
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEAN4PHYSICS: COMPREHENSIVE REASONING
FRAMEWORK FOR COLLEGE-LEVEL PHYSICS IN
LEAN4

Anonymous authors
Paper under double-blind review

ABSTRACT

We present Lean4PHYS, a comprehensive reasoning framework for college-level
physics problems in Lean4. Lean4PHYS includes LeanPhysBench, a college-
level benchmark for Lean4 formal physics reasoning, which contains 200 hand-
crafted and peer-reviewed statements formalized from university textbooks and
physics competition problems. To establish a solid foundation for formal rea-
soning in physics, we also launch PhysLib, a community-driven repository that
includes fundamental unit systems and theorems essential for formal physics
reasoning. Based on the benchmark and Lean4 repository we composed in
Lean4PHYS, we report baseline results using major expert Math Lean4 provers
and state-of-the-art closed-source models, and provide an analysis of their perfor-
mance. In the experiment, we identify that most expert provers do not outperform
general models as they did in the math domain. This indicates a potential overfit-
ting of the math domain rather than learning formal reasoning. We also conduct
a comprehensive experiment showing that with PhysLib in the context, LLMs’
performance on LeanPhysBench increases by 11.88% on average, proving the
effectiveness of our repository in assisting LLMs to solve the Lean4 physics prob-
lem. To the best of our knowledge, we are the first study to provide a physics
benchmark in Lean4.

1 INTRODUCTION

Formal thinking capability has always been considered a cornerstone of human intelligence and a
key objective of machine learning. With the emergence of Large Language Models (LLMs), many
studies explore diverse ways to apply LLMs to perform various reasoning tasks. This includes
general reasoning (Wang et al., 2024b; Suzgun et al., 2022; Talmor et al., 2018), math reason-
ing (Hendrycks et al., 2021; Cobbe et al., 2021; Guo et al., 2025), natural science reasoning (Saikh
et al., 2022; Edwards et al., 2025), and many other domains. However, most works handle reasoning
as a pure Natural Language (NL) task that relies on the answer checking to judge the correctness of
reasoning, while being unable to verify the intermediate reasoning steps.

To make the reasoning process verifiable, researchers attempted to ground the reasoning procedure
in formal logical systems, enabling the automatic verification of both the reasoning process and its
results through Formal Languages (FLs). Through this idea, many FLs are developed, including
Lean (De Moura et al., 2015; Moura & Ullrich, 2021), Coq (Coq, 1996), Isabelle (Paulson, 1994),
and HOL (Harrison, 2009). Among them, Lean4 has received superior attention from both the
academic and industry in recent days, making it one of the most well-studied formal languages in
recent years. There are numerous benchmarks (Zheng et al., 2021; Gulati et al., 2024; Azerbayev
et al., 2023), dataset (Dong & Ma, 2025; Wang et al., 2024a; Ying et al., 2024), and provers (Polu
et al., 2022; Wang et al., 2024a; Xin et al., 2024; Wang et al., 2025c; Lin et al., 2025b; Dong & Ma,
2025; Xin et al., 2025; Ren et al., 2025) have been proposed.

However, current studies in formal reasoning primarily focus on the mathematical domain, leaving
other domains that can also be formalized, such as physics, largely understudied. Moreover, most
of the state-of-the-art expert provers claim their capability in formal reasoning by showing superior
results in Lean4 math benchmarks. This raises concerns about whether such formal capability can

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Overview of the Lean4PHYS framework: it consists of two components for support-
ing LLM formal physics reasoning. (1) PhysLib: an extensible repository providing a physics unit
system and commonly used theorems. (2) LeanPhysBench: a benchmark of 200 hand-crafted theo-
rems from high school competitions to elementary college level, designed to evaluate LLMs’ Lean4
physics reasoning.

be transferred to other domains, like physics problems represented using similar Lean syntax, or
current provers overfit to mathematical reasoning.

To answer the problems above, we propose Lean4PHYS, a comprehensive reasoning framework
for college-level general-domain physics problems in Lean4. Lean4PHYS aims to provide a foun-
dation for LLM-based formal physics reasoning in Lean4. The framework launches PhysLib, a
foundation repository that supports formal physics reasoning. It includes a systematic treatment of
physical units through a dedicated UnitsSystem, enabling dimensionally consistent symbolic com-
putation, along with a growing collection of extendable formalized physics theorems. Based on the
PhysLib, we develop LeanPhysBench, a college-level benchmark to evaluate LLMs’ performance
in Lean4 physics reasoning. The benchmark contains 200 manually-crafted Lean4 formal theorems
whose difficulty level varies from standard university exercises to Olympiad-style competition prob-
lems. We construct the benchmark by systematically transforming natural-language problems into
Lean4 theorems: extracting key conditions and relevant physical laws, defining explicit proving tar-
gets, restating the problems in logical form, and integrating them into verifiable Lean4 statements.
To the best of our knowledge, LeanPhysBench is the first benchmark that evaluates LLMs’ formal
physics reasoning capability.

We summarize our contributions as follows:

1. We introduce Lean4PHYS, a comprehensive Lean4-based framework for formal physics
reasoning. It provides PhysLib, a modular physics library supporting unit-aware calcula-
tions and extensible physical theorems.

2. Our framework innovates by bridging natural-language physics problems with formal
Lean4 representations, enabling LLMs to learn domain-specific laws and reasoning pat-
terns beyond standard math-oriented theorem provers.

3. We perform extensive experiments by applying leading models to LeanPhysBench. The
experiments suggest that all current expert math provers and general models, regardless of
their size, achieve suboptimal performance. Furthermore, we demonstrate that after inte-
grating PhysLib, the models exhibit consistent performance enhancements. The results also
indicate the potential for overfitting to the math dataset for the current expert Lean provers.
When testing only on the hard dataset, we found that all models perform properly, indi-
cating the current limitations for formal physics, especially statements involving complex
mathematical operations such as integrals and derivatives.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Moreover, to the best of our knowledge, Lean4PHYS is the first work that tries to extend the LLM-
based formal reasoning from math to a more general domain, which offers a new direction that
attempts to formalize progressively more subjects.

2 THE LEAN4PHYS FRAMEWORK

In this section, we introduce the design and implementation of the Lean4PHYS framework in detail.
The core idea of our framework is to provide a foundation and then evaluate the LLMs’ formal
physics reasoning capabilities. We firstly initiate PhysLib, a community collaborative foundation
repository for Lean4 physics reasoning in Section 2.1. Subsequently, we present the details of how
we construct LeanPhysBench, (to the best of our knowledge) the first benchmark for formal physics
reasoning.

2.1 PHYSLIB

In this paper, we introduce PhysLib, a community-driven repository designed to support rigorous
and machine-verifiable Lean4 formal physics reasoning. We build the library in a bottom-up manner
for both the conceptual level of knowledge and the technical level of implementation. The current
version of PhysLib contains the foundation of physics unit systems (Section 2.1.1), practical theo-
rems to use in proving(Section 2.1.2), and a guideline for community development and extension
(Section 2.1.3).

2.1.1 FOUNDATION OF PHYSICS: UNIT SYSTEM

Following the bottom-up design principle of PhysLib. The central challenge of formalizing physics
from scratch is to identify the unchanged kernel that supports all the reasoning in the field. Unlike
mathematics, where every basic building block is purely based on definition, physics, as well as other
natural sciences, are primitively supported by empirical rules induced from experiments, which are
naturally not as clearly defined as mathematics. For physics, we identify such a kernel as the unit
system. Thus, we lay the foundation for physics reasoning by establishing the unit system.

In the implementation, we build the unit system by extending Mathlib Community (2019) with the
International System of Units (SI) following the Tao (2025). The system contains seven basic units,
including time, length, mass, electric current, thermodynamic temperature, amount of substance, and
unit of luminous intensity Newell et al. (2019). Based on the unit system foundation, we introduce
the first-order derivative over the most general and commonly used sections, namely, length, taking
the derivative over time, introducing velocity.

