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Abstract
Model robustness against adversarial examples
has been widely studied, yet the lack of general-
ization to more realistic scenarios can be challeng-
ing. Specifically, recent works using adversarial
training can successfully improve model robust-
ness, but these works primarily consider adver-
sarial threat models limited to `p-norm bounded
perturbations and might overlook semantic per-
turbations and their composition. In this paper,
we firstly propose a novel method for generat-
ing composite adversarial examples. By utiliz-
ing component-wise PGD update and automatic
attack- order scheduling, our method can find the
optimal attack composition. We then propose
generalized adversarial training (GAT) to ex-
tend model robustness from `p norm to composite
semantic perturbations, such as Hue, Saturation,
Brightness, Contrast, and Rotation. The results
show that GAT can be robust not only on any
single attack but also on combination of multiple
attacks. GAT also outperforms baseline adversar-
ial training approaches by a significant margin.

1. Introduction
Deep neural networks have shown remarkable success in a
wide variety of real-life applications, ranging from biomet-
ric authentication (e.g., facial image recognition), medical
diagnosis (e.g., CT lung cancer detection) to autonomous
driving systems (traffic sign classification), etc. While these
models can achieve great performance on benign data points,
recent researches have shown models can be easily fooled by
malicious data points crafted intentionally with adversarial
perturbations, even with high standard accuracy (Szegedy
et al., 2014).
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Figure 1. GAT implementation.

Therefore, the rapid growth of defense mechanisms attempts
to improve models’ robust accuracy against adversarial ex-
amples (Madry et al., 2018; Zhang et al., 2019). Nonethe-
less, most existing methods typically consider single threat
models bounded by specific distance (e.g., `2, `∞, etc.)
and might overlook risk from the combination of multiple
threats models. To tackle this issue, we propose a novel de-
fense approach, named generalized adversarial training
(GAT), which can harden against a wide range of threat
models, from single `∞ and semantic (e.g., Hue, Saturate,
Rotation, Brightness, Contrast) to the combination of them.
Furthermore, we empirically discover adversarial training
via combining each threat model sequentially in different
orders has a significant influence on the robust accuracy of
classifiers. As Fig. 1 shows the flow of GAT, we choose
several attacks from attack pools, then sequentially com-
bining the perturbations of them with a limited number of
running steps. The order of combinations can be scheduled
by the end of the combination in each round based on the
order scheduling process. We propose a more potent com-
posite threat model that allows scheduling the order from
attack pools and optimizing perturbations of each attack
component to evaluate the robustness of our GAT.

Different from existing works, this paper aims to address
the following questions: (a) Can we generalize adversarial
training from specific single threat models to multiple? (b)
Can we optimize the order of combination between semantic
and `p norm perturbations? (c) Can GAT outperform other
adversarial training baselines for either `p or unseen threat
models?

Our main contributions in this paper provide affirmative
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answers to the aforementioned fundamental questions.

1. We propose GAT, a novel and unified approach to de-
fense composite adversarial examples generated from
multiple threat models, including `∞, Hue, Saturation,
Rotation, Brightness, and Contrast. To the best of our
knowledge, GAT is the first framework that robust on
both single and composite adversarial attacks.

2. We elucidate the design principles of our component-
wise projected gradient descent (PGD) for updating
parameterized perturbations in each semantic attack.
We also propose using order scheduling with the mirror
descent algorithm (MDA) to optimize the scheduling
matrix, which can further strengthen the composite
threat models.

3. We evaluate robust accuracy for our GAT and compare
it with other adversarial training benchmarks (Laidlaw
et al., 2020; Madry et al., 2018; Zhang et al., 2019).
Our results show that GAT outperforms them on all
composite adversarial threats by 25% ∼ 40% in ran-
dom order, and by 8% ∼ 25% in scheduled order, sug-
gesting that GAT is an effective approach to defend
multiple adversarial attacks.

