A Data-driven ML Approach for Maximizing
Performance in LLM-Adapter Serving

Ferran Agull6'* Joan Oliveras'> Chen Wang® Alberto Gutierrez-Torre!

Olivier Tardieu®> Alaa Youssef> Jordi Torres'> Josep LI. Berral'?
'Barcelona Supercomputing Center (BSC), Spain
2Universitat Politécnica de Catalunya - BarcelonaTech (UPC), Spain
3IBM Research, USA
{ferran.agullo, joan.oliveras, alberto.gutierrez, jordi.torres}@bsc.es
josep.ll.berral@upc.edu {chen.wangl, tardieu, asyousse}@ibm.com

Abstract

With the rapid adoption of Large Language Models (LLMs), LLM-adapters have
become increasingly common, providing lightweight specialization of large-scale
models. Serving hundreds or thousands of these adapters on a single GPU allows
request aggregation, increasing throughput, but may also cause request starvation
if GPU memory limits are exceeded. To address this issue, this study focuses
on determining the joint configuration of concurrent and parallel adapters that
maximizes GPU throughput without inducing starvation, given heterogeneous
adapter and traffic properties. We propose a data-driven ML approach leveraging
interpretable models to tackle this caching problem and introduce the first Digital
Twin capable of reproducing an LLM-adapter serving system, enabling efficient
training data generation. Experiments with the vLLM framework and LoRA
adapters show that the Digital Twin reproduces throughput within 5.1% of real
results, while the ML approach predicts optimal numbers of concurrent and parallel
adapters with an error of at most 7.2% under heterogeneous, real-world workloads.

1 Introduction

With the rapid advancement and widespread adoption of [Large Language Models (LLMs)| the
demand for[LLM}adapters has grown significantly. While[LLMs|are large-scale models trained to
achieve strong performance across diverse language tasks, adapters specialize this general knowledge
to concrete applications through lightweight parameter additions [1} [2} 3| 4]. Their compact size
enables serving systems to host hundreds or even thousands of adapters on a single GPU [, |6]],
thereby increasing throughput by aggregating requests from many adapters. However, excessive
concurrency can reach a critical threshold at which request starvation arises, as the system becomes
unable to process incoming requests within available GPU memory limits. This saturation threshold
is governed by the interaction of adapter size, request length, and adapter arrival rate, which together
determine the degree of concurrency needed to reach the device limits. Request length and adapter
size affect the per-request memory usage, while adapter size and arrival rate jointly determine the
memory demand per adapter.

Moreover, GPU memory capacity is often insufficient to hold all adapter weights, and only those
loaded into device memory can actively process requests. To address this, systems dynamically
swap adapters between storage and GPU memory. Adapters resident on the GPU execute requests in
parallel with other loaded adapters [[7], while swapping enables concurrent execution across those
that cannot fit. In some cases, limiting the number of simultaneously loaded adapters—even when
memory is sufficient—can improve throughput by leaving more GPU memory available for request

ML For Systems workshop at Neural Information Processing Systems (NeurIPS 2025), San Diego.

Varying size Varying output length Varying rate Varying slots
A~ 4

= —— 8 —— 58 —e— 0.0125 —— 12
a 16 115 0.025 96
£ 4000 W e 32] —e— 231] —— 0.05] —— 120
5 —— 64 —— 460 —— 0.1 —o— 256 |
*%2000— X max | —— 920 | —— 02 0X———e— 320 |
g’ X max, X max X max
o ~
[

0 100 200 300 0 100 200 300 0 100 200 300 O 100 200 300

adapters (#) adapters (#) adapters (#) adapters (#)

Figure 1: Throughput evolution with the number of concurrent adapters when varying adapter sizes,
adapter request rates, request output lengths, and adapter slots. The results are shown for Llama-2-
7B [L1]] and a public adapter [12], using by default rate 0.05 reqs/s, adapter size 8, 250 input tokens,
and 231 output tokens. The max crosses denote the targeted optimal of the adapter caching problem.

processing. Conversely, loading too few may prevent loaded adapters from fully utilizing the available
device memory. Thus, selecting the optimal number of adapters to process in parallel is a key server
configuration parameter, that also impacts throughput and the saturation threshold.

Building on the above, this study addresses the following problem: Given a set of adapters to serve
with specified heterogeneous adapter sizes, arrival rates, and request lengths, determine the
joint configuration of concurrent and parallel adapters that maximizes a GPU’s achievable
throughput without inducing request starvation. We refer to this formulation as the adapter
caching problem.

