by a
deduction. This does not mean that the explanation is unique: we often observe the existence of
a large space of alternatives for the same question. Therefore, explanations need to take into con-
sideration the social aspect of the process. Explainability of machine learning models has recently
become a top-priority in AI, where it is often abbreviated as explainable Artificial Intelligence (xAI)
or interpretable Machine Learning (iML). We adopt the first initialism here to stay as general as
possible.

A.2 GNN models and explanation quality

There are several variants of GNNs (graph convolutional networks (GCNs) [20], graph attention
networks (GATs) [42], graph isomorphism networks (GINs) [49]), and they differ in their ag-
gregation strategy. In this paper, we restrict our evaluation framework to methods that explain
GCNs. We tested our framework on the simple GCN architecture proposed by [20]. Some pa-
pers [2, 4, 16, 30, 35, 53, 54] have tested their method for different GNN models and report their
results for each one. To rigorously measure the robustness of explainers to the change of GNN
model, the authors of [34] define the consistency metric. It measures how accuracy varies across
different hyperparameters of a model or model architectures. When comparing explanations for dif-
ferent GNNs, those papers tackle the question: does the performance of an explainability method
depend on our initial choice of the GNN architecture? In the scope of this paper, we only want to
raise awareness on the potential importance of the GNN model on the generated explanations.

A.3 Taxonomy of explainability methods for GNNs

Even if close in meaning, the definitions presented in this section are not to be confused with the
ones introduced in [9] and [25].

Input-level/Local vs Model-level/Global explanations. An input-level or example-level or even
local explanation identifies features in a given input that are important for its prediction. In contrast,
model-level or global explanations are input-independent: they investigate what input graph patterns
can lead to a certain GNN prediction without respect to any specific input example. They explain
the general behavior of the model.

Intrinsic explanations vs Post-hoc explanations. Intrinsic explanations are produced for models
that are self-understandable like linear regression and decision trees. No external method is required
to explain their outcomes. Post-hoc explanations are brought up for models with higher complexity
like neural networks, including GNNs, that do not presume any knowledge of the inner-workings or
type of model at hand. In this case, an external method called explainability method is required to
bring some clarity.

Model-aware vs model-agnostic explanations. Among post-hoc explanations, we have model-
aware explanations and model-agnostic explanations. Model-aware methods look inside the model
to extract information. They directly study the model parameters to reveal the relationships between
the features in the input space and the output predictions. Model-agnostic explanations consider the
model as a black-box. To infer what elements are important in the input, they perturb the input and
study the changes in the output.
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cator functions (fidacc+/−). While fidprob+/− metrics are more appropriate for evaluating explanations
in the context of regression tasks because they are only based on the predicted probabilities, fidacc+/−
metrics use the indicator function and are more suitable for classification problems. In this paper,
we convey our results with the fidelity metrics that use the indicator function and are more suitable
for classification problems.

A.5 Accuracy measure and the concept of groundtruth

The accuracy metric is based on the assumption that we actually know the groundtruth explanation.
In current synthetic datasets, node labels are defined based on their position in the graph. There-
fore, the groundtruth explanations are artificially built and interpreted as the motifs which the nodes
belong to. We are critical towards this method of assigning explanations as it is an a posteriori as-
signment and is only based on the labeling procedure. How we, humans, synthetically build and
explain the node labels is not necessary the right explanation of the GNN model logic. The GNN
might put its attention on different graph entities than the ones of the human-intelligible substruc-
tures. For this reason, we claim here that accuracy is not the right evaluation metric as it is limited to
datasets where we have ground-truth explanations and in these very rare cases, we strongly question
their "ground-truth" quality.

A.6 Classification of synthetic datasets

The term synthetic is widely used but its definition is not always clear. Synthetic refers here to data
for which we have groudtruth explanations available. But, the procedure to generate the synthetic
data and its groundtruth explanations differ. We have identified three origins of groudtruth:

• Type 1 synthetic data The true explanation is artificially defined by humans while they construct
the graphs and can be identified as the nodes in the k-hop neighborhood of the target node.
Such simple explanations can be easily discovered with nearest neighbor search or personalized
PageRank. For instance, in the BA-house dataset, the motif house is the expected explanation.
These synthetic datasets have been introduced in [51] and are now widely used as benchmarks
to evaluate new explainability methods.

• Type 2 synthetic data The true explanation is also defined during the construction of the
datasets. But, this time, it is more complex than the simple target node neighbourhood. Type
2 synthetic datasets correspond to the three benchmarks introduced in [11]. They have been
created to overcome the 5 pitfalls encountered in type 1 synthetic datasets.