2. Related Work
2.1. Adversarial Semantic Perturbations

Most recent studies on adversarial machine learning (ML)
focus on generating examples that can fool the neural net-
work to make the wrong prediction (Biggio & Roli, 2018).
Several works have primarily focused on the vulnerabil-
ity of deep neural networks against general `p adversarial
threats (Goodfellow et al., 2015; Carlini & Wagner, 2017;
Chen et al., 2018). Some others consider the adversarial
threats beyond `p, which generally occurs in natural transfor-
mation such as geometry, color, and lightness, named seman-
tic perturbations. Typically, in contrast to the `p norm per-
turbations, which usually have a specific bound for perturba-
tion, semantic attacks are not suitable for this restriction and
parametrized them can be a challenging task. For generating
semantic perturbations with color translation, (Hosseini &
Poovendran, 2018) randomly choose the Hue value in HSV
color space. (Laidlaw & Feizi, 2019) update 3-dimensional
values in LUV space with PGD. For geometric transforma-
tion, (Xiao et al., 2018; Engstrom et al., 2019) target rotate
transformation, the former used coordinate-wise optimiza-
tion in each pixel, which is computationally expensive. The
latter propose a simple way by parametrizing a set of tunable
parameters for spatial transformation. Also, (Wong et al.,
2019) defined Wasserstein distance for those adversarial
examples with large norm bounded. In (Mao et al., 2020),
they first propose using genetic algorithms for searching

the best combination of multiple adversarial attacks that
are stronger than single adversarial attacks. However, they
separately search the examples in subspace corresponding
to the same norm.

2.2. Adversarial Training

The most well-known approach for learning a robust model
is adversarial training (Madry et al., 2018; Zhang et al.,
2019). However, most of them only target on the single
adversarial threat. Specifically, a robust classifier that can
help defend against a specific `p threat model still has low
robustness to either `q threats (p 6= q) or semantic threats.
The adversarial robustness under multiple adversarial threats
has been discussed in (Tramèr & Boneh, 2019; Maini et al.,
2020). They propose multiple norm adversarial training,
which yield models simultaneously robust against multiple
`p (e.g., `1, `2, and `∞) attacks. In contrast to their works,
we shed the light on the significant of model robustness
against multiple threats not only in `p but also semantic
perturbations.

3. Generalized Adversarial Training
This section presents our proposed method, named GAT, for
adversarial training with composite adversarial examples
and an order scheduling algorithm for multiple attacks. A
schematic overview of GAT is illustrated in Fig. 1.

3.1. Problem Formulation

Composite adversarial attacks with order scheduling:
We propose method to generate adversarial examples with
the combination of multiple attack algorithms. Let F :
X → Rd be an image classifier defined on X ∈ X , where
d is the number of classes and F(X) ∈ Rd. Suppose there
is an attack space ΩA = {A1, A2, ...AK} with correspond-
ing epsilon space {ε1, ε2, ...εK}, where K is the number of
attacks. An input X can be transformed to Xadv via up-
dating perturbations δk in each attack operation Ak ∈ ΩA,
where k ≤ K. By selecting one attack Ak, δk can be op-
timized through maximizing the classification error (e.g.,
cross-entropy loss Lce) within a boundary εk:

arg max
Ak(X+δ)

{
Lce(F(Ak(X + δ), y)), s.t. ‖δ‖ ≤ εk

}
(1)

To combine multiple attacks from ΩA in a specific order,
we can define the associated scheduling matrix Z for Xadv .
Suppose we wish to combine N attacks, the scheduling
matrix Z is then a N ×N square matrix. In our cases, Zij ,
i, j ≤ N is binary. Zij = 1 means the attackAj is launched
at time i. By construction, Z is a doubly stochastic matrix,
1>Z = 1 and Z1 = 1, 1 is all-one vector. Relax Z to a
binary matrix, Z = [Z1, ...ZN ]. From time step 1 to N, we
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define our composite adversarial images Xc−adv as Eq. 2

Xc−adv = Z>NA(Z>N−1A...(Z
>
1 A(X; ε1)...; εN−1); εN )

(2)

In every time step t ∈ [1, N ], we launch an attack indexed
by Zt and optimize the δt within the constraint:

‖Z>t A(Xt−1; δt)− Z>t−1A(Xt−2; δt−1)‖ ≤ εt.