While prior research has investigated the optimization of [LLM}adapter serving through kernel-level
enhancements [7], memory management techniques []], and scheduling strategies [[8]], this specific
adapter caching problem remains largely under-explored. The most closely related work, dLoRA [9],
employs a greedy, heuristic-driven algorithm to proactively determine how many adapters to serve per
GPU in a multi-device system. Advancing on this direction, our work makes two key contributions:
(1) we introduce the usage of interpretable ML models to estimate the optimal joint configuration of
the adapter caching problem, maximizing single-GPU throughput while preventing request starvation;
and (2) we develop the first Digital Twin capable of accurately reproducing the behavior of an
[CLM}adapter serving system, enabling the timely generation of synthetic data required to train the
ML models. Together, these two contributions constitute the so-called data-driven ML approach. We
work with the widely adopted vVLLM framework [10]], in conjunction with LoRA adapters [1]]. In
vLLM, the maximum number of parallel adapters in GPU is statically defined at server startup as a
fixed number of adapter slots; we adopt this terminology from this point onward.

2 Illustrating the adapter caching problem

Figure[I] provides a visual illustration of the adapter caching problem. It depicts throughput (y-axis)
as a function of the number of concurrently served adapters (x-axis) across different homogenous
scenarios. Each curve exhibits two distinct regimes: initially, throughput increases proportionally
with the number of adapters, as the system can accommodate the additional requests. Beyond a
certain threshold, however, throughput growth slows or declines, reflecting the system’s inability to
process excess requests in time, leading to request starvation. The number of concurrent adapters at
the transition between these regimes, along with the adapter slots that achieve the best performance
(rightmost figure), define the joint configuration targeted in the adapter caching problem for every
scenario, which maximizes throughput while avoiding starvation. Practically, we identify this point
as the highest measured throughput that remains above 90% of the total incoming token rate. As
noted earlier and visible in the figure, this optimal point is highly dependent on the combination of
adapter size, request length, and arrival rate, with even greater variation expected in scenarios with
heterogeneous characteristics, which represents the real-world behaviour tested in this study.

3 Data-driven ML method

Rather than relying on heuristics, we directly employ ML models to solve the adapter caching problem.
We evaluate fast, lightweight, and interpretable models that enable rapid, low-resource predictions
suitable for production deployment, while producing outputs that are easily interpretable and allow
extraction of simple decision rules. Specifically, we employ three types of linear models—standard
linear regression (LinearRegression), Bayesian Ridge regression (BayesianRidge), and Partial Least
Squares Regression (PLSRegression)—, as well as, three types of decision tree-based models: the
default Random Forest Regressor (RFRegressor), RuleFitRegressor [13] and FIGSRegressor [14].
All models come from the Python libraries scikit-learn [15] and imodels [[16]. The inputs for these
models consist on the sizes and rates of the adapters to be served in the given scenario, encoded via
the minimum, maximum, mean, and standard deviation of all values. Request lengths are fixed using
a cleaned ShareGPT dataset version [17]], retaining their heterogeneous input/output lengths. For
each model type, we create two instances: one to predict the optimal number of concurrent adapters,
and another to predict the optimal number of adapter slots. Ground truth for both outputs is obtained
by systematically recreating the scenario defined by the inputs, in a manner analogous to Figure|[T}
evaluating a representative set of combinations of concurrent adapters and adapter slots, and selecting
the one obtaining the highest throughput that does not induce request starvation.

Due to the significant resource and time consumption of serving benchmarking in performing
these kind of searches, we introduce the first Digital Twin (DT) of an[LLM}adapter serving system,
specifically targeting the tested vLLM framework. Unlike a traditional simulator, this Digital Twin
emulates the system’s state and behavior across key execution steps. Although operating offline,
it reproduces scheduling, memory allocation, adapter loading, and model forward pass along a
simulated timeline reflecting real-time execution. We use predictive performance models to estimate
the latency of each step (expanded in Appendix [C). These performance models are constructed from
simplifications or modifications of prior work [18, 19l [20] and are formalized in Equation [I] (novelty
discussed in Appendix D). For simplicity, the predictive models are specific to each LLM—-hardware
combination, meaning a separate model must be trained for every combination to be evaluated.

Latency of the backbone model forward pass = K4 R unning + K5

Latency of the adapters forward pass overhead = KA ynning + K7

Latency of the scheduler = K1 R, ynning + Ko Ruwaiting + K3 Ruwaiting(G/N)
Latency for loading adapters = simple dictionary created from benchmark data

ey

where all constants K, are calibrated using benchmarking data with a non-linear least squares fitting
(curve_fit method of SciPy python package [21]), and where R, unning> Rwaiting> Arunning, G and
N denote the number of running requests, waiting requests, parallel adapters, adapter slots, and
concurrent adapters, respectively.

