
Graph as Point Set

Xiyuan Wang 1 Pan Li 2 Muhan Zhang 1

Abstract

Graph is a fundamental data structure to model
interconnections between entities. Set, on the con-
trary, stores independent elements. To learn graph
representations, current Graph Neural Networks
(GNNs) primarily use message passing to encode
the interconnections. In contrast, this paper intro-
duces a novel graph-to-set conversion method that
bijectively transforms interconnected nodes into
a set of independent points and then uses a set en-
coder to learn the graph representation. This con-
version method holds dual significance. Firstly, it
enables using set encoders to learn from graphs,
thereby significantly expanding the design space
of GNNs. Secondly, for Transformer, a specific
set encoder, we provide a novel and principled ap-
proach to inject graph information losslessly, im-
proving upon many previous positional/structural
encoding methods. To demonstrate the effective-
ness of our approach, we introduce Point Set
Transformer (PST), a transformer architecture that
accepts a point set converted from a graph as in-
put. Theoretically, PST exhibits superior expres-
sivity for both short-range substructure counting
and long-range shortest path distance tasks com-
pared to existing GNNs and graph transformers.
Extensive experiments further validate PST’s out-
standing real-world performance. Besides Trans-
former, we also devise a Deepset-based set en-
coder, which achieves performance comparable
to representative GNNs, affirming the versatility
of our graph-to-set method.

1. Introduction
Graph, composed of interconnected nodes, has a wide range
of applications and has been extensively studied. In graph

1Institute for Artificial Intelligence, Peking University 2Georgia
Institute of Technology. Correspondence to: Muhan Zhang
<muhan@pku.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

machine learning, a central focus is to effectively lever-
age node connections. Various architectures have arisen
for graph tasks, exhibiting significant divergence in their
approaches to utilizing adjacency information.

Two primary paradigms have evolved for encoding adja-
cency information. The first paradigm involves message
passing between nodes via edges. Notable methods in
this category include Message Passing Neural Network
(MPNN) (Gilmer et al., 2017), a foundational framework
for GNNs such as GCN (Kipf & Welling, 2017), GIN (Xu
et al., 2019a), and GraphSAGE (Hamilton et al., 2017).
Subgraph-based GNNs (Zhang & Li, 2021; Huang et al.,
2023b; Bevilacqua et al., 2022; Qian et al., 2022; Frasca
et al., 2022; Zhao et al., 2022; Zhang et al., 2023a) select
subgraphs from the whole graph and run MPNN within
each subgraph. These models aggregate messages from
neighbors to update the central nodes’ representations. Ad-
ditionally, Graph Transformers (GTs) integrate adjacency
information into the attention matrix (Mialon et al., 2021;
Kreuzer et al., 2021; Wu et al., 2021; Dwivedi & Bresson,
2020; Ying et al., 2021; Shirzad et al., 2023) (note that some
early GTs have options to not use adjacency matrix by using
only positional encodings, but the performance is signif-
icantly worse (Dwivedi & Bresson, 2020)). Some recent
GTs even directly incorporate message-passing layers into
their architectures (Rampásek et al., 2022; Kim et al., 2021).
In summary, this paradigm relies on adjacency relationships
to facilitate information exchange among nodes.

The second paradigm designs permutation-equivariant neu-
ral networks that directly take adjacency matrices as in-
put. This category includes high-order Weisfeiler-Leman
tests (Maron et al., 2019a), invariant graph networks (Maron
et al., 2019b), and relational pooling (Chen et al., 2020). Ad-
ditionally, various studies have explored manual feature ex-
traction from the adjacency matrix, including random walk
structural encoding (Dwivedi et al., 2022a; Li et al., 2020),
Laplacian matrix eigenvectors (Wang et al., 2022; Lim et al.,
2023; Huang et al., 2023a; Ma et al., 2023a), and shortest
path distances (Li et al., 2020). However, these approaches
typically serve as data augmentation steps for other models,
rather than constituting an independent paradigm.

Both paradigms heavily rely on pairwise features in graph
encoding. In contrast, this paper explores whether we can

1

Graph As Point Set

Input Graph
Interlinked nodes

Point Set
Independent points with
coordinates containing

full adjacency information

Set E
ncoder

Set Encoder
O(r)–equivariant

Transformer

𝑟 dimensions

Figure 1. Our method converts the input graph to a point set first
and encoding it with a set encoder. O(r) denotes the set of r-
dimension orthogonal transformations.
give up adjacency matrix in graph models while achieving
competitive performance. As shown in Figure 1, our novel
graph-to-set method converts interconnected nodes into in-
dependent points, subsequently encoded by a set encoder.
Leveraging our symmetric rank decomposition, we break
down the augmented adjacency matrix A +D into QQT ,
wherein Q is constituted by column-full-rank rows, each
denoting a node coordinate. This representation enables us
to express the presence of edges as inner products of coordi-
nate vectors (Qi and Qj). Consequently, interlinked nodes
can be transformed into independent points and supplemen-
tary coordinates without information loss. Theoretically,
two graphs are isomorphic iff the two converted point sets
are equal up to an orthogonal transformation (because for
any QQT = A+D, QR is also a solution where R is any or-
thogonal matrix). This equivalence empowers us to encode
the set with coordinates in an orthogonal-transformation-
equivariant manner, akin to E(3)-equivariant models de-
signed for 3D geometric deep learning. Importantly, our
approach is versatile, allowing for using any equivariant set
encoder, thereby significantly expanding the design space of
GNNs. Furthermore, for Transformer, a specific set encoder,
our method offers a novel and principled way to inject graph
information. Appendix D additionally shows that it unifies
various structural/positional encodings in previous GTs, in-
cluding random walk (Li et al., 2020; Dwivedi et al., 2023;
Rampásek et al., 2022), heat kernel (Mialon et al., 2021),
and resistance distance (Zhang et al., 2023b).

To instantiate our method, we introduce an orthogonal-
transformation-equivariant Transformer, namely Point Set
Transformer (PST), to encode the point set. PST provably
surpasses existing models in long-range and short-range ex-
pressivity. Extensive experiments verify these claims across
synthetic datasets, molecule datasets, and long-range graph
benchmarks. Specifically, PST outperforms all baselines
on QM9 (Wu et al., 2017) dataset. Moreover, our graph-
to-set method is not constrained to Transformer. We also
propose a Deepset (Zaheer et al., 2017)-based model, which
outperforms GIN (Xu et al., 2019b) on our datasets.

Differences from eigendecomposition. Note that our
graph-to-set method is distinct from previous approaches
that decompose adjacency matrices for positional encod-
ings (Dwivedi et al., 2023; Wang et al., 2022; Lim et al.,

2023; Bo et al., 2023). The key differences root in that
previous methods primarily relied on eigendecomposition
(EVD), whereas our method is based on symmetric rank
decomposition (SRD). Their differences are as follows:

• SRD enables a practical conversion of graph problems
into set problems. SRD of a matrix is unique up to a single
orthogonal transformation, while EVD is unique up to a
combination of orthogonal transformations within each
eigenspace. This difference allows SRD-based models to
easily maintain symmetry, ensuring consistent predictions
for isomorphic graphs, while EVD-based methods (Lim
et al., 2023) struggle because they need to deal with each
eigenspace individually, making them less suitable for
graph-level tasks where eigenspaces vary between graphs.

• Due to the advantage of SRD, we can utilize set encoder
with coordinates to capture graph structure, thus expand-
ing the design space of GNN. Moreover, our method pro-
vides a principled way to add graph information to Trans-
formers. Note that previous GTs usually require multiple
heuristic encodings together. Besides node positional en-
codings, they also use adjacency matrices: Grit (Ma et al.,
2023b) and graphit (Mialon et al., 2021) use random walk
matrix (normalized adjacency) as relative positional en-
coding (RPE). Graph Transformer (Dwivedi & Bresson,
2020), Graphormer (Ying et al., 2021), and SAN (Kreuzer
et al., 2021) use adjacency matrix as RPE. Dwivedi &
Bresson (2020)’s ablation shows that adjacency is crucial.
GPS (Rampásek et al., 2022), Exphormer (Shirzad et al.,
2023), higher-order Transformer (Kim et al., 2021), and
GraphVit/MLP-Mixer (He et al., 2023) even directly in-
corporate message passing blocks which use adjacency
matrix to guide message passing between nodes.

In summary, this paper introduces a novel approach to graph
representation learning by converting interconnected graphs
into independent points and subsequently encoding them
using an orthogonal-transformation-equivariant set encoder
like our Point Set Transformer. This innovative approach
outperforms existing methods in both long- and short-range
tasks, as validated by comprehensive experiments.

2. Preliminary
For a matrix Z ∈Ra×b, we define Zi ∈Rb as the i-th row
(as a column vector), and Zij ∈R as its (i, j) element. For a
vector Λ∈Ra, diag(Λ)∈Ra×a is the diagonal matrix with Λ
as its diagonal elements. And for S∈Ra×a, diagonal(S)∈
Ra represents the vector of its diagonal elements.

Let G = (V,E,X) denote an undirected graph. Here, V =
{1, 2, 3, ..., n} is the set of n nodes, E ⊆ V × V is the
set of edges, and X ∈ Rn×d is the node feature matrix,
whose v-th row Xv is of node v. The edge set E can also be
represented using the adjacency matrix A ∈ Rn×n, where
Auv is 1 if the edge exists (i.e., (u, v) ∈ E) and 0 otherwise.

2

Graph As Point Set

A graph G can also be represented by the pair (V,A,X) or
(A,X). The degree matrix D is a diagonal matrix with node
degree (sum of a row of matrix A) as the diagonal elements.

Given a permutation function π : {1, 2, 3, ..., n} →
{1, 2, 3, ..., n}, the permuted graph is π(G) =
(π(A), π(X)), where π(A) ∈ Rn×n, π(A)π(u)π(v) = Auv,
and π(X) ∈ Rn×d, π(X)π(v) = Xv for all u, v ∈ V .
Essentially, the permutation π reindex each node v to π(v)
while preserving the original graph structure and node
features. Two graphs are isomorphic iff they can be mapped
to each other through a permutation.
Definition 2.1. Graphs G1 = (A1, X1) and G2 = (A2, X2)
are isomorphic, denoted as G1 ≃ G2, if there exists a permu-
tation π such that π(A1) = A2 and π(X1) = X2.

