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ABSTRACT

We present Lean4PHYS, a comprehensive reasoning framework for college-level
physics problems in Lean4. Lean4PHYS includes LeanPhysBench, a college-
level benchmark for Lean4 formal physics reasoning, which contains 200 hand-
crafted and peer-reviewed statements formalized from university textbooks and
physics competition problems. To establish a solid foundation for formal rea-
soning in physics, we also launch PhysLib, a community-driven repository that
includes fundamental unit systems and theorems essential for formal physics
reasoning. Based on the benchmark and Lean4 repository we composed in
Lean4PHYS, we report baseline results using major expert Math Lean4 provers
and state-of-the-art closed-source models, and provide an analysis of their perfor-
mance. In the experiment, we identify that most expert provers do not outperform
general models as they did in the math domain. This indicates a potential overfit-
ting of the math domain rather than learning formal reasoning. We also conduct
a comprehensive experiment showing that with PhysLib in the context, LLMs’
performance on LeanPhysBench increases by 11.88% on average, proving the
effectiveness of our repository in assisting LLMs to solve the Lean4 physics prob-
lem. To the best of our knowledge, we are the first study to provide a physics
benchmark in Lean4.

1 INTRODUCTION

Formal thinking capability has always been considered a cornerstone of human intelligence and a
key objective of machine learning. With the emergence of Large Language Models (LLMs), many
studies explore diverse ways to apply LLMs to perform various reasoning tasks. This includes
general reasoning (Wang et al., 2024b; Suzgun et al., 2022; Talmor et al., 2018), math reason-
ing (Hendrycks et al., 2021; Cobbe et al., 2021; Guo et al., 2025), natural science reasoning (Saikh
et al., 2022; Edwards et al., 2025), and many other domains. However, most works handle reasoning
as a pure Natural Language (NL) task that relies on the answer checking to judge the correctness of
reasoning, while being unable to verify the intermediate reasoning steps.

To make the reasoning process verifiable, researchers attempted to ground the reasoning procedure
in formal logical systems, enabling the automatic verification of both the reasoning process and its
results through Formal Languages (FLs). Through this idea, many FLs are developed, including
Lean (De Moura et al., 2015; Moura & Ullrich, 2021), Coq (Coq, 1996), Isabelle (Paulson, 1994),
and HOL (Harrison, 2009). Among them, Lean4 has received superior attention from both the
academic and industry in recent days, making it one of the most well-studied formal languages in
recent years. There are numerous benchmarks (Zheng et al., 2021; Gulati et al., 2024; Azerbayev
et al., 2023), dataset (Dong & Ma, 2025; Wang et al., 2024a; Ying et al., 2024), and provers (Polu
et al., 2022; Wang et al., 2024a; Xin et al., 2024; Wang et al., 2025c; Lin et al., 2025b; Dong & Ma,
2025; Xin et al., 2025; Ren et al., 2025) have been proposed.

However, current studies in formal reasoning primarily focus on the mathematical domain, leaving
other domains that can also be formalized, such as physics, largely understudied. Moreover, most
of the state-of-the-art expert provers claim their capability in formal reasoning by showing superior
results in Lean4 math benchmarks. This raises concerns about whether such formal capability can
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Figure 1: Overview of the Lean4PHYS framework: it consists of two components for support-
ing LLM formal physics reasoning. (1) PhysLib: an extensible repository providing a physics unit
system and commonly used theorems. (2) LeanPhysBench: a benchmark of 200 hand-crafted theo-
rems from high school competitions to elementary college level, designed to evaluate LLMs’ Lean4
physics reasoning.

be transferred to other domains, like physics problems represented using similar Lean syntax, or
current provers overfit to mathematical reasoning.

To answer the problems above, we propose Lean4PHYS, a comprehensive reasoning framework
for college-level general-domain physics problems in Lean4. Lean4PHYS aims to provide a foun-
dation for LLM-based formal physics reasoning in Lean4. The framework launches PhysLib, a
foundation repository that supports formal physics reasoning. It includes a systematic treatment of
physical units through a dedicated UnitsSystem, enabling dimensionally consistent symbolic com-
putation, along with a growing collection of extendable formalized physics theorems. Based on the
PhysLib, we develop LeanPhysBench, a college-level benchmark to evaluate LLMs’ performance
in Lean4 physics reasoning. The benchmark contains 200 manually-crafted Lean4 formal theorems
whose difficulty level varies from standard university exercises to Olympiad-style competition prob-
lems. We construct the benchmark by systematically transforming natural-language problems into
Lean4 theorems: extracting key conditions and relevant physical laws, defining explicit proving tar-
gets, restating the problems in logical form, and integrating them into verifiable Lean4 statements.
To the best of our knowledge, LeanPhysBench is the first benchmark that evaluates LLMs’ formal
physics reasoning capability.

We summarize our contributions as follows:

1. We introduce Lean4PHYS, a comprehensive Lean4-based framework for formal physics
reasoning. It provides PhysLib, a modular physics library supporting unit-aware calcula-
tions and extensible physical theorems.

2. Our framework innovates by bridging natural-language physics problems with formal
Lean4 representations, enabling LLMs to learn domain-specific laws and reasoning pat-
terns beyond standard math-oriented theorem provers.

3. We perform extensive experiments by applying leading models to LeanPhysBench. The
experiments suggest that all current expert math provers and general models, regardless of
their size, achieve suboptimal performance. Furthermore, we demonstrate that after inte-
grating PhysLib, the models exhibit consistent performance enhancements. The results also
indicate the potential for overfitting to the math dataset for the current expert Lean provers.
When testing only on the hard dataset, we found that all models perform properly, indi-
cating the current limitations for formal physics, especially statements involving complex
mathematical operations such as integrals and derivatives.
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Moreover, to the best of our knowledge, Lean4PHYS is the first work that tries to extend the LLM-
based formal reasoning from math to a more general domain, which offers a new direction that
attempts to formalize progressively more subjects.

2 THE LEAN4PHYS FRAMEWORK

In this section, we introduce the design and implementation of the Lean4PHYS framework in detail.
The core idea of our framework is to provide a foundation and then evaluate the LLMs’ formal
physics reasoning capabilities. We firstly initiate PhysLib, a community collaborative foundation
repository for Lean4 physics reasoning in Section 2.1. Subsequently, we present the details of how
we construct LeanPhysBench, (to the best of our knowledge) the first benchmark for formal physics
reasoning.

