
Under review as a conference paper at ICLR 2018

EXPLORING NEURAL ARCHITECTURE SEARCH FOR
LANGUAGE TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural architecture search (NAS), the task of finding neural architectures auto-
matically, has recently emerged as a promising approach for discovering better
models than ones designed by humans alone. However, most success stories are
for vision tasks and have been quite limited for text, except for a small language
modeling datasets. In this paper, we explore NAS for text sequences at scale, by
first focusing on the task of language translation and later extending to reading
comprehension. We conduct extensive searches over the recurrent cells and at-
tention similarity functions for standard sequence-to-sequence models across two
translation tasks, IWSLT English-Vietnamese and WMT German-English. We
report challenges in performing cell searches as well as demonstrate initial suc-
cess on attention searches with translation improvements over strong baselines.
In addition, we show that results on attention searches are transferable to reading
comprehension on the SQuAD dataset.

1 INTRODUCTION

There has been vast literature on finding neural architectures automatically dated back to the 1980s
with genetic algorithms (Schaffer et al., 1992) to recent approaches that use random weights (Saxe
et al., 2011), Bayesian optimization (Snoek et al., 2012), reinforcement learning (Zoph & Le, 2017;
Baker et al., 2017; Zhong et al., 2017), evolution (Real et al., 2017), and hyper networks (Brock
et al., 2017). Among these, the approach of neural architecture search (NAS) using reinforcement
learning by Zoph & Le (2017), barring computational cost, has been most promising, yielding state-
of-the-art performances on several popular vision benchmarks such as CIFAR-10 and ImageNet
(Zoph et al., 2017). Building on NAS, others have found better optimizers (Bello et al., 2017) and
activation functions (Ramachandran et al., 2017) than human-designed ones. Despite these success
stories, most of the work mainly focuses on vision tasks, with little attention to language ones, except
for a small language modeling task on the Penn Tree Bank dataset (PTB) in (Zoph & Le, 2017).

This work aims to bridge that gap by exploring neural architecture search for language tasks. We
start by applying the approach of (Zoph & Le, 2017) to neural machine translation (NMT) with
sequence-to-sequence (Sutskever et al., 2014) as an underlying model. Our goal is to find new
recurrent cells that can work better than Long Short-term Memory (LSTM) (Hochreiter & Schmid-
huber, 1997). We then introduce a novel “stack” search space as an alternative to the fixed-structure
tree search space defined in (Zoph & Le, 2017). We use this new search space to find similarity func-
tions for the attention mechanism in NMT (Bahdanau et al., 2015; Luong et al., 2015b). Through our
extensive searches across two translation benchmarks, small IWSLT English-Vietnamse and large
WMT German-English, we report challenges in performing cell searches for NMT and demonstrate
initial success on attention searches with translation improvements over strong baselines.

Lastly, we show that the attention similarity functions found for NMT are transferable to the read-
ing comprehension task on the Stanford Question Answering Dataset (SQuAD) (Rajpurkar et al.,
2016b), yielding non-trivial improvements over the standard dot-product function. Directly running
NAS attention search on SQuAD boosts the performance even further.

1

Under review as a conference paper at ICLR 2018

Figure 1: Tree search space for recurrent cells – shown is an illustration of a tree search space
specifically designed for searching over LSTM-inspired cells. The figure was obtained from (Zoph
& Le, 2017) with permission. Left: the tree that defines the computation steps to be predicted by
controller. Center: an example set of predictions made by the controller for each computation step
in the tree. Right: the computation graph of the recurrent cell constructed from example predictions
of the controller.