Sinkhorn Operator: Learning an optimal order which
is discrete and non-differentiable from scheduling matrix
can be viewed as a problem in differentiable relaxation.
In (Mena et al., 2018), they theoretically showed how to
extend Sinkhorn operator (Sinkhorn, 1966) to learn over
the permutations. Similar as them, in our case, choosing an
order over doubly stochastic matrix Z can be cast as a maxi-
mization problem, where the set of Z is convex belonging to
the Birkhoff polytope B. In more specific, we formulate our
problem in Eq. 3. P denotes the doubly stochastic matrix in
the set BP , 〈P,Z〉Φ =

∑N
i=1(maxi(Pi) · Zi).

arg max
P∈BP

〈P,Z〉Φ (3)

Our goal aims to use P to approximate the optimal Z. To
update the scheduling matrix Z, we can use mirror descent
algorithm (Wang & Banerjee). The update function can be
formed as a double-loop algorithm

Z
t+ 1

2
ij = Ztijexp(

∂Lce(·)
∂Zij

)

Ztij = ΠBk(Z
t+ 1

2
ij ) (4)

where ΠBk is the projection function for Z to project back
onto the Birkhoff polytope which can be solved by Sinkhorn
algorithm in a limit of iterations i (Sinkhorn & Knopp,
1967).

3.2. Component-wise Projected Gradient Descent

For most of the semantic perturbations, their parameters are
within the continuous value. In (Mohapatra et al., 2020),
they show how semantic perturbations can be transformed
from semantic space to general `p space. Motivated by this,
we propose to update the parameters of semantic attacks
by gradient descent algorithm with specific projection to
each continuously semantic space. We show how to update
the parameters in correspondence to five different semantic
perturbations, including (i) hue, (ii) saturation, (iii) bright-
ness, (iv) contrast, and (v) rotation. As Eq. 5, we extend
the iterative method (Kurakin et al., 2017) to optimize our
semantic perturbations, which is defined as:

xt+1 = clipε
(
xt + α ∗ sign(∇xtJ(xt, y))

)
, (5)

where α is a small step size, J(·) is the loss function (e.g.,
cross entropy), and we denote the clipε(z) as:

clipε(z) =

 ε if ε < z,
z if −ε ≤ z ≤ ε,
−ε if z < −ε.

(6)

Hue: The scale of this space is represented as a color wheel,
ranging from 0 to 2π. We define εh ∈ [0, π] as the bound
of δh, which is the variation of hue value, i.e. |δh| ≤ εh.
Let xh denote the hue value of the image x in HSV space.
The variance δh is initially chosen from uniform distribution
U(−εh, εh), and the hue value xh can be updated iteratively
by Eq. 7:

δht+1 = clipεh
(
δht + α ∗ sign(∇δht J(·))

)
,

xht+1 = (xht + δht+1) mod (2π). (7)

Saturation: This space determines the colorfulness of the
image. If the saturation value xs of image x gets closer to
zero, the color becomes more gray. We define saturation
factor εs ∈ R+ and |δs| ≤ εs. Same as the Hue function,
we randomly initialize δs from U(0,∞) and optimize xs

iteratively by using Eq. 8:

δst+1 = clipεs
(
δst + α ∗ sign(∇δst J(·))

)
,

xst+1 = min(max(0, xst ∗ δst+1), 1). (8)

Brightness and Contrast: Different from Hue and Satu-
ration, this space determines the lightness of images. The
transformation is directly applied on the pixel space instead
of HSV space. Let δb, δc denote the variation of the bright-
ness value and contrast factor, subject to |δb| ≤ εb ∈ [−1, 1]
and ‖δc‖ ≤ εc ∈ R+. Let xt denote the attacked image of
x in step t. The iterative relation is defined as Eq. 9:

xt+1 = min(max(0, (xt ∗ δct+1) + δbt+1), 1). (9)

Rotation: For this transformation, we wish to find parame-
ter θ such that rotating image around the center in an angle
can be misclassified by model. Here, we define the rotate
angle εθ ∈ [−π, π] and δθ ≤ ‖εθ‖. Given an input image
x, the pixel index of X is [u, v], the center of x is [uc, vc],
and the scale factor is γ ∈ [0, 1]. As Eq. 10 shows, we con-
struct the transformed function for each index [u, v]. Here,
P = γ cos(θt + δθt+1) andR = γ sin(θt + δθt+1).