• Type 3 synthetic data The true explanation finds its origin in scientific experiments, human ob-
servations or human intuitions. Type 3 synthetic data often reflect biological and chemical prob-
lems, where particular substructures can predict properties for molecules, as in the MUTAG [26]
or the MoleculeNet [48] datasets (HIV, BACE, BBBP, Tox21, QM7), or predict properties of
proteins, as in the Enzymes dataset [26].

In this paper, we tested explainability methods on type 1 synthetic datasets to highlight their limi-
tation in a rigorous evaluation of explainers. In addition, type 1 and type 3 are the most common
families of synthetic data in recent papers [6, 7, 22–24, 38, 43, 51, 53, 54, 54, 55]. We have not tested
the methods on type 3 synthetic datasets since they are made for graph classification and regression
tasks.

A.7 Mask transformation strategies

Sparsity. Sparsity is defined as the minimum percentage X of edges to remove from the initial
graph. The sparsity strategy consists in keeping only edges which belong to the (100-X)% highest
values in the mask. A sparsity of 70% or 0.7 means that we keep at least 30% of the edges in the
mask. Some very sparse explainability methods might return sparser explanations with even less
edges. But, we have the assurance that explanations cannot be bigger. Note that the size of the
explanation is dependent on the size of the graph: if we change the dataset, the number of edges
contained in the transformed masks will be different. Thus, for the sparsity strategy, the size of the
explanation depends on the dataset.

Threshold. Threshold is a value between 0 and 1 that defines the lowest value for edge impor-
tance.The threshold strategy consists in keeping the edges whose value in the mask is greater than
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Datasets BA-House BA-Grid Tree-Cycle Tree-Grid BA-Bottle

Base Type BA graph BA graph Tree Tree BA graph

Size 300 nodes 300 nodes height 8 height 8 300 nodes

Motif Type house grid cycle grid bottle

Size 5 nodes 9 nodes 6 nodes 9 nodes 5 nodes
Number 80 80 60 80 80

# Features constant constant constant constant constant
# Classes 4 2 2 2 4

Table 2: Synthetic datasets statistics

Datasets Cora CiteSeer PubMed Chameleon Squirrel Actor Facebook Cornell Texas Wisconsin

# Nodes 2708 3327 19717 2277 5201 7600 22470 183 183 251
# Edges 5429 4732 44338 36101 217073 33544 171002 295 309 499

# Features 1433 3703 500 2325 2089 931 4714 1703 1703 1703
# Classes 7 6 3 5 5 5 4 5 5 5

Table 3: Real datasets statistics

the threshold. For a threshold τ ∈ [0, 1], we keep only values in the mask greater than τ . This leads
to explanations of different sizes among the explainability methods, since some methods might value
edges high while other methods give to their most important edges values below 0.5. Thus, for the
threshold strategy, the size of the explanation depends on the method.

Topk. Topk is the number of edges in the explanatory subgraph. The topk strategy only keeps the
top k highest values in the mask. This strategy always returns explanations with a similar abso-
lute size whatever the dataset and the method. We also define the directed topk strategy and the
undirected topk strategy. While the first one keeps the top k directed edges, the second one avoids
double counting of node-to-node connections and returns explanations with k connections, i.e. the
explanation is an undirected subgraph of k edges.

B Experimental details

B.1 Datasets

Details on how the synthetic datasets were constructed can be found in Table 2. Table 3 presents the
structural properties of the real datasets. eBay graph characteristics are detailed in Table 4.

Synthetic datasets. We use type 1 synthetic datasets introduced in [51] (see Appendix A.6), which
are widely used in the xAI litterature [6, 7, 22–24, 38, 43, 51, 53, 54, 54, 55]. We follow the code2

of [43] to create the synthetic datasets. In these datasets, each input graph is a combination of a base
graph and a set of motifs. Diverse motifs (house, cycle, grid, bottle) are plugged in on a base graph
(Barabasi graph or tree). Nodes are labeled based on their position in the graph: they receive a label
0 if they are in the base graph and a non-zero label if they belong to a motif. For house and bottle,
the position in the motif is also important. For grid and cycle, we only look if the node belongs to the
shape. The ground-truth label of each node on a motif is determined based on its role in the motif.
As the labels are determined based on the motif’s structure, the explanation for the role’s prediction
of a node are the nodes in the same motif. Thus, the ground-truth explanation in these datasets are
the nodes in the same motif as the target.

Citation datasets. We consider three citation network datasets: Citeseer, Cora and Pubmed[37].
The datasets contain sparse bag-of-words feature vectors for each document and a list of citation
links between documents. Citation links are treated as (undirected) edges. Each document has a
class label. For training, we only use 20 labels per class, but all feature vectors.