Isomorphic graphs can be transformed into each other by
merely reindexing their nodes. In graph tasks, models
should assign the same prediction to isomorphic graphs.

Symmetric Rank Decomposition (SRD). Decomposing an
matrix into two full-rank matrices is well-known (Puntanen
et al., 2011). We further show that a positive semi-definite
matrix can be decomposed into a full-rank matrix.
Definition 2.2. (Symmetric Rank Decomposition, SRD)
Given a (symmetric) positive semi-definite matrix L ∈
Rn×n of rank r, its SRD is Q ∈ Rn×r, where L=QQT .

As L = QQT , rank(Q)=rank(L)=r, which implies that
Q must be full column rank. Moreover, two SRDs of the
same matrix are equal up to an orthogonal transformation.
Let O(r) denote the set of orthogonal matrices in Rr×r.
Proposition 2.3. Matrices Q1 and Q2 in Rn×r are SRD of
the same matrix iff there exists R ∈ O(r), Q1 = Q2R.

SRD is closely related to eigendecomposition. Let L =
Udiag(Λ)UT denote the eigendecomposition of L, where
Λ ∈ Rr is the vector of non-zero eigenvalues, and U ∈
Rn×r is the matrix whose columns are the corresponding
eigenvectors. Q = Udiag(Λ1/2) yields an SRD of L, where
the superscript denotes element-wise square root operation.

3. Graph as Point Set
In this section, we present our innovative method for convert-
ing graphs into sets of points. We first show that Symmetric
Rank Decomposition (SRD) can theoretically achieve this
transformation: two graphs are isomorphic iff the sets of
coordinates generated by SRD are equal up to orthogonal
transformations. Additionally, we parameterize SRD for bet-
ter real-world performance. Proof details are in Appendix A.

3.1. Symmetric Rank Decomposition for Coordinates

A natural approach to breaking down the interconnections
between nodes is to decompose the adjacency matrix. While

previous methods often used eigendecomposition outputs as
supplementary node features, these features are not unique.
Consequently, models relying on them fail to provide con-
sistent predictions for isomorphic graphs, ultimately leading
to poor generalization. To address this, we show that Sym-
metric Rank Decomposition (SRD) can convert graph-level
tasks into set-level tasks with perfect alignment. Since SRD
only applies to positive semi-definite matrices, we use the
augmented adjacency matrix D +A, which is always posi-
tive semi-definite (proof in Appendix A.2).

Theorem 3.1. Given two graphs G = (V,A,X) and
G′ = (V ′, A′, X ′) with respective degree matrices D and
D′, G ≃ G′ iff ∃R ∈ O(r), {{(Xv, RQv)|∀v ∈ V }} =
{{(X ′

v, Q
′
v)|v ∈ V ′}}, where Q and Q′ are the SRD of D+A

and D′ +A′ respectively, and r is the rank of Q.

In this theorem, the graph G = (V,A,X) is converted to a
set of points {(Xv, Qv)|v ∈ V }, where Xv is the original
node feature of v, and Qv, the v-th row of SRD of D +A,
is the r-dimensional coordinate of node v. Consequently,
two graphs are isomorphic iff their point sets are equal up to
an orthogonal transformation. Intuitively, we can imagine
that the graph is mapped into an r-dimensional space, where
each node has a coordinate, and the inner product between
two coordinates represents edge existence. This mapping
is not unique, since we can freely rotate the coordinates
through an orthogonal transformation without changing in-
ner products. This conversion can be loosely likened to the
reverse process of constructing molecular graph from atoms’
3D coordinates, where Euclidean distances between atoms
determine node connections in the graph.

Leveraging Theorem 3.1, we can convert a graph into a
set and employ a set encoder for encoding it. Our method
consistently produces representations for isomorphic graphs
when the encoder is orthogonal transformation-invariant.
The method’s expressivity hinges on the set encoder’s ability
to differentiate non-equal sets, with greater encoder power
enhancing overall performance on graph tasks.

3.2. Parameterized Coordinates

In this section, we enhance SRD’s practical performance
through parameterization. As shown in Section 2, SRD
can be implemented via eigendecomposition: Q =
Udiag(Λ1/2), where Λ ∈ Rr denotes non-zero eigenvalues
of the decomposed matrix, and U ∈ Rn×r denotes corre-
sponding eigenvectors. To parameterize SRD, we replace
the element-wise square root with a function f : Rr → Rr.
This alteration further eliminates the constraint of non-
negativity on eigenvalues and enables the use of various
symmetric matrices containing adjacency information to
generate coordinates. Additionally, for model flexibility,
the coordinates can include multiple channels, with each
channel corresponding to a distinct eigenvalue function.

3

Graph As Point Set

Definition 3.2. (Parameterized SRD, PSRD) With a d-
channel eigenvalue functionf :Rr→Rr×dand an adjacency
function Z :Rn×n→Rn×n producing symmetric matrices,
PSRD coordinate of a graph G=(V,A,X) is Q(Z(A), f)∈
Rn×r×d, whose i-th channel is Udiag(fi(Λ)) ∈ Rn×r,
where Λ ∈ Rr, U ∈ Rn×r are non-zero eigenvalues and
corresponding eigenvectors of Z(A), and fi :Rr→Rr is the
i-th channel of f .

In the definition, Z maps adjacency matrix to its vari-
ants like Laplacian matrix, and f transforms eigenvalues.
Q(Z(A), f)u ∈ Rr×d is node u’s coordinate. Similar to
SRD, PSRD can also convert the graph isomorphism prob-
lems to set equality problems.

Theorem 3.3. Given a permutation-equivariant adjacency
function Z , for graphs G=(V,A,X) and G′=(V ′, A′, X ′)

• If eigenvalue function f is permutation-equivariant and
G ≃ G′, then two point sets with PSRD coordinates are
equal up to an orthogonal transformation, i.e., ∃R∈O(r),
{{Xv,RQ(Z(A),f)v|v ∈ V}}={{X′

v,Q(Z(A′),f)v|v ∈ V′}},
where r is the rank of coordinates.

• If Z is injective, for all d≥ 2, there exists a continuous
permutation-equivariant function f :Rr→Rr×d that if
two point sets with PSRD coordinates are equal up to an
orthogonal transformation, G ≃ G′.

Given permutation equivariant f and Z , the point sets with
PSRD coordinates are equal up to an orthogonal transforma-
tion for isomorphic graphs. Moreover, there exists f making
reverse true. Therefore, we can safely employ permutation-
equivariant eigenvalue functions, ensuring consistent pre-
dictions for isomorphic graphs. An expressive eigenvalue
function also allows for the lossless conversion of graph-
level tasks into set problems. In implementation, we utilize
DeepSet (Zaheer et al., 2017) due to its universal expres-
sivity for permutation-equivariant set functions. Detailed
architecture is shown in Figure 3 in Appendix G.

In summary, we use SRD and its parameterized generaliza-
tion to decompose the adjacency matrix or its variants into
coordinates. Thus, we transform a graph into a point set
where each point represents a node and includes both the
original node feature and the coordinates as its features.

4. Point Set Transformer
Our method, as depicted in Figure 1, comprises two steps:
converting the graph into a set of independent points and
encoding the set. Section 3 demonstrates the bijective trans-
formation of the graph into a set. To encode this point set,
we introduce a novel architecture, Point Set Transformer
(PST), designed to maintain orthogonality invariance and de-
liver remarkable expressivity. Additionally, to highlight our
method’s versatility, we propose a DeepSet (Zaheer et al.,

2017)-based set encoder in Appendix K.

PST’s architecture is depicted in Figure 4 in Appendix G.
PST operates with two types of representations for each
point: scalars, which remain invariant to coordinate orthogo-
nal transformations, and vectors, which adapt equivariantly
to coordinate changes. For a point i, its scalar representation
is si∈Rd, and its vector representation is vi∈Rr×d, where
d is the hidden dimension, and r is the rank of coordinates.
si and vi are initialized with the input node feature Xi and
PSRD coordinates (detailed in Section 3.2) containing graph
structure information, respectively.

Similar to conventional transformers, PST comprises multi-
ple layers. Each layer incorporates two key components:

Scalar-Vector Mixer. This component, akin to the feed-
forward network in Transformer, individually transforms
point features. To enable information exchange between
vectors and scalars, we employ the following architecture.

s′i ← MLP1(si∥diagonal(W1v
T
i viW

T
2)), (1)

v′i ← vidiag(MLP2(si))W3 + viW4 (2)

Here, W1,W2,W3, and W4 ∈ Rd×d are learnable matri-
ces for mixing different channels of vector features. Addi-
tionally, MLP1 : R2d→d and MLP2 : Rd→d represent two
multi-layer perceptrons transforming scalar representations.
The operation diagonal(W1v

T
i viW2) takes the diagonal ele-

ments of a matrix, which translates vectors to scalars, while
vidiag(MLP2(si)) transforms scalar features into vectors.
As vTi R

TRvi = vTi vi,∀R ∈ O(r), the scalar update is
invariant to orthogonal transformations of the coordinates.
Similarly, the vector update is equivariant to O(r).

Attention Layer. Akin to ordinary attention layers, this
component compute pairwise attention score to linearly
combine point representations.

Attenij = MLP((W s
q si⊙W s

k sj)∥diagonal(W v
q v

T
i vjW

v
k)) (3)

Here, W s
q and W v

q denote the linear transformations for
scalars and vectors queries, respectively, while W s

k and W v
k

are for keys. The equation computes the inner products of
queries and keys, similar to standard attention mechanisms.
It is easy to see Attenij is also invariant to O(r).

Then we linearly combine point representations with atten-
tion scores as the coefficients:

si ←
∑
j

Attenijs
′
j , vi ←

∑
j

Attenijv
′
j (4)

Each transformer layer is of time complexity O(n2r) and
space complexity O(n2 + nr).