δθt+1 = clipεθ
(
δθt + α ∗ sign(∇δθt J(·))

)
,[

ut+1

vt+1

]
=

[
Put Rvt (1− P) · uc −R · vc
−Rut Pvt R · uc + P · vc

]
. (10)

3.3. Generalized Adversarial Training (GAT)

To harden the classifier against multiple composite exam-
ples, we wish to extend the basic adversarial training ap-
proach. Suppose we wish to train a model F(·) over a



Generalizing Adversarial Training to Composite Semantic Perturbations

Semantic attacks Full attacks
Training Clean Rand. Sched. Rand. Sched.

Normal† 95.2 63.5 47.8 1.1 0.1
Normal∗ 94.0 53.5 34.2 0.8 0
PAT†self 82.4 41.4 22.5 27.7 11.8
PAT†alex 71.6 33.7 16.9 25.1 10
Madry†`∞ 87.0 44.4 25.1 26 16.1
Trades∗`∞ 84.9 37.2 11.5 13.4 7.6
GAT-s∗ 84.6 70.6 60.8 49.6 37.1
GAT-f∗ 84.7 72.7 64 53.2 45.5

Table 1. Comparison of performance on models using different
adversarial training approaches. The notation † means the model
is trained with Resnet50 and ∗ is WideResnet34. Additional detail
of baseline models are described in Appendix 6.3

general data distribution (x, y) ∼ D and also robustify
against the adversarial data distribution (x′, y′) ∼ D′ gener-
ated from (x, y). GAT follows the min-max optimization
function in (Zhang et al., 2019). In particular, the inner
maximization is solved using composite adversarial attacks
proposed in Eq. 11

min
F

E(x,y)∼D

{
L(F(x), Y ) + max

x′∈B(x,{ε})
L(F(x′),F(x))/λ

}
(11)

where λ is a balance factor between natural loss and robust
loss. The training procedure aims to minimize a regularized
surrogate loss L(·) by optimizing F .

4. Experiments
In this section, we first elucidate the experimental settings
and then present the performance evaluation of the proposed
defense method GAT against multiple composite attacks on
the Cifar-10 dataset (Krizhevsky, 2009).

Attack and Training Setting: To evaluate the robustness
of the classifier, we generate the adversarial examples by
using Cifar10 test sets, including 10000 images. For each
attack Ak ∈ ΩA, we restrict εk within specific interval (in
Appendix 6.1). We adopt the whole training sets, including
50000 images for doing generalized adversarial training and
apply WideResNet34 (Zagoruyko & Komodakis, 2016) as
the model architecture in two training settings, including
training from scratch (GAT-s) and finetuning on the pre-
trained model (GAT-f) training with TRADES`∞ (Zhang
et al., 2019). Here, we report robust accuracy (RA), which
is the percentage of inputs for which the model against the
adversarial threats.

Figure 2. Loss landscape of random example when performing
specific range of Hue (±π) and Rotations (±10°) in different
adversarial training approaches.

4.1. Experimental Results

In Table 1, we show the RA (%) of composite semantic and
full attacks. The composite semantic attack consists of the
combination of 5 attacks. For instance, one can generate
an example with Hue, Saturation, Rotation, Brightness and
Contrast in a specific order. For full attacks, we generate
examples with All 5 semantic attacks + `∞. We evaluate RA
in two order settings for each attack: random and scheduled.
The result shows GAT-s outperforms other baselines by 13%
∼ 49.3% on semantic attacks and 21% ∼ 37.1% on full
attacks. More importantly, our GAT-f can further improve
the RA by 3.2% ∼ 8.4 %, compared to GAT-s. Table ??
shows the RA of three composite attacks with different com-
binations and other results are shown in the Appendix 6.6.
To better understanding the improvement in our approaches,
we do the analysis of loss landscape. As Fig. 2 shows, the
curve of cross entropy (Xent) loss of one random adversarial
example becomes smoother and lower in our GAT. More
visualization are shown in Appendix 6.2.

