
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SPHERICAL TREE-SLICED WASSERSTEIN DISTANCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Sliced Optimal Transport (OT) simplifies the OT problem in high-dimensional
spaces by projecting supports of input measures onto one-dimensional lines, then
exploiting the closed-form expression of the univariate OT to reduce the compu-
tational burden of OT. Recently, the Tree-Sliced method has been introduced to
replace these lines with more intricate structures, known as tree systems. This
approach enhances the ability to capture topological information of integration
domains in Sliced OT while maintaining low computational cost. Inspired by this
approach, in this paper, we present an adaptation of tree systems on OT problem
for measures supported on a sphere. As counterpart to the Radon transform vari-
ant on tree systems, we propose a novel spherical Radon transform, with a new
integration domain called spherical trees. By leveraging this transform and ex-
ploiting the spherical tree structures, we derive closed-form expressions for OT
problems on the sphere. Consequently, we obtain an efficient metric for measures
on the sphere, named Spherical Tree-Sliced Wasserstein (STSW) distance. We
provide an extensive theoretical analysis to demonstrate the topology of spherical
trees, the well-definedness and injectivity of our Radon transform variant, which
leads to an orthogonally invariant distance between spherical measures. Finally,
we conduct a wide range of numerical experiments, including gradient flows and
self-supervised learning, to assess the performance of our proposed metric, com-
paring it to recent benchmarks.

1 INTRODUCTION

Despite being embedded in high dimensional Euclidean spaces, in practice, data often reside on
low dimensional manifolds (Fefferman et al., 2016). The hypersphere is one such manifold with
various practical applications. The range of applications involving distributions on a hypersphere
is remarkably broad, underscoring the significance of spherical geometries across multiple fields.
These applications encompass spherical statistics (Jammalamadaka, 2001; Mardia & Jupp, 2009;
Ley & Verdebout, 2017; Pewsey & Garcı́a-Portugués, 2021), geophysical data (Di Marzio et al.,
2014), cosmology (Jupp, 1995; Cabella & Marinucci, 2009; Perraudin et al., 2019), texture map-
ping (Elad et al., 2005; Dominitz & Tannenbaum, 2009), magnetoencephalography imaging (Vrba
& Robinson, 2001), spherical image representations (Coors et al., 2018; Jiang et al., 2024), omnidi-
rectional images(Khasanova & Frossard, 2017), and deep latent representation learning (Wu et al.,
2018; Chen et al., 2020; Wang & Isola, 2020; Grill et al., 2020; Caron et al., 2020; Davidson et al.,
2018; Liu et al., 2017; Yi & Liu, 2023).

Optimal Transport (OT) (Villani, 2008; Peyré et al., 2019) is a geometrically natural metric for
comparing probability distributions, and it has received significant attention in machine learning in
recent years. However, OT faces a significant computational challenge due to its supercubic com-
plexity in relation to the number of supports in input measures (Peyré et al., 2019). To alleviate
this issue, several variants have been developed to reduce the computational burden, including en-
tropic regularization (Cuturi, 2013; Scetbon et al., 2021), minibatch OT (Fatras et al., 2019), and the
Sliced-Wasserstein distance (Rabin et al., 2011; Bonneel et al., 2015).

Related work. There has been growing interest in utilizing OT to compare spherical probability
measures (Cui et al., 2019; Hamfeldt & Turnquist, 2022). To mitigate the computational burden,
recent studies have focused on sliced spherical OT (Quellmalz et al., 2023; Bonet et al., 2022; Tran
et al., 2024a). Quellmalz et al. (2023) introduced the vertical slice transform and a normalized

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

version of the semicircle transform to define sliced OT on the sphere. The semicircle transform
was also employed in (Bonet et al., 2022) to define a spherical sliced Wasserstein. Meanwhile,
Tran et al. (2024a) utilized stereographic projection to create a spherical distance between measures
via univariate OT problems. However, projecting spherical measures onto a line or circle poses
challenges due to the loss of topological information. Furthermore, comparing one-dimensional
measures on circles is computationally more expensive, as it requires an additional binary search.

Tran et al. (2024b) offers an alternative method by substituting one-dimensional lines in the Sliced
Wasserstein framework with more complex domains, referred to as tree systems. These systems
operate similarly to lines but with a more advanced and intricate structure. This approach is expected
to enhance the capture of topological information while preserving the computational efficiency
of one-dimensional OT problems. Inspired by this observation, we propose an adaptation of tree
systems to the hypersphere, called spherical trees, to develop a new metric for measures on the
hypersphere. Spherical trees satisfy two important criteria: (i) spherical measures can be projected
onto spherical trees in a meaningful manner, and (ii) OT problems on spherical trees admit a closed-
form expression for a fast computation.

Contribution. Our contributions are three-fold:

1. We provide a comprehensive theoretical construction of spherical trees on the sphere, analogous
to the notion of tree systems. We demonstrate that spherical trees, as topological spaces, are metric
spaces defined by tree metrics, which ensures that OT problems on these spaces can be analytically
solved with closed-form solutions.

2. We propose the Spherical Radon Transform on Spherical Trees, which transforms functions on
the sphere to functions on spherical trees. We also present the concept of splitting maps for the
sphere, a key component of this new Spherical Radon Transform, which describes how mass at a
point is distributed across the spherical tree. In addition, we examine the orthogonal invariance of
splitting maps, which later proves to be a sufficient condition for the injectivity of the Spherical
Radon Transform.

3. We propose the novel Spherical Tree-Sliced Wasserstein (STSW) distance for probability distri-
butions on the sphere. By selecting orthogonal invariant splitting maps, we demonstrate that STSW
is a invariant metric under orthogonal transformations. Finally, we derive a closed-form approxima-
tion for STSW, enabling an efficient and highly parallelizable implementation.

Organization. The rest of the paper is organized as follows: we review Wasserstein distance vari-
ants in §2. We propose the notion of Spherical Trees on the Sphere with a formal construction in
§3. We introduce the Spherical Radon Transform on Spherical Trees, and discusses its injectivity in
§4. In §5, we propose Spherical Tree-Sliced Wasserstein (STSW) distance and derive a closed-form
approximation for STSW. Finally, we evaluate STSW on various tasks in §6. Theoretical proofs and
experimental details are provided in Appendix.

2 PRELIMINARIES

In this section, we review Wasserstein distance, Sliced Wasserstein distance, Wasserstein distance
on tree metric spaces and Tree-Sliced Wasserstein distance on Systems of Lines.

Wasserstein Distance. Let Ω be a measurable space, endowed with a metric d, and let µ, ν be
two probability distributions on Ω. Denote P(µ, ν) as the set of probability distributions π on the
product space Ω×Ω such that π(A×Ω) = µ(A) and π(Ω×B) = ν(B) for all measurable sets A,
B. For p ⩾ 1, the p-Wasserstein distance Wp (Villani, 2008) between µ, ν is defined as:

Wp(µ, ν) = inf
π∈P(µ,ν)

(∫
Ω×Ω

d(x, y)p dπ(x, y)

) 1
p

. (1)

Sliced Wasserstein Distance. The Radon Transform (Helgason & Helgason, 2011) is the operator
R : L1(Rd) ! L1(R × Sd−1) defined by: for f ∈ L1(Rd), we have Rf ∈ L1(R × Sd−1) such
that Rf(t, θ) =

∫
Rd f(x) · δ(t − ⟨x, θ⟩) dx. Note that R is a bijection. The Sliced p-Wasserstein

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(SW) distance (Bonneel et al., 2015) between µ, ν ∈ P(Rd) is defined by:

SWp(µ, ν) :=

(∫
Sd−1

Wp
p(Rfµ(·, θ),Rfν(·, θ)) dσ(θ)

) 1
p

, (2)

where σ = U(Sd−1) is the uniform distribution on Sd−1; and fµ, fν are the probability density
functions of µ, ν, respectively.

Tree Wasserstein Distances. Let T be a rooted tree (as a graph) with non-negative edge lengths,
and the ground metric dT , i.e. the length of the unique path between two nodes. Given two proba-
bility distributions µ and ν supported on nodes of T , the Wasserstein distance with ground metric
dT , i.e., tree-Wasserstein (TW) (Le et al., 2019), yields a closed-form expression as follows:

WdT ,1(µ, ν) =
∑
e∈T

we ·
∣∣µ(Γ(ve))− ν(Γ(ve))

∣∣, (3)

where ve is the endpoint of edge e that is farther away from the tree root, Γ(ve) is a subtree of T
rooted at ve, and we is the length of e.

Tree-Sliced Wasserstein Distances on Systems of Lines. Tree systems (Tran et al., 2024b) are
proposed as replacements of directions in SW. As a topological space, they are constructed by join-
ing (gluing) multiple copies of R based on a tree (graph) framework, forming a measure metric
space in which optimal transport problems admit closed-form solutions. By developing a variant
of the Radon Transform that transforms functions on Rd to functions on tree systems, Tree-Sliced
Wasserstein Distances on Systems of Lines (TSW-SL) is are introduced in a similar manner as SW.
The mentioned closed-form expressions lead to a highly parallelizable implementation for TSW-SL.
We next extend the tree systems for measures on a sphere.

3 SPHERICAL TREES ON THE SPHERE

Let d be a positive integer. Recall the notion of the d-dimensional sphere in Rd+1,

Sd :=
{
x = (x0, x1, . . . , xd) ∈ Rd+1 : ∥x∥2 = 1

}
⊂ Rd+1.

The sphere Sd is a complete metric space with metric dSd defined as dSd(a, b) = arccos ⟨a, b⟩Rd+1

for a, b ∈ Sd, where ⟨·, ·⟩Rd+1 is the standard dot product in Rd+1. For x ∈ Sd, denote Hx be the
hyperplane passes through 0 ∈ Rd+1 and orthogonal to x, i.e. Hx = {y ∈ Rd+1 : ⟨x, y⟩ = 0}.

We consider the stereographic projection corresponding to x, denoted by φx, which is a map from
Sd \ {x} to Hx defined by: for y ∈ Sd \ {x}, φx(y) is the unique intersection between the line
passes through x, y and the hyperplane Hx. In concrete, the formula for φx is as follows

φx : Sd \ {x} −! Hx

y 7−!
−⟨x, y⟩
1− ⟨x, y⟩

· x+
1

1− ⟨x, y⟩
· y. (4)

It is well-known that φx is a smooth bijection between Sd \ {x} and Hx. Moreover, it is convenient
to extend φx to a map that we also denote by φx, from Sd to Hx ∪ {∞}, with φx(x) = ∞.
Remark. As a topological space, Hx is homeomorphic to Rd, and Hx ∪ {∞} is the one-point
compactification of Hx, which is homeomorphic to Sd. Also, Hx ∩ Sd is homeomorphic to Sd−1.
Definition 3.1 (Spherical rays in Rd+1). For y ∈ Sd, ray in Rd+1 with direction y is defined as
the set {t · y : t > 0} ∪ {∞}. For x ∈ Sd, and y ∈ Sd ∩ Hx, the spherical ray with root x and
direction y, denoted by rxy , is defined as the preimage of the ray with direction y through φx, i.e.,
rxy := φ−1

x

(
{t · y : t > 0} ∪ {∞}

)
.