2.1 PHYSLIB

In this paper, we introduce PhysLib, a community-driven repository designed to support rigorous
and machine-verifiable Lean4 formal physics reasoning. We build the library in a bottom-up manner
for both the conceptual level of knowledge and the technical level of implementation. The current
version of PhysLib contains the foundation of physics unit systems (Section 2.1.1), practical theo-
rems to use in proving(Section 2.1.2), and a guideline for community development and extension
(Section 2.1.3).

2.1.1 FOUNDATION OF PHYSICS: UNIT SYSTEM

Following the bottom-up design principle of PhysLib. The central challenge of formalizing physics
from scratch is to identify the unchanged kernel that supports all the reasoning in the field. Unlike
mathematics, where every basic building block is purely based on definition, physics, as well as other
natural sciences, are primitively supported by empirical rules induced from experiments, which are
naturally not as clearly defined as mathematics. For physics, we identify such a kernel as the unit
system. Thus, we lay the foundation for physics reasoning by establishing the unit system.

In the implementation, we build the unit system by extending Mathlib Community (2019) with the
International System of Units (SI) following the Tao (2025). The system contains seven basic units,
including time, length, mass, electric current, thermodynamic temperature, amount of substance, and
unit of luminous intensity Newell et al. (2019). Based on the unit system foundation, we introduce
the first-order derivative over the most general and commonly used sections, namely, length, taking
the derivative over time, introducing velocity.

2.1.2 TOPIC-BASED THEOREM DEVELOPMENT

Building upon the cross-topic kernel foundation system of units, we introduce topic-based theorem
systems according to different needs in specific kinds of problems. Specifically, the current version
of PhysLib splits problems into six major topics, namely: mechanics, waves & acoustics, thermo-
dynamics, electromagnetism, optics, and modern physics. The topic split is inspired by Halliday
et al. (2013). Our implementation principle for this section of PhysLib is to first create different
namespaces and independent Lean files for each topic. Subsequently, we add topic-specific unit
types and constants in the topic namespace. Then, we implement basic physics rules summarized
from experiments as definitions. Finally, we implement theorems with their proofs that are practical
to the topic as the final layer. We implement the mechanics field in detail as an example and set a
basic foundation for other topics. We present the design process to the community and launch this
project for collaborative development of the field.

2.1.3 COMMUNITY-DRIVEN AND EXTENSIBILITY

As mentioned before, PhysLib is designed to be a community-driven and collaborative work like
Mathlib Community (2019), and we make our best effort to ensure other researchers can easily
read and extend the system while maintaining consistency. In general, we organize PhysLib in a
three-layer hierarchy: (1) Foundation unit system, which should be consistent with changes only
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necessary. (2) Topic-specific unit system, which should be added when formalizing theorem state-
ments where current units are unable to support the construction. (3) Topic-specific theorems, which
include most of the practical theorems to support proof implementation and should be regularly up-
dated.

The current version contains a relatively comprehensive implementation of the repository in me-
chanics, serving as an example for the community. PhysLib inherits components from Tao (2025),
which are distributed under the Apache-2.0 license, and the same license applies to newly added
content. We will strongly encourage contributions of new statements and proofs, and will continu-
ously maintain the repository in the future.

Beyond the current repository we are implementing, such a layered design is applicable to the for-
malization of other domains, such as the natural and social sciences, and be alternatively extended
to general proving systems based on the same logic.

2.2 LEANPHYSBENCH

With the current trend of utilizing LLMs to perform formal reasoning, it is crucial to evaluate their
formal physics reasoning capability. However, to the best of our knowledge, there is no dataset
for benchmarking the Lean4 physics reasoning capability for LLMs. Thus, we propose (to the best
of our knowledge) the first benchmark for Lean4 physics reasoning. In this section, we detail the
process of creating this benchmark. We firstly present the data collection process in Section 2.2.1,
then detail how we created the benchmark in Section 2.2.2, and report the benchmark statistics in
Section 2.2.3.

2.2.1 DATA COLLECTION & PREPROCESSING

Corresponding to the bottom-up principle, when we design the PhysLib, when creating the dataset,
we follow a basic-to-advanced principle. Our benchmark primarily consists of two levels of data:
the high school Olympiad-competition-related level and the college level. The Olympiad data are
collected from competition-related exercise books. This level of data focuses on testing the model’s
capability to perform multi-step reasoning within a specific field of knowledge. On the other hand,
the college-level problems are collected from the elementary university physics textbooks. These
problems are selected to cover a deeper range of concepts with easier reasoning steps that focus on
testing the LLM’s reasoning when the topics span multiple physics models. For questions accom-
panied by figures, we extract the information from the figures and describe it in natural language,
alongside the problems. Detailed data sources are provided in Appendix B.

Following PhysLib’s design, we further divided the topic of the LeanPhysBench into mechanics,
waves & acoustics, thermodynamics, electromagnetism, optics, and modern physics. After the data
collection, we have the base natural language statement for formulating LeanPhysBench.

2.2.2 FORMALIZATION PIPELINE

Following the collection and preprocessing of the NL data, we apply a strict pipeline to transform
the NL data into verifiable Lean4 theorems. The overview of the formalization pipeline is shown
in Figure 2. Formally, if we denote a physics problem we want to formalize by P , the original
problem we have is Poriginal, the target is to obtain the Lean4 version of the problem PLean. The
formalization process is as follows:

NL Format Alignment According to previous work in formalizing mathematical state-
ments (Wang et al., 2025b; Zheng et al., 2021), there is a significant representation gap between
Lean4 statements and their corresponding NL problems in the original datasets. Specifically, in NL
problems, it is typical for the problems to be in question-answering format, where the target is to
find a specific numerical or formulaic answer. However, in Lean4, the problem type is a closed-end
proof rather than a specific answer, which leads to a gap in the statement. Inspired by Wang et al.
(2025b), we perform a format alignment to transform the question-answering style physics problem
into a proof statement.