Pooling. After several layers, we pool all points’ scalar
representations as the set representation s.

s← Pool({si|i ∈ V }), (5)

where Pool is pooling function like sum, mean, and max.

4

Graph As Point Set

5. Expressivity
In this section, we delve into the theoretical expressivity
of our methods. Our PSRD coordinates and the PST archi-
tecture exhibit strong long-range expressivity, allowing for
efficient computation of distance metrics between nodes,
as well as short-range expressivity, enabling the counting
of paths and cycles rooted at each node. Therefore, our
model is more expressive than many existing models, in-
cluding GIN (equivalent to the 1-WL test) (Xu et al., 2019b),
PPGN (equivalent to the 2-FWL test, more expressive in
some cases) (Maron et al., 2019a), GPS (Rampásek et al.,
2022), and Graphormer (Ying et al., 2021) (two representa-
tive graph transformers). More details are in Appendix B.

5.1. Long Range Expressivity

This section demonstrates that the inner products of PSRD
coordinates exhibits strong long-range expressivity, which
PST inherits by utilizing inner products in attention layers.

When assessing a model’s capacity to capture long-range
interactions (LRI), a key measure is its ability to compute
shortest path distance (spd) between nodes. Since formally
characterizing LRI can be challenging, we focus on analyz-
ing models’ performance concerning this specific measure.
We observe that existing models vary significantly in their
capacity to calculate spd. Moreover, we find an intuitive
explaination for these differences: spd between nodes can
be expressed as spd(i, j, A) = argmink{k|Ak

ij > 0}, and
the ability to compute AK , the K-th power of the adjacency
matrix A, can serve as a straightforward indicator. Different
models need different number of layers to compute AK .

PSRD coordinates. PSRD coordinates can capture arbitrar-
ily large shortest path distances through their inner products
in one step. To illustrate it, we decompose the adjacency
matrix as A = Udiag(Λ)UT , and employ coordinates as U
and Udiag(ΛK). Their inner products are as follows:

1 step︷ ︸︸ ︷
Udiag(ΛK)UT → AK (6)

Theorem 5.1. There exists permutation-equivariant func-
tions fk, k = 0, 1, 2, ...,K, such that for all graphs G =
(A,X), the shortest path distance between node i, j is a
function of ⟨Q(A, f0)i,Q(A, fk)j⟩, k=0, 1, 2, ...K, where
Q(A, f) is the PSRD coordinate defined in Section 3.2, K
is the maximum shortest path distance between nodes.

2-FWL. A powerful graph isomorphic test, 2-Folklore-
Weisfeiler-Leman Test (2-FWL), and its neural network
version PPGN (Maron et al., 2019a) produce node pair rep-
resentations in a matrix X ∈ Rn×n. X is initialized with A.
Each layer updates X with XX . So intuitively, computing
AK takes ⌈log2 K⌉ layers.

⌈log2 K⌉ layers︷ ︸︸ ︷
A→ A2=AA→ A4=A2A2 → ...→ AK=AK/2AK/2 (7)

Theorem 5.2. Let ck(G)ij denote the color of node tuple
(i, j) of graph G at iteration k. Given graphs G = (A,X)
and G′=(A′, X ′), for all K∈N+, if two node tuples (i, j)
in G and (i′, j′) in G′ have spd(i, j, A)<spd(i′, j′, A′)≤
2K , then cK(G)ij ̸= cK(G′)i′j′ . Moreover, for all
L > 2K , there exists i, j, i′, j′, such that spd(i, j, A) >
spd(i′, j′, A′)≥L while cK(G)ij=cK(G′)i′j′ .

In other words, K iterations of 2-FWL can distinguish pairs
of nodes with different spds, as long as that distance is at
most 2K . Moreover, K-iteration 2-FWL cannot differenti-
ate all tuples with spd > 2K from other tuples with different
spds, which indicates that K-iteration 2-FWL is effective in
counting shortest path distances up to a maximum of 2K .

MPNN. Intuitively, each MPNN layer uses AX to update
node representations X . However, this operation in general
cannot compute AK unless the initial node feature X = I .

K layers︷ ︸︸ ︷
X → AX → A2X=AAX → ...→ AKX=AAK−1X (8)

Theorem 5.3. A graph pair exists that MPNN cannot dif-
ferentiate, but their sets of all-pair spd are different.

If MPNNs can compute spd between node pairs, they should
be able to distinguish this graph pair from the sets of spd.
However, we show no MPNNs can distinguish the pair, thus
proving that MPNNs cannot compute spd.

Graph Transformers (GTs) are known for their strong long-
range capacities (Dwivedi et al., 2022b), as they can ag-
gregate information from the entire graph to update each
node’s representation. However, aggregating information
from the entire graph is not equivalent to capturing the dis-
tance between nodes, and some GTs also fail to compute
spd between nodes. Details are in Appendix C. Note that
this slightly counter-intuitive results is because we take a
new perspective to study long range interaction rather than
showing GTs are weak in long range capacity.

Besides shortest path distances, our PSRD coordinates also
enables the unification of various structure encodings (dis-
tance metrics between nodes), including random walk (Li
et al., 2020; Dwivedi et al., 2023; Rampásek et al., 2022),
heat kernel (Mialon et al., 2021), resistance distance (Zhang
& Li, 2021; Zhang et al., 2023b). Further insights and details
are shown in Table 5 in Appendix D.

5.2. Short Range Expressitivity

This section shows PST’s expressivity in representative
short-range tasks: path and cycle counting.

Theorem 5.4. A one-layer PST can count paths of length
1 and 2, a two-layer PST can count paths of length 3 and
4, and a four-layer PST can count paths of length 5 and 6.
Here, “count” means that the (i, j) element of the attention

5

Graph As Point Set

matrix in the last layer can express the number of paths
between nodes i and j.

Therefore, with enough layers, our PST models can count
the number of paths of length ≤ 6 between nodes. Further-
more, our PST can also count cycles.

Theorem 5.5. A one-layer PST can count cycles of length
3, a three-layer PST can count cycles of length 4 and 5, and
a five-layer PST can count cycles of length 6 and 7. Here,

“count” means the representation of node i in the last layer
can express the number of cycles involving node i.

Therefore, with enough layers, PST can count the number
of cycles of length ≤ 7 between nodes. As 2-FWL is also
restricted to counting cycles up to length 7 (Fürer, 2017), the
cycle counting power of PST is at least on par with 2-FWL.

6. Related Work
Graph Neural Network with Eigen-Decomposition. Our
approach employs coordinates derived from the symmet-
ric rank decomposition (SRD) of adjacency or related ma-
trices, differing from prior studies that primarily rely on
eigendecomposition (EVD). While both approaches have
similarities, SRD transforms the graph isomorphism prob-
lem into a set problem bijectively, which is challenging
for EVD, because SRD of a matrix is unique up to a single
orthogonal transformation, while EVD is unique up to mul-
tiple orthogonal transformations in different eigenspaces.
This key theoretical difference has profound implications for
model design. Early efforts, like Dwivedi et al. (2023), intro-
duce eigenvectors into MPNNs’ input node feature (Gilmer
et al., 2017), and subsequent works, such as Graph Trans-
formers (GTs) (Dwivedi & Bresson, 2020; Kreuzer et al.,
2021), incorporate eigenvectors as node positional encod-
ings. However, due to the non-uniqueness of eigenvectors,
these models produce varying predictions for isomorphic
graphs, limiting their generalization. Lim et al. (2023) par-
tially solve the non-uniqueness problem. However, their
solutions are limited to cases with constant eigenvalue mul-
tiplicity in graph tasks due to the property of EVD. On
the other hand, approaches like Wang et al. (2022), Bo
et al. (2023), and Huang et al. (2024) completely solve non-
uniqueness and even apply permutation-equivariant func-
tions to eigenvalues, similar to our PSRD. However, these
methods aim to enhance existing MPNNs and GTs with
heuristic features. In contrast, we perfectly align graph-
level tasks with set-level tasks through SRD, allowing us to
convert orthogonal-transformation-equivariant set encoders
to graph encoders and to inject graph structure information
into Transformers in a principled ways.

Equivariant Point Cloud and 3-D Molecule Neural Net-
works. Equivariant point cloud and 3-D molecule tasks
share resemblances: both involve unordered sets of 3-D co-

ordinate points as input and require models to produce pre-
dictions invariant/equivariant to orthogonal transformations
and translations of coordinates. Several works (Chen et al.,
2021; Winkels & Cohen, 2018; Cohen et al., 2018; Gasteiger
et al., 2021) introduce specialized equivariant convolution
operators to preserve prediction symmetry, yet are later sur-
passed by models that learn both invariant and equivariant
representations for each point, transmitting these represen-
tations between nodes. Notably, certain models (Satorras
et al., 2021; Schütt et al., 2021; Deng et al., 2021; Wang &
Zhang, 2022) directly utilize vectors mirroring input coordi-
nate changes as equivariant features, while others (Thomas
et al., 2018; Batzner et al., 2022; Fuchs et al., 2020; Hutchin-
son et al., 2021; Worrall et al., 2017; Weiler et al., 2018)
incorporate high-order irreducible representations of the
orthogonal group, achieving proven universal expressiv-
ity (Dym & Maron, 2021). Our Point Set Transformer
(PST) similarly learns both invariant and equivariant point
representations. However, due to the specific conversion
of point sets from graphs, PST’s architecture varies from
existing models. While translation invariance characterizes
point clouds and molecules, graph properties are sensitive to
coordinate translations in our method. Hence, we adopt in-
ner products of coordinates. Additionally, these prior works
center on 3D point spaces, whereas our coordinates exist in
high-dimensional space, rendering existing models and the-
oretical expressivity results based on high-order irreducible
representations incompatible with our framework.