An illustration of stereographic projection, rays and spherical rays are presented in Figure 1. In
words, a spherical ray with root x and direction y is the great semicircle on surface of the hypersphere
passes through y with one endpoint x. We have rxy is isometric to the closed interval [0, π] via
z 7! arccos ⟨x, z⟩, and we also have a parameterization of rxy as (t, rxy) for 0 ⩽ t ⩽ π. In particular,

φ−1
x (0) = −x 7! π and φ−1

x (∞) = x 7! 0.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: Illustrations of stereographic projection, rays in R3, and spherical rays in S2.

Let k be a positive integer, x ∈ Sd and y1, . . . , yk ∈ Sd ∩Hx be k distinct points. We have k distinct
spherical rays rxyi with root x and direction yi. Consider an equivalence relation ∼ on the disjoint
union

⊔
i=1,...,k r

x
yi as follows: For (t, rxyi) ∈ rxyi and (t′, rxyj) ∈ rxyj , we have (t, rxyi) ∼ (t′, rxyj)

if and only if (t, rxyi) = (t′, rxyj) in Sd. In other words, we identify k point with coordinate 0 on k
spherical rays rxyi . Denote T x

y1,...,yk
as the set of all equivalence classes in

⊔
i=1,...,k r

x
yi with respect

to the equivalence relation ∼, i.e., T x
y1,...,yk

:=
(⊔

i=1,...,k r
x
yi

)
/∼.

Recall the notion of disjoint union topology and quotient topology in (Hatcher, 2005). For i =
1, . . . , k, consider the injection

fi : rxyi ↪−!
⊔

i=1,...,k

rxyi

(t, rxyi) 7−! (t, rxyi).

The disjoint union
⊔
i=1,...,k r

x
yi now becomes a topological space with the disjoint union topology,

i.e. the finest topology on
⊔
i=1,...,k r

x
yi such that the map fi is continuous for all i = 1, . . . , k.

Consider the quotient map by the equivalent relation ∼,

π :
⊔

i=1,...,k

rxyi −! T x
y1,...,yk

=

 ⊔
i=1,...,k

rxyi

 /∼

(t, rxyi) 7−! [(t, rxyi)].

T x
y1,...,yk

now becomes a topological space with the quotient topology, i.e. the finest topology on
T x
y1,...,yk

such that the map π is continuous. In other words, T x
y1,...,yk

is formed by gluing k spherical
rays rxyi at the points with coordinate 0 on each spherical rays.

Definition 3.2 (Spherical Trees in Sd). The topological space T x
y1,...,yk

is called a spherical tree on
Sd. We said that x is the root and y1, . . . , yk are the edges of T x

y1,...,yk
.

A visualization for construction of spherical trees is presented in Figure 2a. The number of edges
of a spherical tree is usually denoted by k. For simplicity, we sometimes omit the root x and edges
y1, . . . , yk and simply denote a spherical tree as T . The collection of all spherical trees with k edges
on Sd is denoted by Tdk. Since Sd∩Hx is homeomorphic to the sphere Sd−1, we have the one-to-one
correspondence between Tdk and the product Sd × (Sd ∩Hx)

k as follows:

T x
y1,...,yk

1−1
 −−−! x ∈ Sd and (y1, . . . , yk) ∈ (Sd ∩Hx)

k ≈ (Sd−1)k. (5)

From this observation, we can define a distribution σ on the space of spherical trees Tdk as the joint
distribution of distributions on Sd and Sd−1. For the rest of the paper, let σ be the joint distribution
of (k + 1) independent distributions, consists of one uniform distributions on Sd, i.e. U(Sd), and k
uniform distributions on Sd−1, i.e. U(Sd−1). The topological space T is metrizable by the metric
dT defined as: For a = (t, rxyi) and b = (t′, rxyj) in T ,

dT (a, b) =

{
|t− t′|, if i = j, and
t+ t′, if i ̸= j.

(6)

Moreover, this metric is a tree metric on T . We verify this by showing for every pair of two points
a, b in T , all paths from a be b in T are homotopic to each other. Then dT (a, b) is the length of the
shortest path from a to b in T . Moreover, we can define a measure on T that induced from the Borel
measure on the closed interval [0, π]. The proof of these properties is similar as the proofs in (Tran
et al., 2024b). We summarize our results by a theorem.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) Spherical Tree (b) Radon Transform

Figure 2: (a) An illustration of 5 spherical rays with the same root x, along with the corresponding
spherical tree rooted at x. Note that, even when endpoints differ from x of these spherical rays
are all identical to −x on the sphere, the spherical tree treats these as five distinct points, and only
identifies the root x. (b) An illustration of Radon Transform on Spherical Trees. Consider a point z.
The hyperplane passing through z and orthogonal to x cuts edges of the spherical tree at 5 points.
The mass at z under operator Rα is distributed across these 5 intersections, depending on α.

Theorem 3.3 (Spherical trees are metric spaces with tree metric). T is a metric space with tree
metric dT . The topology on T induced by dT is identical to the topology of T .

With this design, in the next section, we will define Lebesgue integrable functions on spherical trees.

4 SPHERICAL RADON TRANSFORM ON SPHERICAL TREES

In this section, we introduce the spherical Radon Transform on Spherical Trees, and discuss the
injectivity of our spherical Radon transform variant.

4.1 A SPHERICAL RADON TRANSFORM VARIANT

We introduce the notions of the space of Lebesgue integrable functions on spherical trees. First,
denote L1(Sd) as the space of Lebesgue integrable functions on Sd with norm ∥ · ∥1:

L1(Sd) =
{
f : Sd ! R : ∥f∥1 =

∫
Sd

|f(x)| dx <∞
}
. (7)

Two functions f1, f2 ∈ L1(Sd) are considered to be identical if f1(x) = f2(x) for almost every-
where on Sd. Consider a spherical tree T with root x and k edges y1, . . . , yk, a Lebesgue integrable
function on T is a function f : T ! R such that ∥f∥T :=

∑k
i=1

∫ π
0
|f(t, rxyi)| dt <∞.

The space of Lebesgue integrable functions on T is denoted by L1(T). Two functions f1, f2 ∈
L1(T) are considered to be identical if f1(x) = f2(x) for almost everywhere on T . The space
L1(L) with norm ∥ · ∥T is a Banach space.

Let ∆k−1 :=
{
(ai)

k
i=1 : 0 ⩽ ai ⩽ 1 and

∑k
i=1 ai = 1

}
⊂ Rk be the (k−1)-dimensional standard

simplex. Denote C
(
Sd × Tdk,∆k−1

)
as the space of continuous maps from Sd × Tdk to ∆k−1, and

called a map in C
(
Sd × Tdk,∆k−1

)
by a splitting map. Let T be a spherical tree with root x and k

edges y1, . . . , yk, α be a splitting map in C
(
Sd × Tdk,∆k−1

)
, we define an operator associated to α

that transforms a Lebesgue integrable functions on Sd to a Lebesgue integrable functions on T . For
f ∈ L1(Sd), define

Rα
T f : T −! R (8)

(t, rxyi) 7−!

∫
Sd
f(y) · α(y, T)i · δ(t− arccos ⟨x, y⟩) dy, (9)

where δ is the Dirac delta function. We have Rα
T f ∈ L1(T) for f ∈ L1(Sd), and moreover,

∥Rα
T f∥T ⩽ ∥f∥1. The operator Rα

T : L1(Sd) ! L1(T) is a well-defined linear operator. The
proof of these properties can be found in Appendix A.1. An illustration of Rα

T is presented in
Figure 2b. We next present a novel spherical Radon Transform variant on spherical trees.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Definition 4.1 (Spherical Radon Transform on Spherical Trees). For α ∈ C
(
Sd × Tdk,∆k−1

)
, the

operator Rα that is defined as follows:

Rα : L1(Sd) −!
∏

T ∈Td
k

L1(T)

f 7−! (Rα
T f)T ∈Td

k
.

is called the Spherical Radon Transform on Spherical Trees.

4.2 INJECTIVITY OF RADON TRANSFORM ON SPHERICAL TREES

We discuss on the injectivity of our spherical Radon Transform variant. Consider the Euclidean
norm on Rd, i.e. ∥ · ∥2.

Orthogonal group O(d) and its actions. The orthogonal group O(d) is the group of linear trans-
formations of Rd that preserves the Euclidean norm ∥ · ∥2,

O(d) =
{

linear transformation f : Rd ! Rd : ∥x∥2 = ∥f(x)∥2 for all x ∈ Rd
}
. (10)

It is well-known that O(d) is isomorphic to the group of orthogonal matrices under multiplication,

O(d) =
{
Q ∈Md×d(R) : Q ·Q⊤ = Q⊤ ·Q = Id

}
. (11)

The canonical group action of O(d) on Rd is defined by: For g = Q ∈ O(d) and y ∈ Rd, we have
y 7! gy = Q · y. By the norm preserving, the action of O(d + 1) on Rd+1 canonically induces an
action of O(d+1) on the sphere Sd. Moreover, the action of O(d) on Rd preserves the standard dot
product, so the action of O(d+ 1) on Sd preserves the metric dSd .

Group actions of O(d+ 1) on space of spherical trees Tdk. Under g ∈ O(d+ 1), the spherical ray
rxy transforms to rgxgy . It implies that the action of O(d + 1) on Sd canonically induces an action of
O(d+ 1) on Tdk as

T = T x
y1,...,yk

7−! gT := T gx
gy1,...,gyk

. (12)

Moreover, each g ∈ O(d+ 1) presents a morphism T ! gT that is isometric.

O(d + 1)-invariant splitting maps. Given a map f : X ! Y and a group G acts on X . The
map f is called G-invariant if f(gx) = f(x) for all g ∈ G and x ∈ X . We have the definition of
O(d+ 1)-invariance in splitting maps.
Definition 4.2. A splitting map α in C(Sd × Tdk,∆k−1) is said to be O(d+ 1)-invariant, if we have

α(gy, gT) = α(y, T) (13)

for all (y, T) ∈ Sd × Tdk and g ∈ O(d+ 1).

With an O(d+ 1)-invariant splitting maps, our spherical Radon Transform variant is injective.
Theorem 4.3. Rα is injective for an O(d+ 1)−invariant splitting map α.