2.1.2 TOPIC-BASED THEOREM DEVELOPMENT

Building upon the cross-topic kernel foundation system of units, we introduce topic-based theorem
systems according to different needs in specific kinds of problems. Specifically, the current version
of PhysLib splits problems into six major topics, namely: mechanics, waves & acoustics, thermo-
dynamics, electromagnetism, optics, and modern physics. The topic split is inspired by Halliday
et al. (2013). Our implementation principle for this section of PhysLib is to first create different
namespaces and independent Lean files for each topic. Subsequently, we add topic-specific unit
types and constants in the topic namespace. Then, we implement basic physics rules summarized
from experiments as definitions. Finally, we implement theorems with their proofs that are practical
to the topic as the final layer. We implement the mechanics field in detail as an example and set a
basic foundation for other topics. We present the design process to the community and launch this
project for collaborative development of the field.

2.1.3 COMMUNITY-DRIVEN AND EXTENSIBILITY

As mentioned before, PhysLib is designed to be a community-driven and collaborative work like
Mathlib Community (2019), and we make our best effort to ensure other researchers can easily
read and extend the system while maintaining consistency. In general, we organize PhysLib in a
three-layer hierarchy: (1) Foundation unit system, which should be consistent with changes only

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

necessary. (2) Topic-specific unit system, which should be added when formalizing theorem state-
ments where current units are unable to support the construction. (3) Topic-specific theorems, which
include most of the practical theorems to support proof implementation and should be regularly up-
dated.

The current version contains a relatively comprehensive implementation of the repository in me-
chanics, serving as an example for the community. PhysLib inherits components from Tao (2025),
which are distributed under the Apache-2.0 license, and the same license applies to newly added
content. We will strongly encourage contributions of new statements and proofs, and will continu-
ously maintain the repository in the future.

Beyond the current repository we are implementing, such a layered design is applicable to the for-
malization of other domains, such as the natural and social sciences, and be alternatively extended
to general proving systems based on the same logic.

2.2 LEANPHYSBENCH

With the current trend of utilizing LLMs to perform formal reasoning, it is crucial to evaluate their
formal physics reasoning capability. However, to the best of our knowledge, there is no dataset
for benchmarking the Lean4 physics reasoning capability for LLMs. Thus, we propose (to the best
of our knowledge) the first benchmark for Lean4 physics reasoning. In this section, we detail the
process of creating this benchmark. We firstly present the data collection process in Section 2.2.1,
then detail how we created the benchmark in Section 2.2.2, and report the benchmark statistics in
Section 2.2.3.

2.2.1 DATA COLLECTION & PREPROCESSING

Corresponding to the bottom-up principle, when we design the PhysLib, when creating the dataset,
we follow a basic-to-advanced principle. Our benchmark primarily consists of two levels of data:
the high school Olympiad-competition-related level and the college level. The Olympiad data are
collected from competition-related exercise books. This level of data focuses on testing the model’s
capability to perform multi-step reasoning within a specific field of knowledge. On the other hand,
the college-level problems are collected from the elementary university physics textbooks. These
problems are selected to cover a deeper range of concepts with easier reasoning steps that focus on
testing the LLM’s reasoning when the topics span multiple physics models. For questions accom-
panied by figures, we extract the information from the figures and describe it in natural language,
alongside the problems. Detailed data sources are provided in Appendix B.

Following PhysLib’s design, we further divided the topic of the LeanPhysBench into mechanics,
waves & acoustics, thermodynamics, electromagnetism, optics, and modern physics. After the data
collection, we have the base natural language statement for formulating LeanPhysBench.

2.2.2 FORMALIZATION PIPELINE

Following the collection and preprocessing of the NL data, we apply a strict pipeline to transform
the NL data into verifiable Lean4 theorems. The overview of the formalization pipeline is shown
in Figure 2. Formally, if we denote a physics problem we want to formalize by P , the original
problem we have is Poriginal, the target is to obtain the Lean4 version of the problem PLean. The
formalization process is as follows:

NL Format Alignment According to previous work in formalizing mathematical state-
ments (Wang et al., 2025b; Zheng et al., 2021), there is a significant representation gap between
Lean4 statements and their corresponding NL problems in the original datasets. Specifically, in NL
problems, it is typical for the problems to be in question-answering format, where the target is to
find a specific numerical or formulaic answer. However, in Lean4, the problem type is a closed-end
proof rather than a specific answer, which leads to a gap in the statement. Inspired by Wang et al.
(2025b), we perform a format alignment to transform the question-answering style physics problem
into a proof statement.

The first step in format alignment is to restate the question-answering problem in a proof format.
Specifically, we transform the question part of “Finding the answer to ...” into “Prove that the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: Overview of LeanPhysBench formalization process: We formalize the LeanPhysBench
data by the following steps: (1) NL Format Alignment; and (2) Lean4 code writing & verification

College Level

theorem University_Mechanics_3
(x_0 x_1 : Length)
(t_0 t_1 dt t : Time)
(v_0 v_1 : Speed)
(a: Acceleration)
(xf xf1: Time→ Length)(vf : Time→ Speed)
(ht0 : t_0 = 0 · second)
(ht1 : t_1 = 4 · second)
(ht : dt = t_1 − t_0)
(ha : a = (v_1 −v_0)/dt)
(hv : ∀ t, vf t = v_0 + a * t/1)
(hv1: v_1 = vf dt)
(hx: ∀ t, xf t = (a * t**2)/2 + v_0 * t)
(hxx: ∀ t, xf1 t = (3 · meter / second**2)* t**2 −
2 · meter / second * t)

(hxxx: xf = xf1):
(a = 6 · meter / second**2 ∧
v_0 = −2 · meter / second)

:= by sorry

Competition Level

theorem competition_mechanics_Ch2_Q32
(m : Mass) (R : Length) (θ : R) (v : Speed) (µ : R) (N f : Force)
(h_pos : 0 < m.val ∧ 0 <µ ∧ 0 < g.val)
(h_sin_cos : Real.sin θ ̸= 0 ∧ Real.cos θ ̸= 0)
(r_def : r = Real.sin θ · R)
(h_horiz : Real.sin θ · N − Real.cos θ · f =
m * v**2 / r)

(h_vert : Real.cos θ · N + Real.sin θ · f = m * g)
(f_def : f = m * (Real.sin θ · g −
Real.cos θ · v**2 / r / 1))

(N_def : N = m * (Real.cos θ · g +
Real.sin θ · v**2 / r / 1))

(fric_bound : ∥f.val∥ ≤ µ * ∥N.val∥) :
∀ (ε : Z), (ε = 1 ∨ ε = −1) →(
f = (ε : R) · µ · N→ v**2 =
((Real.sin θ − (ε : R) * µ * Real.cos θ) · g *
(Real.sin θ · R)/
(Real.cos θ + (ε : R) * µ * Real.sin θ)))

:= by sorry

Figure 3: Two examples from LeanPhysBench demonstrating different difficulty levels.

answer is ...” following Zheng et al. (2021). Subsequently, to better model the physical process
and relations, we require the LLM to write a step-by-step solution to the question. Based on the
solution, we extract the physics laws used in the problems and all the initial conditions for composing
statements. Finally, we define the proving target for the problem. We split the target of proof
into three categories, namely, numerical value, physical expression, or logical formula describing a
physical state and use such targets to assist the process of Lean4 code writing. After this step, we
align the NL question-answering problem to a provable question with extracted physics laws, initial
conditions, and proving target.

Lean4 code writing & Verification After we obtain aligned NL problems, the Lean code writing
is split into the formalization of conditions and goals. During the process of writing Lean4 con-
ditions for the problem, we add the necessary physics laws to PhysLib as well as properly present
such laws in Lean code. In formalizing goals, we write the corresponding Lean4 expression of the
proving targets as goals for the Lean4 proof. After we obtain the Lean4 code, it is submitted to the
verifier to verify whether it compiles successfully. Additionally, we ask experts for physics and Lean
to check the completeness of the theorem. Each statement requires one expert to formalize and at
least two experts to verify.

The above pipeline ensures that problems in LeanPhysBench accurately capture the underlying
physics semantics from NL descriptions. We present two examples of Lean4 statements we for-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

malized in Figure 3. In the example, we can clearly see that the college-level problems focus on
relatively simple operations in a broader range of topics. Competition-level statements emphasize
derivations of formulas using more advanced math tools in a more concentrated field of physics.