4 Results

Setup. We use Llama-3.1-8B-Instruct [22] and Qwen2.5-7B-Instruct [23]] with LoRA adapters
derived from two HuggingFace adapters [24} 25]]. All experiments are conducted on a node equipped
with a NVIDIA Hopper H100 (64GB HBM2), 128GB RAM memory, and 20 CPU cores.

4.1 Modelling results

We evaluate the Digital Twin by comparing its simulated scenarios against real-system benchmark
results, as summarized in Table[T] We average similarity results under high-rank scenarios—equally
considering input adapters of ranks 8, 16, and 32—and medium- to low-rank scenarios, only consider-
ing ranks of 8 and 16. For adapter rates, we evaluate high-rate scenarios (0.2, 0.1, 0.05) and low-rate
scenarios (0.025, 0.0125, 0.00625). For each scenario, we simulate one hour of serving and evaluate
performance metrics across a range of served adapters (8—384) and adapter slots (8—384). Overall,
the Digital Twin closely reproduces real-system behavior, particularly for throughput and [[nter-Token
with maximum errors of 5.1% and 9.6%, respectively. [Time To First Token (TTFT),
exhibits a higher average error of 17.9%. In terms of execution efficiency, the DT achieves up to a
90x speedup relative to the full one-hour being simulated, though there remains substantial room for

further improvement. Resource consumption is minimal: the DT runs without a GPU, utilizes at most
a single CPU core, and requires approximately 200MB of RAM (expanded results in Appendix [E).

| Digital Twin ML model
Model | Throu. ITL TTFT Time CPU Mem | Type Con. Adap. Time
(%) (%) (%) (s) (%) (%) Adap. Slots (ms)

(%) (%)
=) Linear 40.6 174 0.04
E 4.2 9.6 174 395 90.1 210 Tree 0.1 6.7 0.13
- Tree** 37 109 0.10
5 Linear 38.6 236 0.03
5 5.1 9.1 179 414 90.7 211 Tree 1.0 7.2 0.15

Tree** 1.0 12.4 0.09

Table 1: Final results comparing Digital Twin and ML models against benchmark values. Similarity
is measured using the SMAPE metric (lower values indicate closer alignment). Execution time is
reported for both approaches, and resource usage is also provided for the DT results. For the ML
models, we report the best results from both Linear-based and Tree-based model types (expanded in
Appendix @, along with results from the interpretability solution under Tree **.

4.2 Predicting optimal joint configuration

We evaluate the ML model in identifying the joint configuration of the adapter caching problem. The
evaluation focuses on scenarios with more highly heterogeneous adapter rates and sizes than the
previous section, reflecting real-world conditions. Specifically, for adapter rates, we consider input
adapters with rates from all combinations of three values drawn from the set [3.2, 1.6, 0.8, 0.4, 0.1,
0.05, 0.025, 0.0125, 0.00625, 0.003125]. Similarly, for adapter sizes, all possible three values are
considered from the set [8, 16, 32]. For each size-rate mix, we evaluate all combinations from a range
of concurrent adapter counts (8—384) and adapter slot counts (8-384) to establish the ground truth
for these two ML outputs. Of these combinations, 99% are simulated using the DT to generate the
training and validation dataset (87,198 runs), while only the remaining 1% is reserved for testing with
the real system (882 runs)—given the resource- and time-intensive nature of benchmarking.
During training, we employ 5-fold cross-validation and perform hyperparameter optimization using
the HalvingGridSearchCV method from scikit-learn [15]. The right portion of Table[T|summarizes the
results on the testing set. Linear models fail to capture the complexity of the task, whereas tree-based
models generate predictions closely aligned with actual values—achieving a maximum average error
of 1.0% for the number of concurrent adapters in both models. Prediction error for adapter slots
remains higher, with a maximum of 7.2%, suggesting room for further improvement. With an average
inference time of at most 0.15 ms across all tree-based models, they are well-suited for production
deployment. Additionally, for both ML outputs, we compress the best-performing tree-based model
into a single, shallow tree that can be represented as fewer than 30 highly interpretable rules of the
form “condition 1 AND condition 2 ... — RESULT”. Despite this reduction, the tree maintains
competitive performance (Table[I] row Tree**) and provides a highly interpretable decision-making
framework suitable for production deployment (expanded in Appendix [G).

5 Discussion and Conclusion

We have presented a data-driven ML approach for determining the joint configuration of concurrent
and parallel adapters that maximizes throughput while avoiding request starvation in single-GPU
[CLM}adapter serving systems. As shown in Table[I] the predicted configurations closely match
the real benchmarked optimum, even in heterogeneous scenarios. Notably, simplified and highly
interpretable versions of the ML models also achieve competitive performance. Supporting this
approach, we developed the first Digital Twin capable of accurately replicating an [LLM}adapter
serving system, with potential applications beyond generating training data for this work.