The proof of Theorem 4.3 is presented in Appendix A.3. Finally, we present a candidate for O(d+1)-
invariant splitting maps. Define the map β : Sd × Tdk ! Rk as follows:

β(y, T x
y1,...,yk

)i =

0, if y = x or y = −x,

arccos

 ⟨y, yi⟩√
1− ⟨x, y⟩2

 ·
√
1− ⟨x, y⟩2, if y ̸= ±x. (14)

Remark. The construction of β will be explained in Appendix A.2.

The map β is continuous and O(d + 1)-invariant. The derivation of β and the proof for these
properties are presented in Appendix A.2. We choose α : Sd × Tdk ! ∆k−1 as follows:

α(y, T) = softmax
(
{ζ · β(y, T)i}i=1,...,k

)
(15)

Here, ζ ∈ R is treated as a tuning parameter. The intuition behind this choice of α is that it reflects
the proximity of points to the rays of the spherical trees. As |ζ| increases, the resulting value of α
tends to become more sparse, emphasizing the importance of each ray relative to a specific point.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5 SPHERICAL TREE-SLICED WASSERSTEIN DISTANCE

In this section, we propose our novel Spherical Tree-Sliced Wasserstein Distance (STSW). We also
derive a closed-form approximation of STSW that allows an efficient implementation.

5.1 SPHERICAL TREE-SLICED WASSERSTEIN DISTANCE

Given two probability distributions µ, ν in P(Sd), a tree T ∈ Tdk and an O(d+1)-invariant splitting
map α ∈ C(Sd × Tdk,∆k−1). By the Radon Transform Rα

T in Definition 4.1, µ and ν tranform
to two probability distributions Rα

Lµ and Rα
Lν in P(T). T is a metric space with tree metric dT

(Tran et al., 2024b), so we can compute Wasserstein distance WdT ,1(Rα
T µ,Rα

T ν) between Rα
T µ

and Rα
T ν by Equation (3).

Definition 5.1 (Spherical Tree-Sliced Wasserstein Distance). The Spherical Tree-Sliced Wasserstein
Distance between µ, ν in P(Sd) is defined by:

STSW(µ, ν) :=

∫
Td
k

WdT ,1(Rα
T µ,Rα

T ν) dσ(T). (16)

Remark. Note that, the definition of STSW depends on the space Tdk, the distribution σ on Tdk, and
the splitting map α as in Equation (15). We omit them to simplify the notation.

The STSW distance is, indeed, a metric on P(Sd).
Theorem 5.2. STSW is a metric on P(Sd). Moreover, STSW is invariant under orthogonal trans-
formations: For g ∈ O(d+ 1), we have

STSW(µ, ν) = STSW(g♯µ, g♯ν), (17)

where g♯µ, g♯ν as the push-forward of µ, ν via orthogonal transformation g : Sd ! Sd, respectively.

The proofs of Theorem 5.2 is presented in Appendix A.4.

5.2 COMPUTATION OF STSW

To approximate the intractable integral in Equation (16), we use the Monte Carlo method as
ŜTSW(µ, ν) = (1/L) ·ΣLl=1WdTl

,1(Rα
Tl
µ,Rα

Tl
ν), where T1, . . . , TL are drawn independently from

the distribution σ on T, and are referred to as projecting tree systems. We present the way to sample
Ti and compute WdTl

,1(Rα
Tl
µ,Rα

Tl
ν).

Sampling spherical trees. Recall that σ is the joint distribution of k + 1 independent distributions,
consists of one uniform distributions on Sd, and k uniform distributions on Sd−1. This comes from
the one-to-one correspondence between Tdk and Sd× (Sd−1)k as in Equation (5). In applications, to
perform a sampling process for T = T x

y1,...,yk
∈ Tdk from σ, we sample by two steps as follows:

1. Sample k + 1 points x, y1, . . . , yk in Rd+1. Normalize them to get x, y1, . . . , yk lie on Sd.

2. For each i, take the intersection of the line passes through x, yi with Hx, i.e. φx, then
normalize Φx to get new yi lies on Hx ∩ Sd.

This results in a sampling process based on distribution σ.

Computing WdT ,1(Rα
T µ,Rα

T ν). In applications, given discrete distributions µ and ν as µ(x) =∑n
j=1 uj ·δ(x−aj) and ν(x) =

∑n
j=1 vj ·δ(x−aj). We can present µ and ν with the same supports

by combining their supports and allow some uj or vj to be 0. For spherical tree T = T x
y1,...,yk

, we
want to compute WdT ,1(Rα

T µ,Rα
T ν). For 1 ⩽ j ⩽ n, let cj = dSd(x, aj). Also let c0 = 0. By

re-indexing, we assume that 0 = c0 ⩽ c1 ⩽ . . . ⩽ cn. By Radon Transform in Definition 4.1, µ, ν
transform to Rα

T µ,Rα
T ν supported on {(cj , rxyi)}1⩽i⩽k,1⩽j⩽n of T , with

Rα
T µ(cj , r

x
yi) = α(aj , T)i · uj and Rα

T ν(cj , r
x
yi) = α(aj , T)i · vj (18)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

By Equation (3), WdT ,1(Rα
T µ,Rα

T ν) has a closed-form approximation as follows

WdT ,1(Rα
T µ,Rα

T ν) =

n∑
j=1

(cj − cj−1) ·

 k∑
i=1

∣∣∣∣∣∣
n∑
p=j

α(ap, T)i · (up − vp)

∣∣∣∣∣∣
 . (19)

The detailed derivation of Equation (19) is presented in Appendix A.5. The closed-form expression
in Equation (19) leads to a highly parallelizable implementation of STSW distance. We summarize
our results in this section by Algorithm 1.

Algorithm 1 Spherical Tree-Sliced Wasserstein distance.

Input: µ, ν ∈ P(Sd) as µ(x) =
∑n
j=1 uj · δ(x − aj), ν(x) =

∑n
j=1 vj · δ(x − aj), number of

spherical trees L, number of rays in spherical trees k, splitting maps α with weight δ ∈ R.
for l = 1 to L do

Sample x(l), y(l)1 , . . . , y
(l)
k

i.i.d∼ N (0, Idd+1).
Compute x(l) x(l)/∥x(l)∥2 and y(l)j φx(l)(y

(l)
j)/∥φx(l)(y

(l)
j)∥2.

Contruct spherical tree Tl = T x(l)

y
(l)
1 ,...,y

(l)
k

.

Compute WdTl
,1(Rα

Tl
µ,Rα

Tl
ν) by Equation (19).

end for
Compute ŜTSW(µ, ν) = (1/L) · ΣLl=1WdTl

,1(Rα
Tl
µ,Rα

Tl
ν)

Return: ŜTSW(µ, ν).

6 EXPERIMENTAL RESULTS

In this section, we present the results of our four main tasks: Gradient Flow, Self-Supervised Learn-
ing, Earth Density Estimation, and Sliced-Wasserstein Auto-Encoder. We provide a detailed eval-
uation for each task, including quantitative metrics, visualizations, and a comparison with relevant
baseline methods. Experimental details can be found in Appendix B.

6.1 GRADIENT FLOW

Our first experiment focuses on learning a target distribution ν from a source distribution µ by
minimizing STSW(ν, µ). We solve this optimization using projected gradient descent, as discussed
in Bonet et al. (2022). We compare the performance of our method against baselines: SSW (Bonet
et al., 2022), and S3W variants (Tran et al., 2024a).

Following Tran et al. (2024a), we use a mixture of 12 von Mises-Fisher distributions (vMFs) as our
target ν. The training is conducted over 500 epochs with a full batch size, and each experiment is
repeated 10 times. We adopt the evaluation metrics from Tran et al. (2024a), which include log 2-
Wasserstein distance, negative log-likelihood (NLL), and training time. As shown in Table 1, STSW
outperforms the baselines in all metrics and achieves faster convergence, as illustrated in Figure 10.

6.2 SELF-SUPERVISED LEARNING (SSL)

Normalizing feature vectors to the hypersphere has been shown to improve the quality of learned
representations and prevent feature collapse (Chen et al., 2020; Wang & Isola, 2020). In previous
work, Wang & Isola (2020) identified two properties of contrastive learning: alignment (bringing
positive pairs closer) and uniformity (distributing features evenly on the hypersphere). Adopting
the approach in Bonet et al. (2022), we propose replacing the Gaussian kernel uniformity loss with
STSW, resulting in the following contrastive objective:

L =
1

n

n∑
i=1

∥∥zAi − zBi
∥∥2
2︸ ︷︷ ︸

Alignment loss

+
λ

2

(
STSW(zA, ν) + STSW(zB , ν)

)︸ ︷︷ ︸
Uniformity loss

, (20)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Learning target distribution 12 vFMs. We use NR = 30 rotations for ARI-S3W and an
additional learning rate LR = 0.05 for SSW.

Method logW2 # NLL # Runtime(s)

SSW (LR=0.01) -3.21 ± 0.16 -4980.01 ± 1.89 55.20 ± 0.15
SSW (LR=0.05) -3.36 ± 0.12 -4976.58 ± 2.23 55.31 ± 0.33

S3W -2.37 ± 0.21 -4749.67 ± 84.34 1.93 ± 0.06
RI-S3W (1) -3.12 ± 0.18 -4964.50 ± 27.98 2.03 ± 0.12
RI-S3W (5) -3.47 ± 0.06 -4984.80 ± 7.32 5.68 ± 0.51
ARI-S3W (30) -4.39 ± 0.19 -5020.37 ± 6.35 20.25 ± 0.15

STSW -4.69 ± 0.01 -5041.13 ± 0.84 1.89 ± 0.05

Table 2: CIFAR-10 linear evaluation accuracy for encoded (E) features and projected (P) features
on S9, along with pretraining time per epoch. ARI-S3W and RI-S3W use 5 rotations.

Method Acc. E(%) " Acc. P(%) " Time (s/ep.)

Hypersphere 79.81 74.64 10.18
SimCLR 79.97 72.80 9.34
SW 74.39 67.80 9.65
SSW 70.23 64.33 10.59

S3W 78.59 73.83 10.14
RI-S3W (5) 79.93 73.95 10.22
ARI-S3W (5) 80.08 75.12 10.19

STSW 80.53 76.78 9.54

where ν = U(Sd), λ > 0 is regularization factor, zA, zB ∈ Rn×(d+1) are embeddings of two image
augmentations mapped onto Sd. Similar to Bonet et al. (2022) and Tran et al. (2024a), we train
ResNet18 (He et al., 2016) based encoder on the CIFAR-10 (Krizhevsky et al., 2009) w.r.t L. After
this, we train a linear classifier on the features extracted from the pre-trained encoder.

Table 2 demonstrates the improvement of STSW in comparison to baselines: Hypersphere (Wang
& Isola, 2020), SimCLR (Chen et al., 2020), SW, SSW, and S3W variants. We also conduct ex-
periments with d = 2 to visualize learned representations. Figure 12 illustrates that STSW can
effectively distribute encoded features around the sphere while keeping similar ones close together.