5. Conclusion
In this paper, we proposed GAT, a novel approach to
strengthen the classifiers on those composite adversarial
examples via using component-wise PGD and scheduling
algorithm to find the worst-case examples from multiple
semantic spaces. Compared to the existing adversarial train-
ing method, GAT allowed the classifier to defend against a
variety of adversarial threats, from Lp norms to semantic.
Evaluated on the Cifar-10 dataset with two training settings
for GAT, including training from scratch and finetuning on
TRADES-`∞ pretrained model, our results demonstrated
that GAT achieved high robust accuracy on most compos-
ite attacks, which provided a new perspective for defense
method on multiple adversarial threats.
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6. Appendix
6.1. Attack power settings

Hue, εh Saturate, εs Bright, εb Contrast, εc Rotate, εθ `∞, ε`

Range of Attack Power −π ∼ π 0.7 ∼ 1.3 −0.2 ∼ 0.2 0.7 ∼ 1.3 −10° ∼ 10° 8/255

Table 2.

6.2. Analysis of Loss Landscape and the Component-wise PGD Visualization

To better understanding why GAT leads to great improvement, in Fig. 3, we compare the curve of loss landscape for models
trained by our GAT (from scratch and finetune) with others trained by TRADES(`∞) and without adversarial training. We
visualize the loss landscape of random example when performing different attacks in an inference time. We empirically
observe that our models have more smoother and lower curve (red/green line) than the others on all of semantic single
attacks, which shows the effectiveness of using composite adversarial examples for adversarial training.

Figure 3. The loss landscapes of each single semantic attack with different WideResNet34 training models.

To show the effectiveness of component-wise PGD (comp-PGD), in Fig. 4, we simulate the update process of comp-PGD
when performing semantic attack. For each attack, we propose to find the adversarial examples via sampling 20 random start
points for updating ε. We observe that in semantic attacks, comp-PGD indeed help searching the worst case by maximizing
the loss during each attack.

Figure 4. Component-wise PGD process of the single semantic attack. The red-marked area indicates where the semantic value, visited
during iterations, will cause the natural model being misclassified. Each line segment means searching from square end to triangle end.
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6.3. Model Details

Here, we show the details of baseline models training with different adversarial training approaches. The marker † means
using the architecture ResNet50 for training and ∗ means using WideResNet34 for training.

Normal†: The model training with 50000 clean images on ResNet50.
Normal∗: The model training with 50000 clean images on WideResNet34.
PAT†self : The pretrained model training with perceptual adversarial training, where the adversarial examples correlates with
the LPIPS distance (based on ResNet50) from the natural example (Laidlaw et al., 2020).
PAT†alex: The pretrained model training with perceptual adversarial training, where the adversarial examples correlates with
the LPIPS distance (based on AlexNet) from the natural example (Laidlaw et al., 2020).
Madry†∞: The pretrained model training with Lp adversarial training proposed in (Madry et al., 2018).
Trades∗∞: The pretrained model training with Lp adversarial training proposed in (Zhang et al., 2019).

6.4. Implementation Details

For the attack part, we set the inner iteration number i as 5, which means each component has 5 steps during PGD. Due to the
non-convex feature of semantic attacks, in the process of each component doing PGD, we trigger the early-stopped condition
to achieve the maximum attack success rate, once the adversarial example has been successfully generated. Notably, in the
setting using scheduled order, we have an outer loop for updating the scheduling matrix with at most 5 times.

For the adversarial training part, we apply GAT with the WideResNet34 network (Zagoruyko & Komodakis, 2016). To
make our training faster, we rather using composite examples update with random value in each semantic attack than using
examples update with PGD step.