Limitations: The key limitation of this study is that the proposed approach, as well as the conducted
experiments, targeted only single-GPU configurations. Future work will explore multi-device and
multi-node extensions to evaluate performance in realistic production settings and allow comparison
with methods such as dLoRA [9]. In addition, because the approach predicts only the number
of concurrent and parallel adapters rather than the allocation of specific adapters, it may perform
suboptimally in scenarios with very few adapters that exhibit highly diverse characteristics.

6 Acknowledgments

This work has been partially financed by the EU-HORIZON MSCA programme under grant agree-
ment EU-HORIZON MSCA GA.101086248. Also, it has been partially financed by Generalitat de
Catalunya (AGAUR) under grant agreement 2021-SGR-00478, by Severo Ochoa Center of Excellence
CEX-2021-001148-S-20-3, and by the Spanish Ministry of Science (MICINN), the Research State
Agency (AEI) and European Regional Development Funds (ERDF/FEDER) under grant agreement
PID2021-1262480B-100, MCIN/AEI/10.13039/ 501100011033/ FEDER, UE.

References

[1] E.J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen et al., “Lora:
Low-rank adaptation of large language models.” ICLR, vol. 1, no. 2, p. 3, 2022.

[2] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe, A. Gesmundo, M. At-
tariyan, and S. Gelly, ‘“Parameter-efficient transfer learning for nlp,” in International conference
on machine learning. PMLR, 2019, pp. 2790-2799.

[3] H. Liu, D. Tam, M. Mugeeth, J. Mohta, T. Huang, M. Bansal, and C. A. Raffel, “Few-shot
parameter-efficient fine-tuning is better and cheaper than in-context learning,” Advances in
Neural Information Processing Systems, vol. 35, pp. 1950-1965, 2022.

[4] D. Guo, A. Rush, and Y. Kim, “Parameter-efficient transfer learning with diff pruning,” in
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), C. Zong, F. Xia, W. Li, and R. Navigli, Eds. Online: Association for Computational
Linguistics, Aug. 2021, pp. 4884-4896.

[5] Y. Sheng, S. Cao, D. Li, C. Hooper, N. Lee, S. Yang, C. Chou, B. Zhu, L. Zheng, K. Keutzer
et al., “Slora: Scalable serving of thousands of lora adapters,” Proceedings of Machine Learning
and Systems, vol. 6, pp. 296-311, 2024.

[6] R. Briiel-Gabrielsson, J. Zhu, O. Bhardwaj, L. Choshen, K. Greenewald, M. Yurochkin, and
J. Solomon, “Compress then serve: Serving thousands of lora adapters with little overhead,”
arXiv preprint arXiv:2407.00066, 2024.

[7] L. Chen, Z. Ye, Y. Wu, D. Zhuo, L. Ceze, and A. Krishnamurthy, “Punica: Multi-tenant lora
serving,” Proceedings of Machine Learning and Systems, vol. 6, pp. 1-13, 2024.

[8] N. Iliakopoulou, J. Stojkovic, C. Alverti, T. Xu, H. Franke, and J. Torrellas, “Chameleon:
Adaptive caching and scheduling for many-adapter 1lm inference environments,” arXiv preprint
arXiv:2411.17741, 2024.

[9] B. Wu, R. Zhu, Z. Zhang, P. Sun, X. Liu, and X. Jin, “dLoRA: Dynamically orchestrating
requests and adapters for LORA LLM serving,” in 18th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 24), 2024, pp. 911-927.

[10] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez, H. Zhang, and . Stoica,
“Efficient memory management for large language model serving with pagedattention,” in
Proceedings of the 29th Symposium on Operating Systems Principles, 2023, pp. 611-626.

[11] H. Touvron et al., “Llama 2: Open foundation and fine-tuned chat models,” 2023. [Online].
Available: https://arxiv.org/abs/2307.09288

[12] yardl, “Sql lora for llama-2-7b,” 2024. [Online]. Available: https://huggingface.co/yardl/
[lama-2-7b-sql-lora-test

[13] J. H. Friedman and B. E. Popescu, ‘“Predictive learning via rule ensembles,” The Annals of
Applied Statistics, vol. 2, no. 3, pp. 916-954, 2008.

[14] Y. S. Tan, C. Singh, K. Nasseri, A. Agarwal, J. Duncan, O. Ronen, M. Epland, A. Kornblith,
and B. Yu, “Fast interpretable greedy-tree sums (figs),” ArXivorg, 2023.

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

[16] C. Singh, K. Nasseri, Y. S. Tan, T. Tang, and B. Yu, “imodels: a python package for fitting
interpretable models,” p. 3192, 2021.