6.3 EARTH DENSITY ESTIMATION

We now demonstrate the application of STSW in density estimation on S2. Data used in this task
is collected by (Mathieu & Nickel, 2020) which consists of Fire (Brakenridge, 2017), Earthquake
(EOSDIS, 2020) and Flood (EOSDIS, 2020). As in (Bonet et al., 2022), we employ an exponential
map normalizing flow model (Rezende et al., 2020) which are invertible transformations T and
aim to minimize minT STSW(T#µ, pZ), where µ is the empirical distribution, and pZ is a prior
distribution on S2 which we use uniform distribution. The density for any point x ∈ S2 is then
estimated by fµ(x) = pZ(T (x))|detJT (x)| where JT (x) is the Jacobian of T at x.

Our baselines are exponential map normalizing flows with SW, SSW, and S3W variants, and stere-
ographic projection-based (Dinh et al., 2016) normalizing flows. As seen in Table 3, STSW even
with fewer epochs and shorter training time (10K epochs over 2h10m for STSW versus 20K epochs
over 4h30m for ARI-S3W, both on Fire dataset) still outperforms or is competitive with SSW and
S3W variants.

6.4 SLICED-WASSERSTEIN AUTO-ENCODER (SWAE)

We apply STSW to generative modeling using the Sliced-Wasserstein Auto-Encoder (SWAE)
(Kolouri et al., 2018) framework, which regularizes the latent space distribution to match a prior

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Negative log-likelihood on test data, averaged over 5 runs with different data split.

Method Quake # Flood # Fire #

Stereo 1.94± 0.21 1.92± 0.04 1.31± 0.12

SW 0.99± 0.05 1.47± 0.03 0.55± 0.21
SSW 0.84± 0.06 1.26± 0.04 0.23± 0.20

S3W 0.89± 0.08 1.35± 0.04 0.34± 0.05
RI-S3W (1) 0.80± 0.07 1.25± 0.03 0.14± 0.06
ARI-S3W (50) 0.77± 0.06 1.24± 0.03 0.08± 0.05

STSW 0.68 ± 0.04 1.23 ± 0.03 -0.67 ± 0.05

Table 4: SWAE results evaluated on latent regularization of CIFAR-10 test data.

Method log W2 # NLL # BCE # Time (s/ep.)

SW -3.2943 -0.0014 0.6314 3.4060
SSW -2.2234 0.0005 0.6309 8.2386

S3W -3.3421 0.0013 0.6329 4.5138
RI-S3W (5) -3.1950 -0.0039 0.6354 4.9682
ARI-S3W (5) -3.3935 0.0012 0.6330 4.7347

STSW -3.4191 -0.0051 0.6341 3.5460

distribution q. Let φ : X ! Sd and ψ : Sd ! X be the parametric encoder and decoder. The
objective of the SWAE is:

min
φ,ψ

Ex∼p [c(x, ψ(φ(x)))] + λ · STSW (φ#p, q) (21)

where λ controls regularization, p is data distribution. We use SW, SSW (Bonet et al., 2022) and
S3W variants (Tran et al., 2024a) as baselines, Binary Cross Entropy (BCE) for reconstruction loss
and a mixture of 10 vMFs as the prior, similar to Tran et al. (2024a). We provide results in Table 4.
We note that STSW has the best results in log 2-Wasserstein and NLL with a competitive training
time, though its BCE slightly underperforms the others.

7 CONCLUSION

This paper introduces the Spherical Tree-Sliced Wasserstein (STSW) distance, a novel approach
leveraging a new integration domain called spherical trees. In contrast to the traditional one-
dimensional lines or great semicircles often used in the spherical Sliced Wasserstein variant, STSW
ultilizes spherical trees to better capture the topology of spherical data and provides closed-form
solutions for optimal transport problems on spherical trees, leading to expected improvements in
both performance and efficiency. We rigorously develop the theoretical basis for our approach by
introducing spherical Radon Transform on Spherical Tree then verifying the core properties of the
transform such as its injectivity. We thoroughly develop the theoretical foundation for this method
by introducing the spherical Radon Transform on Spherical Trees and validating its key properties,
such as injectivity. STSW is derived from the Radon Transform framework, and through care-
ful construction of the splitting maps, we obtain a closed-form approximation for the distance.
Through empirical tasks on spherical data, we demonstrate that STSW significantly outperforms
recent spherical Wasserstein variants. Future research could explore spherical trees further, such
as developing sampling processes for spherical trees or adapting Generalized Radon Transforms to
enhance STSW.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Ethics Statement. Given the nature of the work, we do not foresee any negative societal and ethical
impacts of our work.

Reproducibility Statement. Source codes for our experiments are provided in the supplementary
materials of the paper. The details of our experimental settings and computational infrastructure are
given in Section 6 and the Appendix. All datasets that we used in the paper are published, and they
are easy to access in the Internet.

REFERENCES

Clément Bonet, Paul Berg, Nicolas Courty, François Septier, Lucas Drumetz, and Minh-Tan Pham.
Spherical sliced-wasserstein. arXiv preprint arXiv:2206.08780, 2022.

Nicolas Bonneel, Julien Rabin, Gabriel Peyré, and Hanspeter Pfister. Sliced and radon wasserstein
barycenters of measures. Journal of Mathematical Imaging and Vision, 51:22–45, 2015.

G. Brakenridge. Global active archive of large flood events. http://floodobservatory.
colorado.edu/Archives/index.html, 2017.

Paolo Cabella and Domenico Marinucci. Statistical challenges in the analysis of cosmic microwave
background radiation. 2009.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. Advances in neural
information processing systems, 33:9912–9924, 2020.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020.

Benjamin Coors, Alexandru Paul Condurache, and Andreas Geiger. Spherenet: Learning spherical
representations for detection and classification in omnidirectional images. In Proceedings of the
European conference on computer vision (ECCV), pp. 518–533, 2018.

Li Cui, Xin Qi, Chengfeng Wen, Na Lei, Xinyuan Li, Min Zhang, and Xianfeng Gu. Spherical
optimal transportation. Computer-Aided Design, 115:181–193, 2019.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

Tim R Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, and Jakub M Tomczak. Hyperspheri-
cal variational auto-encoders. arXiv preprint arXiv:1804.00891, 2018.

Marco Di Marzio, Agnese Panzera, and Charles C Taylor. Nonparametric regression for spherical
data. Journal of the American Statistical Association, 109(506):748–763, 2014.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv
preprint arXiv:1605.08803, 2016.

Ayelet Dominitz and Allen Tannenbaum. Texture mapping via optimal mass transport. IEEE trans-
actions on visualization and computer graphics, 16(3):419–433, 2009.

Asi Elad, Yosi Keller, and Ron Kimmel. Texture mapping via spherical multi-dimensional scaling.
In Scale Space and PDE Methods in Computer Vision: 5th International Conference, Scale-Space
2005, Hofgeismar, Germany, April 7-9, 2005. Proceedings 5, pp. 443–455. Springer, 2005.

EOSDIS. Active fire data. https://earthdata.nasa.gov/
earth-observation-data/near-real-time/firms/active-fire-data,
2020. Land, Atmosphere Near real-time Capability for EOS (LANCE) system operated by
NASA’s Earth Science Data and Information System (ESDIS).

Kilian Fatras, Younes Zine, Rémi Flamary, Rémi Gribonval, and Nicolas Courty. Learning with
minibatch wasserstein: asymptotic and gradient properties. arXiv preprint arXiv:1910.04091,
2019.

11

http://floodobservatory.colorado.edu/Archives/index.html
http://floodobservatory.colorado.edu/Archives/index.html
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/active-fire-data
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/active-fire-data

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the manifold hypothesis.
Journal of the American Mathematical Society, 29(4):983–1049, 2016.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural
information processing systems, 33:21271–21284, 2020.

Brittany Froese Hamfeldt and Axel GR Turnquist. A convergence framework for optimal transport
on the sphere. Numerische Mathematik, 151(3):627–657, 2022.

Allen Hatcher. Algebraic topology. 2005.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Sigurdur Helgason and Sigurdur Helgason. The radon transform on r n. Integral Geometry and
Radon Transforms, pp. 1–62, 2011.

SR Jammalamadaka. Topics in Circular Statistics, volume 336. World Scientific, 2001.

San Jiang, Kan You, Yaxin Li, Duojie Weng, and Wu Chen. 3d reconstruction of spherical images:
a review of techniques, applications, and prospects. Geo-spatial Information Science, pp. 1–30,
2024.

PE Jupp. Some applications of directional statistics to astronomy. New trends in probability and
statistics, 3:123–133, 1995.

Renata Khasanova and Pascal Frossard. Graph-based classification of omnidirectional images. In
Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 869–878,
2017.

D Kinga, Jimmy Ba Adam, et al. A method for stochastic optimization. In International conference
on learning representations (ICLR), volume 5, pp. 6. San Diego, California;, 2015.

Soheil Kolouri, Phillip E Pope, Charles E Martin, and Gustavo K Rohde. Sliced wasserstein auto-
encoders. In International Conference on Learning Representations, 2018.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. URL https:
//api.semanticscholar.org/CorpusID:18268744.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Tam Le, Makoto Yamada, Kenji Fukumizu, and Marco Cuturi. Tree-sliced variants of wasserstein
distances. Advances in neural information processing systems, 32, 2019.

Christophe Ley and Thomas Verdebout. Modern directional statistics. Chapman and Hall/CRC,
2017.

Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. Sphereface: Deep
hypersphere embedding for face recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 212–220, 2017.

Kanti V Mardia and Peter E Jupp. Directional statistics. John Wiley & Sons, 2009.

Emile Mathieu and Maximilian Nickel. Riemannian continuous normalizing flows. Advances in
Neural Information Processing Systems, 33:2503–2515, 2020.

Nathanaël Perraudin, Michaël Defferrard, Tomasz Kacprzak, and Raphael Sgier. Deepsphere: Effi-
cient spherical convolutional neural network with healpix sampling for cosmological applications.
Astronomy and Computing, 27:130–146, 2019.

12

https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Arthur Pewsey and Eduardo Garcı́a-Portugués. Recent advances in directional statistics. Test, 30
(1):1–58, 2021.

Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
science. Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

Michael Quellmalz, Robert Beinert, and Gabriele Steidl. Sliced optimal transport on the sphere.
Inverse Problems, 39(10):105005, 2023.

Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot. Wasserstein barycenter and its applica-
tion to texture mixing. In International Conference on Scale Space and Variational Methods in
Computer Vision, pp. 435–446, 2011.