The first step in format alignment is to restate the question-answering problem in a proof format.
Specifically, we transform the question part of “Finding the answer to ...” into “Prove that the
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Figure 2: Overview of LeanPhysBench formalization process: We formalize the LeanPhysBench
data by the following steps: (1) NL Format Alignment; and (2) Lean4 code writing & verification

College Level

theorem University_Mechanics_3
(x_0 x_1 : Length)
(t_0 t_1 dt t : Time)
(v_0 v_1 : Speed)
(a: Acceleration)
(xf xf1: Time→ Length)(vf : Time→ Speed)
(ht0 : t_0 = 0 · second)
(ht1 : t_1 = 4 · second)
(ht : dt = t_1 − t_0)
(ha : a = (v_1 −v_0)/dt)
(hv : ∀ t, vf t = v_0 + a * t/1)
(hv1: v_1 = vf dt)
(hx: ∀ t, xf t = (a * t**2)/2 + v_0 * t)
(hxx: ∀ t, xf1 t = (3 · meter / second**2)* t**2 −
2 · meter / second * t)

(hxxx: xf = xf1):
(a = 6 · meter / second**2 ∧
v_0 = −2 · meter / second)

:= by sorry

Competition Level

theorem competition_mechanics_Ch2_Q32
(m : Mass) (R : Length) (θ : R) (v : Speed) (µ : R) (N f : Force)
(h_pos : 0 < m.val ∧ 0 <µ ∧ 0 < g.val)
(h_sin_cos : Real.sin θ ̸= 0 ∧ Real.cos θ ̸= 0)
(r_def : r = Real.sin θ · R)
(h_horiz : Real.sin θ · N − Real.cos θ · f =
m * v**2 / r)

(h_vert : Real.cos θ · N + Real.sin θ · f = m * g)
(f_def : f = m * (Real.sin θ · g −
Real.cos θ · v**2 / r / 1))

(N_def : N = m * (Real.cos θ · g +
Real.sin θ · v**2 / r / 1))

(fric_bound : ∥f.val∥ ≤ µ * ∥N.val∥) :
∀ (ε : Z), (ε = 1 ∨ ε = −1) →(
f = (ε : R) · µ · N→ v**2 =
((Real.sin θ − (ε : R) * µ * Real.cos θ) · g *
(Real.sin θ · R)/
(Real.cos θ + (ε : R) * µ * Real.sin θ)))

:= by sorry

Figure 3: Two examples from LeanPhysBench demonstrating different difficulty levels.

answer is ...” following Zheng et al. (2021). Subsequently, to better model the physical process
and relations, we require the LLM to write a step-by-step solution to the question. Based on the
solution, we extract the physics laws used in the problems and all the initial conditions for composing
statements. Finally, we define the proving target for the problem. We split the target of proof
into three categories, namely, numerical value, physical expression, or logical formula describing a
physical state and use such targets to assist the process of Lean4 code writing. After this step, we
align the NL question-answering problem to a provable question with extracted physics laws, initial
conditions, and proving target.

Lean4 code writing & Verification After we obtain aligned NL problems, the Lean code writing
is split into the formalization of conditions and goals. During the process of writing Lean4 con-
ditions for the problem, we add the necessary physics laws to PhysLib as well as properly present
such laws in Lean code. In formalizing goals, we write the corresponding Lean4 expression of the
proving targets as goals for the Lean4 proof. After we obtain the Lean4 code, it is submitted to the
verifier to verify whether it compiles successfully. Additionally, we ask experts for physics and Lean
to check the completeness of the theorem. Each statement requires one expert to formalize and at
least two experts to verify.

The above pipeline ensures that problems in LeanPhysBench accurately capture the underlying
physics semantics from NL descriptions. We present two examples of Lean4 statements we for-
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malized in Figure 3. In the example, we can clearly see that the college-level problems focus on
relatively simple operations in a broader range of topics. Competition-level statements emphasize
derivations of formulas using more advanced math tools in a more concentrated field of physics.

2.2.3 BENCHMARK STATISTICS

21

30

10

10

25
10

71

12
11

Competition

96

College 

104
.

Electromagnetism

Mechanics

Modern Physics

Optics

Thermodynamics

Waves & Acoustics

Figure 4: Statics of LeanPhysBench: The distribu-
tion of 200 Lean4 physics statements across diffi-
culty levels and topics

The detailed statistics for the PhysLib are pre-
sented in Figure 4. In total, PhysLib contains
200 physics statements formalized in Lean4.
Among them, 104 statements are at the college-
level and 96 are at the competition level. The
competition level is further divided into easy
(62 problems) and hard (34 problems) cate-
gories. Where easy problems focus more on
mathematical deduction with looser conditions,
and hard problems focus more on physics prob-
lem deductions with more physics formulas and
tighter conditions.

3 EXPERIMENT

We conduct comprehensive experiments on Lean4PHYS to demonstrate the significance of our
proposed LeanPhysBench and the effectiveness of PhysLib. In particular, we demonstrate the per-
formance of major expert Lean provers and general models on LeanPhysBench and prove the effec-
tiveness of PhysLib in Section 3.2. We study the problem format of LeanPhysBench in Section 3.3,
and in Section 3.4 we perform case studies to address important concerns of the main results.

3.1 EXPERIMENT SETUP

We evaluate the LLMs’ Lean4 physics reasoning capabilities by applying them to write proofs for
the PhysLib. Specifically, the task for the LLMs is to compose Lean4 proofs with provided NL
statements and Lean4 statements. To ease the load of LLMs in proving, we manually configure all
the imports and namespaces. Furthermore, unless otherwise specified, we allow the LLM to use
Long Chain-of-Thought capability to perform deeper reasoning. We apply the pass@16 metric to
evaluate the performance.

To better demonstrate current LLMs’ formal physical reasoning capability, we select the most rep-
resentative closed-source and open-source models to evaluate. Namely, for closed-source general
LLMs, we select GPT-4o (OpenAI et al., 2024), Claude-Sonnet-4 Anthropic (2025), and Gemini-
2.5-Pro (Comanici et al., 2025) as baselines. For open-source models, we present both the results
of general-purpose models, including DeepSeek-R1-0528 (Guo et al., 2025) and Qwen3-8B (Team,
2025), as well as expert Lean4 provers such as Goedel-Prover-V2-8B (Lin et al., 2025b), Kimina-
Prover (Wang et al., 2025a), and DeepSeek-Prover-V2 (Ren et al., 2025).

Furthermore, to demonstrate the effectiveness of PhysLib, we test the LLM’s capability under modes
that have or do not have PhysLib in the generated context. In summary, we test the LeanPhysBench
on eight major LLMs in two modes. The implementation details of our experiments can be found in
Appendix C.