2 NEURAL ARCHITECTURE SEARCH FOR LANGUAGES

In neural architecture search (NAS), a controller iteratively samples a model architecture which
is then run against a task of interest to obtain a reward signal. The reward signal is then used
to update the controller so as to produce better and better architectures over time. We follow the
architecture search setup in (Zoph & Le, 2017), which was originally developed for a small language
modeling task on PTB, and adapt it to other language tasks. We first focus on translation and conduct
searches on both small and large scale translation tasks (IWSLT and WMT respectively, with details
in Section 3). In terms of reward functions, we have a choice of using either perplexity or BLEU
scores which have been known to be well-correlated in neural machine translation (Luong et al.,
2015b). Formally, we scale the reward scores to be within [0, 1] as follows1:

R(score) =

{(
α

score

)β
[score = perplexity](

score
α

)β
[score = BLEU]

(1)

We now describe the search spaces over recurrent cells and attention similarity functions.

2.1 TREE-BASED SEARCH SPACE

This search space is identical to what was designed by Zoph & Le (2017) to search for LSTM-
inspired cells. Each instance of the search space takes as inputs (state ht−1, cell ct−1, input xt) and
produces as outputs (state ht, cell ct). The idea is to define computation through a balanced binary
tree which we start off first by connecting each leaf node with inputs (ht−1,xt) and producing
output ht at the top node. The left part of Figure 1 illustrates a binary computation tree of depth
2. The RNN controller will then decide for each node in the tree what combined operations, e.g.,
add or mul, to use and what nonlinearity, e.g., tanh or sigmoid, to be immediately followed. The
controller will also decide how to incorporate (“cell inject”) the previous cell ct−1 and which nodes
(“cell indices”) in the tree to use for that injection as well as the output of the new cell. The RNN
controller is illustrated in the center part of Figure 1 and the realization of an LSTM-inspired instance
is shown on the right part. The parameters of instance is defined by linear transformation of each
inputs (ht−1,xt) before passing to each leaf node.

LSTM-inspired Cells for NMT In this work, we are interested in how this search space, which
works well for the language modeling task, performs on translation. Our set of combined oper-
ations are element-wise addition and multiplication; whereas the set of non-linear functions are
(identity, tanh, sigmoid, relu). We use a binary tree of depth 4 with 8 leaf nodes.

1We fix β = 2 in our experiments. For α, if the reward type is perplexity, we set to 10 for IWSLT and 48
for WMT. If the reward type is BLEU, we set to 30 for IWSLT and 15 for WMT.

2

Under review as a conference paper at ICLR 2018

2.2 STACK-BASED SEARCH SPACE

We propose a simple stack-based programming language as an alternative to the fixed structure of
the previous tree search space. This is reminiscent of the Push language which is historically used
in genetic programming (Spector et al., 2005). A program consists of a sequence of function calls,
with each function popping N arguments from the top of the stack and pushing M results back onto
it. As illustrated in Figure 2, we consider in this work only unary or binary ops, i.e., N = 1 or 2,
with M = 1. If there are not enough arguments in the stack, such as a binary operation when there
is a single item in the stack, the operation is ignored. This ensures every program is valid without
additional constraints on the controller.

The program is also given the ability to copy outputs produced within S steps ago. Such capability
is achieved through ops (copy0, . . . , copyS−1) which the controller can predict together with other
unary and binary ops. The indices in Figure 2 indicate the order in which outputs were generated so
copy ops can be applied. At the start of execution, input arguments of the same shape and data type
are both pushed onto the stack. At the end of execution, we either sum all remaining values or take
the top value of the stack as the output.

1. x

0. x

copy0 linear sigmoid add

0. x

2. Wx

0. x

3. σ(Wx)

0. x 4. x + σ(Wx)

Figure 2: General stack search space – shown is an illustration of how the stack changes over
a sequence of operations. In this example, the controller predicts (copy0, linear, sigmoid, add) as
a sequence of operations to be applied. The stack has a vector x as an initial input and produces
x+ σ (Wx) as an output.