7. Experiments
In our experiments, we evaluate our model across three
dimensions: substructure counting for short-range expres-
sivity, real-world graph property prediction for practical per-
formance, and Long-Range Graph Benchmarks (Dwivedi
et al., 2022b) to assess long-range interactions. Our primary
model, Point Set Transformer (PST) with PSRD coordi-
nates derived from the Laplacian matrix, performs well
on all tasks. Moreover, our graph-to-set method is adapt-
able to various configurations. In ablation study (see Ap-
pendix H), another set encoders Point Set DeepSet (PSDS,
introduced in Appendix K), SRD coordinates different from
PSRD, and coordinates decomposed from the adjacency ma-
trix and normalized adjacency matrix all demonstrate good
performance, highlighting the versatility of our approach.
Although PST has higher time complexity compared to ex-
isting Graph Transformers and is slower on large graphs,
it shows similar scalability to our baselines in real-world
graph property prediction datasets (see Appendix I). Our
PST uses fewer or comparable parameters than baselines
across all datasets. Dataset details, experiment settings, and
hyperparameters are provided in Appendix E and F.

6

Graph As Point Set

Table 1. Normalized MAE (↓) on substructure counting tasks. Following Huang et al. (2023b), models can count the structure if the test
loss≤ 10 units (yellow cell in the table), measured using a scale of 10−3. TT: Tailed Triangle. CC: Chordal Cycle, TR: Triangle-Rectangle.

Method 2-Path 3-Path 4-Path 5-path 6-path 3-Cycle 4-Cycle 5-Cycle 6-Cycle 7-cycle TT CC TR

MPNN 1.0 67.3 159.2 235.3 321.5 351.5 274.2 208.8 155.5 169.8 363.1 311.4 297.9
IDGNN 1.9 1.8 27.3 68.6 78.3 0.6 2.2 49 49.5 49.9 105.3 45.4 62.8
NGNN 1.5 2.1 24.4 75.4 82.6 0.3 1.3 40.2 43.9 52.2 104.4 39.2 72.9
GNNAK 4.5 40.7 7.5 47.9 48.8 0.4 4.1 13.3 23.8 79.8 4.3 11.2 131.1
I2-GNN 1.5 2.6 4.1 54.4 63.8 0.3 1.6 2.8 8.2 39.9 1.1 1.0 1.3
PPGN 0.3 1.7 4.1 15.1 21.7 0.3 0.9 3.6 7.1 27.1 2.6 1.5 14.4

PSDS 2.2±0.1 2.6±0.4 4.9±0.8 9.9±0.5 15.8±0.2 0.6±0.7 2.2±0.3 5.8±0.6 25.1±0.7 57.7±0.3 6.0±1.3 29.8±3.0 56.4±4.7

PST 0.7±0.1 1.1±0.1 1.5±0.1 2.2±0.1 3.3±0.3 0.8±0.1 1.9±0.2 3.1±0.3 4.9±0.3 8.6±0.5 3.0±0.1 4.0±0.7 9.2±0.9

7.1. Graph substructure counting

As Chen et al. (2020) highlight, the ability to count sub-
structures is a crucial metric for assessing expressivity. We
evaluate our model’s substructure counting capabilities on
synthetic graphs following Huang et al. (2023b). The con-
sidered substructures include paths of lengths 2 to 6, cycles
of lengths 3 to 7, and other substructures like tailed triangles
(TT), chordal cycles (CC), and triangle-rectangle (TR). Our
task involves predicting the number of paths originating
from each node and the cycles and other substructures in
which each node participates. We compare our Point Set
Transformer (PST) with expressive GNN models, including
ID-GNNs (You et al., 2021), NGNNs (Zhang & Li, 2021),
GNNAK+(Zhao et al., 2022), I2-GNN(Huang et al., 2023b),
and PPGN (Maron et al., 2019a). Baseline results are from
Huang et al. (2023b), where uncertainties are unknown.

Results are in Table 1. Following Huang et al. (2023b), a
model can count a substructure if its normalized test Mean
Absolute Error (MAE) is below 10−2 (10 units in the table).
Remarkably, our PST counts all listed substructures, which
aligns with our Theorem 5.4 and Theorem 5.5, while the
second-best model, I2-GNN, counts only 10 out of 13 sub-
structures. PSDS can also count 8 out of 13 substructures,
showcasing the versatility of our graph-to-set method.

7.2. Graph properties prediction

We conduct experiments on four real-world graph datasets:
QM9 (Wu et al., 2017), ZINC, ZINC-full (Gómez-
Bombarelli et al., 2016), and ogbg-molhiv (Hu et al., 2020).
PST excels in performance, and PSDS performs comparable
to GIN (Xu et al., 2019a). PST also outperforms all base-
lines on TU datasets (Ivanov et al., 2019) (see Appendix J).

For the QM9 dataset, we compare PST with various ex-
pressive GNNs, including models considering Euclidean
distances (1-GNN, 1-2-3-GNN (Morris et al., 2019),
DTNN (Wu et al., 2017), PPGN (Maron et al., 2019a)) and
those focusing solely on graph structure (Deep LRP (Chen
et al., 2020), NGNN (Zhang & Li, 2021), I2-GNN (Huang

et al., 2023b), 2-DRFWL(2) GNN (Zhou et al., 2023)). For
fair comparsion, we introduce two versions of our model:
PST without Euclidean distance (PST) and PST with Eu-
clidean distance (PST*). Results in Table 2 show PST out-
performs all baseline models without Euclidean distance
on 11 out of 12 targets, with an average 11% reduction in
loss compared to the strongest baseline, 2-DRFWL(2) GNN.
PST* outperforms all Euclidean distance-based baselines
on 8 out of 12 targets, with an average 4% reduction in
loss compared to the strongest baseline, 1-2-3-GNN. Both
models rank second in performance for the remaining tar-
gets. PSDS without Euclidean distance also outperforms
baselines on 6 out of 12 targets.

For ZINC, ZINC-full, and ogbg-molhiv datasets, we have
conducted an evaluation of PST and PSDS in comparison to
a range of expressive GNNs and graph transformers (GTs).
This set of models includes expressive MPNN and subgraph
GNNs: GIN (Xu et al., 2019b), SUN (Frasca et al., 2022),
SSWL (Zhang et al., 2023a), 2-DRFWL(2) GNN (Zhou
et al., 2023), CIN (Bodnar et al., 2021), NGNN (Zhang
& Li, 2021), and GTs: Graphormer (Ying et al., 2021),
GPS (Rampásek et al., 2022), Graph MLP-Mixer (He et al.,
2023), Specformer (Bo et al., 2023), SignNet (Lim et al.,
2023), and Grit (Ma et al., 2023b). Performance results
for the expressive GNNs are sourced from (Zhou et al.,
2023), while those for the Graph Transformers are extracted
from (He et al., 2023; Ma et al., 2023b; Lim et al., 2023).
The comprehensive results are presented in Table 3. No-
tably, our PST outperforms all baseline models on ZINC-full
datasets, achieving reductions in loss of 18%. On the ogbg-
molhiv dataset, our PST also delivers competitive results,
with only CIN and Graphormer surpassing it. Overall, PST
demonstrates exceptional performance across these four
diverse datasets, and PSDS also performs comparable to
representative GNNs like GIN (Xu et al., 2019a).

7.3. Long Range Graph Benchmark

To assess the long-range capacity of our Point Set Trans-
former (PST), we conducted experiments using the Long

7

Graph As Point Set

Table 2. MAE (↓) on the QM9 dataset. * denotes models with 3D coordinates or features as input. LRP: Deep LRP (Chen et al., 2020).
DF: 2-DRFWL(2) GNN (Zhou et al., 2023). 1GNN: 1-GNN. 123: 1-2-3-GNN (Morris et al., 2019).

Target Unit LRP NGNN I2GNN DF PSDS PST 1GNN* DTNN* 123* PPGN* PST*

µ 10−1D 3.64 4.28 4.28 3.46 3.53±0.05 3.19±0.04 4.93 2.44 4.76 2.31 0.23±0.01

α 10−1a3
0 2.98 2.90 2.30 2.22 2.05±0.02 1.89±0.04 7.80 9.50 2.70 3.82 0.78±0.05

εhomo 10−2meV 6.91 7.21 7.10 6.15 6.56±0.03 5.98±0.09 8.73 10.56 9.17 7.51 2.98±0.08

εlumo 10−2meV 7.54 8.08 7.27 6.12 6.31±0.05 5.84±0.08 9.66 13.93 9.55 7.81 2.20±0.07

∆ε 10−2meV 9.61 10.34 10.34 8.82 9.13±0.04 8.46±0.07 13.33 30.48 13.06 11.05 4.47±0.09

R2 a2
0 19.30 20.50 18.64 15.04 14.35±0.02 13.08±0.16 34.10 17.00 22.90 16.07 0.93±0.03

ZPVE 10−2meV 1.50 0.54 0.38 0.46 0.41±0.02 0.39±0.01 3.37 4.68 0.52 17.42 0.26±0.01

U0 meV 11.24 8.03 5.74 4.24 3.53±0.11 3.46±0.17 63.13 66.12 1.16 6.37 3.33±0.19

U meV 11.24 9.82 5.61 4.16 3.49±0.05 3.55±0.10 56.60 66.12 3.02 6.37 3.26±0.05

H meV 11.24 8.30 7.32 3.95 3.47±0.04 3.49±0.20 60.68 66.12 1.14 6.23 3.29±0.21

G meV 11.24 13.31 7.10 4.24 3.56±0.14 3.55±0.17 52.79 66.12 1.28 6.48 3.25±0.15

Cv 10−2cal/mol/K 12.90 17.40 7.30 9.01 8.35±0.09 7.77±0.15 27.00 243.00 9.44 18.40 3.63±0.13

Table 3. Results on graph property prediction tasks.