6.5. Algorithm Details

Algorithm 1
Input: classifier f(·), Attack space ΩA, input x, label y, step α, maximum number of iterations T , number of gradient

update iteration K, doubly stochastic matrix Z, step size {αt}Tt=1

Output: Optimal adversarial examples x′

1: Choose N attacks from ΩA; set t = 1
2: Initialize Z: Randomly permute an Identity matrix IN×N ; Get initial order vector S.
3: Randomly initialize parameter set for N attacks {εt}Nt=1

4: x′ = x+ 0.001 ∗ N (0, 1) . Initialize perturbation with Gaussian noise
5: while t ≤ T do
6: for i = 1; i ≤ N do
7: . Launch Attack Sti , x0

temp ← x′i
8: while k ≤ K do
9: xk+1

temp = ASti

(
Clipx,εSt

i

{
xktemp + α ∗ sign(∇xktempJ(xktemp, y))

})
. PGD update for each attack by (5)

10: end while
x′i+1 ← xKtemp

11: end for
12: xadv ← x′i Evaluate Loss in (1) with Xadv

13: if F (Xadv 6= y) then
14: Break
15: else
16: . Schedule Order with Loss and Z by (4)
17: Zt+

1
2 = Ztexp(∂Lce(·)∂Zij

)

18: Zt+1
ij = ΠBk(Z

t+ 1
2

ij )

19: St+1 ← arg maxi(Zi)
20: end if
21: end while
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6.6. Additional Experiment Results and Adversarial Examples

In Table 3 and Table 4, since the single attacks have no advantage in combination, the loss did not drop too much in this
setting. We can see that for normal training models, the defense against semantic attacks is generally better than other
adversarial training models. Also, in Table 9 and Table 10, GAT and normal training models perform well for semantic
attacks. However, once the `∞ attack is enabled, the normal training models lost its advantages. In Table 5 and Table 6, we
can see that although the two attacks do not outperforms, the GAT can be greatly improved in the three attacks (Table 7 and
Table 8) and the full attack (Table 9 and Table 10) once the number of enabled attacks in the combination is increased.

6.6.1. SINGLE ATTACK

Single attack
Training Clean Hue Saturate Rotation Brightness Contrast `∞

Normal† 95.2 82.4 (12.8) 94.6 (0.6) 88.7 (6.5) 93.3 (1.9) 94.5 (0.7) 1.9 (93.3)
Madry†`∞ 87.0 72.1 (14.9) 86 (1) 81.2 (5.8) 81.4 (5.6) 83.6 (3.4) 73.7 (13.3)
PAT†self 82.4 65.9 (16.5) 81 (1.4) 75.5 (6.9) 77 (5.4) 80.3 (2.1) 65.8 (16.6)
PAT†alex 71.6 55.4 (16.2) 70.4 (1.2) 65.1 (6.5) 65.7 (5.9) 68.5 (3.1) 59.2 (12.4)

Normal∗ 94.0 76.7 (17.3) 93.2 (0.8) 87.5 (6.5) 91.1 (2.9) 92.5 (1.5) 1.5 (92.5)
Trades∗`∞ 84.9 67.3 (17.6) 84 (0.9) 78.9 (6) 76.1 (8.8) 77.7 (7.2) 72.6 (12.3)
GAT-s∗ 84.6 80.5 (4) 83.5 (1) 81.1 (3.4) 82.3 (2.2) 83.2 (1.4) 63.9 (20.6)
GAT-f∗ 84.7 83.2 (1.5) 83.8 (0.9) 81.3 (3.4) 83.2 (1.5) 82.6 (2.1) 68.4 (16.3)

Table 3. Robust accuracy of single attack, which is one of semantic attacks, on Cifar-10.

Single attack
Training Clean Hue Saturate Rotation Brightness Contrast `∞

Normal† 0.0 13.8 0.8 7.5 2.2 0.9 98.0
Madry†`∞ 0.0 17.7 1.4 7.4 7.1 4.3 15.3
PAT†self 0.0 21.3 2.0 10.1 7.5 3.1 20.1
PAT†alex 0.0 25.1 2.4 11.4 10.6 6.0 17.3

Normal∗ 0.0 19.0 1.0 7.5 3.3 1.8 98.4
Trades∗`∞ 0.0 21.2 1.3 8.0 11.3 9.2 14.5
GAT-s∗ 0.0 5.2 1.4 4.7 2.9 2.0 24.4
GAT-f∗ 0.0 1.9 1.3 4.5 2.0 2.7 19.2

Table 4. Attack success rate of single attack.