Danilo Jimenez Rezende, George Papamakarios, Sébastien Racaniere, Michael Albergo, Gurtej
Kanwar, Phiala Shanahan, and Kyle Cranmer. Normalizing flows on tori and spheres. In In-
ternational Conference on Machine Learning, pp. 8083–8092. PMLR, 2020.

Meyer Scetbon, Marco Cuturi, and Gabriel Peyré. Low-rank Sinkhorn factorization. International
Conference on Machine Learning (ICML), 2021.

Huy Tran, Yikun Bai, Abihith Kothapalli, Ashkan Shahbazi, Xinran Liu, Rocio P Diaz Martin, and
Soheil Kolouri. Stereographic spherical sliced wasserstein distances. In Forty-first International
Conference on Machine Learning, 2024a.

Viet-Hoang Tran, Trang Pham, Tho Tran, Tam Le, and Tan M Nguyen. Tree-sliced wasserstein
distance on a system of lines. arXiv preprint arXiv:2406.13725, 2024b.

C. Villani. Optimal Transport: Old and New, volume 338. Springer Science & Business Media,
2008.

Jiri Vrba and Stephen E Robinson. Signal processing in magnetoencephalography. Methods, 25(2):
249–271, 2001.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In International conference on machine learning, pp.
9929–9939. PMLR, 2020.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 3733–3742, 2018.

Jiacheng Xu and Greg Durrett. Spherical latent spaces for stable variational autoencoders. arXiv
preprint arXiv:1808.10805, 2018.

Mingxuan Yi and Song Liu. Sliced wasserstein variational inference. In Asian Conference on
Machine Learning, pp. 1213–1228. PMLR, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

NOTATION

Rd d-dimensional Euclidean space
∥ · ∥2 Euclidean norm
⟨·, ·⟩ standard dot product
Sd d-dimensional hypersphere
θ unit vector
⊔ disjoint union
arccos inverse of cosine function
L1(X) space of Lebesgue integrable functions on X
P(X) space of probability distributions on X
µ, ν measures
δ(·) 1-dimensional Dirac delta function
U(Sd) uniform distribution on Sd

♯ pushforward (measure)
C(X,Y) space of continuous maps from X to Y
d(·, ·) metric in metric space
O(d) orthogonal group of order d
g element of group
Wp p-Wasserstein distance
SWp Sliced p-Wasserstein distance
Γ (rooted) subtree
e edge in graph
we weight of edge in graph
φx stereographic projection at x
Hx hyperplane passes through x and orthogonal to x
rxy spherical ray
T , T x

y1,...,yk
spherical tree

Tdk space of spherical trees of k edges on Sd

σ distribution on space of tree systems
L number of spherical tree
k number of edges in spherical tree
R original Radon Transform
Rα spherical Radon Transform on Spherical Trees
∆k−1 (k − 1)-dimensional standard simplex
α splitting map
ζ tuning parameter in splitting maps

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Supplement to
“Spherical Tree-Sliced Wasserstein Distance”

Table of Contents

A Theoretical Proofs 15

A.1 Properties of Rα
T f . 15

A.2 Derivation and properties of splitting maps . 16

A.3 Proof of Theorem 4.3 . 17

A.4 Proof of Theorem 5.2 . 21

A.5 Derivation for the closed-form approximation of STSW 22

B Experimental details 23

B.1 Evolution of STSW . 23

B.2 Runtime Analysis . 25

B.3 Gradient Flow . 26

B.4 Self-Supervised Learning . 27

B.5 Earth Data Estimation . 28

B.6 Generative Models . 28

A THEORETICAL PROOFS

A.1 PROPERTIES OF Rα
T f

Proof. Let f ∈ L1(Sd). We show that ∥Rα
T f∥T ⩽ ∥f∥1. Note that, arccos ⟨x, y⟩ ∈ [0, π], so we

have

∥Rα
T f∥T =

k∑
i=1

∫ π

0

∣∣Rα
T f(t, r

x
yi)
∣∣ dt

=

k∑
i=1

∫ π

0

∣∣∣∣∫
Sd
f(y) · α(y, T)i · δ(t− arccos ⟨x, y⟩) dy

∣∣∣∣ dt
⩽

k∑
i=1

∫ π

0

(∫
Sd

|f(y)| · α(y, T)i · δ(t− arccos ⟨x, y⟩) dy
)
dt

=

k∑
i=1

∫
Sd

(∫ π

0

|f(y)| · α(y, T)i · δ(t− arccos ⟨x, y⟩) dt
)
dy

=

k∑
i=1

∫
Sd

|f(y)| · α(y, T)i ·
(∫ π

0

δ(t− arccos ⟨x, y⟩) dt
)
dy

=

k∑
i=1

∫
Sd

|f(y)| · α(y, T)i dy

=

∫
Sd

|f(y)| ·

(
k∑
i=1

α(y, T)i

)
dy

=

∫
Sd

|f(y)| dy

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

= ∥f∥1 <∞.

It implies that Rα
T f ∈ L1(T), which means the operator Rα

T : L1(Sd) ! L1(T) is well-defined.
Clearly, Rα

T is a linear operator.

A.2 DERIVATION AND PROPERTIES OF SPLITTING MAPS

We recall the construction for a splitting map α presented in Subsection 4.2. We have a map β : Sd×
Tdk ! Rk defined as follows:

β(y, T x
y1,...,yk

)i =

0, if y = x or y = −x, and

arccos

 ⟨y, yi⟩√
1− ⟨x, y⟩2

 ·
√
1− ⟨x, y⟩2, if y ̸= x,−x. (22)

Then α : Sd × Tdk ! ∆k−1 is defined as follows:

α(y, T) = softmax
(
{δ · β(y, T)i}i=1,...,k

)
(23)

We will show that

1. Where does β come from?
2. α is continuous.
3. α is O(d+ 1)-invariant.

Proof. We prove each part.

1. For (y, T x
y1,...,yk

) ∈ Sd × Tdk, let Ny be the hyperplane passes through Y and orthogonal to x.
Then Ny intersects the spherical ray rxyi at a single point a, and intersects the vector x at a single
point b. The β(y, T)i is the length of the small arc from y to a on the circle centered at b passes
through y and a. Indeed, if y = x and y = −x, this length is equal to 0, the same as the definition
of β. If y ̸= x,−x, let c is the intersection of the line passes through x, y, and the hyperplane Hx;
moreover, let d be the unique intersection of the segment with endpoints 0, c, and the hyperplane
Hx. In details, we have

c = φx(y) and d =
c

∥c∥2
. (24)

Note that, the condition y ̸= x,−x is to guarantee that c ̸= 0,∞. We compute c in details as follows:

c =
−⟨x, y⟩
1− ⟨x, y⟩

· x+
1

1− ⟨x, y⟩
· y, (25)

so

d =
c

∥c∥2
=

−⟨x, y⟩
1− ⟨x, y⟩

· x+
1

1− ⟨x, y⟩
· y∥∥∥∥ −⟨x, y⟩

1− ⟨x, y⟩
· x+

1

1− ⟨x, y⟩
· y
∥∥∥∥
2

(26)

=

−⟨x, y⟩
1− ⟨x, y⟩

· x+
1

1− ⟨x, y⟩
· y√〈

−⟨x, y⟩
1− ⟨x, y⟩

· x+
1

1− ⟨x, y⟩
· y
〉 (27)

=

−⟨x, y⟩
1− ⟨x, y⟩

· x+
1

1− ⟨x, y⟩
· y√

∥x∥22 ·
⟨x, y⟩2

(1− ⟨x, y⟩)2
+ ∥y∥22 ·

1

(1− ⟨x, y⟩)2
− 2 · ⟨x, y⟩ · ⟨x, y⟩

(1− ⟨x, y⟩)2

(28)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

=

−⟨x, y⟩
1− ⟨x, y⟩

· x+
1

1− ⟨x, y⟩
· y√

1− ⟨x, y⟩2

(1− ⟨x, y⟩)2

(29)

=
−⟨x, y⟩ · x+ y√

1− ⟨x, y⟩2
. (30)

Note that, since b is the projection of y on vector x, so we have

b = ⟨x, y⟩ · x. (31)

By similarity, we have

length of arc from y to a on the circle centered at b passes through y and a
length of arc from d to yi on the circle centered at 0 passes through d and yi

=
∥y − b∥2
∥d− 0∥2

. (32)

Note that, the length of arc from d to yi on the circle centered at 0 passes through d and yi is

dSd(d, yi) = arccos ⟨d, yi⟩ , (33)

so

length of arc from y to a on the circle centered at b passes through y and a (34)

= arccos ⟨d, yi⟩ ·
∥y − b∥2
∥d− 0∥2

(35)

= arccos ⟨d, yi⟩ · ∥y − b∥2 (36)

= arccos

〈
−⟨x, y⟩ · x+ y√

1− ⟨x, y⟩2
, yi

〉
· ∥y − ⟨x, y⟩ · x∥2 (37)

= arccos

 ⟨y, yi⟩√
1− ⟨x, y⟩2

 ·
√
∥y∥22 + ⟨x, y⟩2 · ∥x∥22 − 2 ⟨x, y⟩ · ⟨x, y⟩ (38)

= arccos

 ⟨y, yi⟩√
1− ⟨x, y⟩2

 ·
√
1− ⟨x, y⟩2 (39)

= β(y, T x
y1,...,yk

)i. (40)

We finish the derivation of β. In context of splitting maps, this is a reasonable choice, since it relates
to evaluate distances from a point to a spherical ray.

2. The derivation of β clearly implies that β is continuous. We can also check the continuous of β
directly from the formula of β. Since β is continuous, we have α is continuous.

3. We have β is O(d + 1)-invariant since orthogonal transformations preserve the standard dot
product. Since β is O(d+ 1)-invariant, we have α is O(d+ 1)-invariant.

A.3 PROOF OF THEOREM 4.3

Proof. Recall the notion of (vertical) Radon Transform (Quellmalz et al., 2023). Let Φd be the
collection of all spherical rays on Sd, i.e.

Φd := {rxy : x ∈ Sd, y ∈ Hx}. (41)

Note that, this is the same as the collection of all spherical trees with one edge, i.e. Td1. For
f ∈ L1(Sd), consider the map

(
Rrxy

)
f : rxy ≡ [0, π]! R defined by(

Rrxy
)
f(t) =

∫
Sd
f(z) · δ(t− arccos ⟨z, x⟩)dz. (42)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Similar to Appendix A.1, we can show that
(
Rrxy

)
f ∈ L1(rxy). We have an operator

R : L1(Sd) −!
⊔

rxy∈Φd

L1(rxy) (43)

f 7−!

((
Rrxy

)
f

)
rxy∈Φd

(44)

This is exactly the (vertical) Radon Transform for Lebesgue integrable functions on Sd, as in (Quell-
malz et al., 2023). This is proved to be an injective linear operator, so if

(
Rrxy

)
f = 0 for all

rxy ∈ Φd, then f = 0.