2https://github.com/vunhatminh/PGMExplainer/tree/master/PGM_Node/Generate_XA_Data
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Dataset # Nodes # Txn Nodes # Edges # Features # Classes # Positive label Train/Val/Test split

eBay 288853 207749 1225808 114 2 3081 (1.48% of txns) 0.75/0.15/0.1

Table 4: eBay graph statistics

Facebook. This dataset is a page-page graph of verified Facebook sites. Nodes correspond to
official Facebook pages, links to mutual edges between sites. Node features are extracted from the
site descriptions. The task is multi-class classification of the site category.

Wikipedia network. Chameleon and squirrel are two page-page networks on specific topics in
Wikipedia. In those datasets, nodes represent web pages and edges are mutual links between pages.
And node features correspond to several informative nouns in the Wikipedia pages. We classify the
nodes into five categories in terms of the number of the average monthly traffic of the web page.

Actor co-occurrence network. This dataset is the actor-only induced subgraph of the film-director-
actor-writer network. Each node corresponds to an actor, and the edge between two nodes denotes
co-occurrence on the same Wikipedia page. Node features correspond to some keywords in the
Wikipedia pages. Nodes are classified into five categories in terms of words on the actor’s Wikipedia.

WebKB. WebKB1 is a web page dataset collected from computer science departments of various
universities by Carnegie Mellon University. We use the three subdatasets of it, Cornell, Texas,
and Wisconsin, where nodes represent web pages, and edges are hyperlinks between them. Node
features are the bag-of-words representation of web pages. The web pages are manually classified
into the five categories, student, project, course, staff, and faculty.

eBay. We conducted a case study on a real-world dataset with collaboration with the eBay Risk
Team. We construct a bipartite graph with 2 different kinds of nodes: transaction nodes (txn), which
are what we want to predict as targets, and entity nodes, which are unique assets including buyer
account, payment tokens, email, IP address, and shipping address, acting like a linkage medium to
connect txns together. If a txn has relation with an entity, we put an edge between these two nodes.
Two different txns will be linked to the same entity node if they are sharing the same entity, e.g.
the same shipping address is used in the two txns. Each txn is labeled as legit or fraudulent, and
carries features provided by eBay risk system. These features include the information of transaction
itself and expert-designed features extracted from its neighbors such as user and email information.
For the entity nodes, the feature vectors are filled with zero value. Our source data is sampled from
e-commerce history transaction logs. To ensure the connectivity of the graph, we first sample some
seed txns within certain period of time, and then expand 3 hop neighbors from these seeds, and
at each hop, no more than 32 neighbors are picked. Then we collect all involved nodes. The final
graph has a size of 288,853 nodes (includes 207,749 txn nodes) and 1,225,808 edges. Among the txn
nodes, 3,081 are labeled as fraudulent. Each txn node has 114 features. The graph we are using is the
same with eBay-small graph in paper xFraud [31]. The desensitization version data is available for
legitimate, non-commercial usage after submitting the application 3. According to our experience,
user based features usually contribute more, and payment tokens are usually a stronger evidence of
fraud propagation among other entities. For example, a transaction with large user behavior change
may be caused by account takeover attack, and a transaction using a payment token which has been
used in other proved fraudulent purchases are more likely to be malicious.

B.2 Explainability methods

Model-aware. Gradient-based methods compute the gradients of target prediction with respect to
input features by back-propagation. Features-based methods map the hidden features to the input
space via interpolation to measure important scores. Decomposition methods measure the impor-
tance of input features by distributing the prediction scores to the input space in a back-propagation
manner.

Model-agnostic. Perturbation-based methods use masking strategy in the input space to perturb
the input. Surrogate models use node/edge dropping, BFS sampling and node feature perturbation.

3https://github.com/eBay/xFraud
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Counterfactual methods generate counterfactual explanations by searching for a close possible world
using adversarial perturbation techniques [14].

Explainer Model-aware/agnostic Target Type Flow

SA Model-aware N/E Gradient Backward
IG Model-aware N/E Gradient Backward
Grad-CAM Model-aware N Gradient Backward

Occlusion Model-agnostic N/E Perturbation Forward
GNNExplainer Model-agnostic N/E/NF Perturbation Forward
PGExplainer Model-agnostic N/E Perturbation Forward
PGM-Explainer Model-agnostic N/E Perturbation Forward
SubgraphX Model-agnostic N/E Perturbation Forward

PageRank Model-agnostic N Baseline -
Distance Model-agnostic N Baseline -

Table 5: Explainability methods tested in the context of our evaluation framework.