2.2.3 BENCHMARK STATISTICS

21

30

10

10

25
10

71

12
11

Competition

96

College

104
.

Electromagnetism

Mechanics

Modern Physics

Optics

Thermodynamics

Waves & Acoustics

Figure 4: Statics of LeanPhysBench: The distribu-
tion of 200 Lean4 physics statements across diffi-
culty levels and topics

The detailed statistics for the PhysLib are pre-
sented in Figure 4. In total, PhysLib contains
200 physics statements formalized in Lean4.
Among them, 104 statements are at the college-
level and 96 are at the competition level. The
competition level is further divided into easy
(62 problems) and hard (34 problems) cate-
gories. Where easy problems focus more on
mathematical deduction with looser conditions,
and hard problems focus more on physics prob-
lem deductions with more physics formulas and
tighter conditions.

3 EXPERIMENT

We conduct comprehensive experiments on Lean4PHYS to demonstrate the significance of our
proposed LeanPhysBench and the effectiveness of PhysLib. In particular, we demonstrate the per-
formance of major expert Lean provers and general models on LeanPhysBench and prove the effec-
tiveness of PhysLib in Section 3.2. We study the problem format of LeanPhysBench in Section 3.3,
and in Section 3.4 we perform case studies to address important concerns of the main results.

3.1 EXPERIMENT SETUP

We evaluate the LLMs’ Lean4 physics reasoning capabilities by applying them to write proofs for
the PhysLib. Specifically, the task for the LLMs is to compose Lean4 proofs with provided NL
statements and Lean4 statements. To ease the load of LLMs in proving, we manually configure all
the imports and namespaces. Furthermore, unless otherwise specified, we allow the LLM to use
Long Chain-of-Thought capability to perform deeper reasoning. We apply the pass@16 metric to
evaluate the performance.

To better demonstrate current LLMs’ formal physical reasoning capability, we select the most rep-
resentative closed-source and open-source models to evaluate. Namely, for closed-source general
LLMs, we select GPT-4o (OpenAI et al., 2024), Claude-Sonnet-4 Anthropic (2025), and Gemini-
2.5-Pro (Comanici et al., 2025) as baselines. For open-source models, we present both the results
of general-purpose models, including DeepSeek-R1-0528 (Guo et al., 2025) and Qwen3-8B (Team,
2025), as well as expert Lean4 provers such as Goedel-Prover-V2-8B (Lin et al., 2025b), Kimina-
Prover (Wang et al., 2025a), and DeepSeek-Prover-V2 (Ren et al., 2025).

Furthermore, to demonstrate the effectiveness of PhysLib, we test the LLM’s capability under modes
that have or do not have PhysLib in the generated context. In summary, we test the LeanPhysBench
on eight major LLMs in two modes. The implementation details of our experiments can be found in
Appendix C.

3.2 MAIN RESULT

We demonstrate our main experiment result in Table 1. The result demonstrates that LLMs that are
larger in size and have better coding capabilities, like Gemini and Claude, perform better in formal
physics reasoning. With PhysLib in context, Gemini achieves a comparatively higher accuracy
rate of 40.50% for the entire dataset, while Claude obtains 35.00%. In comparison, the expert
provers and GPT-4o suffer from suboptimal performance with an overall accuracy rate of around
10%. Furthermore, the results demonstrate that with PhysLib added to the context, performance
improved by 11.88% and such improvement is consistent across all models and difficulty levels. It
indicates the effectiveness of our PhysLib in assisting LLMs’ formal physics reasoning.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Pass@16 results of LeanPhysBench on 8 LLMs in with (✓) and without (✗) PhysLib mode
across different difficulty levels, including College, Competition-Easy (Comp-Easy), and Comp-
Hard. The best result is bolded and the second-best result is underlined.

Method PhysLib College Comp-Easy Comp-Hard Overall
Open-source models

DeepSeek-R1-8B (Guo et al., 2025) ✓ 6.73% 9.68% 0.00% 6.50%
✗ 0.00% 4.84% 0.00% 1.50%

Qwen3-8B (Team, 2025) ✓ 7.69% 8.06% 2.94% 7.00%
✗ 1.92% 3.23% 0.00% 2.00%

Kimina-Prover-8B (Wang et al., 2025a) ✓ 8.65% 20.97% 11.76% 13.00%
✗ 5.77% 16.13% 11.76% 10.00%

Goedel-Prover-V2-8B (Lin et al., 2025a) ✓ 8.65% 24.19% 11.76% 14.00%
✗ 6.73% 19.35% 8.82% 11.00%

DeepSeek-Prover-V2-7B (Ren et al., 2025) ✓ 9.62% 29.03% 11.76% 16.00%
✗ 6.73% 22.58% 11.76% 12.50%

Closed-source models

GPT-4o (OpenAI et al., 2024) ✓ 6.73% 30.65% 2.94% 13.50%
✗ 2.88% 1.61% 2.94% 2.50%

Claude-Sonnet-4 (Anthropic, 2025) ✓ 28.85% 62.90% 2.94% 35.00%
✗ 0.96% 4.84% 2.94% 2.50%

Gemini-2.5-pro (Comanici et al., 2025) ✓ 31.73% 74.19% 5.88% 40.50%
✗ 6.73% 12.90% 5.88% 8.50%

Upon closer examination, we can observe that Lean experts, which significantly outperform closed-
source general LLMs in the math domain, lack the strong formal physics capabilities of these mod-
els. This reveals that the expert Lean provers’ capabilities are limited to the math domain and fail
to transfer to other general domains, especially when these domains apply a new definition (such
as the unit system in Lean4PHYS). Moreover, we found that the performance difference between
expert provers is relatively marginal, indicating that significant improvement in mathematics does
not guarantee a large improvement in physics reasoning.

When analyzing the results from different levels of difficulty, we find that the models generally
perform well on easy problems in competition problems, which are more closely aligned with math-
ematical representations. However, expert models still do not outperform larger closed-source mod-
els, indicating the limited transfer of capability from math to physics formal reasoning in Lean4.
Such a finding is also true for college-level problems, where the performance of models is generally
lower. However, for the competition-hard level of problems, the expert provers perform better than
the closed-source models. This is because the expert models have a stronger capability to perform
complex deduction, whereas large models do not.

Furthermore, adding PhysLib to the context will significantly improve the LLMs’ performance. This
is because when adding the PhysLib, the model has a better understanding of the formulation of the
basic system we use to compose the proof. Without the PhysLib, the model can only perform basic
simplification tactics like: constructor, rw, abel, exact, aesop. By adding the PhysLib,
the model can learn to perform more advanced tactics, such as simp and norm num, based on the
theorems and definitions in PhysLib.

3.3 PROBLEM FORMAT STUDY

This section presents a more detailed study of the problem format. Due to the space limit, we place
the example in Figure 5 in the Appendix and only provide the analysis result here.

From the example of problem format, we observe that college-level statements primarily involve
numeric computations with a relatively wide range of physical quantities with units. These prob-
lems rarely require multi-step formula derivations, but heavily depend on the unit system in PhysLib
to ensure dimensional consistency. Thus, the models with weaker in-context learning perform rel-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

atively badly on this level of problems. It is because they cannot infer the new out-of-distribution
syntax or unit-handling rules from context.

The easy-level competition questions are closer to transitional math problems in Lean, such as
MiniF2F (Zheng et al., 2021). They involve relatively simple formula derivations, typically within
two steps and often only tactics from Mathlib. Therefore, the models that are more familiar with the
Lean mathematics and good at using tactics perform better than closed-source large models on these
kinds of problems even without PhysLib.

On the other hand, the hard level of competition problems demands complex symbolic reasoning,
handling quantifiers, and difficult functional reasoning. For instance, this includes proving the ex-
istence of a number, holding of an inequality, or deriving a functional relation. These problems
combine unit casts with symbolic manipulation, further increasing the difficulty. Solving this level
of problem requires careful decomposition of the problem, proving new lemmas, and diverse proof
strategies with creativity. Moreover, many problems of this level require calculus concepts such as
limits and continuity. All the above factors combined cause the low pass rate at this level.