Back to the problem. Recall that Tdk is the space of all spherical trees of k edges on Sd,

Tdk = {T x
y1,...,yj = (rxy1 , . . . r

x
yk
) : x ∈ Sd and y1, . . . , yk ∈ Hx}. (45)

For an 1 ⩽ i ⩽ k and rxy ∈ Φd, define

Tdk(i, rxy) :=
{
T x
y1,...,yj : y = yi

}
. (46)

In words, Tdk(i, rxy) is a subcollection of Tdk consists of all spherical trees with root x and the ith

spherical ray is rxyi . It is clear that Tdk is the disjoint union of all Tdk(i, rxy) for rxy ∈ Φd,

Tdk =
⊔

rxy∈Φd

Tdk(i, rxy). (47)

We have some observations on subcollections Tdk(i, rxy).

Result 1. Each orthogonal transformation g ∈ O(d+1) define a bijection between Tdk(i, rxy) and
Tdk(i, rgxgy). In details, the map ϕg defined by

ϕg : Tdk(i, rxy) −! Tdk(i, rgxgy) (48)

T x
y1,...,yk

7−! T gx
gy1,...,gyk

. (49)

is a well-defined and is a bijection. This can be verified directly by definitions.

Result 2. For 1 ⩽ i ⩽ k and rxy , r
x′

y′ ∈ Φd, we have∫
Td
k(i,r

x
y)

α(z, T)i dT =

∫
Td
k(i,r

x′
y′)

α(z′, T)i dT (50)

for all z, z′ ∈ Sd such that dSd(x, z) = dSd(x
′, z′). Note that, the intergrations are taken over a

Tdk(i, rxy) and Tdk(i, rx
′

y′) with measures induced from the measure of Ldk. To prove Equation (50),
we first show it in two specific cases as follows:

• Case 1. Assume x = x and y = y.

• Case 2. Assume z lies on rxy and z′ lies on rx
′

y′ .

If we can show that Equation (50) holds for assumptions in case 1 and 2, then Equation (50) holds
for all x, y, z, x′, y′, z′. Indeed, assume that Equation (50) holds for assumptions in case 1 and 2.
Then for all x, y, z, x′, y′, z′, we consider t ∈ rxy and t′ ∈ rx

′

y′ such that

dSd(x, t) = dSd(x, z) = dSd(x
′, z′) = dSd(x

′, t′). (51)

Then from the results in case 1 and 2, we have

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

∫
Td
k(i,r

x
y)

α(z, T)i dT
by case 1
=

∫
Td
k(i,r

x
y)

α(t, T)i dT (52)

by case 2
=

∫
Td
k(i,r

x′
y′)

α(t′, T)i dT
by case 1
=

∫
Td
k(i,r

x′
y′)

α(z′, T)i dT . (53)

So Equation (50) holds for all x, y, z, x′, y′, z′. Now we prove it holds for case 1 and 2.

For case 1, from the transitivity of orthogonal transformations on Sd, there exists g ∈ O(d+1) such
that

gx = x, gy = y, gz = z′. (54)

From Result 1, there is a corresponding bijection ϕg from Tdk(i, rxy) to Tdk(i, rxy). We have∫
Td
k(i,r

x
y)

α(z′, T)i dT =

∫
Td
k(i,r

x
y)

α(z′, gT)i d(gT) (change of variables) (55)

=

∫
Td
k(i,r

x
y)

α(gz, gT)i d(gT) (since z′ = gz) (56)

=

∫
Td
k(i,r

x
y)

α(z, T)i d(gT) (since α is O(d+ 1)-invariant) (57)

=

∫
Td
k(i,r

x
y)

α(z, T)i d(T) (since |det(g)| = 1) (58)

(59)

So Equation (50) holds for case 1. A similar proof can be processed for case 2. From the transitivity
of orthogonal transformations on Sd, there exists h ∈ O(d+ 1) such that

hx = x′, hy = y′, hz = z′. (60)

From Result 1, there is a corresponding bijection ϕh from Tdk(i, rxy) to Tdk(i, rx
′

y′). We have∫
Td
k(i,r

x′
y′)

α(z′, T)i dT =

∫
Td
k(i,r

x
y)

α(z′, hT)i d(hT) (change of variables) (61)

=

∫
Td
k(i,r

x
y)

α(hz, hT)i d(hT) (since z′ = hz) (62)

=

∫
Td
k(i,r

x
y)

α(z, T)i d(hT) (since α is O(d+ 1)-invariant) (63)

=

∫
Td
k(i,r

x
y)

α(z, T)i d(T) (since |det(h)| = 1) (64)

(65)

We finish the proof for Result 2.

Result 3. From Result 2, for all 1 ⩽ i ⩽ k and t ∈ [0, π], we can define a constant ci(t) such that

ci(t) :=

∫
Td
k(i,r

x
y)

α(z, T)i dT (66)

for all rxy ∈ Φd and z ∈ Sd such that t = dSd(x, z) = arccos ⟨x, z⟩. Then for all t ∈ [0, π], we have

c1(t) + c2(t) + . . .+ ck(t) = 1. (67)

To show this, first, denote Tdk(x) as the collection of all spherical trees with root x on Sd. We have

Tdk(x) =
⊔

y∈Hx∩Sd
Tdk(i, rxy), (68)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

so we have ∫
Td
k(x)

α(z, T)i dT =

∫
Hx∩Sd

(∫
Td
k(i,r

x
y)

α(z, T)i dT

)
dy (69)

=

∫
Hx∩Sd

ci(arccos ⟨x, z⟩) dy (70)

= ci(arccos ⟨x, z⟩). (71)
Then

c1(arccos ⟨x, z⟩) + . . .+ ck(arccos ⟨x, z⟩) =
k∑
i=1

∫
Td
k(x)

α(z, T)i dT (72)

=

∫
Td
k(x)

(
k∑
i=1

α(z, T)i

)
dT (73)

=

∫
Td
k(x)

1 dT (74)

= 1. (75)

We finish the proof for Result 3.

Consider a splitting map α in C(Sd × Tdk,∆k−1) that is O(d + 1)-invariant. For a function f ∈
L1(Sd), for each 1 ⩽ i ⩽ k, define a function gi ∈ L1([0, π]× Φd) as follows

gi : [0, π]× Φd −! R (76)

(t, rxy) 7−!

∫
Td
k(i,r

x
y)

Rα
T f(t, r

x
y) dT . (77)

From the definition of Rα
T f ,

Rα
T f : T −! R (78)

(t, rxyi) 7−!

∫
Sd
f(y) · α(y, T)i · δ(t− arccos ⟨x, y⟩) dy, (79)

we have

gi(t, r
x
y) =

∫
Td
k(i,r

x
y)

Rα
T f(t, r

x
y) dT (80)

=

∫
Td
k(i,r

x
y)

(∫
Sd
f(z) · α(z, T)i · δ(t− arccos ⟨x, z⟩) dz

)
dT (81)

=

∫
Sd

(∫
Td
k(i,r

x
y)

f(z) · α(z, T)i · δ(t− arccos ⟨x, z⟩) dT

)
dz (82)

=

∫
Sd
f(z) · δ(t− arccos ⟨x, z⟩) ·

(∫
Td
k(i,r

x
y)

α(z, T)i dT

)
dz (83)

=

∫
Sd
f(z) · δ(t− arccos ⟨x, z⟩) · ci(arccos ⟨x, z⟩) dz (84)

= ci(t) ·
∫
Sd
f(z) · δ(t− arccos ⟨x, z⟩) dz (85)

= ci(t) ·
(
Rrxy

)
f(t). (86)

So
k∑
i=1

gi(t, r
x
y) =

k∑
i=1

ci(t) ·
(
Rrxy

)
f(t) (87)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

=

(
k∑
i=1

ci(t)

)
·
(
Rrxy

)
f(t) = 1 ·

(
Rrxy

)
f(t) =

(
Rrxy

)
f(t) (88)

Let f ∈ KerRα, which means Rα
T f = 0 for all T ∈ Tdk. So g = 0 ∈ L1([0, π] × Φd) for all

1 ⩽ i ⩽ k. It implies
(
Rrxy

)
f = 0 ∈ L1(rxy) for all rxy ∈ Φd. So, from the (vertical) Radon

Transform is injective, we conclude that f = 0 ∈ L1(Sd). so Rα is injective.

Remark. To formalize the proof above, the notion of Haar measure for compact groups is required.
However, we simplify the explanation as it goes beyond the scope of this paper.

A.4 PROOF OF THEOREM 5.2

Proof. We want to show that

STSW(µ, ν) =

∫
Td
k

WdT ,1(Rα
T µ,Rα

T ν) dσ(T). (89)

is a metric on P(Sd).

Positive definiteness. For µ, ν ∈ P(Sd), it is clear that STSW(µ, µ) = 0 and STSW(µ, ν) ⩾ 0. If
STSW(µ, ν) = 0, then WdT ,1(Rα

T µ,Rα
T ν) = 0 for all T ∈ Tdk. Since WdT ,1 is a metric on P(T),

we have Rα
T µ = Rα

T ν for all T ∈ Tdk. By the injectivity of our Radon transform variant, we have
µ = ν.

Symmetry. For µ, ν ∈ P(Sd), we have:

STSW(µ, ν) =

∫
Td
k

WdT ,1(Rα
T µ,Rα

T ν) dσ(T) (90)

=

∫
Td
k

WdT ,1(Rα
T ν,Rα

T µ) dσ(T) = STSW(ν, µ). (91)

So STSW(µ, ν) = STSW(ν, µ).

Triangle inequality. For µ1, µ2, µ3 ∈ P(Sd), we have:

STSW(µ1, µ2) + STSW(µ2, µ3) (92)

=

∫
Td
k

WdT ,1(Rα
T µ1,Rα

T µ2) dσ(T) +

∫
Td
k

WdT ,1(Rα
T µ2,Rα

T µ3) dσ(T) (93)

=

∫
Td
k

(
WdT ,1(Rα

T µ1,Rα
T µ2) + WdT ,1(Rα

T µ2,Rα
T µ3)

)
dσ(T) (94)

⩾
∫
Td
k

WdT ,1(Rα
T µ1,Rα

T µ3) dσ(T) (95)

= STSW(µ1, µ3). (96)

So the triangle inequality holds for STSW.

We conclude that STSW is a metric on the space P(Sd).