Attention Search for NMT As attention mechanism is key to the success of many sequence-to-
sequence models, including neural machine translation (Bahdanau et al., 2015), it is worthwhile to
improve it. To recap, we show in Figure 3 an instance of the attention mechanism proposed by
Luong et al. (2015a) for NMT. At each time step, the current target hidden state ht (a “query”) is
used to compare with each of the source hidden states h̄s (memory ”keys”) to compute attention
weights which indicate which memory slots are most useful for the translation at that time step. The

attention weight for each source position s is often computed as
exp
(
score(ht,h̄s)

)
∑S

s′=1
exp
(
score(ht,h̄s′)

) , with S

being the source length. In (Luong et al., 2015a), various forms of the scoring function have been
proposed, e.g., the simple dot-product h̄>s ht or the bilinear form h̄

>
s Wht.

hth̄s

Je

0.10.10.30.5

attention

weights

context

vector

I a studentam <s> Je étudiantsuis

attention

vector

 étudiantsuis </s>

Figure 3: Attention Mechanism – example of an attention-based NMT system as described in
(Luong et al., 2015a). We highlight in detail the first step of the attention computation.

3

Under review as a conference paper at ICLR 2018

Instead of hand-designing these functions, we propose to search through the set of scoring functions
score(q,k) using our stack-based search space. The stack starts out with a key vector k followed by
a query vectory q on top. The RNN controller predicts a list of L ops, followed by a special reduce
op that is used to turn vectors into scalars by summing over the final dimension as illustrated in Fig-
ure 4. L is the program length, which controls the search space complexity and is set to 8 in our ex-
periments. The set of binary and unary ops include (linear,mul, add, sigmoid, tanh, relu, identity)
with mul being element-wise multiplication. The occurrence of op identity is for the controller to
shorten the program as needed.

3. k ⊙ Wq 4. reduce(k ⊙ Wq)

linear mul reduce1. Query

0. Key

2. Wq

0. k

Figure 4: Stack Search Space for Attention – shown is the bilinear scoring function (Luong et al.,
2015a) as an instance of the stack search space for attention. The controller predicts (linear,mul)
as ops. All scoring functions end with a reduce op that turns vectors into scalars.

2.3 ARCHITECTURE SEARCH FOR READING COMPREHENSION

Attention mechanisms are a core part of modern question answering systems. In the extractive
problem setting, given a query sentence and a context paragraph, the task is to output start and
end positions in the text, called a span, which contains the answer. On the most common dataset
of this type, Stanford Question Answering Dataset (SQuAD) (Rajpurkar et al., 2016a), the top
performing models all perform some variant of attention between the encoded query sentence and
encoded context paragraph. Many of the best models are variants of a model known as Bidirectional
Attentive Flow (BiDAF) (Seo et al., 2016). BiDAF encodes the query and context separately, then
performs bidirectional attention from the query vectors over the context vectors and from the context
vectors over the query vectors. The similarity is generally computed as the dot product between the
two vectors. To test the generalization of our attention functions and search, we apply the best
attention mechanisms from NMT in place of the dot product. We also repeat the search procedure
directly on the SQuAD dataset. The search is similar as for NMT, with the addition of a unary
separable 1D convolution operator.

3 EXPERIMENTS

We consider two translation setups, small and large-scale ones, to test different effects of Neural
Architecture Search (NAS). Remember that, in NAS, there are often two phases involved: (a) search
architectures – in which we train many child models to find best architectures according to the
reward signals and (b) run convergence — where we take top architectures found and train full
models until convergence. To make things clear, for each of the translation setup below, we will
describe the data used, as well as the training hyperparameters for both the child and the full models.
Our evaluation metrics include both perplexity and BLEU (Papineni et al., 2002) scores; whereas,
the NAS reward signals can be either perplexity or BLEU, which we will detail later.

3.1 SMALL-SCALE TRANSLATION (IWSLT)

Data We utilize a small parallel corpus of English-Vietnamese TED talks (133K sentence pairs),
provided by the IWSLT Evaluation Campaign (Cettolo et al., 2015). Following Luong & Manning
(2015), we tokenize with the default Moses tokenizer and replace words whose frequencies are less
than 5 by <unk>.2 The final data has vocabulary sizes of 17K for English and 7.7K for Vietnamese.
We use the TED tst2012 (1553 sentences) as a validation set for hyperparameter tuning and TED
tst2013 (1268 sentences) as a test set.