[17] anon8231489123, “Clean sharegpt dataset,” 2023. [Online]. Available: https://huggingface.co/
datasets/anon8231489123/ShareGPT_Vicuna_unfiltered

https://arxiv.org/abs/2307.09288
https://huggingface.co/yard1/llama-2-7b-sql-lora-test
https://huggingface.co/yard1/llama-2-7b-sql-lora-test
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered

[18] H. Zhang, Y. Tang, A. Khandelwal, and I. Stoica, “SHEPHERD: Serving DNNs in the
wild,” in 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI
23). Boston, MA: USENIX Association, Apr. 2023, pp. 787-808. [Online]. Available:
https://www.usenix.org/conference/nsdi23/presentation/zhang-hong

[19] H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Philipose, A. Krishnamurthy, and R. Sundaram,
“Nexus: a gpu cluster engine for accelerating dnn-based video analysis,” in Proceedings of the
27th ACM Symposium on Operating Systems Principles, ser. SOSP *19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 322-337.

[20] S.Li, H. Lu, T. Wu, M. Yu, Q. Weng, X. Chen, Y. Shan, B. Yuan, and W. Wang, “Caraserve:
Cpu-assisted and rank-aware lora serving for generative llm inference,” arXiv preprint
arXiv:2401.11240, 2024.

[21] P. Virtanen et al., “Scipy 1.0: Fundamental algorithms for scientific computing in python,”
Nature Methods, vol. 17, no. 3, pp. 261-272, 2020.

[22] A. Grattafiori et al., “The llama 3 herd of models,” 2024. [Online]. Available:
https://arxiv.org/abs/2407.21783

[23] A. Yang et al, “Qwen2.5 technical report,” 2025. [Online]. Available: https!
/larxiv.org/abs/2412.15115

[24] Wengwengwhale, “Finance lora adapter for llama-3.1-8b instruct,” 2024. [Online]. Available:
https://huggingface.co/Wengwengwhale/llama-3.1-8B-Instruct- Finance-lora-adapter

[25] zjudai, “Medical lora for qwen2.5-7b-instruc,” 2025. [Online]. Available: |ttps:
//huggingtace.co/zjudai/flowertune- medical-lora-qwen2.5-7b-instruct

[26] P. G. Recasens, Y. Zhu, C. Wang, E. K. Lee, O. Tardieu, A. Youssef, J. Torres, and J. L. Berral,
“Towards pareto optimal throughput in small language model serving,” in Proceedings of the 4th
Workshop on Machine Learning and Systems, 2024, pp. 144—152.

[27] P. G. Recasens, F. Agullo, Y. Zhu, C. Wang, E. K. Lee, O. Tardieu, J. Torres, and J. L. Berral,
“Mind the memory gap: Unveiling gpu bottlenecks in large-batch 1lm inference,” in 2025 IEEE
18th International Conference on Cloud Computing (CLOUD), 2025, pp. 277-287.

[28] J. Cho, M. Kim, H. Choi, G. Heo, and J. Park, “Llmservingsim: A hw/sw co-simulation
infrastructure for llm inference serving at scale,” in 2024 IEEE International Symposium on
Workload Characterization (IISWC). 1EEE, 2024, pp. 15-29.

[29] G.-I. Yu, J. S. Jeong, G.-W. Kim, S. Kim, and B.-G. Chun, “Orca: A distributed serving system
for Transformer-Based generative models,” in 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 22), 2022, pp. 521-538.

https://www.usenix.org/conference/nsdi23/presentation/zhang-hong
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://huggingface.co/Wengwengwhale/llama-3.1-8B-Instruct-Finance-lora-adapter
https://huggingface.co/zjudai/flowertune-medical-lora-qwen2.5-7b-instruct
https://huggingface.co/zjudai/flowertune-medical-lora-qwen2.5-7b-instruct

A Main LLM-adapter serving overheads

We describe the three main overheads that we encountered when working with adapters, providing
more insights into the variations of the targeted optimal configuration. In order to compare the
impact of different input/output lengths, we create three synthetic datasets by repeating a single
request sampled from the clean ShareGPT dataset at the 25th percentile, mean, and 75th percentile
of input/output length: SmallRequest (23/27 tokens), MediumRequest (250/231), and LargeRequest
(423/358). We use Llama-2-7B and Llama-2-13B models with LoRA adapters also based on a
publicly available adapter [12].