O(d+ 1)-invariance of STSW. For g ∈ O(d+ 1), we show that

STSW(µ, ν) = STSW(g♯µ, g♯ν), (97)

where g♯µ, g♯ν as the pushforward of µ, ν via orthogonal transformation g : Sd ! Sd, respectively.
For T = T x

y1,...,yk
∈ Tdk, we have gT = T gx

gy1,...,gyk
. Note that |det(g)| = 1, so

Rα
gT (g♯µ)(t, r

gx
gyi) =

∫
Sd
g♯µ(y) · α(y, gT)i · δ(t− arccos ⟨gx, y⟩) dy (98)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

=

∫
Sd
µ(g−1y) · α(y, gT)i · δ(t− arccos ⟨gx, y⟩) dy (99)

=

∫
Sd
µ(g−1gy) · α(gy, gT)i · δ(t− arccos ⟨gx, gy⟩) d(gy) (100)

=

∫
Sd
µ(y) · α(y, T)i · δ(t− arccos ⟨x, y⟩) d(y) (101)

= Rα
T µ(t, r

x
yi). (102)

Similarly, we have

Rα
gT (g♯ν)(t, r

gx
gyi) = Rα

T ν(t, r
x
yi). (103)

Since g induces an isometric transformation T ! gT , so

WdT ,1(Rα
T µ,Rα

T ν) = WdgT ,1(Rα
gT g♯µ,Rα

gT g♯ν). (104)

We have

STSW(g♯µ, g♯ν) =

∫
Td
k

WdT ,1(Rα
T g♯µ,Rα

T g♯ν) dσ(T) (105)

=

∫
Td
k

WdgT ,1(Rα
gT g♯µ,Rα

gT g♯ν) dσ(gT) (106)

=

∫
Td
k

WdT ,1(Rα
T µ,Rα

T ν) dσ(T) (107)

= STSW(µ, ν) (108)

So STSW is O(d+ 1)-invariant.

A.5 DERIVATION FOR THE CLOSED-FORM APPROXIMATION OF STSW

We derive the closed-form approximation of STSW for two discrete probability distributions µ and
ν given as follows

µ(x) =

n∑
j=1

uj · δ(x− aj) and ν(x) =

n∑
i=j

vj · δ(x− aj). (109)

We can write µ and ν in these forms by combining their supports and allow some uj and vj to be 0.
Consider spherical tree T = T x

y1,...,yk
. For 1 ⩽ j ⩽ n, let cj = dSd(x, aj), and also let c0 = 0. By

re-indexing, we assume that the sequence c0, . . . , cn is increasing,

0 = c0 ⩽ c1 ⩽ c2 ⩽ . . . ⩽ cn. (110)

For 0 ⩽ j ⩽ n and 1 ⩽ i ⩽ k, consider all points x(i)j = (cj , r
x
yi) on the spherical tree T . Since

c0 = 0, we have

x
(1)
0 = x

(2)
0 = . . . = x

(k)
0 = x, (111)

and for 1 ⩽ j ⩽ n, x(i)j is exactly the unique intersection between the hyperplane passes through aj
and orthogonal to x, and the spherical ray rxyi . We compute Rα

T µ: For t ∈ [0, π] and 1 ⩽ i ⩽ k,

Rα
T µ(t, r

x
yi) =

∫
Sd
µ(y) · α(y, T)i · δ(t− arccos ⟨x, y⟩) dy (112)

=

∫
Sd

 n∑
j=1

uj · δ(y − aj)

 · α(y, T)i · δ(t− arccos ⟨x, y⟩) dy (113)

=

n∑
j=1

uj ·
∫
Sd
α(y, T)i ·

(
δ(y − aj) · δ(t− arccos ⟨x, y⟩)

)
dy. (114)

So,

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

1. If t /∈ {c1, . . . , cn}, then Rα
T µ(t, r

x
yi) = 0; and,

2. If t = cj for some j, then Rα
T µ(t, r

x
yi) = Rα

T µ(cj , r
x
yi) = Rα

T µ(x
(i)
j) = α(aj , T)i · uj .

Similarly, we have

1. If t /∈ {c1, . . . , cn}, then Rα
T ν(t, r

x
yi) = 0; and,

2. If t = cj for some j, then Rα
T ν(t, r

x
yi) = Rα

T ν(cj , r
x
yi) = Rα

T ν(x
(i)
j) = α(aj , T)i · vj .

For 1 ⩽ j ⩽ n and 1 ⩽ i ⩽ k, let

u
(i)
j = α(aj , T)i · uj and v

(i)
j = α(aj , T)i · vj . (115)

Consider T as a graph with nodes x(i)j for 1 ⩽ i ⩽ k, 0 ⩽ j ⩽ n. Note that x(i)0 = x for all i, and
we assign this is the root of T . Two nodes is adjacent is the shortest path on T does not contain any
other nodes. In other words, the set of edges in T are e(i)j = (x

(i)
j , x

(i)
j−1) for 1 ⩽ i ⩽ k, 1 ⩽ j ⩽ n,

and e(i)j = (x
(i)
j , x

(i)
j−1) has length cj − cj−1. For an edge e(i)j , its further endpoint from the root

is x(i)j . Also, for a node x(i)j with j > 0, the corresponding subtree Γ(x
(i)
j) contains all nodes

x
(i)
p with j ⩽ p ⩽ n. From these above observations, we can see µ and ν transform to Rα

T µ and
Rα

T ν supported on nodes of T , where the mass at node x(i)j is u(i)j and v(i)j , respectively. So, from
Equation (3), we have

WdT ,1(Rα
T µ,Rα

T ν) =
∑
e∈T

we ·
∣∣µ(Γ(ve))− ν(Γ(ve))

∣∣ (116)

=

k∑
i=1

n∑
j=1

(cj − cj−1) ·
∣∣µ(Γ(x(i)j))− ν(Γ(x

(i)
j))

∣∣ (117)

=

n∑
j=1

(cj − cj−1) ·

(
k∑
i=1

∣∣µ(Γ(x(i)j))− ν(Γ(x
(i)
j))

∣∣) (118)

=

n∑
j=1

(cj − cj−1) ·

 k∑
i=1

∣∣∣∣∣∣
n∑
p=j

µ(x(i)p)−
n∑
p=j

ν(x(i)p)

∣∣∣∣∣∣
 (119)

=

n∑
j=1

(cj − cj−1) ·

 k∑
i=1

∣∣∣∣∣∣
n∑
p=j

u(i)p −
n∑
p=j

v(i)p

∣∣∣∣∣∣
 (120)

=

n∑
j=1

(cj − cj−1) ·

 k∑
i=1

∣∣∣∣∣∣
n∑
p=j

(
u(i)p − v(i)p

)∣∣∣∣∣∣
 (121)

=

n∑
j=1

(cj − cj−1) ·

 k∑
i=1

∣∣∣∣∣∣
n∑
p=j

α(ap, T)i · (up − vp)

∣∣∣∣∣∣
 (122)

(123)
This is identical to Equation (19). We finish the derivation.

B EXPERIMENTAL DETAILS

All our experiments were conducted on a single NVIDIA H100 80G GPU. For all tasks, if not
specified, hyperparameter ζ in STSW is set to its default value of 2.

B.1 EVOLUTION OF STSW

In this section, we examine the evolution of STSW as well as different distances when measuring
two distributions. In line with (Bonet et al., 2022; Tran et al., 2024a), we select source distribution

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 3: Runtime Comparison, averaged over 15 runs. We set L = 200 for all methods. For our
STSW, we use 200 trees and 10 lines. The computation time of STSW includes the generation of
the tree system.

vMF(·, 0) a.k.a uniform distribution and target distribution vMF(µ, κ). We initialize 500 samples in
each distribution. We use κ = 10, L = 200 trees, k = 10 lines for STSW, L = 200 projections
for other sliced metrics, NR = 100 rotations for RI-S3W, ARI-S3W, and a pool size of 1000 for
ARI-S3W in all experiments unless specified otherwise. Results are averaged over 20 runs.

Figure 4: Evolution between vMF(µ, κ) and vMF(·, 0)) w.r.t κ on Sd−1 across various methods. We
use κ ∈ {1, 5, 10, 20, 30, 40, 50, 75, 100, 150, 200, 250}

Evolution w.r.t κ. Figure 4 shows the evolution of various methods w.r.t to κ. As expected, STSW
aligns with the trends in S3W and SSW, decreasing with higher dimensions, unlike KL divergence.
Here, we use a derived form for KL divergence (Davidson et al., 2018; Xu & Durrett, 2018) as
follows:

KL(vMF(µ, κ)∥vMF(·, 0)) = κ
I(d+1)/2(κ)

I(d+1)/2−1(κ)
+

(
d+ 1

2
− 1

)
log κ− d+ 1

2
log(2π)

− log I(d+1)/2−1(κ) +
d+ 1

2
log π + log 2− log Γ

(
d+ 1

2

)
.

Evolution w.r.t rotated vMFs. Next, we evaluate a fixed vMF distribution and its rota-
tion along a great circle. Specifically, we compute metric between vMF((1, 0, 0, . . .), κ) and
vMF((cos θ, sin θ, 0, . . .), κ) for θ ∈ {(kπ)/6}12k=0. We plot results in Figure 5

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 5: Evolution between rotated vMFs distributions, averaged over 100 runs. d denotes data
dimension.

Figure 6: Evolution of STSW between the source and target distributions when varying number of
trees L ∈ {1, 10, 50, 100, 200, 400, 500, 750, 900, 1000}.

Evolution of STSW w.r.t Number of Trees, Number of Lines and ζ. Next, we study the effect
of the number of trees and lines on STSW. If not specified, we fix κ = 10 and d = 3. We present
the results in Figure 6, Figure 7, and Figure 8

B.2 RUNTIME ANALYSIS

Runtime Comparison. We now perform a runtime comparison with other commonly used dis-
tance metrics, including the traditional Wasserstein, Sinkhorn (Cuturi, 2013), Sliced-Wasserstain
(SW), Spherical Sliced-Wasserstein (SSW) (Bonet et al., 2022) as well as Stereographic Spherical
Sliced Wasserstein (S3W) (Tran et al., 2024a) and its variants (RI-S3W, ARI-S3W). For a fair com-
parison, we also include SSW2 with binary search (BS) and Unif when a closed form is available
for uniform distribution. The runtime of applying each of these methods on two distribution on S2 is
illustrated in Figure 3. We highlight that STSW offers a significant improvement in computational
efficiency over other metrics.

Runtime Evolution. To further assess STSW performance, we conduct a runtime analysis to un-
derstand the computational cost associated with different configurations. We again choose uniform
distribution and vMF(µ, κ) where κ = 10 as our source and target distribution and use STSW to
measure distance between these two probabilities. All experiments are repeated 20 times with de-
fault parameters set to L = 200 trees, k = 10 lines and N = 500 samples, unless otherwise stated.

We vary the number of trees L ∈ {200, 400, 500, 750, 900, 1000, 1250, 1500, 1750, 2000} in Figure
9a, adjust the number of lines k across {5, 10, 25, 50, 100, 150, 200, 300, 500, 750, 1000} in Fig-

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 7: Evolution of STSW between two distributions w.r.t number of lines k ∈
{1, 10, 50, 100, 200, 400, 500, 600, 700, 750}.