Full-model hyperparameters Each full model is an attention-based sequence-to-sequence model
with 2 LSTM layers of 512 units each; the encoder is bidirectional and the embedding dimension is

2The processed data was downloaded from http://nlp.stanford.edu/projects/nmt.

4

http://nlp. stanford.edu/projects/nmt

Under review as a conference paper at ICLR 2018

also 512. We train each child model for 12K steps (roughly 12 epochs) with dropout rate of 0.2 (i.e.,
keep probability 0.8) and batch size 128. Our optimizer is SGD with learning rate 1; after 8K steps,
we start halving learning rate every 1K step. We use 5 for gradient norm clipping and uniformly
initialize the parameters within [−0.1, 0.1]. The exact implementation and setup were obtained from
the NMT tutorial (Luong et al., 2017).

Child-model hyperparameters Since this dataset is small, the hyperparameters of the child mod-
els for NAS are identical to those of the full models.

3.2 LARGE-SCALE TRANSLATION (WMT)

Data We consider the WMT German-English translation task with 4.5M training sentence pairs.
The data is split into subword units using the BPE scheme (Sennrich et al., 2016) with 32K oper-
ations. We use newstest2013 (3000 sentences) as a development set and report translation perfor-
mances on both newstest2014 (2737 sentences) and newstest2015 (2169 sentences).3

Full-model hyperparameters We train strong translation models based on the architecture of
Google’s Neural Machine Translation systems (Wu et al., 2016) with a implementation in (Luong
et al., 2017). The model consists of 4 LSTM layers of 1024 units (the encoder starts with a bidirec-
tional LSTM followed by three unidirectional layers); embedding dim is 1024. The hyperparameters
are similar to those of the English-Vietnamese setup: init range [−0.1, 0.1], dropout 0.2, gradient
norm 5.0. We train with SGD for 340K steps (10 epochs). The learning rate is 1.0; after 170K steps,
we start halving learning rate every 17K step.

Child-model hyperparameters Since we cannot afford to run NAS on full models, our child
model is a scaled-down version of the full one with 2 layers and 256 units, trained for 10K steps.

3.3 TRAINING OF THE CONTROLLER

Following Zoph et al. (2017), we train the controller RNN using the Proximal Policy Optimization
(Schulman et al., 2015) with a learning rate of 0.0005. To encourage exploration, an entropy penalty
0.0001 was used. We use an exponential moving average of previous rewards with weight 0.99
as a baseline function. The controller weights are uniformly initialized within [−0.1, 0.1]. We use
minibatches of 20 architectures to update the controller RNN weights.

During search, we employ a global workqueue system similar to (Zoph et al., 2017) to process a
pool of child networks proposed by the RNN controller. In our experiments, the pool of workers
consists of 100-200 GPUs. We stop the searches once the dev performance saturates and the set of
unique child models remains unchanged. Once the search is over, the top 10 architectures are then
chosen to train until convergence.

3.4 MAIN RESULTS

We present in Table 1 results of neural architecture search for translation. We compare over strong
baselines provided by Luong et al. (2017), which replicate Goole’s NMT architectures (Wu et al.,
2016). As we can see in the first three rows, the strong baseline trained with SGD and LSTM as the
basic unit outperforms NASCell, the TensorFlow public implementation of the best recurrent cell
found on the PTB language modeling task by Zoph & Le (2017).4 Architecture searches directly on
translation tasks yield better performances compared to NASCell. We can find cells that outperform
the baseline in the IWSLT benchmark with 26.2 BLEU. Beating the strong baseline on the larger
WMT task remains a challenge; with cell searches performed directly on WMT, we can narrow the
gap with the baseline, achieving 28.4 BLEU. Finally, by performing attention searches on WMT,
we were able to outperform the WMT baseline with 29.1 BLEU. The same attention function found
is also transferable to the small IWSLT benchmark, yielding a high score of 26.0 BLEU.

3The data processing script can be found at https://github.com/tensorflow/nmt#
wmt-german-english.