3.4 CASE STUDY

We present the case analysis in this section to provide a more detailed examination of the key find-
ings from our main experiment. Due to the space limit, for a detailed example, please refer to
Appendix E.2.

Behavior of the same theorem with and without PhysLib Figure 6 demonstrates a theorem at the
college level, which Gemini can do both with and without PhysLib in context. From the comparison,
we find that without the library, the proof is based solely on Mathlib. When the PhysLib is in the
context, the proof tends to use the operations in the library and include explanatory comments. It
indicates PhysLib can assist LLM’s reasoning by providing a wider toolbox.

Transfer tricks in mathematics Figure 9 demonstrate a problem only solved by Goedel-Prover-
V2-8B in our entire cycle of experiment. We conclude that this is a good transfer of following the
NL intermediate steps and performing multiple trials learned in the math Lean training. From the NL
statement demonstrated in Figure 8, we can observe that most steps are presented in the statement.
Following these NL hints and many trials using try tactics, the Goedel-Provers can successfully
solve the problem. It indicates that, although limited, the expert prover’s capability of Lean math
reasoning can be applied to formal physics reasoning.

Why the general model performs better To answer this question, we further analyze different
topics solved by LLMs and find that general LLMs are typically better in thermo-dynamics. The
Gemini successfully proved 22 theorems in the field, but DeepSeek-Prover-V2 only finished six
theorems. We present one theorem that is proved by both Gemini-2.5 and DeepSeek-Prover-V2 to
study the different behavior of their proof in Figure 6. We observe that the proof from the expert
prover is more complex and tedious, while Gemini’s proof is cleaner and more straightforward.
Such a difference in proving consistently shows between the expert prover and general models. It
suggests that in fields underrepresented in training, the prolonged deliberation of expert models may
lead to overthinking and result in suboptimal results.

4 RELATED WORK

4.1 FORMAL REASONING

Formal languages (FL) are introduced in the mathematical domain to ensure that proofs are logi-
cally correct, verifiable, and free from errors that human reasoning might overlook. Lean de Moura
& Ullrich (2021) is such a formal proof language and interactive theorem prover, based on depen-
dent type theory and supported by the large-scale Mathlib library Community (2019). With the
introduction of large language models (LLMs) to assist in generating such proofs, researchers from
the Lean community have made significant progress. Datasets and benchmarks serve as essential
foundations for evaluating and advancing these systems. MiniF2F Zheng et al. (2021) introduced
cross-system benchmarking by translating competition-level mathematics problems into verifiable

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

lean statements, while FormalMATH Yu et al. (2025) extended this effort to a scale of over 5,000
problems. LeanDojo Yang et al. (2023) extracted 98,734 theorems and proofs from the Mathlib
library.

In parallel, increasing attention is being devoted to improving methods for auto-formalization, trans-
lating natural-language statements into machine-checkable proofs. FormL4 Luong et al. (2024)
introduced a Process-Supervised Verifier model that leverages the precise feedback from Lean 4
compilers to enhance autoformalization, while TheoremLlama Wang et al. (2024a) adapts general-
purpose LLMs into Lean 4 experts through dataset alignment and iterative training. Model-
Collaboration strategies Wang et al. (2025c) further enhance proof synthesis by separating the cog-
nition tasks of general NL for whole-proof generation and error analysis for proof correction.

Several Lean-expert LLMs have also been developed to specialize in formal reasoning. DeepSeek-
Prover (Ren et al., 2025) advances formal mathematical reasoning via reinforcement learning for
subgoal decomposition. Goedel-Prover (Lin et al., 2025a) addresses the scarcity of formalized
mathematical statements by training LLMs to translate natural-language mathematics problems
into Lean4 statements, and by further training a series of provers alongside an expanding dataset.
Kimina-Prover (Wang et al., 2025a) introduces a reasoning-driven exploration paradigm to improve
proof search and synthesis.

4.2 LEAN IN SUBJECTS BEYOND MATHEMATICS

Lean has increasingly been explored beyond mathematics, including in chemical physics Bobbin
et al. (2023), molecular simulations Ugwuanyi et al. (2025), and electrical engineering blacksph3re
(2025). Projects such as PhysLean Tooby-Smith & contributors (2024) aim to formalize mechan-
ics and high-energy physics using new tools like tensor and index notation Tooby-Smith (2024).
However, these efforts remain theorem-specific, small-scale, non-modular, and lack standardized
benchmarks. While Lean-expert models achieve strong performance on mathematical benchmarks,
their ability to transfer formal reasoning skills to other domains, such as physics, remains largely
unexamined.

4.3 PHYSICS DATASETS

Physics problem datasets for machine learning are widely studied in Natural Language (NL). Sev-
eral benchmarks are created focusing on physical reasoning and understanding, such as Phys-
Bench Chow et al. (2025) and PHYBench Qiu et al. (2025). At the curriculum level, UGPhysics Xu
et al. (2025) and the PHYSICS dataset Zheng et al. (2025) provide thousands of textbook-style
problems. At the competition level, more challenging benchmarks appear. There are Olympiad-
Bench He et al. (2024) with 8,476 bilingual Olympiad problems, HiPhO He et al. (2024) with recent
International Physics Olympiad questions, and PhysReason Zhang et al. (2025), which emphasizes
multi-step reasoning and diagram understanding. Also, the CAMEL-Physics Lu et al. (2025) scales
to tens of thousands of automatically generated problems. These resources are valuable for assessing
LLM reasoning skills in physics in NL.

5 CONCLUSION

This paper presents Lean4PHYS, a comprehensive framework to support Lean4 physics reasoning.
The framework includes PhysLib, an extensible, community-driven foundation library that sets the
cornerstone for units, fields, and theorems for formal physics reasoning. To evaluate LLMs’ perfor-
mance on formal physics reasoning, we propose LeanPhysBench, (to the best of our knowledge)the
first benchmark for Lean4 physics reasoning. Based on the Lean4PHYS, we conduct extensive
experiments to provide an overview of LLMs’ performance on such tasks and the effectiveness of
our PhysLib. We find that expert provers do not outperform large general models in most cases of
formal physics reasoning. It indicates limited transfer capability from mathematical reasoning, de-
spite the fact that they are all Lean4-based. Furthermore, the experiment shows that with PhysLib in
the context, LLMs’ performance on LeanPhysBench increases by 11.88% on average. Beyond for-
mal physics reasoning, our work provides a general principle for formalizing natural science beyond
mathematics into a verifiable system.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses on formalizing college-level physics problems in Lean4 and evaluating LLMs’
formal physics reasoning capabilities. To the best of our knowledge, we carefully followed the
ethical regulations of the conference. We adhere to the following ethical considerations:

• Data Sources: All physics problems are sourced from publicly available university text-
books and competition exercise books. Proper citations are provided, and no private or
sensitive data was used.

• Responsible Use of LLMs: LLMs were only used for polishing the writing style and
grammar error detaction.

• Licensing and Attribution: The parts of the PhysLib library from Tao (2025) are licensed
with Apache-2.0 license, aligned with the origin repository.

REPRODUCIBILITY STATEMENT

We have made efforts to ensure that our work is reproducible. The detailed description of the
Lean4PHYS framework is presented in Section 2 with experiment details provided in Section 3
and Appendix C, D. We plan to open source the code of Lean4PHYS, consisting of a community-
driven repository and a benchmark in the near future.

REFERENCES

Anthropic. Claude sonnet 4, 2025. URL https://www.anthropic.com/claude/sonnet.
Accessed: 2025-09-23.

Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W Ayers, Dragomir Radev, and
Jeremy Avigad. Proofnet: Autoformalizing and formally proving undergraduate-level mathemat-
ics. arXiv preprint arXiv:2302.12433, 2023.

blacksph3re. distribution factors: An attempt to formalize dc loadflow equations and distribution
factors in lean, 2025. URL https://github.com/blacksph3re/distribution_
factors. Accessed: 2025-09-25.

Maxwell P. Bobbin, Samiha Sharlin, Parivash Feyzishendi, An Hong Dang, Catherine M. Wraback,
and Tyler R. Josephson. Formalizing chemical physics using the lean theorem prover. Digital
Discovery, 3(2):264–280, 2023. doi: 10.1039/D3DD00077J. URL https://pubs.rsc.
org/en/content/articlelanding/2024/dd/d3dd00077j.