6.6.2. TWO ATTACKS

2 attacks (`∞ + one of semantic attacks)
Training Clean Hue Saturate Rotation Brightness Contrast

Normal† 95.2 2.1 (93.1) 1.8 (93.4) 2.3 (92.9) 2 (93.2) 2.2 (93)
Madry†`∞ 87.0 61.4 (25.6) 72.3 (14.7) 67.6 (19.4) 68 (19) 70.2 (16.8)
PAT†self 82.4 48 (34.4) 64.1 (18.3) 56.8 (25.6) 59.8 (22.6) 63.1 (19.3)
PAT†alex 71.6 43.1 (28.5) 57.7 (13.9) 51.6 (20) 52.8 (18.8) 55.5 (16.1)

Normal∗ 94.0 1.1 (92.9) 1.4 (92.6) 1.8 (92.2) 1.3 (92.7) 1.6 (92.4)
Trades∗`∞ 84.9 59.7 (25.2) 71.1 (13.8) 65.9 (19) 64.5 (20.4) 65.6 (19.3)
GAT-s∗ 84.6 60.2 (24.4) 62.9 (21.7) 60.6 (24) 62.1 (22.5) 61.3 (23.3)
GAT-f∗ 84.7 67.2 (17.5) 66.9 (17.8) 64.6 (20.1) 66.9 (17.8) 65.6 (19.1)

Table 5. Robust accuracy of two attacks.
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2 attacks (`∞ + one of semantic attacks)
Training Clean Hue Saturate Rotation Brightness Contrast

Normal† 0.0 97.8 98.2 97.5 97.9 97.7
Madry†`∞ 0.0 29.5 17.0 22.4 21.9 19.4
PAT†self 0.0 41.9 22.3 31.2 27.6 23.5
PAT†alex 0.0 40.5 19.5 28.4 26.9 22.7

Normal∗ 0.0 98.8 98.5 98.1 98.6 98.3
Trades∗`∞ 0.0 29.7 16.3 22.4 24.0 22.8
GAT-s∗ 0.0 28.8 25.7 28.3 26.6 27.4
GAT-f∗ 0.0 20.6 21.0 23.7 21.0 22.5

Table 6. Attack success rate of two attacks.

6.6.3. MULTIPLE ATTACKS: 3 ATTACKS

Since the width of the page is limited, here we noted the attack in the following abbreviations:

• 0: Hue, 1: Saturate, 2: Rotation, 3: Brightness, 4: Contrast, 5: `∞.

• s: scheduled order, r: random order.

We enabled the `∞ attack in all three attacks to mix the norm spaces, which is semantic space, spatial space, and Lpspace.

3 attacks (`∞ + two of semantic attacks)
Training Clean (0,1,5) (r) (0,1,5) (s) (0,2,5) (r) (0,2,5) (s) (3,4,5) (r) (3,4,5) (s)

Normal† 95.2 1.7 (93.5) 0.5 (94.7) 1.9 (93.4) 0.9 (94.3) 1.8 (93.4) 0.1 (95.1)
Madry†`∞ 87.0 52.1 (34.9) 52.1 (34.9) 55.7 (31.3) 47.2 (39.8) 47.2 (39.8) 43.8 (43.2)
PAT†self 82.4 47.1 (35.3) 40.5 (41.9) 55.6 (26.8) 40.9 (41.5) 37.8 (44.6) 30.9 (51.5)
PAT†alex 71.6 42.1 (29.5) 35.2 (36.4) 47.8 (23.8) 34.4 (37.2) 34.8 (36.9) 27 (44.6)

Normal∗ 94.0 1.1 (92.9) 0.4 (93.7) 1.3 (92.7) 0.6 (93.4) 1.1 (92.9) 0.1 (93.9)
Trades∗`∞ 84.9 48.7 (36.2) 49 (35.9) 40.9 (44) 28.8 (56.1) 45.5 (39.4) 42.6 (42.3)
GAT-s∗ 84.6 59.3 (25.3) 56.6 (27.9) 58.9 (25.6) 51.4 (33.1) 56.1 (28.5) 53 (31.6)
GAT-f∗ 84.7 66.9 (17.8) 64.2 (20.5) 63.8 (20.9) 56.9 (27.8) 62.8 (21.9) 61.3 (23.4)

Table 7. Robust accuracy of three composite attacks.