3.2 MAIN RESULT

We demonstrate our main experiment result in Table 1. The result demonstrates that LLMs that are
larger in size and have better coding capabilities, like Gemini and Claude, perform better in formal
physics reasoning. With PhysLib in context, Gemini achieves a comparatively higher accuracy
rate of 40.50% for the entire dataset, while Claude obtains 35.00%. In comparison, the expert
provers and GPT-4o suffer from suboptimal performance with an overall accuracy rate of around
10%. Furthermore, the results demonstrate that with PhysLib added to the context, performance
improved by 11.88% and such improvement is consistent across all models and difficulty levels. It
indicates the effectiveness of our PhysLib in assisting LLMs’ formal physics reasoning.
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Table 1: Pass@16 results of LeanPhysBench on 8 LLMs in with (✓) and without (✗) PhysLib mode
across different difficulty levels, including College, Competition-Easy (Comp-Easy), and Comp-
Hard. The best result is bolded and the second-best result is underlined.

Method PhysLib College Comp-Easy Comp-Hard Overall
Open-source models

DeepSeek-R1-8B (Guo et al., 2025) ✓ 6.73% 9.68% 0.00% 6.50%
✗ 0.00% 4.84% 0.00% 1.50%

Qwen3-8B (Team, 2025) ✓ 7.69% 8.06% 2.94% 7.00%
✗ 1.92% 3.23% 0.00% 2.00%

Kimina-Prover-8B (Wang et al., 2025a) ✓ 8.65% 20.97% 11.76% 13.00%
✗ 5.77% 16.13% 11.76% 10.00%

Goedel-Prover-V2-8B (Lin et al., 2025a) ✓ 8.65% 24.19% 11.76% 14.00%
✗ 6.73% 19.35% 8.82% 11.00%

DeepSeek-Prover-V2-7B (Ren et al., 2025) ✓ 9.62% 29.03% 11.76% 16.00%
✗ 6.73% 22.58% 11.76% 12.50%

Closed-source models

GPT-4o (OpenAI et al., 2024) ✓ 6.73% 30.65% 2.94% 13.50%
✗ 2.88% 1.61% 2.94% 2.50%

Claude-Sonnet-4 (Anthropic, 2025) ✓ 28.85% 62.90% 2.94% 35.00%
✗ 0.96% 4.84% 2.94% 2.50%

Gemini-2.5-pro (Comanici et al., 2025) ✓ 31.73% 74.19% 5.88% 40.50%
✗ 6.73% 12.90% 5.88% 8.50%

Upon closer examination, we can observe that Lean experts, which significantly outperform closed-
source general LLMs in the math domain, lack the strong formal physics capabilities of these mod-
els. This reveals that the expert Lean provers’ capabilities are limited to the math domain and fail
to transfer to other general domains, especially when these domains apply a new definition (such
as the unit system in Lean4PHYS). Moreover, we found that the performance difference between
expert provers is relatively marginal, indicating that significant improvement in mathematics does
not guarantee a large improvement in physics reasoning.

When analyzing the results from different levels of difficulty, we find that the models generally
perform well on easy problems in competition problems, which are more closely aligned with math-
ematical representations. However, expert models still do not outperform larger closed-source mod-
els, indicating the limited transfer of capability from math to physics formal reasoning in Lean4.
Such a finding is also true for college-level problems, where the performance of models is generally
lower. However, for the competition-hard level of problems, the expert provers perform better than
the closed-source models. This is because the expert models have a stronger capability to perform
complex deduction, whereas large models do not.

Furthermore, adding PhysLib to the context will significantly improve the LLMs’ performance. This
is because when adding the PhysLib, the model has a better understanding of the formulation of the
basic system we use to compose the proof. Without the PhysLib, the model can only perform basic
simplification tactics like: constructor, rw, abel, exact, aesop. By adding the PhysLib,
the model can learn to perform more advanced tactics, such as simp and norm num, based on the
theorems and definitions in PhysLib.

3.3 PROBLEM FORMAT STUDY

This section presents a more detailed study of the problem format. Due to the space limit, we place
the example in Figure 5 in the Appendix and only provide the analysis result here.

From the example of problem format, we observe that college-level statements primarily involve
numeric computations with a relatively wide range of physical quantities with units. These prob-
lems rarely require multi-step formula derivations, but heavily depend on the unit system in PhysLib
to ensure dimensional consistency. Thus, the models with weaker in-context learning perform rel-
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atively badly on this level of problems. It is because they cannot infer the new out-of-distribution
syntax or unit-handling rules from context.

The easy-level competition questions are closer to transitional math problems in Lean, such as
MiniF2F (Zheng et al., 2021). They involve relatively simple formula derivations, typically within
two steps and often only tactics from Mathlib. Therefore, the models that are more familiar with the
Lean mathematics and good at using tactics perform better than closed-source large models on these
kinds of problems even without PhysLib.

On the other hand, the hard level of competition problems demands complex symbolic reasoning,
handling quantifiers, and difficult functional reasoning. For instance, this includes proving the ex-
istence of a number, holding of an inequality, or deriving a functional relation. These problems
combine unit casts with symbolic manipulation, further increasing the difficulty. Solving this level
of problem requires careful decomposition of the problem, proving new lemmas, and diverse proof
strategies with creativity. Moreover, many problems of this level require calculus concepts such as
limits and continuity. All the above factors combined cause the low pass rate at this level.

3.4 CASE STUDY

We present the case analysis in this section to provide a more detailed examination of the key find-
ings from our main experiment. Due to the space limit, for a detailed example, please refer to
Appendix E.2.

Behavior of the same theorem with and without PhysLib Figure 6 demonstrates a theorem at the
college level, which Gemini can do both with and without PhysLib in context. From the comparison,
we find that without the library, the proof is based solely on Mathlib. When the PhysLib is in the
context, the proof tends to use the operations in the library and include explanatory comments. It
indicates PhysLib can assist LLM’s reasoning by providing a wider toolbox.

Transfer tricks in mathematics Figure 9 demonstrate a problem only solved by Goedel-Prover-
V2-8B in our entire cycle of experiment. We conclude that this is a good transfer of following the
NL intermediate steps and performing multiple trials learned in the math Lean training. From the NL
statement demonstrated in Figure 8, we can observe that most steps are presented in the statement.
Following these NL hints and many trials using try tactics, the Goedel-Provers can successfully
solve the problem. It indicates that, although limited, the expert prover’s capability of Lean math
reasoning can be applied to formal physics reasoning.