Wei Chow, Jiageng Mao, Boyi Li, Daniel Seita, Vitor Guizilini, and Yue Wang. Physbench: Bench-
marking and enhancing vision-language models for physical world understanding, 2025. URL
https://arxiv.org/abs/2501.16411.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

The Lean Mathematical Library Community. The lean mathematical library. arXiv, abs/1910.09336,
2019. URL https://arxiv.org/abs/1910.09336. Accessed: 2025-09-23.

Projet Coq. The coq proof assistant-reference manual. INRIA Rocquencourt and ENS Lyon, version,
5, 1996.

10

https://www.anthropic.com/claude/sonnet
https://github.com/blacksph3re/distribution_factors
https://github.com/blacksph3re/distribution_factors
https://pubs.rsc.org/en/content/articlelanding/2024/dd/d3dd00077j
https://pubs.rsc.org/en/content/articlelanding/2024/dd/d3dd00077j
https://arxiv.org/abs/2501.16411
https://arxiv.org/abs/1910.09336

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language.
In Automated Deduction - CADE-28: 28th International Conference on Automated Deduction,
pp. 625–635, Berlin, Heidelberg, 2021. Springer-Verlag. doi: 10.1007/978-3-030-79876-5 37.
URL https://doi.org/10.1007/978-3-030-79876-5_37.

Leonardo De Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer. The
lean theorem prover (system description). In Automated Deduction-CADE-25: 25th International
Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings 25, pp.
378–388. Springer, 2015.

Kefan Dong and Tengyu Ma. Stp: Self-play llm theorem provers with iterative conjecturing and
proving, 2025. URL https://arxiv.org/abs/2502.00212.

Carl Edwards, Chi Han, Gawon Lee, Thao Nguyen, Bowen Jin, Chetan Kumar Prasad, Sara
Szymkuć, Bartosz A Grzybowski, Ying Diao, Jiawei Han, et al. mclm: A function-infused and
synthesis-friendly modular chemical language model. arXiv preprint arXiv:2505.12565, 2025.

Aryan Gulati, Brando Miranda, Eric Chen, Emily Xia, Kai Fronsdal, Bruno de Moraes Dumont,
and Sanmi Koyejo. Putnam-axiom: A functional and static benchmark for measuring higher level
mathematical reasoning. In The 4th Workshop on Mathematical Reasoning and AI at NeurIPS’24,
2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

David Halliday, Robert Resnick, and Jearl Walker. Fundamentals of physics. John Wiley & Sons,
2013.

John Harrison. Hol light: An overview. In International Conference on Theorem Proving in Higher
Order Logics, pp. 60–66. Springer, 2009.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi
Hu, Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun.
Olympiadbench: A challenging benchmark for promoting agi with olympiad-level bilingual mul-
timodal scientific problems. arXiv preprint arXiv:2402.14008, 2024. URL https://arxiv.
org/abs/2402.14008.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou
Xia, Danqi Chen, Sanjeev Arora, and Chi Jin. Goedel-prover: A frontier model for open-source
automated theorem proving, 2025a. URL https://arxiv.org/abs/2502.07640.

Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan
Geng, Jiawei Ge, Jingruo Sun, et al. Goedel-prover-v2: Scaling formal theorem proving with
scaffolded data synthesis and self-correction. arXiv preprint arXiv:2508.03613, 2025b.

Dakuan Lu, Xiaoyu Tan, Rui Xu, Tianchu Yao, Chao Qu, Wei Chu, Yinghui Xu, and Yuan Qi.
Scp-116k: A high-quality problem-solution dataset and a generalized pipeline for automated ex-
traction in the higher education science domain, 2025. URL https://arxiv.org/abs/
2501.15587.

Minh-Thang Luong, Eugene Brevdo, and Rui Zhao. Process-driven autoformalization in lean 4.
arXiv preprint arXiv:2406.01940, 2024. URL https://arxiv.org/abs/2406.01940.

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language.
In Automated Deduction–CADE 28: 28th International Conference on Automated Deduction,
Virtual Event, July 12–15, 2021, Proceedings 28, pp. 625–635. Springer, 2021.

David B Newell, Eite Tiesinga, et al. The international system of units (si). NIST Special Publica-
tion, 330(1), 2019.

11

https://doi.org/10.1007/978-3-030-79876-5_37
https://arxiv.org/abs/2502.00212
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2502.07640
https://arxiv.org/abs/2501.15587
https://arxiv.org/abs/2501.15587
https://arxiv.org/abs/2406.01940

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Aaron Hurst OpenAI, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan
Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv
preprint arXiv:2410.21276, 1(2):3, 2024.

Lawrence C Paulson. Isabelle: A generic theorem prover. Springer, 1994.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya
Sutskever. Formal mathematics statement curriculum learning. arXiv preprint arXiv:2202.01344,
2022.

Shi Qiu, Shaoyang Guo, Zhuo-Yang Song, Yunbo Sun, Zeyu Cai, Jiashen Wei, Tianyu Luo, Yix-
uan Yin, Haoxu Zhang, Yi Hu, Chenyang Wang, Chencheng Tang, Haoling Chang, Qi Liu,
Ziheng Zhou, Tianyu Zhang, Jingtian Zhang, Zhangyi Liu, Minghao Li, Yuku Zhang, Boxuan
Jing, Xianqi Yin, Yutong Ren, Zizhuo Fu, Jiaming Ji, Weike Wang, Xudong Tian, Anqi Lv,
Laifu Man, Jianxiang Li, Feiyu Tao, Qihua Sun, Zhou Liang, Yushu Mu, Zhongxuan Li, Jing-
Jun Zhang, Shutao Zhang, Xiaotian Li, Xingqi Xia, Jiawei Lin, Zheyu Shen, Jiahang Chen, Qi-
uhao Xiong, Binran Wang, Fengyuan Wang, Ziyang Ni, Bohan Zhang, Fan Cui, Changkun Shao,
Qing-Hong Cao, Ming xing Luo, Yaodong Yang, Muhan Zhang, and Hua Xing Zhu. Phybench:
Holistic evaluation of physical perception and reasoning in large language models, 2025. URL
https://arxiv.org/abs/2504.16074.

ZZ Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang,
Zhe Fu, Qihao Zhu, Dejian Yang, et al. Deepseek-prover-v2: Advancing formal mathematical rea-
soning via reinforcement learning for subgoal decomposition. arXiv preprint arXiv:2504.21801,
2025.

Tanik Saikh, Tirthankar Ghosal, Amish Mittal, Asif Ekbal, and Pushpak Bhattacharyya. Scienceqa:
A novel resource for question answering on scholarly articles. International Journal on Digital
Libraries, 23(3):289–301, 2022.

Yousheng Shu, Wangyu Hu, and Bingqian Chen. Selected Advanced Physics Problems, Volume II.
Science Press, Beijing, 2008. ISBN 9787030193563.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. arXiv preprint arXiv:1811.00937, 2018.

Terence Tao. A lean companion to analysis i. https://github.com/teorth/analysis,
2025. URL https://github.com/teorth/analysis. GitHub repository, accessed:
2025-08-31.

Qwen Team. Qwen3, April 2025. URL https://qwenlm.github.io/blog/qwen3/.

Joseph Tooby-Smith. Formalization of physics index notation in lean 4. arXiv preprint
arXiv:2411.07667, 2024. URL https://arxiv.org/abs/2411.07667. Integrating ten-
sor index notation into Lean 4 for formal verification.

Joseph Tooby-Smith and contributors. Physlean: Digitalising physics in lean 4. arXiv preprint
arXiv:2405.08863, 2024. URL https://arxiv.org/abs/2405.08863. An open-source
project to digitalise results from physics in Lean 4.

Ejike D. Ugwuanyi, Colin T. Jones, John Velkey, and Tyler R. Josephson. Benchmarking energy
calculations using formal proofs. arXiv preprint arXiv:2505.09095, 2025. URL https://
arxiv.org/abs/2505.09095.

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos Santos, Flood
Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, et al. Kimina-prover preview: Towards large
formal reasoning models with reinforcement learning. arXiv preprint arXiv:2504.11354, 2025a.