3 attacks (`∞ + two of semantic attacks)
Training Clean (0,1,5) (r) (0,1,5) (s) (0,2,5) (r) (0,2,5) (s) (3,4,5) (r) (3,4,5) (s)

Normal† 0.0 98.2 99.5 98.1 99.1 98.1 99.9
Madry†`∞ 0.0 40.2 40.1 36.0 45.8 45.8 49.7
PAT†self 0.0 42.9 50.8 32.6 50.3 54.2 62.5
PAT†alex 0.0 41.6 50.8 33.7 52.0 51.8 62.3

Normal∗ 0.0 98.8 99.6 98.6 99.4 98.8 99.9
Trades∗`∞ 0.0 42.7 42.3 51.9 66.1 46.4 49.9
GAT-s∗ 0.0 29.9 33.0 30.3 39.2 33.7 37.3
GAT-f∗ 0.0 21.0 24.1 24.6 32.8 25.8 27.6

Table 8. Attack success rate of three composite attacks.
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6.6.4. MULTIPLE ATTACKS

Semantic attacks Full attacks
Training Clean Random Scheduled Random Scheduled

Normal† 95.2 63.5 (31.7) 47.8 (47.4) 1.1 (94.1) 0.1 (95.1)
Madry†`∞ 87.0 44.4 (42.6) 25.1 (61.9) 26 (61) 16.1 (70.9)
PAT†self 82.4 41.4 (41) 22.5 (59.9) 27.7 (54.7) 11.8 (70.6)
PAT†alex 71.6 33.7 (37.9) 16.9 (54.7) 25.1 (46.5) 10 (61.6)

Normal∗ 94.0 53.5 (40.5) 34.2 (59.8) 0.8 (93.2) 0 (94)
Trades∗`∞ 84.9 37.2 (47.7) 11.5 (73.4) 13.4 (71.5) 7.6 (77.3)
GAT-s∗ 84.6 70.6 (14) 60.8 (23.7) 49.6 (35) 37.1 (47.4)
GAT-f∗ 84.7 72.7 (12) 64 (20.7) 53.2 (31.5) 45.5 (39.2)

Table 9. Robust accuracy of composite semantic attacks and composite full attacks.

Semantic attacks Full attacks
Training Clean Random Scheduled Random Scheduled

Normal† 0.0 33.4 49.8 98.8 99.9
Madry†`∞ 0.0 49.2 71.2 70.2 81.5
PAT†self 0.0 50.0 72.7 66.4 85.6
PAT†alex 0.0 53.5 76.4 64.9 86.0

Normal∗ 0.0 43.1 63.6 99.2 100.0
Trades∗`∞ 0.0 56.2 86.4 84.2 91.0
GAT-s∗ 0.0 16.6 28.1 41.4 56.1
GAT-f∗ 0.0 14.2 24.4 37.1 46.2

Table 10. Attack success rate of composite semantic attacks and composite full attacks.

6.7. Additional Adversarial Examples

Here we provide some of the adversarial examples in above experimental settings. We arrange the images into different
columns; the most left column is the original images; the following two columns are the examples and their magnified
differences compared with the originals.

Original Hue Saturate Rotation Brightness Contrast ℓ∞

Figure 5. Adversarial examples generated under one of semantic attacks (hue, saturate, rotation,
bright, contrast) or `∞ attack.
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Original ℓ∞, Hue ℓ∞, Saturate ℓ∞, Rotation ℓ∞, Brightness ℓ∞, Contrast

Figure 6. Adversarial examples generated under two attacks (composed of one semantic attack
and the `∞ attack).

Original ℓ∞, Hue, Sat. ℓ∞, Bri., Con. ℓ∞, Hue, Rot. Semantic Full 

Figure 7. Adversarial examples generated under three and more attacks. Semantic means we
enable all semantic attacks (hue, saturate, rotation, brightness, and contrast). Full means we
enable `∞ and all semantic attacks.