4https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/NASCell

5

https://github.com/tensorflow/nmt#wmt-german-english
https://github.com/tensorflow/nmt#wmt-german-english
https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/NASCell

Under review as a conference paper at ICLR 2018

NMT Systems IWSLT (small) WMT (large)
tst2013 newstest2015

Google NMT baseline [adam] (Luong et al., 2017) 21.8 26.8
Google NMT baseline [sgd] (Luong et al., 2017) 25.5 28.8
NASCell on LM [sgd] (Zoph & Le, 2017) 25.1 27.7
NASCell on IWSLT [ppl, sgd] (this work) 26.2 27.9
NASCell on WMT, [ppl, adam] (this work) 23.4 <11
NASCell on WMT, [ppl, sgd] (this work) 25.4 28.4
NASAttention on WMT [ppl, sgd] (this work) 25.9 <20
NASAttention on WMT [bleu, sgd] (this work) 26.0 29.1

Table 1: Neural architectural searches for translation – shown are translation performances in
BLEU for various neural architecture searches (NAS) at the cell and attention levels. Searches are
performed on either the small IWSLT or large WMT translation setups with reward functions being
either ppl (perplexity) or BLEU. For each NAS search, we report results on both translation setups.
For NASCell, we use the TensorFlow public implementation by Zoph & Le (2017) and run on our
translation setups. We highlight in bold numbers that are best in each group.

4 ANALYSIS

In this section, we continue results in Table 1 to further discuss the effects of optimizers and reward
functions used in architecture search. We also show the top attention functions found by NAS and
their effects. Lastly, we examine the transferability of these attention functions and searches to the
task of reading comprehension.

4.1 EFFECTS OF OPTIMIZERS FOR NMT MODELS

We found that optimizers used for NMT models matter greatly in architecture search. From the
training plots in Figure 5, it seems to appear that Adam outperforms SGD greatly, achieving much
higher BLEU scores on both the dev and test sets after a fixed training duration of 10K steps per
child model. However, as observed in rows 5 and 6 of Table 1, recurrent cells found by Adam are
unstable, yielding much worse performance compared to those found by SGD. We have tried using
Glorot initialization scheme (Glorot & Bengio, 2010) but could not alleviate the problem of large
gradients when using Adam-found cells. We suspect further hyperparameter tuning for final-model
training might help.

4.2 EFFECTS OF REWARD FUNCTIONS FOR ATTENTION SEARCHES

We also carry a small experiment comparing the reward functions described in Eq (1) for the atten-
tion search. From Figure 6, the reward function based on BLEU trivially leads to higher dev and test
BLEU scores during the search. The attention functions found does transfer to higher BLEU scores
as shown in row 8 of Table 1. What surprised us was the fact that the attention mechanisms found
with perplexity-based reward function perform poorly.

The top-performing attention similarity functions found are: reduce(sigmoid(relu(tanh(W (k �
q))))) and reduce(sigmoid(relu(W (k � q)))). At first, the equations look puzzling with multiple
nonlinearity functions stacked together, which we think due to noise in the design of the search
space that lets the controller favor over nonlinear functions. However, a closer look does reveal
an interesting pattern that keys and queries are encouraged to interact element-wise, followed by
linear transformation, nonlinearity, before the final reduce-sum op. On the other hand, several bad
attention functions have the following pattern of applying nonlinearity immediately after element-
wise multiplication, e.g., reduce(sigmoid(W (tanh(tanh(k � q))))). Nevertheless, we think the
search space could have been improved by predicting when a program can end and when to perform
reduce operations.