12

https://arxiv.org/abs/2504.16074
https://github.com/teorth/analysis
https://github.com/teorth/analysis
https://qwenlm.github.io/blog/qwen3/
https://arxiv.org/abs/2411.07667
https://arxiv.org/abs/2405.08863
https://arxiv.org/abs/2505.09095
https://arxiv.org/abs/2505.09095

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ruida Wang, Jipeng Zhang, Yizhen Jia, Rui Pan, Shizhe Diao, Renjie Pi, and Tong Zhang. Theorem-
llama: Transforming general-purpose llms into lean4 experts. arXiv preprint arXiv:2407.03203,
2024a.

Ruida Wang, Yuxin Li, Yi R Fung, and Tong Zhang. Let’s reason formally: Natural-formal hybrid
reasoning enhances llm’s math capability. arXiv preprint arXiv:2505.23703, 2025b.

Ruida Wang, Rui Pan, Yuxin Li, Jipeng Zhang, Yizhen Jia, Shizhe Diao, Renjie Pi, Junjie Hu, and
Tong Zhang. Ma-lot: Model-collaboration lean-based long chain-of-thought reasoning enhances
formal theorem proving. arXiv preprint arXiv:2503.03205, 2025c.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
task language understanding benchmark. Advances in Neural Information Processing Systems,
37:95266–95290, 2024b.

Huajian Xin, ZZ Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue
Zhang, Xuan Lu, Qiushi Du, et al. Deepseek-prover-v1. 5: Harnessing proof assistant feedback
for reinforcement learning and monte-carlo tree search. arXiv preprint arXiv:2408.08152, 2024.

Ran Xin, Chenguang Xi, Jie Yang, Feng Chen, Hang Wu, Xia Xiao, Yifan Sun, Shen Zheng, and
Kai Shen. Bfs-prover: Scalable best-first tree search for llm-based automatic theorem proving.
arXiv preprint arXiv:2502.03438, 2025.

Xin Xu, Qiyun Xu, Tong Xiao, Tianhao Chen, Yuchen Yan, Jiaxin Zhang, Shizhe Diao, Can Yang,
and Yang Wang. Ugphysics: A comprehensive benchmark for undergraduate physics reasoning
with large language models. arXiv preprint arXiv:2502.00334, 2025. URL https://arxiv.
org/abs/2502.00334.

Kaiyu Yang, Aidan M. Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan Prenger, and Anima Anandkumar. Leandojo: Theorem proving with retrieval-augmented
language models, 2023. URL https://arxiv.org/abs/2306.15626.

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean workbook:
A large-scale lean problem set formalized from natural language math problems. arXiv preprint
arXiv:2406.03847, 2024.

Hugh D. Young and Roger A. Freedman. University Physics with Modern Physics, Global Edition.
Pearson Education, 15th edition, 2019. ISBN 9781292314815.

Zhouliang Yu, Ruotian Peng, Keyi Ding, Yizhe Li, Zhongyuan Peng, Minghao Liu, Yifan Zhang,
Zheng Yuan, Huajian Xin, Wenhao Huang, Yandong Wen, Ge Zhang, and Weiyang Liu. For-
malmath: Benchmarking formal mathematical reasoning of large language models, 2025. URL
https://arxiv.org/abs/2505.02735.

Xinyu Zhang, Yuxuan Dong, Yanrui Wu, Jiaxing Huang, Chengyou Jia, Basura Fernando,
Mike Zheng Shou, Lingling Zhang, and Jun Liu. Physreason: A comprehensive benchmark
towards physics-based reasoning, 2025. URL https://arxiv.org/abs/2502.12054.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for
formal olympiad-level mathematics. arXiv preprint arXiv:2109.00110, 2021.

Shenghe Zheng, Qianjia Cheng, Junchi Yao, Mengsong Wu, Haonan He, Ning Ding, Yu Cheng,
Shuyue Hu, Lei Bai, Dongzhan Zhou, Ganqu Cui, and Peng Ye. Scaling physical reasoning with
the physics dataset. arXiv preprint arXiv:2506.00022, 2025. URL https://arxiv.org/
abs/2506.00022.

13

https://arxiv.org/abs/2502.00334
https://arxiv.org/abs/2502.00334
https://arxiv.org/abs/2306.15626
https://arxiv.org/abs/2505.02735
https://arxiv.org/abs/2502.12054
https://arxiv.org/abs/2506.00022
https://arxiv.org/abs/2506.00022

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A USE OF LLMS

LLMs were employed to assist in the development and verification of physics problems. Specifically,
they served two main roles:

• LLMs generated detailed, step-by-step solutions for physics problems to help annotators
better understand the underlying reasoning and calculations.

• LLMs checked the correctness and completeness of natural-language solutions. All out-
puts were subsequently reviewed and verified by human annotators to ensure accuracy and
reliability.

LLMs were also used to improve the clarity and readability of the manuscript. Tasks included:

• Correcting grammar and sentence structure.
• Formatting figure captions and table layouts consistently.

B DATA SOURCES

Textbook-level questions are adapted from the concepts presented in a university textbook Young
& Freedman (2019) and UGPhysics Xu et al. (2025). Olympiad-Easy questions are derived from
intermediate steps of competition problems, while Olympiad-Hard questions are based on ideas
from a physics Olympiad practice book Shu et al. (2008). UGPhysics is distributed under the CC
BY-NC-SA 4.0 license. For the textbooks published by Pearson Young & Freedman (2019) and
Science Press Shu et al. (2008), we strictly respect their copyright: rather than copying the questions
verbatim, we reformulated and rephrased them based on the underlying physics ideas.

C IMPLEMENTATION DETAIL

The generation configuration for the LLM roll-out of the experiment is as follows:

• Top-p: 0.95
• Temperature: 0.8
• Maximum tokens per generation: 16,384
• Repetition penalty: 1.0

Open-source models are tested under a 4-card H20 server. The entire open-source LLM roll-out
process costs about 2 days.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D LLM PROMPT TEMPLATES

We provide the prompt templates used to guide LLMs in generating Lean4 proofs.

With PhysLib:

Please first learn the new library besides mathlib and usage
examples before answering the question. You should refer to
the new unit system.

↪→

↪→

{PhysLib}

Complete the following Lean 4 code.
Provide your response in two parts, each enclosed in separate

markdown code blocks:↪→

```plan
# Proof Plan
- Outline the main proof steps and strategies.
- Highlight key intermediate lemmas and structures.
- Describe how to connect them to form the final proof.
```
```lean4
{Lean4_header}

/-- {NL_statement} -/
{Lean4_statement}
```

Without PhysLib:

Complete the following Lean 4 code.
Provide your response in two parts, each enclosed in separate

markdown code blocks:↪→

```plan
# Proof Plan
- Outline the main proof steps and strategies.
- Highlight key intermediate lemmas and structures.
- Describe how to connect them to form the final proof.
```
```lean4
{Lean4_header}

/-- {NL_statement} -/
{Lean4_statement}
```

E EXPERIMENT

E.1 FORMAT STUDY

The differences between the questions are shown in Figure 5. W can see that college-level state-
ments primarily involve numeric computations with a relatively wide range of physical quantities
with units and without multi-step formula derivations. The easy-level competition questions are
closer to transitional math problems in Lean and involve relatively simple formula derivations, typ-
ically within two steps and often only tactics from Mathlib. The hard level of competition problems
demands complex symbolic reasoning, handling quantifiers, and difficult functional reasoning , in-

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

cluding proving the existence of a number, holding of an inequality, or deriving a functional rela-
tion. Advanced mathematics concepts such as derivatives, integrals, limits and continuity may be
involved.

E.2 CASE STUDY

Behavior of the same theorem with and without PhysLib Figure 6 illustrates a college-level
theorem that Gemini can prove both with and without PhysLib in the context. The comparison
shows that, without the library, the proof relies entirely on Mathlib. When PhysLib is available, the
proof incorporates operations from the library and includes explanatory comments. This suggests
that PhysLib can enhance LLM reasoning by offering a broader set of tools.