A.1 Increased memory usage

The increased usage of GPU memory for saving adapters’ weights reduces the available space for
requests’ KV cache values, limiting the batch size, and consequently the throughput. In this way, as
depicted in left part of Figure[2] as the number of loaded adapters increases, the maximum achievable
throughput also decreases in a somehow exponential pattern. This decrease occurs earlier and happens
to be more pronounced with larger models and adapter sizes in accordance with their higher memory
usage. Figure 2] also shows the corresponding impact in batch size, which decreases linearly with
the number of loaded adapters. This linear trend contrasts with the exponential decline observed in
throughput, a difference that is linked to a broader characteristic of serving not just adapter
serving. As reported in several works, increasing the batch size beyond a certain point leads to
diminishing returns in throughput—a phenomenon known as the throughput plateau [26} 27]—which
corresponds to the leftmost points of each line in the figure.

Insight. Each loaded adapter affects maximum throughput, depending on model, request length, and
adapter size—but this impact fades at large batch sizes due to the throughput plateau.

—— llama-2-7b - llama-2-13b I rank 8 3 rank 16 I rank 32
) MediumRequest LargeRequest MediumRequest
& 4000 & 1509
c <
E 20004 g
)]
=] g 50
e Q
i:‘; 04 E 04
s 0 200 400 600 800 O 200 400 600 800 0 200 400 600 800
adapters in GPU (#) adapters in GPU (#) adapters in GPU (#)

Figure 2: Maximum throughput (left) and batch size (right) evolution as the number of loaded
adapters increases, shown for both models, varying adapter sizes/ranks and two datasets. Crosses
indicate when no space is left for loading more adapters.

A.2 Increased computational workload

Building upon the analysis by Li et al. [20], Figure [3]illustrates the impact of increasing the number
of unique adapters in the batch on both throughput and Adapter weights introduce overhead
to activation computation and GPU cache transfers. The most significant slowdown occurs when
moving from zero to one adapter, as this introduces a sequential computation step that cannot be
parallelized across requests. Beyond this point, the overhead does not scale in proportion to the
number of adapters. While throughput degradation is relatively consistent across datasets, smaller
requests can be more affected due to their higher batch sizes, which allow more adapters per batch.

Insight. Serving more unique adapters significantly reduces throughput, bounded by the maximum
batch size.

I rank 8 [@ rank 16 BB rank 32
SmallRequest MediumRequest SmallRequest
400

8000 1

mean ITL (ms)
3
o

t. throughput (tokens/s)

6000 - 1
L\]

4000+ 1 L\" 200 r»r—“"
0 100 200 300 0 100 200 300 0 100 200 300
batch unique adap. (#) batch unique adap. (#) batch unique adap. (#)

Figure 3: Maximum throughput (left) and (right) as the number of unique adapters in the batch
increases, shown for Llama-2-7B, varying adapter sizes/ranks, and two datasets. Lines terminate at
the point where the batch size can no longer be increased.

A.3 Loading time

Building upon the analysis by Iliakopoulou et al. [8]], Figure @] presents the loading time relative to
request latency, distinguishing between loading from disk or CPU memory. Larger adapters incur
greater overhead, and loading from disk is, on average, 70% slower than loading from CPU memory.
Furthermore, the request length significantly influences the relative impact: for small requests, loading
from CPU introduces a latency overhead of 7-16%, depending on adapter size, whereas for longer
requests, this overhead drops below 2%. Since longer requests require more computation time, the
fixed cost of loading becomes comparatively smaller.

Insight. Loading overhead is significant only for short requests and can be largely mitigated by
preloading adapters into CPU memory.

BN SmallRequest MediumRequest BN LargeRequest
3 From disk From CPU
=
© 80 15
1]
g 60
R 10
g
g 40
5
220
=
©
=z 0 0
= rank 8 rank 16 rank 32 rank 8 rank 16 rank 32

Figure 4: Loading times for varying adapter sizes, shown relative to request latency across the
three datasets for Llama-2-7B, and storage type. Request latency is computed as T POT x
(output_tokens — 1) where TPOT is the time per output token.

B S-LoRA case

We include a brief analysis using the S-LoRA framework [3] to demonstrate that our problem is not
specific to vVLLM and can be applied to other frameworks. Figure 5| presents the optimal configuration
of concurrent adapters in S-LoRA across different arrival rates. Notably, the decline in throughput
as the rate decreases is remarkably modest compared to vLLM, highlighting the relevance of the
S-LoRA design. Nevertheless, we still can perceive a 15-20% decrease in the maximum throughput.
Our approach could be handy in identifying these throughput variations and determining the number
of adapters at which this maximum is achieved.

12000 : rates
H —e— 0.0125
100004 0.025

. . —e— 0.05

8000 {-—f—f e =e=0.1

: 3 . —o— 0.2

6000 { X3 o 04

4000

total throughput (tokens/s)

20001

100 200 300 400 500 600
adapters (#)

Figure 5: Optimal concurrent adapters when working with S-LoRA (mark with crosses) with varying
adapter rates in Llama-2-7B, with rank 32, 250 input tokens and 231 output tokens.