Why the general model performs better To answer this question, we further analyze different
topics solved by LLMs and find that general LLMs are typically better in thermo-dynamics. The
Gemini successfully proved 22 theorems in the field, but DeepSeek-Prover-V2 only finished six
theorems. We present one theorem that is proved by both Gemini-2.5 and DeepSeek-Prover-V2 to
study the different behavior of their proof in Figure 6. We observe that the proof from the expert
prover is more complex and tedious, while Gemini’s proof is cleaner and more straightforward.
Such a difference in proving consistently shows between the expert prover and general models. It
suggests that in fields underrepresented in training, the prolonged deliberation of expert models may
lead to overthinking and result in suboptimal results.

4 RELATED WORK

4.1 FORMAL REASONING

Formal languages (FL) are introduced in the mathematical domain to ensure that proofs are logi-
cally correct, verifiable, and free from errors that human reasoning might overlook. Lean de Moura
& Ullrich (2021) is such a formal proof language and interactive theorem prover, based on depen-
dent type theory and supported by the large-scale Mathlib library Community (2019). With the
introduction of large language models (LLMs) to assist in generating such proofs, researchers from
the Lean community have made significant progress. Datasets and benchmarks serve as essential
foundations for evaluating and advancing these systems. MiniF2F Zheng et al. (2021) introduced
cross-system benchmarking by translating competition-level mathematics problems into verifiable
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lean statements, while FormalMATH Yu et al. (2025) extended this effort to a scale of over 5,000
problems. LeanDojo Yang et al. (2023) extracted 98,734 theorems and proofs from the Mathlib
library.

In parallel, increasing attention is being devoted to improving methods for auto-formalization, trans-
lating natural-language statements into machine-checkable proofs. FormL4 Luong et al. (2024)
introduced a Process-Supervised Verifier model that leverages the precise feedback from Lean 4
compilers to enhance autoformalization, while TheoremLlama Wang et al. (2024a) adapts general-
purpose LLMs into Lean 4 experts through dataset alignment and iterative training. Model-
Collaboration strategies Wang et al. (2025c) further enhance proof synthesis by separating the cog-
nition tasks of general NL for whole-proof generation and error analysis for proof correction.

Several Lean-expert LLMs have also been developed to specialize in formal reasoning. DeepSeek-
Prover (Ren et al., 2025) advances formal mathematical reasoning via reinforcement learning for
subgoal decomposition. Goedel-Prover (Lin et al., 2025a) addresses the scarcity of formalized
mathematical statements by training LLMs to translate natural-language mathematics problems
into Lean4 statements, and by further training a series of provers alongside an expanding dataset.
Kimina-Prover (Wang et al., 2025a) introduces a reasoning-driven exploration paradigm to improve
proof search and synthesis.

4.2 LEAN IN SUBJECTS BEYOND MATHEMATICS

Lean has increasingly been explored beyond mathematics, including in chemical physics Bobbin
et al. (2023), molecular simulations Ugwuanyi et al. (2025), and electrical engineering blacksph3re
(2025). Projects such as PhysLean Tooby-Smith & contributors (2024) aim to formalize mechan-
ics and high-energy physics using new tools like tensor and index notation Tooby-Smith (2024).
However, these efforts remain theorem-specific, small-scale, non-modular, and lack standardized
benchmarks. While Lean-expert models achieve strong performance on mathematical benchmarks,
their ability to transfer formal reasoning skills to other domains, such as physics, remains largely
unexamined.

4.3 PHYSICS DATASETS

Physics problem datasets for machine learning are widely studied in Natural Language (NL). Sev-
eral benchmarks are created focusing on physical reasoning and understanding, such as Phys-
Bench Chow et al. (2025) and PHYBench Qiu et al. (2025). At the curriculum level, UGPhysics Xu
et al. (2025) and the PHYSICS dataset Zheng et al. (2025) provide thousands of textbook-style
problems. At the competition level, more challenging benchmarks appear. There are Olympiad-
Bench He et al. (2024) with 8,476 bilingual Olympiad problems, HiPhO He et al. (2024) with recent
International Physics Olympiad questions, and PhysReason Zhang et al. (2025), which emphasizes
multi-step reasoning and diagram understanding. Also, the CAMEL-Physics Lu et al. (2025) scales
to tens of thousands of automatically generated problems. These resources are valuable for assessing
LLM reasoning skills in physics in NL.

5 CONCLUSION

This paper presents Lean4PHYS, a comprehensive framework to support Lean4 physics reasoning.
The framework includes PhysLib, an extensible, community-driven foundation library that sets the
cornerstone for units, fields, and theorems for formal physics reasoning. To evaluate LLMs’ perfor-
mance on formal physics reasoning, we propose LeanPhysBench, (to the best of our knowledge)the
first benchmark for Lean4 physics reasoning. Based on the Lean4PHYS, we conduct extensive
experiments to provide an overview of LLMs’ performance on such tasks and the effectiveness of
our PhysLib. We find that expert provers do not outperform large general models in most cases of
formal physics reasoning. It indicates limited transfer capability from mathematical reasoning, de-
spite the fact that they are all Lean4-based. Furthermore, the experiment shows that with PhysLib in
the context, LLMs’ performance on LeanPhysBench increases by 11.88% on average. Beyond for-
mal physics reasoning, our work provides a general principle for formalizing natural science beyond
mathematics into a verifiable system.
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ETHICS STATEMENT

This work focuses on formalizing college-level physics problems in Lean4 and evaluating LLMs’
formal physics reasoning capabilities. To the best of our knowledge, we carefully followed the
ethical regulations of the conference. We adhere to the following ethical considerations:

• Data Sources: All physics problems are sourced from publicly available university text-
books and competition exercise books. Proper citations are provided, and no private or
sensitive data was used.

• Responsible Use of LLMs: LLMs were only used for polishing the writing style and
grammar error detaction.

• Licensing and Attribution: The parts of the PhysLib library from Tao (2025) are licensed
with Apache-2.0 license, aligned with the origin repository.

REPRODUCIBILITY STATEMENT

We have made efforts to ensure that our work is reproducible. The detailed description of the
Lean4PHYS framework is presented in Section 2 with experiment details provided in Section 3
and Appendix C, D. We plan to open source the code of Lean4PHYS, consisting of a community-
driven repository and a benchmark in the near future.
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A USE OF LLMS

LLMs were employed to assist in the development and verification of physics problems. Specifically,
they served two main roles:

• LLMs generated detailed, step-by-step solutions for physics problems to help annotators
better understand the underlying reasoning and calculations.