Transfer tricks in mathematics Figure 9 presents a problem that was solved only by Goedel-
Prover-V2-8B across our entire experimental cycle. This demonstrates effective transfer of skills
learned from Lean mathematics training, specifically following natural-language intermediate steps
and performing multiple trial attempts. From the NL statement shown in Figure 8, we can see that
most proof steps are explicitly provided. By leveraging these NL hints and repeatedly applying try
tactics, the Goedel-Prover successfully solves the problem. This suggests that, although limited, the
reasoning capabilities of Lean math expert models can be extended to formal physics tasks.

Why the general model performs better To investigate this question, we further analyze the
performance of LLMs across different topics and find that general LLMs tend to perform better
in thermodynamics. For example, Gemini successfully proved 22 theorems in this field, whereas
DeepSeek-Prover-V2 completed only six. Figure 6 illustrates one theorem proved by both Gemini-
2.5 and DeepSeek-Prover-V2, highlighting differences in their proof strategies. We observe that
the expert prover’s proof is more complex and tedious, while Gemini’s proof is cleaner and more
straightforward. This pattern of differences consistently appears between expert provers and general
models, suggesting that in fields underrepresented in training, the prolonged deliberation of expert
models may lead to overthinking and suboptimal results.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

College

Two point charges are located on the x-axis
of a coordinate system: q1 = 1.0 nC is
at x = +2.0 cm, and q2 = -3.0 nC is at
x = +4.0 cm. What is the total
electric force exerted by q1 and q2 on
a charge q3 = 5.0 nC at x = 0?

theorem Electromagnetism_3_University
(q1 q2 q3 : Charge) (x1 x2 x3 : Length)
(hq1 : q1 = SI.nano (1 · coulomb))
(hq2 : q2 = SI.nano (-3 · coulomb))
(hq3 : q3 = SI.nano (5 · coulomb))
(hx1 : x1 = ((0.02:R) · meter))
(hx2 : x2 = ((0.04:R) · meter))
(hx3 : x3 = 0)(F : Force)
(hF : F = K * q3 * (q1 / (x1 - x3)ˆ2 +
q2 / (x2 - x3)ˆ2)):
F = ((9:R)*(10:R)ˆ(-22:Q)/32) · newton
:= by

simp [←Scalar.val_inj, hF, hq1, hq2,
hq3, hx1, hx2, hx3, K, SI.nano,
coulomb, meter, newton]

norm_num

Competition-Easy

The plates of a parallel-plate capacitor
are 2.50 mm apart, and each carries a
charge of magnitude 80.0 nC. The
plates are in vacuum. The electric
field between the plates has a
magnitude of \(4.00 \times
10ˆ{6}\,\text{V/m}\). What is the
capacitance?

theorem Ch13_electro_question_8
(V:Voltage)(C:Scalar
capitance_unit)(q:Charge)
(E:Scalar
(force_unit-charge_unit))(d:Length)
(h: capitance_unit=charge_unit -
voltage_unit)
(hC:C=(q/V).cast h)(hq:q=SI.nano (80 ·
coulomb))
(hV:V=E*d)(hE:E=(4e6:R) · StandardUnit
_)
(hd:d=SI.milli ((2.5:R)· meter)):
C=(1 / 125000000000:Q) · StandardUnit _
:= by

have hC_expanded : C = (q/(E*d)).cast h :=
by rw [hC, hV]

rw [hC_expanded, hq, hE, hd]
simp [nano, milli, coulomb, meter, ←

Scalar.val_inj]
norm_num

Competition-Hard

Capstan law: If a rope of coefficient of
friction µ wraps n turns (θ_total =
2πn) around a post, the tension ratio
between the heavy side M and the light
side m satisfies n = (1 / (2πµ)) *
log(M / m) assuming M > m > 0 and µ >
0.

theorem Ch2_Q1
(M m : Mass)
(µ : R)
(n : R)
(θ_total : R := 2 * Real.pi * n)
(T : R → Force)
(h_pos : 0 < M.val ∧ 0 < m.val ∧ 0 < µ)
(hM_gt_m : M.val > m.val)
(T_light_def : T 0 = m * g)
(T_heavy_def : T θ_total = M * g)
(capstan_differential : ∀ θ : R, deriv

(fun θ' => (T θ').val) θ = µ * (T θ
).val)

(capstan_integral : Real.log ((T θ
_total).val / (T 0).val) = µ * θ_total)

(theta_def : θ_total = 2 * Real.pi * n) :
n = (1 / (2 * Real.pi * µ)) * Real.log

(M.val / m.val) := by
rcases h_pos with ⟨hM, hm, hmu⟩
have h1 : Real.log ((T θ_total).val / (T

0).val) =
Real.log ((M * g).val / (m *

g).val) := by rw [T_heavy_def,
T_light_def]

have h2 : Real.log ((M * g).val / (m *
g).val) = Real.log (M.val / m.val) :=
by
have h3 : (M * g).val / (m * g).val =
M.val / m.val := by
field_simp; ring_nf; simp; ring

rw [h3]
have h3 : Real.log (M.val / m.val) = µ * θ

_total := by linarith
[capstan_integral, h1, h2]

have h4 : Real.log (M.val / m.val) = µ *
(2 * Real.pi * n) := by rw [theta_def]
at h3; linarith

have h5 : µ ̸= 0 := by linarith
have h6 : Real.pi ̸= 0 := Real.pi_ne_zero
have h7 : Real.log (M.val / m.val) = 2 *

Real.pi * µ * n := by linarith [h4]
have h8 : n = (Real.log (M.val / m.val))

/ (2 * Real.pi * µ) := by field_simp;
linarith

rw [h8]; field_simp; ring_nf; field_simp;
ring

Figure 5: Three sampled physics questions from College Textbook, Olympics-Easy, Olympics-Hard
problems. Each example shows the natural language problem statement followed by its correspond-
ing Lean formalization with a verified proof.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Gemini-2.5-pro without PhysLib

theorem Mechanics_73_University
(T : Force)(m_1 m_2 : Mass)(a : Acceleration)
(ha : a = m_2 * g / (m_1 + m_2))
(hT : T = (m_1 * m_2) / (m_1 + m_2) * g):
(a = (m_2 / (m_1 + m_2)) * g ∧ T = (m_1 * m_2) / (m_1 + m_2) * g) :=

by
constructor
· rw [ha]
ext
simp
rw [mul_div_right_comm]

· exact hT

Gemini-2.5-pro with PhysLib

theorem Mechanics_73_University
(T : Force)(m_1 m_2 : Mass)(a : Acceleration)
(ha : a = m_2 * g / (m_1 + m_2))
(hT : T = (m_1 * m_2) / (m_1 + m_2) * g):
(a = (m_2 / (m_1 + m_2)) * g ∧ T = (m_1 * m_2) / (m_1 + m_2) * g) :=

by
constructor
. -- The first goal is to prove the rearranged expression for
acceleration `a`.
-- We start by substituting `a` with its given definition from
hypothesis `ha`.
rw [ha]
-- The goal is now to prove an algebraic equivalence between two
`Scalar` expressions.
-- We use the `Scalar.val_inj` lemma to transform this into an
equality of their
-- underlying real values. This is a standard technique in the
PhysLib library.
simp only [← Scalar.val_inj]
-- Now, with the goal being an equality of real numbers, we can
use `simp` to apply
-- the library's rules for how `.val` distributes over arithmetic
operations.
simp
-- The resulting goal is `m_2.val * g.val / (m_1.val + m_2.val) =
m_2.val / (m_1.val + m_2.val) * g.val`.
-- This is a standard algebraic identity which the `ring` tactic
can solve.
ring

. -- The second goal is to prove the expression for tension `T`,
which is identical
-- to the hypothesis `hT`.
exact hT

Figure 6: Two examples from LeanPhysBench demonstrating different proofs of the same college-
level problem, generated by Gemini-2.5-pro with and without PhysLib.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Gemini-2.5-pro with PhysLib

theorem Mechanics_37_University
(x_1 y_1 d_1 : Length)(t_1 t : Time)(xf1 yf1: Time → Length)
(ht1 : t_1 = 2 · second)
(hxx: ∀ t, xf1 t = 2 · meter - ((0.25 : Q) · meter / second**2)*
t**2)