Figure 8: Evolution of STSW between two distributions w.r.t ζ ∈
{1, 2, 5, 10, 20, 25, 50, 75, 100, 150, 200}

ure 9b and change the number of samples N within {500, 1000, 3000, 5000, 7000, 8000, 10000} in
Figure 9c. We note that the runtime of STSW scales linearly with these parameters.

B.3 GRADIENT FLOW

The probability density function of the von Mises-Fisher distribution with mean direction µ ∈ Sd is
given by:

f(x;µ, κ) = Cd(κ) exp(κµ
Tx)

where κ > 0 is concentration parameter and the normalization constantCd(κ) =
κd/2−1

(2π)p/2Ip/2−1(κ)

Our target distribution, 12 vMFs with 2400 samples (200 per vFM), have κ = 50 and

µ1 = (−1, ϕ, 0), µ2 = (1, ϕ, 0), µ3 = (−1,−ϕ, 0), µ4 = (1,−ϕ, 0)
µ5 = (0,−1, ϕ), µ6 = (0, 1, ϕ), µ6 = (0,−1,−ϕ), µ8 = (0, 1,−ϕ)
µ9 = (ϕ, 0,−1), µ10 = (ϕ, 0, 1), µ11 = (−ϕ, 0,−1), µ12 = (−ϕ, 0, 1)

where ϕ =
1 +

√
5

2
. The projected gradient descent as described in (Bonet et al., 2022):{

x(k+1) = x(k) − γ∇x(k)STSW(µ̂k, ν),

x(k+1) = x(k+1)

∥x(k+1)∥2
,

Setup. We fix L = 200 trees and k = 5 lines. For the rest, we use L = 1000 projections. As in
the original setup, ARI-S3W (30) has 30 rotations with a pool size of 1000 while RI-S3W (1) and
RI-S3W (5) have 1 and 5 rotations respectively. We train with Adam (Kinga et al., 2015) optimizer
lr = 0.01 over 500 epochs and an additional lr = 0.05 for SSW.

Results. As seen from Table 1 and Figure 10, STSW provides better results in log 2-Wasserstein
distance and NLL, while also being efficient in terms of both runtime and convergence speed.

We perform additional experiments on the most informative sliced methods including MAX-STSW,
MAX-SSW, and MAX-SW. We present in Table 5 the results after training for 1000 epochs with

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

(a) (b)

(c)

Figure 9: Runtime of STSW w.r.t number of trees, lines and samples

Figure 10: Log 2-Wasserstein distance between source and target distributions

a learning rate LR = 0.01. Each experiment is repeated 10 times. Figure 11 illustrates the log
2-Wasserstein distance between the source and target distribution during training. We observe that
MAX-STSW performs better than others.

B.4 SELF-SUPERVISED LEARNING

Encoder. Consistent with the setup in (Bonet et al., 2022; Tran et al., 2024a), we train a ResNet18
(He et al., 2016) on CIFAR-10 (Krizhevsky, 2009) data for 200 epochs using a batch size of 512.
We use SGD as our optimizer with initial lr = 0.05 a momentum 0.9, and a weight decay 10−3.
The standard data augmentations used to generate positive pairs are similar to prior works (Wang
& Isola, 2020; Bonet et al., 2022; Tran et al., 2024a) which include resizing, cropping, horizontal
flipping, color jittering, and random grayscale conversion.

We set L = 200 trees and k = 20 lines for STSW and fix L = 200 projections for all other sliced
distances. NR = 5 and a pool size of 100 are used for RI-S3W and ARI-S3W as in Tran et al.
(2024a). For settings of the regularization coefficient, please refer to Table 6.

Linear Classifier. A linear classifier is then trained on feature representations from the pre-trained
encoder. Similar to Bonet et al. (2022), we train it for 100 epochs using the Adam (Kinga et al., 2015)
optimizer with a learning rate of 10−3, a weight decay of 0.2 at epoch 60 and 80.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 5: Learning target distribution 12 vFMs, trained for 1000 epochs and averaged over 10 runs.

Method logW2 # NLL #

MAX-SW -3.10 ± 0.06 -4959.14 ± 12.22
MAX-SSW -2.76 ± 0.02 -4868.78 ± 60.51
MAX-STSW -3.19 ± 0.03 -5007.72 ± 16.34

Figure 11: Log 2-Wasserstein distance between source and target distributions

Results. We report in Table 2 the best accuracy of the linear evaluation on features taken before
and after projection on Sd where d = 9. The visualizations of learned representations when d = 2
can be found in Figure 12.

B.5 EARTH DATA ESTIMATION

Similar to Bonet et al. (2022) and Tran et al. (2024a), we use an exponential mapping normalizing
flows model consisting of 48 radial blocks with 100 components each, totaling 24000 parameters.
The model is then trained with full batch gradient descent via Adam optimizer. Dataset details are
provided in Table 7.

Setup. Our settings for STSW in this task are L = 1000 trees, k = 100 lines, and ζ = −100. We
use lr = 0.05 for STSW, S3W, RI-S3W and ARI-S3W and lr = 0.1 for SW and SSW. We train
other sliced distances for 20,000 epochs as in the original setup while our STSW is only trained for
10,000 epochs.

Results. Table 3 highlights the competitive performance of STSW compared to the baseline meth-
ods. To further evaluate the efficiency of our approach, we compare the training time of STSW with
that of the second-best performer, ARI-S3W, using the Fire dataset. Our findings show that STSW
(2 hours 10 minutes) is twice as fast as ARI-S3W (4 hours 30 minutes). We also present in Figure
13 the normalized density maps of test data learned.

B.6 GENERATIVE MODELS

Setup. We use Adam (Kinga et al., 2015) optimizer with learning rate lr = 10−3. We train with a
batch size of 500 over 100 epochs using BCE loss as our reconstruction loss. We choose L = 200
trees and k = 10 lines for STSW. Following the same settings in Tran et al. (2024a), we fix L = 100
projections for others, NR = 5 rotations for RI-S3W and ARI-S3W, and a pool size of 100 random
rotations ARI-S3W. We use prior 10 vMFs, λ = 1 for STSW, λ = 10 for SSW, and λ = 10−3 for
SW and S3W variants.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 6: Regularization coefficient λ across various methods w.r.t projection on Sd in Self-
Supervised Learning task.

STSW SSW SW S3W variants

d = 9 λ = 10.0 λ = 20.0 λ = 1.0 λ = 0.5
d = 2 λ = 10.0 λ = 20.0 λ = 1.0 λ = 0.1

Table 7: Earth datasets.

Earthquake Flood Fire

Train 4284 3412 8966
Test 1836 1463 3843

Data size 6120 4875 12809

Additional Results on MNIST. For quantitative analysis, we train the SWAE framework on
MNIST and report the FID score in Table 8, along with the generated images in Figure 14. We
follow the same settings as in Tran et al. (2024a), which use the latent prior U(S2) and train the
model with a batch size of 500 over 100 epochs. For STSW, we fix L = 200 trees and k = 10 lines
with a learning rate LR = 0.01 and λ = 1. For other sliced methods, we use L = 100 projections
and a learning rate LR = 10−3, as described in Tran et al. (2024a). The FID scores are computed
using 10,000 samples from the test set.

We use the same model architecture as specified in Tran et al. (2024a)

CIFAR-10 Model Architecture.

Encoder:

x ∈ R3×32×32 ! Conv2d32 ! ReLU! Conv2d32 ! ReLU
! Conv2d64 ! ReLU! Conv2d64 ! ReLU
! Conv2d128 ! ReLU! Conv2d128 ! Flatten
! FC512 ! ReLU! FC3

! ℓ2 normalization! z ∈ S2

Decoder:

z ∈ S2 ! FC512 ! FC2048 ! ReLU
! Reshape(128× 4× 4)! Conv2dT128 ! ReLU
! Conv2dT64 ! ReLU! Conv2dT64 ! ReLU
! Conv2dT32 ! ReLU! Conv2dT32 ! ReLU
! Conv2dT3 ! Sigmoid

MNIST Model Architecture.

Encoder:

x ∈ R28×28 ! Conv2d32 ! ReLU! Conv2d32 ! ReLU
! Conv2d64 ! ReLU! Conv2d64 ! ReLU
! Conv2d128 ! ReLU! Conv2d128 ! Flatten
! FC512 ! ReLU! FC3

! ℓ2 normalization! z ∈ S2

Decoder:

z ∈ S2 ! FC512 ! FC512 ! ReLU

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

(a) STSW

(b) ARI-S3W (c) RI-S3W

(d) S3W (e) SSW

(f) SimCLR (g) Hypersphere

Figure 12: Distributions of CIFAR-10 validation set on S2 after pre-training.

! Reshape(128× 2× 2)! Conv2dT128 ! ReLU
! Conv2dT64 ! ReLU! Conv2dT64 ! ReLU
! Conv2dT32 ! ReLU! Conv2dT32 ! ReLU
! Conv2dT1 ! Sigmoid

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

(a) Ground Truth Fire (b) STSW Fire

(c) Ground Truth Flood (d) STSW Flood

(e) Ground Truth Earthquake (f) STSW Earthquake

Figure 13: Density estimation on earth data. The left figures (ground truth) represent training data
estimated with KDE. The right ones depict the normalized log likelihood of the trained models on
test data.

Table 8: Average FID of 5 runs on MNIST.

Method FID #

SW 73.35 ± 2.01
SSW 76.14 ± 2.73
S3W 75.55 ± 2.80
RI-S3W (10) 72.80 ± 3.39
ARI-S3W (30) 70.37 ± 2.58

STSW 69.16 ± 2.74

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

(a) SW (b) SSW (c) S3W

(d) RI-S3W (10) (e) ARI-S3W (30) (f) STSW

Figure 14: Generated images of different methods on MNIST of SWAE.

32

	Introduction
	Preliminaries
	Spherical Trees on the Sphere
	Spherical Radon Transform on Spherical Trees
	A spherical Radon Transform variant
	Injectivity of Radon Transform on Spherical Trees

	Spherical Tree-Sliced Wasserstein Distance
	Spherical Tree-Sliced Wasserstein Distance
	Computation of STSW

	Experimental Results
	Gradient Flow
	Self-Supervised Learning (SSL)
	Earth Density Estimation
	Sliced-Wasserstein Auto-Encoder (SWAE)

	Conclusion
	Theoretical Proofs
	Properties of RTf
	Derivation and properties of splitting maps
	Proof of Theorem 4.3
	Proof of Theorem 5.2
	Derivation for the closed-form blue approximation of STSW

	Experimental details
	Evolution of STSW
	Runtime Analysis
	Gradient Flow
	Self-Supervised Learning
	Earth Data Estimation
	Generative Models