• LLMs checked the correctness and completeness of natural-language solutions. All out-
puts were subsequently reviewed and verified by human annotators to ensure accuracy and
reliability.

LLMs were also used to improve the clarity and readability of the manuscript. Tasks included:

• Correcting grammar and sentence structure.
• Formatting figure captions and table layouts consistently.

B DATA SOURCES

Textbook-level questions are adapted from the concepts presented in a university textbook Young
& Freedman (2019) and UGPhysics Xu et al. (2025). Olympiad-Easy questions are derived from
intermediate steps of competition problems, while Olympiad-Hard questions are based on ideas
from a physics Olympiad practice book Shu et al. (2008). UGPhysics is distributed under the CC
BY-NC-SA 4.0 license. For the textbooks published by Pearson Young & Freedman (2019) and
Science Press Shu et al. (2008), we strictly respect their copyright: rather than copying the questions
verbatim, we reformulated and rephrased them based on the underlying physics ideas.

C IMPLEMENTATION DETAIL

The generation configuration for the LLM roll-out of the experiment is as follows:

• Top-p: 0.95
• Temperature: 0.8
• Maximum tokens per generation: 16,384
• Repetition penalty: 1.0

Open-source models are tested under a 4-card H20 server. The entire open-source LLM roll-out
process costs about 2 days.
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D LLM PROMPT TEMPLATES

We provide the prompt templates used to guide LLMs in generating Lean4 proofs.

With PhysLib:

Please first learn the new library besides mathlib and usage
examples before answering the question. You should refer to
the new unit system.

↪→

↪→

{PhysLib}

Complete the following Lean 4 code.
Provide your response in two parts, each enclosed in separate

markdown code blocks:↪→

```plan
# Proof Plan
- Outline the main proof steps and strategies.
- Highlight key intermediate lemmas and structures.
- Describe how to connect them to form the final proof.
```
```lean4
{Lean4_header}

/-- {NL_statement} -/
{Lean4_statement}
```

Without PhysLib:

Complete the following Lean 4 code.
Provide your response in two parts, each enclosed in separate

markdown code blocks:↪→

```plan
# Proof Plan
- Outline the main proof steps and strategies.
- Highlight key intermediate lemmas and structures.
- Describe how to connect them to form the final proof.
```
```lean4
{Lean4_header}

/-- {NL_statement} -/
{Lean4_statement}
```

E EXPERIMENT

E.1 FORMAT STUDY

The differences between the questions are shown in Figure 5. W can see that college-level state-
ments primarily involve numeric computations with a relatively wide range of physical quantities
with units and without multi-step formula derivations. The easy-level competition questions are
closer to transitional math problems in Lean and involve relatively simple formula derivations, typ-
ically within two steps and often only tactics from Mathlib. The hard level of competition problems
demands complex symbolic reasoning, handling quantifiers, and difficult functional reasoning , in-
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cluding proving the existence of a number, holding of an inequality, or deriving a functional rela-
tion. Advanced mathematics concepts such as derivatives, integrals, limits and continuity may be
involved.

E.2 CASE STUDY

Behavior of the same theorem with and without PhysLib Figure 6 illustrates a college-level
theorem that Gemini can prove both with and without PhysLib in the context. The comparison
shows that, without the library, the proof relies entirely on Mathlib. When PhysLib is available, the
proof incorporates operations from the library and includes explanatory comments. This suggests
that PhysLib can enhance LLM reasoning by offering a broader set of tools.

Transfer tricks in mathematics Figure 9 presents a problem that was solved only by Goedel-
Prover-V2-8B across our entire experimental cycle. This demonstrates effective transfer of skills
learned from Lean mathematics training, specifically following natural-language intermediate steps
and performing multiple trial attempts. From the NL statement shown in Figure 8, we can see that
most proof steps are explicitly provided. By leveraging these NL hints and repeatedly applying try
tactics, the Goedel-Prover successfully solves the problem. This suggests that, although limited, the
reasoning capabilities of Lean math expert models can be extended to formal physics tasks.

Why the general model performs better To investigate this question, we further analyze the
performance of LLMs across different topics and find that general LLMs tend to perform better
in thermodynamics. For example, Gemini successfully proved 22 theorems in this field, whereas
DeepSeek-Prover-V2 completed only six. Figure 6 illustrates one theorem proved by both Gemini-
2.5 and DeepSeek-Prover-V2, highlighting differences in their proof strategies. We observe that
the expert prover’s proof is more complex and tedious, while Gemini’s proof is cleaner and more
straightforward. This pattern of differences consistently appears between expert provers and general
models, suggesting that in fields underrepresented in training, the prolonged deliberation of expert
models may lead to overthinking and suboptimal results.
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College

Two point charges are located on the x-axis
of a coordinate system: q1 = 1.0 nC is
at x = +2.0 cm, and q2 = -3.0 nC is at
x = +4.0 cm. What is the total
electric force exerted by q1 and q2 on
a charge q3 = 5.0 nC at x = 0?

theorem Electromagnetism_3_University
(q1 q2 q3 : Charge) (x1 x2 x3 : Length)
(hq1 : q1 = SI.nano (1 · coulomb))
(hq2 : q2 = SI.nano (-3 · coulomb))
(hq3 : q3 = SI.nano (5 · coulomb))
(hx1 : x1 = ((0.02:R) · meter))
(hx2 : x2 = ((0.04:R) · meter))
(hx3 : x3 = 0)(F : Force)
(hF : F = K * q3 * (q1 / (x1 - x3)ˆ2 +
q2 / (x2 - x3)ˆ2)):
F = ((9:R)*(10:R)ˆ(-22:Q)/32) · newton
:= by

simp [←Scalar.val_inj, hF, hq1, hq2,
hq3, hx1, hx2, hx3, K, SI.nano,
coulomb, meter, newton]

norm_num

Competition-Easy

The plates of a parallel-plate capacitor
are 2.50 mm apart, and each carries a
charge of magnitude 80.0 nC. The
plates are in vacuum. The electric
field between the plates has a
magnitude of \(4.00 \times
10ˆ{6}\,\text{V/m}\). What is the
capacitance?