(hx: x_1 = xf1 t_1)
(hyy: ∀ t, yf1 t = 1 · meter / second * t + ((0.025 : Q) · meter /
second**3)* t**3)

(hy: y_1 = yf1 t_1)
(hd: d_1**2 = (x_1**2 + y_1**2)):
(x_1 = 1 · meter ∧ y_1 = (2.2 : Q) · meter ∧ d_1**2 = (5.84 : Q) ·
meter**2) := by

-- First, calculate the value of x_1 at t_1.
have hx_val : x_1 = 1 · meter := by
-- Substitute the given expressions and values, convert to an
equality of real numbers,
-- simplify the units, and compute the final numerical value.
simp [hx, hxx, ht1, ←Scalar.val_inj, meter, second]
norm_num

-- Second, calculate the value of y_1 at t_1.
have hy_val : y_1 = (2.2 : Q) · meter := by
-- The strategy is the same as for x_1.
simp [hy, hyy, ht1, ←Scalar.val_inj, meter, second]
norm_num

-- Third, calculate the squared distance d_1**2 using the results
for x_1 and y_1.

have hd_val : d_1**2 = (5.84 : Q) · meter**2 := by
-- Substitute the formula for d_1**2 and the proven values of x_1
and y_1.
simp [hd, hx_val, hy_val, ←Scalar.val_inj, meter]
norm_num

-- Finally, use the proven facts to establish the conjunction.
simp [hx_val, hy_val, hd_val]

Figure 7: An example of a problem solved by adding PhysLib.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Goedel-Prover with PhysLib (nature statement)

Question 74: You want to move a 500 N crate across a level floor. To start the crate moving,
you have to pull with a 230 N horizontal force. Once the crate starts to move, you can keep
it moving at constant velocity with only 200 N. What are the coefficients of static and kinetic
friction? Follow the process: Just before the crate starts to move, we have:∑

Fx = T +
(
− (fs)max

)
= 0 so (fs)max = T = 230 N∑

Fy = n+ (−w) = 0 so n = w = 500 N

Now we solve (fs)max = µsn, for the value of µs:

µs =
(fs)max

n
=

230 N

500 N
= 0.46

After the crate starts to move, we have:∑
Fx = T +

(
− fk

)
= 0 so fk = T = 200 N∑

Fy = n+ (−w) = 0 so n = w = 500 N

Using fk = µkn, we find:

µk =
fk
n

=
200 N

500 N
= 0.40

show that the coefficients of static is µs = 0.4 and kinetic friction is µk = 0.40.

Figure 8: Natural Language statement of a problem solved only by Goedel-Prover.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Goedel-Prover with PhysLib (Lean4 statement)

theorem Mechanics_74_University_0
(f_s_max f_k n w : Force)(µ_s µ_k : Q)
(hw : w = 500 · newton)
(hn : n = w)
(hf_s_max : f_s_max = 230 · newton)
(hf_k : f_k = 200 · newton)
(hµ_s : µ_s = Scalar.val f_s_max / Scalar.val n)
(hµ_k : µ_k = Scalar.val f_k / Scalar.val n):
(µ_s = (0.46 : Q) ∧ µ_k = (0.40 : Q)) := by
have h1 : Scalar.val f_s_max = 230 := by
rw [hf_s_max]
simp [Scalar.val_smul, newton]

have h2 : Scalar.val n = 500 := by
have h21 : n = 500 · newton := by
rw [hn, hw]

rw [h21]
simp [Scalar.val_smul, newton]

have h3 : (µ_s : R) = (0.46 : R) := by
have h31 : (µ_s : R) = Scalar.val f_s_max / Scalar.val n := by
norm_cast at hµ_s ⊢

rw [h31]
rw [h1, h2]
norm_num

have h4 : µ_s = (0.46 : Q) := by
have h41 : (µ_s : R) = (0.46 : R) := h3
norm_num at h41 ⊢
norm_num
(try field_simp at *)
(try norm_cast at *)

have h5 : Scalar.val f_k = 200 := by
rw [hf_k]
simp [Scalar.val_smul, newton]

have h6 : (µ_k : R) = (0.40 : R) := by
have h61 : (µ_k : R) = Scalar.val f_k / Scalar.val n := by
norm_cast at hµ_k ⊢

rw [h61]
rw [h5, h2]
norm_num

have h7 : µ_k = (0.40 : Q) := by
have h71 : (µ_k : R) = (0.40 : R) := h6
norm_num at h71 ⊢
(try field_simp at *)
(try norm_cast at *)

have h8 : (µ_s = (0.46 : Q) ∧ µ_k = (0.40 : Q)) := by
exact ⟨h4, h7⟩

exact h8

end Mechanics

Figure 9: A problem solved only by Goedel-Prover.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

DeepSeek-Prover-V2

theorem Ch10_question_4
(P1 P2:Pressure) (V1 V2:Volume) (T1 T2:Temperature) (k:R)
(hV1:V1= 13· StandardUnit _)
(hT1:T1=((1.8*15+273.15):R) · kelvin)
(hT2:T2=((-44.5*1.8+273.15):R) · kelvin)
(hP1:P1=((1.01*10ˆ5):R) · pascal)
(hP2:P2= 868 · pascal)
(hV2:V2=V1*T2*P1/(T1*P2))
(hk:k=Real.rpow (V2/V1).val ((1/3):R)):
k=Real.rpow (10832250 / 144739) (1 / 3) := by

have h_main : k = Real.rpow (10832250 / 144739) (1 / 3) := by
have h1 : k = Real.rpow (V2 / V1).val ((1 / 3 : R)) := by rw [hk]
rw [h1]
have h2 : (V2 / V1).val = (10832250 / 144739 : R) := by
-- Simplify the expression for V2 / V1
simp_all [Pressure, Volume, Temperature, add_assoc, add_comm,

add_left_comm, mul_assoc, mul_comm, mul_left_comm,
div_eq_mul_inv, mul_inv_cancel_left]

<;> ring_nf at *
<;> norm_num at *
<;> field_simp [StandardUnit, mul_assoc, mul_comm,

mul_left_comm] at *
<;> ring_nf at *
<;> norm_num at *
<;> nlinarith

rw [h2]
<;> simp [Real.rpow_def_of_pos]
<;> norm_num
<;> ring_nf
<;> norm_num
<;> field_simp
<;> ring_nf
<;> norm_num
<;> nlinarith

exact h_main

Gemini-2.5-pro

theorem Ch10_question_4
(P1 P2:Pressure)(V1 V2:Volume)(T1 T2:Temperature)(k:R)
(hV1:V1= 13· StandardUnit _)
(hT1:T1=((1.8*15+273.15):R) · kelvin)
(hT2:T2=((-44.5*1.8+273.15):R) · kelvin)
(hP1:P1=((1.01*10ˆ5):R) · pascal)
(hP2:P2= 868 · pascal)
(hV2:V2=V1*T2*P1/(T1*P2))
(hk:k=Real.rpow (V2/V1).val ((1/3):R)):
k=Real.rpow (10832250 / 144739) (1 / 3) := by

-- Use all hypotheses to substitute the variables and simplify the
expression.

-- `simp` will use `hk` to substitute `k`, `hV2` to substitute `V2`,
-- and the other hypotheses to substitute the numerical values.
-- The `@[simp]` lemmas in the UnitsSystem library will handle the
`.val` operations.

simp [hk, hV2, hV1, hT1, hT2, hP1, hP2]
-- The goal is now a purely numerical equality. Use `norm_num` to
verify it.

norm_num

Figure 10: Demonstrating different proof styles on the same problem.

22

	Introduction
	The Lean4PHYS Framework
	PhysLib
	Foundation of Physics: Unit System
	Topic-based theorem development
	Community-driven and Extensibility

	LeanPhysBench
	Data Collection & Preprocessing
	Formalization pipeline
	Benchmark Statistics

	Experiment
	Experiment Setup
	Main Result
	Problem Format Study
	Case Study

	Related Work
	Formal Reasoning
	Lean in Subjects Beyond Mathematics
	Physics Datasets

	Conclusion
	Use of LLMs
	Data Sources
	Implementation Detail
	LLM Prompt Templates
	Experiment
	Format Study
	Case Study