zinc zinc-full molhiv
MAE↓ MAE↓ AUC↑

GIN 0.163±0.004 0.088±0.002 77.07±1.49

GNN-AK+ 0.080±0.001 – 79.61±1.19

ESAN 0.102±0.003 0.029±0.003 78.25±0.98

SUN 0.083±0.003 0.024±0.003 80.03±0.55

SSWL 0.083±0.003 0.022±0.002 79.58±0.35

DRFWL 0.077±0.002 0.025±0.003 78.18±2.19

CIN 0.079±0.006 0.022±0.002 80.94±0.57

NGNN 0.111±0.003 0.029±0.001 78.34±1.86

Graphormer 0.122±0.006 0.052±0.005 80.51±0.53

GPS 0.070±0.004 - 78.80±1.01

GMLP-Mixer 0.077±0.003 - 79.97±1.02

SAN 0.139±0.006 - 77.75±0.61

Specformer 0.066±0.003 - 78.89±1.24

SignNet 0.084±0.006 0.024±0.003 -
Grit 0.059±0.002 0.024±0.003 -

PSDS 0.162±0.007 0.049±0.002 74.92±1.18

PST 0.063±0.003 0.018±0.001 80.32±0.71

Range Graph Benchmark (Dwivedi et al., 2022b). Follow-
ing He et al. (2023), we compared our model to a range of
baseline models, including GCN (Kipf & Welling, 2017),
GINE (Xu et al., 2019a), GatedGCN (Bresson & Laurent,
2017), SAN (Kreuzer et al., 2021), Graphormer (Ying et al.,
2021), GMLP-Mixer, Graph ViT (He et al., 2023), and
Grit (Ma et al., 2023b). PST outperforms all baselines on
the PascalVOC-SP and Peptides-Func datasets and achieves
the third-highest performance on the Peptides-Struct dataset.
PSDS consistently outperforms GCN and GINE. These re-
sults showcase the remarkable long-range interaction cap-
turing abilities of our methods across various benchmark
datasets. Note that a contemporary work (Tönshoff et al.,
2023) points out that even vanilla MPNNs can achieve sim-
ilar performance to Graph Transformers on LRGB with
better hyperparameters, which implies that LRGB is not a
rigor benchmark. However, for comparison with previous
work, we maintain the original settings on LRGB datasets.

Table 4. Results on Long Range Graph Benchmark. * means using
Random Walk Structural Encoding (Dwivedi et al., 2022a), and **
means Laplacian Eigenvector Encoding (Dwivedi et al., 2023).

Model PascalVOC-SP Peptides-Func Peptides-Struct
F1 score ↑ AP ↑ MAE ↓

GCN 0.1268±0.0060 0.5930±0.0023 0.3496±0.0013

GINE 0.1265±0.0076 0.5498±0.0079 0.3547±0.0045

GatedGCN 0.2873±0.0219 0.5864±0.0077 0.3420±0.0013

GatedGCN* 0.2860±0.0085 0.6069±0.0035 0.3357±0.0006

Transformer** 0.2694±0.0098 0.6326±0.0126 0.2529±0.0016

SAN* 0.3216±0.0027 0.6439±0.0075 0.2545±0.0012

SAN** 0.3230±0.0039 0.6384±0.0121 0.2683±0.0043

GraphGPS 0.3748±0.0109 0.6535±0.0041 0.2500±0.0005

Exphormer 0.3975±0.0037 0.6527±0.0043 0.2481±0.0007

GMLP-Mixer - 0.6970±0.0080 0.2475±0.0015

Graph ViT - 0.6942±0.0075 0.2449±0.0016

Grit - 0.6988±0.0082 0.2460±0.0012

PSDS 0.2134±0.0050 0.5965±0.0064 0.2621±0.0036

PST 0.4010±0.0072 0.6984±0.0051 0.2470±0.0015

8. Conclusion
We introduce a novel approach employing symmetric rank
decomposition to transform interconnected nodes in graph
into independent points with coordinates. Additionally, we
propose the Point Set Transformer to encode the point set.
Our approach demonstrates remarkable theoretical expres-
sivity and excels in real-world performance, addressing both
short-range and long-range tasks effectively. It extends the
design space of GNN and provides a principled way to inject
graph structural information into Transformers.

9. Limitations
PST’s scalability is still constrained by the Transformer
architecture. To overcome this, acceleration techniques such
as sparse attention and linear attention could be explored,
which will be our future work.

8

Graph As Point Set

Impact Statement
This paper presents work whose goal is to advance the field
of graph representation learning and will improve the design
of graph generation and prediction models. There are many
potential societal consequences of our work, none of which
we feel must be specifically highlighted here.

Acknowledgement
Xiyuan Wang and Muhan Zhang are partially sup-
ported by the National Key R&D Program of China
(2022ZD0160300), the National Key R&D Program of
China (2021ZD0114702), the National Natural Science
Foundation of China (62276003), and Alibaba Innovative
Research Program. Pan Li is supported by the National
Science Foundation award IIS-2239565.

References
Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.

Optuna: A next-generation hyperparameter optimization
framework. In SIGKDD, 2019.

Batzner, S., Musaelian, A., Sun, L., Geiger, M., Mailoa,
J. P., Kornbluth, M., Molinari, N., Smidt, T. E., and
Kozinsky, B. E (3)-equivariant graph neural networks for
data-efficient and accurate interatomic potentials. Nature
communications, 13(1):1–11, 2022.

Bevilacqua, B., Frasca, F., Lim, D., Srinivasan, B., Cai,
C., Balamurugan, G., Bronstein, M. M., and Maron, H.
Equivariant subgraph aggregation networks. In ICLR,
2022.

Bo, D., Shi, C., Wang, L., and Liao, R. Specformer: Spectral
graph neural networks meet transformers. In ICLR, 2023.

Bodnar, C., Frasca, F., Otter, N., Wang, Y., Liò, P., Montúfar,
G. F., and Bronstein, M. M. Weisfeiler and lehman go
cellular: CW networks. In NeurIPS, 2021.

Bouritsas, G., Frasca, F., Zafeiriou, S., and Bronstein, M. M.
Improving graph neural network expressivity via sub-
graph isomorphism counting. TPAMI, 45(1), 2023.

Bresson, X. and Laurent, T. Residual gated graph convnets,
2017.

Chen, H., Liu, S., Chen, W., Li, H., and Jr., R. W. H. Equiv-
ariant point network for 3d point cloud analysis. In CVPR,
2021.

Chen, Z., Chen, L., Villar, S., and Bruna, J. Can graph
neural networks count substructures? In NeurIPS, 2020.

Cohen, T. S., Geiger, M., Köhler, J., and Welling, M. Spher-
ical cnns. In ICLR, 2018.

Deng, C., Litany, O., Duan, Y., Poulenard, A., Tagliasacchi,
A., and Guibas, L. J. Vector neurons: A general frame-
work for so(3)-equivariant networks. In ICCV, 2021.

Dwivedi, V. P. and Bresson, X. A generalization of trans-
former networks to graphs, 2020.

Dwivedi, V. P., Luu, A. T., Laurent, T., Bengio, Y., and Bres-
son, X. Graph neural networks with learnable structural
and positional representations. In ICLR, 2022a.

Dwivedi, V. P., Rampásek, L., Galkin, M., Parviz, A., Wolf,
G., Luu, A. T., and Beaini, D. Long range graph bench-
mark. In NeurIPS, 2022b.

Dwivedi, V. P., Joshi, C. K., Luu, A. T., Laurent, T., Bengio,
Y., and Bresson, X. Benchmarking graph neural networks.
J. Mach. Learn. Res., 24:43:1–43:48, 2023.

Dym, N. and Maron, H. On the universality of rotation
equivariant point cloud networks. In ICLR, 2021.

Feng, J., Chen, Y., Li, F., Sarkar, A., and Zhang, M. How
powerful are k-hop message passing graph neural net-
works. In NeurIPS, 2022.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with pytorch geometric. CoRR, abs/1903.02428, 2019.

Frasca, F., Bevilacqua, B., Bronstein, M. M., and Maron, H.
Understanding and extending subgraph gnns by rethink-
ing their symmetries. In NeurIPS, 2022.

Fuchs, F., Worrall, D., Fischer, V., and Welling, M. Se(3)-
transformers: 3d roto-translation equivariant attention
networks. NeurIPS, 2020.

Fürer, M. On the combinatorial power of the weisfeiler-
lehman algorithm. In CIAC, volume 10236, pp. 260–271,
2017.

Gasteiger, J., Becker, F., and Günnemann, S. Gemnet: Uni-
versal directional graph neural networks for molecules.
In NeurIPS, 2021.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In ICML, 2017.

Gómez-Bombarelli, R., Duvenaud, D., Hernández-Lobato,
J. M., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams,
R. P., and Aspuru-Guzik, A. Automatic chemical de-
sign using a data-driven continuous representation of
molecules, 2016.

Hamilton, W. L., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In NeurIPS, 2017.

9

Graph As Point Set

He, X., Hooi, B., Laurent, T., Perold, A., LeCun, Y., and
Bresson, X. A generalization of vit/mlp-mixer to graphs.
In ICML, 2023.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. In NeurIPS,
2020.

Huang, Y., Lu, W., Robinson, J., Yang, Y., Zhang, M.,
Jegelka, S., and Li, P. On the stability of expressive
positional encodings for graph neural networks. arXiv
preprint arXiv:2310.02579, 2023a.

Huang, Y., Peng, X., Ma, J., and Zhang, M. Boosting
the cycle counting power of graph neural networks with
i$ˆ2$-gnns. In ICLR, 2023b.

Huang, Y., Lu, W., Robinson, J., Yang, Y., Zhang, M.,
Jegelka, S., and Li, P. On the stability of expressive
positional encodings for graph neural networks. ICLR,
2024.

Hutchinson, M. J., Lan, C. L., Zaidi, S., Dupont, E., Teh,
Y. W., and Kim, H. Lietransformer: Equivariant self-
attention for lie groups. In ICML, 2021.

Ivanov, S., Sviridov, S., and Burnaev, E. Understanding iso-
morphism bias in graph data sets. CoRR, abs/1910.12091,
2019.

Kim, J., Oh, S., and Hong, S. Transformers generalize
deepsets and can be extended to graphs & hypergraphs.
In NeurIPS, 2021.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In ICLR, 2017.