B.3 GNN training

For all datasets, we use Adam optimizer [19]. The graph convolution network (GCN) has 2 or 3
layers with 16, 20 or 32 units. We eventually apply regularization on the weights with a weight
decay factor of 0.05 or 0.005. We also apply dropout for some datasets. We indicate all parameters
for each family of datasets. For synthetic datasets and for Facebook dataset, we use a 0.8/0.15/0.1
train/val/test split. For the Planetoid datasets, we use the default split: 140/500/1000 for Cora,
120/500/1000 for CiteSeer and 60/500/1000 for PubMed. We use the default train/val/test split for
all other real datasets, namely 0.48/0.32/0.2. We further describe the model accuracy, F1-score,
precision and recall for synthetic and real datasets.

B.4 Protocol

For each dataset, we first train a graph convolution network (GCN) as introduced by Kipf and
Welling [20]. For synthetic datasets, we use the version implemented by Rex Ying 4 [51]. For
real datasets, we use the original GCN implementation from Kipf 5. We use the trained model to
do predictions of node targets of a testing set. We test twelve explainability methods on the syn-
thetic and real datasets. We select 100 testing nodes which label we want to explain. We run each
experiment on 5 different seeds and present the average results. All computations were run on ETH

4https://github.com/RexYing/gnn-model-explainer
5https://github.com/tkipf/gcn

Datasets Syn WebKB Citat., Wiki eBay

Faceb., Actor

layers 3 2 2 2

hidden dim 20 32 16 32
epochs 1000 400 200 500

learning rate 0.001 0.001 0.01 0.001

weight decay 5 · 10−3 5 · 10−3 5 · 10−4 5 · 10−4

dropout 0 0.2 0.5 0.5

Table 6: GNN model and training parameters

Datasets BA BA Tree Tree BA
House Grid Cycle Grid Bottle

accuracy 0.986 1 1 0.895 1

F1-score 0.976 1 1 0.897 1
recall 0.979 1 1 0.87 1
precision 0.972 1 1 0.925 1

Table 7: GNN testing accuracy
on synthetic datasets
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Table 9: XAI LITERATURE FOR GNN GRAPH CLASSIFICATION. Acc defines the accu-
racy (AUC, F1-score) measured with respect to the groundtruth, Fid+ and Fid- refer to the
fidelity metrics as defined in [53]. "Time" indicates if the paper has run a comparative
analysis of the computation time of the explainability methods. The final column "GNN
accuracy" shows if the authors have reported the testing accuracy of their model.

Paper Type Year Explainer Target Synthetic Real Time GNN Accuracy

Acc Fid- Fid+ Acc Fid- Fid+

Method[41] 2017 DeepLift NF ✓

Method[7] 2019 LRP E ✓ ✓

Method[24] 2020 PGExplainer E ✓ ✓ 0.92 - 1.00

Method[55] 2020 RelEx E ✓

Method[43] 2020 PGM-Explainer E ✓ 0.85-1.00

Method[52] 2020 XGNN E ✓* ✓*

Method[12] 2020 CoGE N/E ✓ ✓

Method[35] 2021 GNN-LRP E ✓* ✓* ✓* ✓* 0.77-0.95

Method[2] 2021 Causal Screening E ✓* ✓ 0.64 - 0.98

Method[54] 2021 SubgraphX E ✓ ✓ ✓ 0.86-0.99

Method[46] 2021 Refine E ✓ ✓* ✓ ✓* ✓ 0.60-1.00

Method[38] 2021 RG-Explainer E ✓ ✓

Method[22] 2021 Gem E ✓* ✓

Method[5] 2022 LEGIT N/E ✓ ✓ 0.7-0.97

Taxonomy[30] 2019 CG,EB,c-EB
CAM,Grad-CAM

E ✓ 0.88-0.99

Taxonomy[53] 2020
GNNExplainer,PGExplainer

SubgraphX,DeepLift
GNN-LRP,Grad-CAM,XGNN

E ✓ ✓ ✓ ✓ ✓ ✓ 0.44-0.91

Taxonomy [1] 2022
VanillaGrad,IntergratedGrad

GNNExplainer,PGMExplainer
E ✓*

* Different denomination in the paper, but the same evaluation mechanism as ours.

23


	Introduction
	Related work
	Problem setup
	Method
	Multi-objectives for explainability
	Evaluation

	Results
	Experimental settings
	Main results
	Explainer efficiency and type of explanation on real datasets
	Explaining wrong predictions
	Select a pertinent explainability method
	Further Analysis

	Case study: explaining frauds in the real-world e-commerce graph

	Conclusion
	Background and foundational concepts
	Interpretability, explainability and transparency
	GNN models and explanation quality
	Taxonomy of explainability methods for GNNs
	Fidelity measure
	Accuracy measure and the concept of groundtruth
	Classification of synthetic datasets
	Mask transformation strategies

	Experimental details
	Datasets
	Explainability methods
	GNN training
	Protocol

	Additional results
	Evaluation framework of explainability methods for graph classification