theorem Ch13_electro_question_8
(V:Voltage)(C:Scalar
capitance_unit)(q:Charge)
(E:Scalar
(force_unit-charge_unit))(d:Length)
(h: capitance_unit=charge_unit -
voltage_unit)
(hC:C=(q/V).cast h)(hq:q=SI.nano (80 ·
coulomb))
(hV:V=E*d)(hE:E=(4e6:R) · StandardUnit
_)
(hd:d=SI.milli ((2.5:R)· meter)):
C=(1 / 125000000000:Q) · StandardUnit _
:= by

have hC_expanded : C = (q/(E*d)).cast h :=
by rw [hC, hV]

rw [hC_expanded, hq, hE, hd]
simp [nano, milli, coulomb, meter, ←

Scalar.val_inj]
norm_num

Competition-Hard

Capstan law: If a rope of coefficient of
friction µ wraps n turns (θ_total =
2πn) around a post, the tension ratio
between the heavy side M and the light
side m satisfies n = (1 / (2πµ)) *
log(M / m) assuming M > m > 0 and µ >
0.

theorem Ch2_Q1
(M m : Mass)
(µ : R)
(n : R)
(θ_total : R := 2 * Real.pi * n)
(T : R → Force)
(h_pos : 0 < M.val ∧ 0 < m.val ∧ 0 < µ)
(hM_gt_m : M.val > m.val)
(T_light_def : T 0 = m * g)
(T_heavy_def : T θ_total = M * g)
(capstan_differential : ∀ θ : R, deriv

(fun θ' => (T θ').val) θ = µ * (T θ
).val)

(capstan_integral : Real.log ((T θ
_total).val / (T 0).val) = µ * θ_total)

(theta_def : θ_total = 2 * Real.pi * n) :
n = (1 / (2 * Real.pi * µ)) * Real.log

(M.val / m.val) := by
rcases h_pos with ⟨hM, hm, hmu⟩
have h1 : Real.log ((T θ_total).val / (T

0).val) =
Real.log ((M * g).val / (m *

g).val) := by rw [T_heavy_def,
T_light_def]

have h2 : Real.log ((M * g).val / (m *
g).val) = Real.log (M.val / m.val) :=
by
have h3 : (M * g).val / (m * g).val =
M.val / m.val := by
field_simp; ring_nf; simp; ring

rw [h3]
have h3 : Real.log (M.val / m.val) = µ * θ

_total := by linarith
[capstan_integral, h1, h2]

have h4 : Real.log (M.val / m.val) = µ *
(2 * Real.pi * n) := by rw [theta_def]
at h3; linarith

have h5 : µ ̸= 0 := by linarith
have h6 : Real.pi ̸= 0 := Real.pi_ne_zero
have h7 : Real.log (M.val / m.val) = 2 *

Real.pi * µ * n := by linarith [h4]
have h8 : n = (Real.log (M.val / m.val))

/ (2 * Real.pi * µ) := by field_simp;
linarith

rw [h8]; field_simp; ring_nf; field_simp;
ring

Figure 5: Three sampled physics questions from College Textbook, Olympics-Easy, Olympics-Hard
problems. Each example shows the natural language problem statement followed by its correspond-
ing Lean formalization with a verified proof.
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Gemini-2.5-pro without PhysLib

theorem Mechanics_73_University
(T : Force)(m_1 m_2 : Mass)(a : Acceleration)
(ha : a = m_2 * g / (m_1 + m_2))
(hT : T = (m_1 * m_2) / (m_1 + m_2) * g):
(a = (m_2 / (m_1 + m_2)) * g ∧ T = (m_1 * m_2) / (m_1 + m_2) * g) :=

by
constructor
· rw [ha]
ext
simp
rw [mul_div_right_comm]

· exact hT

Gemini-2.5-pro with PhysLib

theorem Mechanics_73_University
(T : Force)(m_1 m_2 : Mass)(a : Acceleration)
(ha : a = m_2 * g / (m_1 + m_2))
(hT : T = (m_1 * m_2) / (m_1 + m_2) * g):
(a = (m_2 / (m_1 + m_2)) * g ∧ T = (m_1 * m_2) / (m_1 + m_2) * g) :=

by
constructor
. -- The first goal is to prove the rearranged expression for
acceleration `a`.
-- We start by substituting `a` with its given definition from
hypothesis `ha`.
rw [ha]
-- The goal is now to prove an algebraic equivalence between two
`Scalar` expressions.
-- We use the `Scalar.val_inj` lemma to transform this into an
equality of their
-- underlying real values. This is a standard technique in the
PhysLib library.
simp only [← Scalar.val_inj]
-- Now, with the goal being an equality of real numbers, we can
use `simp` to apply
-- the library's rules for how `.val` distributes over arithmetic
operations.
simp
-- The resulting goal is `m_2.val * g.val / (m_1.val + m_2.val) =
m_2.val / (m_1.val + m_2.val) * g.val`.
-- This is a standard algebraic identity which the `ring` tactic
can solve.
ring

. -- The second goal is to prove the expression for tension `T`,
which is identical
-- to the hypothesis `hT`.
exact hT

Figure 6: Two examples from LeanPhysBench demonstrating different proofs of the same college-
level problem, generated by Gemini-2.5-pro with and without PhysLib.
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Gemini-2.5-pro with PhysLib

theorem Mechanics_37_University
(x_1 y_1 d_1 : Length)(t_1 t : Time)(xf1 yf1: Time → Length)
(ht1 : t_1 = 2 · second)
(hxx: ∀ t, xf1 t = 2 · meter - ((0.25 : Q) · meter / second**2)*
t**2)

(hx: x_1 = xf1 t_1)
(hyy: ∀ t, yf1 t = 1 · meter / second * t + ((0.025 : Q) · meter /
second**3)* t**3)

(hy: y_1 = yf1 t_1)
(hd: d_1**2 = (x_1**2 + y_1**2)):
(x_1 = 1 · meter ∧ y_1 = (2.2 : Q) · meter ∧ d_1**2 = (5.84 : Q) ·
meter**2) := by

-- First, calculate the value of x_1 at t_1.
have hx_val : x_1 = 1 · meter := by
-- Substitute the given expressions and values, convert to an
equality of real numbers,
-- simplify the units, and compute the final numerical value.
simp [hx, hxx, ht1, ←Scalar.val_inj, meter, second]
norm_num

-- Second, calculate the value of y_1 at t_1.
have hy_val : y_1 = (2.2 : Q) · meter := by
-- The strategy is the same as for x_1.
simp [hy, hyy, ht1, ←Scalar.val_inj, meter, second]
norm_num

-- Third, calculate the squared distance d_1**2 using the results
for x_1 and y_1.