C Digital Twin extended description

As introduced, the proposed Digital Twin (DT) is an offline emulator that replicates an online
adapter serving system that serves requests from multiple adapters of the same backbone model.
Specifically, we try to replicate the widely used vLLM [10] framework. As LLMServingSim [28]],
we mirror the "infinite" loop over the running batch of modern LLM serving systems (online
batching) [29]], enabling the accurate estimation of key metrics. Figure [§] illustrates the overall
behavior of this loop, the different components involved, and their interactions. The DT is build on
modular components, each responsible for simulating a specific aspect of the system, that rely on
predictive performance models—described in Subsection [C.T}—to predict the time required on the
different tasks. Each iteration of the loop follows the same sequence of actions. First, new request
arrivals are collected based on the current simulation time and the workload characteristics, and
forwarded to the scheduler. The scheduler manages the running batch, removing finished requests
and adding new ones. As vLLM, we replicate a[First Come First Served (FCFS)|policy with greedy
allocation of KV cache and chunked prefill. Once the running batch is updated by the scheduler, it
is sent to the adapter cache and model components, which replicate the loading and unloading of
adapters with a[Least Recently Used (LRU)|policy and the model forward pass, respectively.

To run the DT, the expected workload and adapter characteristics—adapter rates and sizes—and key
server configuration parameters—mainly the number of adapter slots—are given. In addition, the DT
only needs the expected average and standard deviation of the input and output lengths.

C.1 Predictive performance models

Among the five performance models shown in Figure[6] M e, works an auxiliary estimator that
was not included in the main text. It estimates the available GPU memory for storing KV values
based on the number of adapter slots and adapter sizes, covering the memory overhead discussed in
Appendix [A] This estimator is built directly from retrieving the values obtained in that section. The
remaining four predictive models predict the latency of each component of the loop, as previously seen
in Equation [I] While Lat;qq is also derived from direct benchmarking of the loading process across
various sizes—coming from Appendix [A]results—, the other three use simple linear models fitted to
benchmarking data. Lats.p.q, representing the scheduler time, is estimated based on the number of
running requests (R ynning), Waiting requests (R yqiting), and an interaction term involving Ryqiting
and the ratio of adapter slots (G) to concurrent adapters (IV), reflecting the behavior of the original
scheduling algorithm. Lat,,q¢;, the latency of the base model, is estimated solely from the number
of running requests, following prior analyses [18,[19]]. Finally, Lat,qqptcrs, corresponding to the
computational overhead discussed in Appendix[A] is modelled as an overhead and estimated based
on the number of parallel adapters (A,ynning), in accordance with our results.

10

Every step actions

[it Estimators
Send new arrivals from last
step to scheduler :

—>» available memory
Mem a0
Retrieve current running —> scheduler latency
batch from scheduler | Lat sched
CD ‘ loading latency
—>

! Update adapters in CPU and ; 3
'GPU based on running batch ;

-1

L atlioad

e model latency
Run model forward pass for |) Latmoder
running batch : adapters latency
______________________ Latadapters

Figure 6: Digital Twin behavior and architecture.

D Novelty in Digital Twin predictive performance models

As outlined in the main text, the predictive performance models in Equation [T] can be viewed as
either simplifications or modifications of prior work. Since this characterization is somewhat broad,
we provide a more detailed explanation here. For the latency of the backbone LL.M, our approach
does not introduce much novelty: prior studies have employed linear models with respect to the
number of concurrent requests (batch size) for generic Al models [18l[19], which is consistent with
our benchmark results. For the latency overhead introduced by adapters, Li et al. [20] estimate it
based on the sum or maximum of the adapter ranks present in the batch. However, their formulation
did not align with our results, leading us instead to model the latency overhead as a function of the
number of parallel adapters, which has a way higher impact than the rank in our results. Finally,
regarding scheduler time, to the best of our knowledge we are the first to propose such a model for
@ serving. That said, this formulation is currently limited to vLLM, and further evaluation across
other frameworks is required to assess its generality.

E Digital Twin extra results

Figure [7] visually illustrates the differences between the Digital Twin and real system results for
one of the evaluated combinations. Consistent with the table results, the DT accurately estimates
throughput and [[TL] while[TTFI]shows larger deviations. Additionally, the figure highlights that
[[TL] estimation worses with a higher number of adapter slots, and [TTFT|becomes less accurate under
higher arrival rates.

F ML model extra results

Table 2] expands the results of the right portion of Table[T|for all tested model types.