Kreuzer, D., Beaini, D., Hamilton, W. L., Létourneau, V.,
and Tossou, P. Rethinking graph transformers with spec-
tral attention. In NeurIPS, 2021.

Li, P., Wang, Y., Wang, H., and Leskovec, J. Distance en-
coding: Design provably more powerful neural networks
for graph representation learning. In NeurIPS, 2020.

Lim, D., Robinson, J. D., Zhao, L., Smidt, T. E., Sra, S.,
Maron, H., and Jegelka, S. Sign and basis invariant
networks for spectral graph representation learning. In
ICLR, 2023.

Ma, G., Wang, Y., and Wang, Y. Laplacian canonization: A
minimalist approach to sign and basis invariant spectral
embedding. In NeurIPS, 2023a.

Ma, L., Lin, C., Lim, D., Romero-Soriano, A., Dokania,
P. K., Coates, M., Torr, P. H. S., and Lim, S. Graph
inductive biases in transformers without message passing.
In ICML, 2023b.

Maron, H., Ben-Hamu, H., Serviansky, H., and Lipman, Y.
Provably powerful graph networks. In NeurIPS, 2019a.

Maron, H., Ben-Hamu, H., Shamir, N., and Lipman, Y.
Invariant and equivariant graph networks. In IGN, 2019b.

Mialon, G., Chen, D., Selosse, M., and Mairal, J. Graphit:
Encoding graph structure in transformers, 2021.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and leman
go neural: Higher-order graph neural networks. In AAAI,
2019.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Köpf, A., Yang, E. Z., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B.,
Fang, L., Bai, J., and Chintala, S. Pytorch: An imperative
style, high-performance deep learning library. In NeurIPS,
pp. 8024–8035, 2019.

Perepechko, S. and Voropaev, A. The number of fixed length
cycles in an undirected graph. explicit formulae in case
of small lengths. MMCP, 148, 2009.

Puntanen, S., Styan, G. P., and Isotalo, J. Matrix tricks
for linear statistical models: our personal top twenty.
Springer, 2011.

Qian, C., Rattan, G., Geerts, F., Niepert, M., and Morris,
C. Ordered subgraph aggregation networks. In NeurIPS,
2022.

Rampásek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf,
G., and Beaini, D. Recipe for a general, powerful, scal-
able graph transformer. In NeurIPS, 2022.

Satorras, V. G., Hoogeboom, E., and Welling, M. E (n)
equivariant graph neural networks. In ICML, 2021.

Schütt, K., Unke, O., and Gastegger, M. Equivariant mes-
sage passing for the prediction of tensorial properties and
molecular spectra. In ICML, 2021.

Shervashidze, N., Schweitzer, P., van Leeuwen, E. J.,
Mehlhorn, K., and Borgwardt, K. M. Weisfeiler-lehman
graph kernels. JMLR, 2011.

Shirzad, H., Velingker, A., Venkatachalam, B., Sutherland,
D. J., and Sinop, A. K. Exphormer: Sparse transformers
for graphs. In ICML, 2023.

Thomas, N., Smidt, T., Kearnes, S., Yang, L., Li, L.,
Kohlhoff, K., and Riley, P. Tensor field networks:
Rotation-and translation-equivariant neural networks for
3d point clouds. arXiv preprint arXiv:1802.08219, 2018.

10

Graph As Point Set

Tönshoff, J., Ritzert, M., Rosenbluth, E., and Grohe, M.
Where did the gap go? reassessing the long-range graph
benchmark. CoRR, abs/2309.00367, 2023.

Wang, H., Yin, H., Zhang, M., and Li, P. Equivariant and
stable positional encoding for more powerful graph neural
networks. In ICLR, 2022.

Wang, X. and Zhang, M. Graph neural network with local
frame for molecular potential energy surface. LoG, 2022.

Weiler, M., Geiger, M., Welling, M., Boomsma, W., and
Cohen, T. 3d steerable cnns: Learning rotationally equiv-
ariant features in volumetric data. In NeurIPS, 2018.

Wijesinghe, A. and Wang, Q. A new perspective on ”how
graph neural networks go beyond weisfeiler-lehman?”.
In ICLR, 2022.

Winkels, M. and Cohen, T. S. 3d g-cnns for pulmonary
nodule detection, 2018.

Worrall, D. E., Garbin, S. J., Turmukhambetov, D., and
Brostow, G. J. Harmonic networks: Deep translation and
rotation equivariance. In CVPR, 2017.

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Ge-
niesse, C., Pappu, A. S., Leswing, K., and Pande, V. S.
Moleculenet: A benchmark for molecular machine learn-
ing, 2017.

Wu, Z., Jain, P., Wright, M. A., Mirhoseini, A., Gonzalez,
J. E., and Stoica, I. Representing long-range context for
graph neural networks with global attention. In NeurIPS,
2021.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In ICLR, 2019a.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In ICLR, 2019b.

Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen,
Y., and Liu, T. Do transformers really perform badly for
graph representation? In NeurIPS, 2021.

You, J., Selman, J. M. G., Ying, R., and Leskovec, J.
Identity-aware graph neural networks. In AAAI, 2021.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Póczos, B.,
Salakhutdinov, R., and Smola, A. J. Deep sets. In
NeurIPS, 2017.

Zhang, B., Feng, G., Du, Y., He, D., and Wang, L. A
complete expressiveness hierarchy for subgraph gnns via
subgraph weisfeiler-lehman tests. In ICML, 2023a.

Zhang, B., Luo, S., Wang, L., and He, D. Rethinking the
expressive power of gnns via graph biconnectivity. In
ICLR, 2023b.

Zhang, M. and Li, P. Nested graph neural networks. In
NeurIPS, 2021.

Zhang, M., Cui, Z., Neumann, M., and Chen, Y. An end-to-
end deep learning architecture for graph classification. In
AAAI, 2018.

Zhao, L., Jin, W., Akoglu, L., and Shah, N. From stars
to subgraphs: Uplifting any GNN with local structure
awareness. In ICLR, 2022.

Zhou, J., Feng, J., Wang, X., and Zhang, M. Distance-
restricted folklore weisfeiler-leman gnns with provable
cycle counting power, 2023.

11

Graph As Point Set

A. Proof
A.1. Proof of Proposition 2.3

The matrices QT
1 Q1 and QT

2 Q2 in Rr×r are full rank and thus invertible. This allows us to derive the following equations:

L = Q1Q
T
1 = Q2Q

T
2 (9)

Q1Q
T
1 = Q2Q

T
2 ⇒ QT

1 Q1Q
T
1 = QT

1 Q2Q
T
2 (10)

⇒ QT
1 = (QT

1 Q1)
−1QT

1 Q2Q
T
2 (11)

⇒ ∃R ∈ Rm×m, QT
1 = RQT

2 (12)

⇒ ∃R ∈ Rm×m, Q1 = Q2R (13)

Q1Q
T
1 = Q2RRTQT

2 = Q2Q
T
2 ⇒ QT

2 Q2RRTQT
2 Q2 = QT

2 Q2Q
T
2 Q2 (14)

⇒ RRT = (QT
2 Q2)

−1QT
2 Q2Q

T
2 Q2(Q

T
2 Q2)

−1 = I (15)

Since R is orthogonal, any two full rank Q matrices are connected by an orthogonal transformation. Furthermore, if there
exists an orthogonal matrix R where RRT = I , then Q1 = Q2R, and L = Q1Q

T
1 = Q2RRTQT

2 = Q2Q
T
2 .

A.2. Matrix D+A is Always Positive Semi-Definite

∀x ∈ Rn,

xT (D +A)x =
∑

(i,j)∈E

xixj +
∑
i∈V

(
∑
j∈V

Aij)x
2
i (16)

=
∑

(i,j)∈E

xixj +
1

2

∑
(i,j)∈E

x2
i +

1

2

∑
(i,j)∈E

x2
j (17)

=
1

2

∑
(i,j)∈E

(xi + xj)
2 ≥ 0 (18)

Therefore, D +A is always positive semi-definite.

A.3. Proof of Theorem 3.1

We restate the theorem here:
Theorem A.1. Given two graphs G = (V,A,X) and G′ = (V ′, A′, X ′) with degree matrices D and D′, respectively, the
two graphs are isomorphic (G ≃ G′) if and only if ∃R ∈ O(r), {{(Xv, RQv)|∀v ∈ V }} = {{(Xv, Q

′
v)|v ∈ V ′}}, where r

denotes the rank of matrix Q, and Q and Q′ are the symmetric rank decompositions of D +A and D′ +A′ respectively.

Proof. Two graphs are isomorphic⇔ ∃π ∈ Πn, π(A) = A′ and π(X) = X ′.

Now we prove that ∃π ∈ Πn, π(A) = A′ and π(X) = X ⇔ ∃R ∈ O(r), {{(Xv, RQv)|v ∈ V }} = {{(Xv, Q
′
v)|v ∈ V ′}}.

When ∃π ∈ Πn, π(A) = A′ and π(X) = X ′, as

π(Q)π(Q)T = π(A+D) = A′ +D′ = Q′Q′T , (19)

according to Proposition 2.3, ∃R ∈ O(r), π(Q)RT = Q′. Moreover, π(X) = X ′, so

{{(Xv, RQv)|v ∈ V }} = {{(X ′
v, Q

′
v)|v ∈ V ′}} (20)

When ∃R ∈ O(r), {{(Xv, RQv)|v ∈ V }} = {{(X ′
v, Q

′
v)|v ∈ V ′}}, there exists permutation π ∈ Πn, π(X) =

X ′, π(Q)RT = Q′. Therefore,

π(A+D) = π(Q)π(Q)T = π(Q)RTRπ(Q)T = Q′Q′T = A′ +D′ (21)

12

Graph As Point Set

As A = D +A− 1
2diag((D +A)⃗1), A′ = D +A− 1

2diag((D +A)⃗1), where 1⃗ ∈ Rn is an vector with all elements = 1.

π(A) = A′ (22)

A.4. Proof of Theorem 3.3

Now we restate the theorem.