have hd_val : d_1**2 = (5.84 : Q) · meter**2 := by
-- Substitute the formula for d_1**2 and the proven values of x_1
and y_1.
simp [hd, hx_val, hy_val, ←Scalar.val_inj, meter]
norm_num

-- Finally, use the proven facts to establish the conjunction.
simp [hx_val, hy_val, hd_val]

Figure 7: An example of a problem solved by adding PhysLib.
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Goedel-Prover with PhysLib (nature statement)

Question 74: You want to move a 500 N crate across a level floor. To start the crate moving,
you have to pull with a 230 N horizontal force. Once the crate starts to move, you can keep
it moving at constant velocity with only 200 N. What are the coefficients of static and kinetic
friction? Follow the process: Just before the crate starts to move, we have:∑

Fx = T +
(
− (fs)max

)
= 0 so (fs)max = T = 230 N∑

Fy = n+ (−w) = 0 so n = w = 500 N

Now we solve (fs)max = µsn, for the value of µs:

µs =
(fs)max

n
=

230 N

500 N
= 0.46

After the crate starts to move, we have:∑
Fx = T +

(
− fk

)
= 0 so fk = T = 200 N∑

Fy = n+ (−w) = 0 so n = w = 500 N

Using fk = µkn, we find:

µk =
fk
n

=
200 N

500 N
= 0.40

show that the coefficients of static is µs = 0.4 and kinetic friction is µk = 0.40.

Figure 8: Natural Language statement of a problem solved only by Goedel-Prover.
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Goedel-Prover with PhysLib (Lean4 statement)

theorem Mechanics_74_University_0
(f_s_max f_k n w : Force)(µ_s µ_k : Q)
(hw : w = 500 · newton)
(hn : n = w)
(hf_s_max : f_s_max = 230 · newton)
(hf_k : f_k = 200 · newton)
(hµ_s : µ_s = Scalar.val f_s_max / Scalar.val n)
(hµ_k : µ_k = Scalar.val f_k / Scalar.val n):
(µ_s = (0.46 : Q) ∧ µ_k = (0.40 : Q)) := by
have h1 : Scalar.val f_s_max = 230 := by
rw [hf_s_max]
simp [Scalar.val_smul, newton]

have h2 : Scalar.val n = 500 := by
have h21 : n = 500 · newton := by
rw [hn, hw]

rw [h21]
simp [Scalar.val_smul, newton]

have h3 : (µ_s : R) = (0.46 : R) := by
have h31 : (µ_s : R) = Scalar.val f_s_max / Scalar.val n := by
norm_cast at hµ_s ⊢

rw [h31]
rw [h1, h2]
norm_num

have h4 : µ_s = (0.46 : Q) := by
have h41 : (µ_s : R) = (0.46 : R) := h3
norm_num at h41 ⊢
norm_num
(try field_simp at *)
(try norm_cast at *)

have h5 : Scalar.val f_k = 200 := by
rw [hf_k]
simp [Scalar.val_smul, newton]

have h6 : (µ_k : R) = (0.40 : R) := by
have h61 : (µ_k : R) = Scalar.val f_k / Scalar.val n := by
norm_cast at hµ_k ⊢

rw [h61]
rw [h5, h2]
norm_num

have h7 : µ_k = (0.40 : Q) := by
have h71 : (µ_k : R) = (0.40 : R) := h6
norm_num at h71 ⊢
(try field_simp at *)
(try norm_cast at *)

have h8 : (µ_s = (0.46 : Q) ∧ µ_k = (0.40 : Q)) := by
exact ⟨h4, h7⟩

exact h8

end Mechanics

Figure 9: A problem solved only by Goedel-Prover.
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DeepSeek-Prover-V2

theorem Ch10_question_4
(P1 P2:Pressure) (V1 V2:Volume) (T1 T2:Temperature) (k:R)
(hV1:V1= 13· StandardUnit _)
(hT1:T1=((1.8*15+273.15):R) · kelvin)
(hT2:T2=((-44.5*1.8+273.15):R) · kelvin)
(hP1:P1=((1.01*10ˆ5):R) · pascal)
(hP2:P2= 868 · pascal)
(hV2:V2=V1*T2*P1/(T1*P2))
(hk:k=Real.rpow (V2/V1).val ((1/3):R)):
k=Real.rpow (10832250 / 144739) (1 / 3) := by

have h_main : k = Real.rpow (10832250 / 144739) (1 / 3) := by
have h1 : k = Real.rpow (V2 / V1).val ((1 / 3 : R)) := by rw [hk]
rw [h1]
have h2 : (V2 / V1).val = (10832250 / 144739 : R) := by
-- Simplify the expression for V2 / V1
simp_all [Pressure, Volume, Temperature, add_assoc, add_comm,

add_left_comm, mul_assoc, mul_comm, mul_left_comm,
div_eq_mul_inv, mul_inv_cancel_left]

<;> ring_nf at *
<;> norm_num at *
<;> field_simp [StandardUnit, mul_assoc, mul_comm,

mul_left_comm] at *
<;> ring_nf at *
<;> norm_num at *
<;> nlinarith

rw [h2]
<;> simp [Real.rpow_def_of_pos]
<;> norm_num
<;> ring_nf
<;> norm_num
<;> field_simp
<;> ring_nf
<;> norm_num
<;> nlinarith

exact h_main

Gemini-2.5-pro

theorem Ch10_question_4
(P1 P2:Pressure)(V1 V2:Volume)(T1 T2:Temperature)(k:R)
(hV1:V1= 13· StandardUnit _)
(hT1:T1=((1.8*15+273.15):R) · kelvin)
(hT2:T2=((-44.5*1.8+273.15):R) · kelvin)
(hP1:P1=((1.01*10ˆ5):R) · pascal)
(hP2:P2= 868 · pascal)
(hV2:V2=V1*T2*P1/(T1*P2))
(hk:k=Real.rpow (V2/V1).val ((1/3):R)):
k=Real.rpow (10832250 / 144739) (1 / 3) := by

-- Use all hypotheses to substitute the variables and simplify the
expression.

-- `simp` will use `hk` to substitute `k`, `hV2` to substitute `V2`,
-- and the other hypotheses to substitute the numerical values.
-- The `@[simp]` lemmas in the UnitsSystem library will handle the
`.val` operations.

simp [hk, hV2, hV1, hT1, hT2, hP1, hP2]
-- The goal is now a purely numerical equality. Use `norm_num` to
verify it.

norm_num

Figure 10: Demonstrating different proof styles on the same problem.
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