G ML model interpretability claim

We simplify the best-performing model, the RFRegressor, by reducing it to a single decision tree
(parameter n_estimators) with a maximum depth of six (parameter max_depth) and enforcing a
minimum of ten samples per leaf (parameter min_samples_leaf). This reduction yields a highly
interpretable model that retains competitive performance, as shown in Table 2] under the Tree**
row. An example of such a tree, trained to predict the number of adapter slots, is presented in

11

—— Real results -+ Digital Twin BB rates 0.1 0.05 0.025 [rates 1.6 0.8 0.4

» Total throughput Mean ITL 1e6 Mean TTFT

@]

& 14000 300/ Z -

= 2 /| ¥

12000 g .| E

3 = P

Q, — 2001]

2100001 = =2

2 E :

S 8000 g 100 g1

S| = ©

] S REEETTY - "YU N = AR 1 SSF=" S N S N — S | S S S

= 6000 — EOAL _____________

- T T T T T T T T T

_8 0 100 200 0 100 200 0 100 200
adapter slots (#) adapter slots (#) adapter slots (#)

Figure 7: Comparison between DT and real results for throughput, and for varying adapter
slots and rates when serving 256 concurrent adapters of ranks 8 and 16 on Qwen-2.5-7B model.

Model Estimator Concurrent adapters Adapter slots (%) Time (ms)
(%)

LinearRegression 40.61 19.53 0.04

@ BayesianRidge 40.59 17.54 0.25
— PLSRegression 40.61 17.38 0.04
2 RFRegressor 0.05 6.73 0.13
£ RuleFitRegressor 6.36 14.89 1.80
= FIGSRegressor 0.14 14.06 0.03
Tree** 3.70 10.86 0.10
LinearRegression 38.59 23.70 0.03

@ BayesianRidge 38.57 24.57 0.03
A PLSRegression 38.56 23.62 0.03
@ RFRegressor 1.01 7.15 0.15
2 RuleFitRegressor 1.88 11.76 2.03
© FIGSRegressor 1.11 14.97 0.03
Tree™** 1.01 12.41 0.09

Table 2: Expanded results of the ML model for predicting the optimal joint configuration (concurrent
adapters and adapter slots). All values represent the SMAPE difference from the benchmark maximum
values, except time (reported in milliseconds), which corresponds to the summed inference time
across the two output predictions.

Figure [§] which also illustrates the set of simple rules in the form “condition 1 AND condition 2

. — RESULT” that can be extracted from the estimator. Equivalent models were generated for
the concurrent adapters output, requiring no more than 30 rules. These rule-based representations
provide an interpretable decision source for production systems while offering a lightweight, efficient,
and practical solution for real-world deployments.

12

std_rate = 0.88

[mean_rate = 0.03) (mean_rate = 1.16)

: samples = 12.6% samples = 17.7%
[max_mze = 24.0} (mean_rate = 0‘04] (value = 16.0 value = 32.0

. samples = 1.9% samples = 4.3% .
(rnean_sue = 12.0] [value = 192.0 value = 96.0 min_rate = 0.07

samples = 2.1% samples = 2.3% samples = 56.1% samples = 3.0%
value = 384.0 value = 320.0 value = 64.0 value = 32.0

(a) Simplified RFRegressor

1) rate < 0.88 & rate < 0.03 & maz(size) < 24. & size < 12. — 384
2) rate < 0.88 & rate < 0.03 & maz(size) < 24. & size > 12. — 320
3) rate < 0.88 & rate < 0.03 & max(size) > 24. — 192

4) rate < 0.88 & rate > 0.03 & rate < 0.04 — 96

5)rate < 0.88 & rate > 0.03 & rate > 0.04 & min(rate) < 0.08 — 64
6) rate < 0.88 & rate > 0.03 & rate > 0.04 & min(rate) > 0.08 — 32

7) rate > 0.88 & rate < 1.16 — 16
8) rate > 0.88 & rate > 1.16 — 32

(b) Extracted rules

Figure 8: (Top) Simplified RFRegressor used to predict the number of adapter slots for the Qwen-2.5-
7B model. (Bottom) The same model expressed as a set of eight rules,, where T and Z denote the
mean and standard deviation of x, respectively.

13

	Introduction
	Illustrating the adapter caching problem
	Data-driven ML method
	Results
	Modelling results
	Predicting optimal joint configuration

	Discussion and Conclusion
	Acknowledgments
	Main LLM-adapter serving overheads
	Increased memory usage
	Increased computational workload
	Loading time

	S-LoRA case
	Digital Twin extended description
	Predictive performance models

	Novelty in Digital Twin predictive performance models
	Digital Twin extra results
	ML model extra results
	ML model interpretability claim