Theorem A.2. Given two graphs G = (V,A,X) and G = (V ′, A′, X ′), and an injective permutation-equivariant function
Z mapping adjacency matrix to a symmetric matrix: (1) For all permutation-equivariant function f , if G ≃ G′, then the
two sets of PSRD coordinates are equal up to an orthogonal transformation, i.e., ∃R ∈ O(r), {{Xv, RQ(Z(A), f)v|v ∈
V }} = {{X ′

v,Q(Z(A′), f)v|v ∈ V ′}}, where r is the rank of A, Q,Q′ are the PSRD coordinates of A and A′ respectively.
(2) There exists a continuous permutation-equivariant function f : Rr → Rr×2, such that G ≃ G′ if ∃R ∈ O(r),∀i =
1, 2, ..., d, {{(Xv, RQ(Z(A), f1)v, RQ(Z(A), f2)v)|v ∈ V }} = {{(X ′

v,Q(Z(A′), f1)v,Q(Z(A′), f2)v)|v ∈ V ′}}, where
f1 : Rr → Rr and f2 : Rr → Rr are two output channels of f .

Proof. First, as Z is an injective permutation equivariant function, forall permutation π ∈ Πn

π(Z(A)) = Z(A′)⇔ Z(π(A)) = Z(A′)⇔ π(A) = A′. (23)

Therefore, two matrix are isomorphic⇔ ∃π ∈ Πn, π(X) = X ′, π(Z) = Z ′, where Z,Z ′ denote Z(A), Z(A′) respectively.

In this proof, we denote eigendecomposition as Z = Udiag(Λ)UT and Z ′ = U ′diag(Λ′)U ′T , where elements in Λ and
Λ′ are sorted in ascending order. Let the multiplicity of eigenvalues in Z be r1, r2, ..., rl, corresponding to eigenvalues
λ1, λ2, ..., λi.

(1) If G ≃ G′, there exists a permutation π ∈ Πn, π(X) = X ′, π(Z) = Z ′.

π(Z) = Z ′ ⇒ Z ′ = π(U)diag(Λ)π(U)T = U ′diag(Λ′)U ′T . (24)

π(U)diag(Λ)π(U)T is also an eigendecomposition of Z ′, so Λ = Λ′ as they are both sorted in ascending order. Moreover,
since π(U), U ′ are both matrices of eigenvectors, they can differ only in the choice of bases in each eigensubspace. So there
exists a block diagonal matrix V with orthogonal matrix V1 ∈ O(r1), V2 ∈ O(r2), ..., Vl ∈ O(rl) as diagonal blocks that
π(U)V = U ′.

As f is a permutation equivariant function,

Λi = Λj ⇒ ∃π ∈ Πr, π(i) = j, π(j = i), π(Λ) = Λ (25)
⇒ ∃π ∈ Πr, π(i) = j, π(j = i), π(f(Λ)) = f(π(Λ)) = f(Λ) (26)
⇒ f(Λ)i = f(Λ)j (27)

Therefore, f will produce the same value on positions with the same eigenvalue. Therefore, f can be consider as a block
diagonal matrix with f1Ir1 , f2Ir2 , ..., flIrl as diagonal blocks, where fi ∈ R is f(Λ)pi , pi is a position that Λpi = λi, and
Ir is an identity matrix ∈ Rr×r.

Therefore,
V diag(f(Λ)) = diag(f1V1, f2V2, ..., flVl) = diag(f(Λ))V. (28)

Therefore,

π(Q(Z, f))V = π(U)diag(f(Λ))V (29)
= π(U)V diag(f(Λ)) (30)
= U ′diag(f(Λ′)) (31)
= Q(Z ′, f) (32)

As V V T = I, V ∈ O(r),

∃R ∈ O(r), {{Xv, RQ(Z(A), f)v|v ∈ V }} = {{X ′
v,Q(Z(A′), f)v|v ∈ V ′}} (33)

13

Graph As Point Set

(2) We simply define f1 is element-wise abstract value and square root
√
|.|, f1 is element-wise abstract value and square

root multiplied with its sign sgn(|.|)
√
|.|. Therefore, f1, f2 are continuous and permutation equivariant.

if ∃R ∈ O(r),

{{Xv, RQ(Z(A), f1)v, RQ(Z(A), f2)v|v ∈ V }} = {{X ′
v,Q(Z(A′), f1)v,Q(Z(A′), f2)v|v ∈ V ′}}. then there exist π ∈

Πn, so that
π(X) = X ′ (34)

π(U)diag(f1(Λ))RT = U ′diag(f1(Λ′)) (35)

π(U)diag(f2(Λ))RT = U ′diag(f2(Λ′)). (36)

Therefore,

π(Z) = π(U)diag(f1(Λ))diag(f2(Λ))π(U ′)T (37)

= π(U)diag(f1(Λ))RRT diag(f2(Λ))π(U ′)T (38)

= U ′diag(f1(Λ′))diag(f2(Λ′))U ′T (39)
= Z ′. (40)

As π(Z) = Z ′, π(X) = X ′, two graphs are isomorphic.

A.5. Proof of Theorem 5.3

Let Hl denote a circle of l nodes. Let Gl denote a graph of two connected components, one is H⌊l/2⌋ and the other is H⌈l/2⌉.
Obviously, there exists a node pair in Gl with shortest path distance equals to infinity, while Hl does not have such a node
pair. So the multiset of shortest path distance is easy to distinguish them. However, they are regular graphs with node degree
all equals to 2, so MPNN cannot distinguish them:

Lemma A.3. For all nodes v, u in Gl, Hl, they have the same representation produced by k-layer MPNN, forall k ∈ N .

Proof. We proof it by induction.

k = 0. Initialization, all node with trivial node feature and are the same.

Assume k − 1-layer MPNN still produce representation h for all node. At the k-th layer, each node’s representation will be
updated with its own representation and two neighbors representations as follows.

h, {{h, h}} (41)

So all nodes still have the same representation.

A.6. Proof of Theorem 5.2 and B.3

Given two function f, g, f can be expressed by g means that there exists a function ϕ ϕ ◦ g = f , which is equivalent to
given arbitrary input H,G, f(H) = f(G)⇒ g(H) = g(G). We use f → g to denote that f can be expressed with g. If
both f → g and g → f , there exists a bijective mapping between the output of f to the output of g, denoted as f ↔ g.

Here are some basic rule.

• g → h⇒ f ◦ g → f ◦ h.

• g → h, f → s⇒ f ◦ g → s ◦ h.

• f is bijective, f ◦ g → g

14

Graph As Point Set

2-Folklore-Weisfeiler-Leman test (2-FWL) produce a color ht
ij for each node pair (i, j) at t-th iteration. It updates the color

as follows,
ht+1
ij = hash(ht

ij , {{(ht
ik, h

t
kj)|k ∈ V }}). (42)

The color of the the whole graph is
ht
G = hash({{ht

ij |(i, j) ∈ V × V }}). (43)

Initially, tuple color hashes the node feature and edge between the node pair, h0
ij → δij , Aij , Xi, Xj .

We are going to prove that

Lemma A.4. Forall t ∈ N, ht
ij can express Ak

ij , k = 0, 1, 2, ..., 2t, where A is the adjacency matrix of the input graph.

Proof. We prove it by induction on t.

• When t = 0, h0
ij → Aij , Iij in initialization.

• If t > 0,∀t′ < t, ht′

ij → Ak′
, k′ = 0, 1, 2, ..., 2t

′
. For all k = 0, 1, 2,

ht
ij → hash(ht

ij , {{(ht
ik, h

t
kj)|k ∈ V }}) (44)

→ hash(ht
ij , {{(A

⌊k/2⌋
ik , A

⌈k/2⌉
kj)|k ∈ V }}) (45)

→
∑
k∈V

A
⌊k/2⌋
ik A

⌈k/2⌉
kj (46)

→ Ak
ij (47)

To prove that t-iteration 2-FWL cannot compute shortest path distance larger than 2t
′
, we are going to construct an example.

Lemma A.5. Let Hl denote a circle of l nodes. Let Gl denote a graph of two connected components, one is H⌊l/2⌋ and the
other is H⌈l/2⌉. ∀K ∈ N+, 2-FWL can not distinguish HlK and GlK , where lK = 2× 2× (2K). However, GlK contains
node tuple with 2K + 1 shortest path distance between them while HlK does not, any model count up to 2K + 1 shortest
path distance can count it.

Proof. Given a fixed t, we enumerate the iterations of 2-FWL. Given two graphs HlK , GlK , we partition all tuples in
each graph according to the shortest path distance between nodes: c0, c1, ..., cl, ..., c2K , where cl contains all tuples with
shortest path distance between them as l, and c>2K contains all tuples with shortest path distance between them larger than
2K . We are going to prove that at k-th layer k <= K, all ci, i ≤ 2k nodes have the same representation (denoted as hk

i)
c2k+1, c2k+2, ..., c2K , c>K nodes all have the same representation (denoted as hk

2k+1).

Initially, all c0 tuples have representation h0
0, all c1 tuples have the same representation h0

1 in both graph, and all other tuples
have the same representation h0

2.

Assume at k-th layer, all ci, i ≤ 2k nodes have the same representation hk
i , c2k+1, c2k+2, ..., c2K , c>2K tuples all have the

same representation hk
2k+1. At k + 1-th layer, each representation is updated as follows.

ht+1
ij ← ht

ij , {{(ht
iv, h

t
vj)|v ∈ V }} (48)

For all tuples, the multiset has lK elements in total.

For c0 tuples, the multiset have elements: one (hk
0 , h

k
0) as v = i, and two (hk

t , h
k
t) for t = 1, 2, .., 2k respectively as v is the

k-hop neighbor of i, and all elements left are (hk
2k+1, h

k
2k+1) as v is not in the k-hop neighbor of i.

For ct, t = 1, 2, ..., 2k tuples: the multiset have elements: one (hk
a, h

k
t−a) for a = 0, 1, 2, .., t respectively as v is on the

shortest path between (i, j), one (hk
a, h

k
2k+1) for a = 1, 2, ..., 2k respectively, and one (hk

2k+1, h
k
a) for a = 1, 2, ..., 2k

respectively, with other elements are (hk
2k+1, h

k
2k+1).