6

Under review as a conference paper at ICLR 2018

0 2000 4000 6000 8000 10000 12000 14000

Steps

0

2

4

6

8

10

12

14

sgd

adam

(a) Dev BLEU

0 2000 4000 6000 8000 10000 12000 14000

Steps

0

2

4

6

8

10

12

sgd

adam

(b) Test BLEU

0 2000 4000 6000 8000 10000 12000 14000

Steps

0

5

10

15

20

25

30

35

40

sgd

adam

(c) Total Entropy

0 2000 4000 6000 8000 10000 12000 14000

Steps

0

2000

4000

6000

8000

10000

12000

14000

16000

sgd

adam

(d) Number of unique models sampled

Figure 5: Effects of optimizers for NMT models – shown are training plots comparing two recur-
rent cell searches, which are different in terms of optimizers used for NMT models, adam or sgd.
The four different subplots are (a, b) BLEU scores on the dev and test sets, (c) the total entropy of
the RL controller, and (d) how many unique child models we have sampled for each search.

0 5000 10000 15000 20000

Steps

2

3

4

5

6

7

8

9

10

bleu

ppl

(a) Dev BLEU

0 5000 10000 15000 20000

Steps

4

6

8

10

12

14

16

18

20

bleu

ppl

(c) Total Entropy

Figure 6: Effects of reward functions for attention searches – shown are similar plots to those in
Figure 5 with two attention searches that differ in terms of reward functions used: one based one
BLEU while the other is based on perplexity (pp). For brevity, we only show plot for dev BLEU and
total entropy.

7

Under review as a conference paper at ICLR 2018

SQuAD Systems F1

BiDAF (Seo et al., 2017) 77.3
Our baseline (dot-product) 80.1
NASAttention on NMT 80.5
NASAttention on SQuAD 81.1

Table 2: Attention functions for SQuAD systems

4.3 TRANSFERABILITY TO READING COMPREHENSION

For the reading comprehension setting, we evaluate on the Stanford Question Answering dataset as
discussed in 2.3. We report results in F1 which measures the portion of overlap tokens between the
predicted answer and groundtruth.

Model Our model details are as follows: we embed both the query and context with pretrained
GLoVE (Pennington et al., 2014) embeddings. Each is then encoded independently using the
embedding encoder, sharing weights between the two. We then combine them with context-to-
query attention (leaving out the query-to-context attention from BiDAF), with the output from each
position in the context the result of attending over the query with that position’s encoding. When
doing attention search, we search over the form of the equation to compute this similarity.

Finally, we take the output of this attention mechanism and run through a stack of three model
encoder, giving three outputs x1, x2, and x3, each of which is the length of the context sentence.
The probability of the span starting at each position is computed as W0[x1, x2], and the probability
of it being the end position is W1[x1, x3]. We score each span as the product of its start position
probability and end position probability, returning the span with the highest score.5

Results Table 2 demonstrates that the NASAttention found with NMT does provide improve-
ment over the baseline with dot-product attention, yielding a F1 score of 80.5. When perform-
ing attention search directly on SQuAD, the performance is further boosted to 80.1 F1. We find
that the best performing attention function for the context-to-query attention is simple yet novel:
f(key, query) = relu(conv(key ◦query)), where conv is a 1d separable convolution with a kernel
size of 3. Neighboring positions in the convolution correspond to neighboring keys (in this case in
the encoded question) being queried with the same query vector.

5 CONCLUSION

In this paper, we have made a contribution towards extending the success of neural architecture
search (NAS) from vision to another domain, languages. Specifically, we are first to apply NAS
to the tasks of machine translation and reading comprehension at scale. Our newly-found recur-
rent cells perform better on translation than previously-discovered NASCell (Zoph & Le, 2017).
Furthermore, we propose a novel stack-based search space as a more flexible alternative to the
fixed-structure tree search space used for recurrent cell search. With this search space, we find new
attention functions that outperform strong translation baselines. In addition, we demonstrate that the
attention search results are transferable to the SQuAD reading comprehension task, yielding non-
trivial improvements over dot-product attention. Directly running NAS attention search on SQuAD
boosts the performance even further. We hope that our extensive experiments will pave way for
future research in NAS for languages.

REFERENCES

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In ICLR, 2015.

5In our model, embedding and model encoders are both composed of a stack of convolutions, followed by a
self attention layer as defined in (Vaswani et al., 2017), and a fully connected layer. Each of these components
is in turn placed inside a residual block of the form residual(f, x) = f(layernorm(x)) + x.

8

Under review as a conference paper at ICLR 2018

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network architec-
tures using reinforcement learning. In ICLR, 2017.

Irwan Bello, Barret Zoph, Vijay Vasudevan, and Quoc V. Le. Neural optimizer search with rein-
forcement learning. In ICLR, 2017.

Andrew Brock, Theodore Lim, James M. Ritchie, and Nick Weston. SMASH: one-shot model
architecture search through hypernetworks. arXiv preprint 1708.05344, 2017.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa Bentivogli, Roldano Cattoni, and Marcello
Federico. The IWSLT 2015 evaluation campaign. In IWSLT, 2015.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In AISTATS, 2010.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

Minh-Thang Luong and Christopher D. Manning. Stanford neural machine translation systems for
spoken language domain. In IWSLT, 2015.

Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-
based neural machine translation. In EMNLP, 2015a.

Minh-Thang Luong, Ilya Sutskever, Quoc V. Le, Oriol Vinyals, and Wojciech Zaremba. Addressing
the rare word problem in neural machine translation. In ACL, 2015b.

Minh-Thang Luong, Eugene Brevdo, and Rui Zhao. Neural machine translation (seq2seq) tutorial.
https://github.com/tensorflow/nmt, 2017.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei jing Zhu. BLEU: a method for automatic
evaluation of machine translation. In ACL, 2002.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for
word//w representation. In Empirical Methods in Natural Language Processing (EMNLP), pp.
1532–1543, 2014. URL http://www.aclweb.org/anthology/D14-1162.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, pp.
2383–2392, 2016a.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In EMNLP, 2016b.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Swish: a Self-Gated Activation Function. arXiv
preprint 1710.05941, 2017.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan,
Quoc V. Le, and Alexey Kurakin. Large-scale evolution of image classifiers. In ICML, 2017.

Andrew Saxe, Pang W. Koh, Zhenghao Chen, Maneesh Bhand, Bipin Suresh, and Andrew Y. Ng.
On random weights and unsupervised feature learning. In ICML. ACM, 2011.

J. D. Schaffer, D. Whitley, and L. J. Eshelman. Combinations of genetic algorithms and neural
networks: a survey of the state of the art. International Workshop on Combinations of Genetic
Algorithms and Neural Networks, pp. 1–37, 1992.

John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp Moritz. Trust region
policy optimization. In ICML, 2015.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In ACL, 2016.

9

http://www.aclweb.org/anthology/D14-1162

Under review as a conference paper at ICLR 2018

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional attention
flow for machine comprehension. CoRR, abs/1611.01603, 2016. URL http://arxiv.org/
abs/1611.01603.

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional attention
flow for machine comprehension. In ICLR, 2017.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. In NIPS. 2012.

Lee Spector, Jon Klein, and Maarten Keijzer. The push3 execution stack and the evolution of control.
In Proceedings of the 7th annual conference on Genetic and evolutionary computation, pp. 1689–
1696. ACM, 2005.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks.
In NIPS, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Neural Information Processing
Systems, 2017.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa,
Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa,
Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s neural
machine translation system: Bridging the gap between human and machine translation. arXiv
preprint 1609.08144, 2016.

Zhao Zhong, Junjie Yan, and Cheng-Lin Liu. Practical network blocks design with q-learning. arXiv
preprint 1708.05552, 2017.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In ICLR,
2017.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable architectures
for scalable image recognition. arXiv preprint 1707.07012, 2017.

10

http://arxiv.org/abs/1611.01603
http://arxiv.org/abs/1611.01603

	Introduction
	Neural Architecture Search for Languages
	Tree-based Search Space
	Stack-based Search Space
	Architecture Search for Reading Comprehension

	Experiments
	Small-scale translation (IWSLT)
	Large-scale translation (WMT)
	Training of the Controller
	Main Results

	Analysis
	Effects of Optimizers for NMT Models
	Effects of Reward Functions for Attention Searches
	Transferability to Reading Comprehension

	Conclusion