15

Graph As Point Set

For ct, t = 2k + 1, 2k + 2, ..., 2k+1 tuples: the multiset have elements: one (hk
a, h

k
t−a) for a = t− 2k, t− 2k + 1, ..., 2k

respectively as v is on the shortest path between (i, j), one (hk
a, h

k
t−a) for a ∈ {0, 1, 2, ..., t − 2k − 1} ∪ {2k + 1, 2k +

2, ..., 2k+1} respectively as v is on the shortest path between (i, j), one (hk
a, h

k
2k+1) for a = 1, 2, ..., 2k respectively, and

one (hk
2k+1, h

k
a) for a = 1, 2, ..., 2k respectively, with other elements are (hk

2k+1, h
k
2k+1).

For ct, t = 2k+1+1, ..., 2K , > 2K : the multiset are all the same : two (hk
a, h

k
2k+1) and two (hk

2k+1, h
k
a) for a = 1, 2, 3, ..., 2k,

respectively.

A.7. Proof of Theorem 5.1

We can simply choose fk(Λ) = Λk. Then ⟨Q(A, f0)i,Q(A, fk)j⟩ = Ak
ij . The shortest path distance is

spd(i, j, A) = argmin
k
{k ∈ N|Ak

ij > 0} (49)

A.8. Proof of Theorem 5.4 and 5.5

This section assumes that the input graph is undirected and unweighted with no self-loops. Let A denote the adjacency
matrix of the graph. Note that AT = A,A⊙A = A. In this section, we define d(X) = diag(diagonal(X)), which sets all
non-diagonal elements in X to 0 and keeps diagonal elements.

An L-path is a sequence of edges [(i1, i2), (i2, i3), ..., (iL, iL+1)], where all nodes are different from each other. An L-cycle
is an L-path except that i1 = iL+1. Two paths/cycles are considered equivalent if their sets of edges are equal. The count of
L path from node u to v is the number of non-equivalent pathes with i1 = u, iL+1 = v. The count of L-cycle rooted in
node u is the number of non-equivalent cycles involves node u.

Perepechko & Voropaev (2009) show that the number of path can be expressive with a polynomial of A, where A is the
adjacency matrix of the input unweight graph. Specifically, let PL denote path matrix whose (u, v) elements denote the
number of L-pathes from u to v, Perepechko & Voropaev (2009) provides formula to express PL with A for small L.

This section considers a weaken version of point cloud transformer. Each layer still consists of sv-mixer and multi-head
attention. However, the multi-head attention matrix takes the scalar and vector feature before sv-mixer for Q,K and use the
feature after sv-mixer for V .

At k-th layer sv-mixer:

s′i ← MLP1(si∥diag(W1v
T
i v

k
i W2)) (50)

v′i ← vidiag(MLP2(s
′
i))W3 + viW4 (51)

Attention layer:
Yij = MLP3(Kij),Kij = (W s

q si ⊙W s
k sj)∥diag(W v

q v
T
i viW

v
k), (52)

As s′i and v′i can express si, vi, so the weaken version can be expressed with the original version.

si ← MLP4(s
′
j∥

∑
j

Attenijs
′
j) (53)

vi ←W5(v
′
j∥

∑
j

Attenijv
′
j) (54)

Let Y k denote the attention matrix at k-th layer. Y k is a learnable function of A. Let Yk denote the polynomial space of A
that Y k can express. Each element in it is a function from Rn×n → Rn×n

We are going to prove some lemmas about Y.

Lemma A.6. Yk ⊆ Yk+1

Proof. As there exists residual connection, scalar and vector representations of layer k+1 can always contain those of layer
k, so attention matrix of layer k + 1 can always express those of layer k.

Lemma A.7. If y1, y2, ..., ys ∈ Yk, their hadamard product y1 ⊙ y2 ⊙ ...⊙ ys ∈ Yk.

16

Graph As Point Set

Proof. As (y1 ⊙ y2 ⊙ ... ⊙ ys)ij =
∏s

l=1(yl)ij is a element-wise polynomial on compact domain, an MLP (denoted as
g) exists that takes (i, j) elements of the y1, y2, ..., ys to produce the corresponding elements of their hadamard product.
Assume g0 is the MLP3 in Equation 53 to produce the concatenation of y1, y2, .., ys, use g ◦ g0 (the composition of two
mlps) for the MLP3 in Equation 53 produces the hadamard product.

Lemma A.8. If y1, y2, ..., ys ∈ Yk, their linear combination
∑s

l=1 alyl ∈ Yk, where al ∈ R.

Proof. As (
∑s

l=1 alyl)ij =
∑s

l=1 al(yl)ij is a element-wise linear layer (denoted as g). Assume g0 is the MLP3 in
Equation 53 to produce the concatenation of y1, y2, .., ys, use g ◦ g0 for the MLP3 in Equation 53 produces the linear
combination.

Lemma A.9. ∀s > 0, As ∈ Y1.

Proof. As shown in Section 5.1, the inner product of coordinates can produce As.

Lemma A.10. ∀y1, y2, y3 ∈ Yk, s ∈ N+, d(y1)y2, y2d(y1), d(y1)y2d(y3), y1A
s, Asy1, y1A

sy2 ∈ Yk

Proof. According to Equation 50 and Equation 52, s′i at k-th layer can express yii for all y ∈ Yk. Therefore, at k + 1-th
layer in Equation 52, MLP3 can first compute element (i, j) (y2)ij from si, sj , vi, vj , then multiply (y2)ij with (y1)ii from
si, (y3)jj from sj and thus produce d(y1)y2, y2d(y1), d(y1)y2d(y3).

Moreover, according to Equation 53, vi at k+1-th layer can express
∑

k(y1)ikvk,
∑

k(y2)ikvk. So at k+1-th layer, the (i, j)
element can express ⟨

∑
k(y1)ikvk, vj⟩, ⟨vi,

∑
k(y1)jkvk⟩, ⟨(y1)ikvk,

∑
k(y2)jkvk⟩, corresponds to y1A

s, Asy2, y1A
sy2,

respectively.

Therefore,

Lemma A.11. • ∀s > 0, l > 0, ai > 0, ⊙l
i=1A

ai ∈ Y1

• ∀s1, s2 > 0, l > 0, As1d(⊙l
i=1A

ai), d(⊙l
i=1A

ai)As1 , d(⊙l1
i=1A

bi)As1d(⊙l2
i=1A

bi) ∈ Y2.

• ∀s1, s2, s3 > 0, As1d(⊙l
i=1A

ai)

Therefore, we come to our main theorem.

Theorem A.12. The attention matrix of 1-layer PST can express P2, 2-layer PST can express P3, 3-layer PST can express
P4, P5, 5-layer PST can express P6.

Proof. As shown in (Perepechko & Voropaev, 2009),

P2 = A2 (55)

Only one kind basis ⊙l
i=1A

ai . 1-layer PST can express it.

P3 = A3 +A−Ad(A2)− d(A2)A (56)

Three kind of basis ⊙l
i=1A

ai (A3, A), As1d(⊙l
i=1A

ai)(Ad(A2)), and d(⊙l
i=1A

ai)As1 . 2-layer PST can express it.

P4 = A4 +A2 + 3A⊙A2 − d(A3)A− d(A2)A2 −Ad(A3)−A2d(A2)−Ad(A2)A (57)

Four kinds of basis⊙l
i=1A

ai (A4, A2, A⊙A2), As1d(⊙l
i=1A

ai) (Ad(A3), A2d(A2)), d(⊙l
i=1A

ai)As1 (d(A3)A, d(A2)A2),
and As1d(⊙l

i=1A
ai)As3 (Ad(A2)A). 3-layer PST can express it.

17

Graph As Point Set

P5 = A5 + 3A3 + 4A (58)

+ 3A2 ⊙A2 ⊙A+ 3A⊙A3 − 4A⊙A2 (59)

− d(A4)A− d(A3)A2 − d(A2)A3 + 2d(A2)2A− 2d(A2)A− 4d(A2)A (60)

−Ad(A4)−A2d(A3)−A3d(A2) + 2Ad(A2)2 − 2Ad(A2)− 4Ad(A2) (61)

+ d(A2)Ad(A2) (62)

+ 3(A⊙A2)A (63)

+ 3A(A⊙A2) (64)

−Ad(A3)A−Ad(A2)A2 −A2d(A2)A (65)

+ d(Ad(A2)A)A (66)

Basis are in

• Y1

– ⊙l
i=1A

ai : A5, A3, A,A2 ⊙A2 ⊙A,A⊙A3, A⊙A2

• Y2

– As1d(⊙l
i=1A

ai):Ad(A4), A2d(A3), A3d(A2), Ad(A2)2, Ad(A2), Ad(A2)

– d(⊙l
i=1A

ai)As1 : Ad(A4), A2d(A3), A3d(A2), Ad(A2)2, Ad(A2), Ad(A2)

– d(⊙l1
i=1A

ai)As1d(⊙l1
i=1A

bi): d(A2)Ad(A2)

– As1(⊙l
i=1A

ai): A(A⊙A2)

– (⊙l
i=1A

ai)As1 : (A⊙A2)A

• Y3:

– AsY2: Ad(A3)A, Ad(A2)A2, A2d(A2)A

– d(Y2)As: d(Ad(A2)A)A

3-layer PST can express it.

18

Graph As Point Set

Formula for 6-path matrix is quite long.

P6 = A6 + 4A4 + 12A2 (67)

+ 3A⊙A4 + 6A⊙A2 ⊙A3 +A2 ⊙A2 ⊙A2 − 4A2 ⊙A2 + 44A⊙A2 (68)

− d(A5)A− d(A4)A2 − d(A3)A3 − 5d(A3)A− d(A2)A4 − 7d(A2)A2 (69)

+ 2d(A2)2A2 + 4(d(A2)⊙ d(A3))A (70)

−Ad(A5)−A4d(A2)−A3d(A3)− 5Ad(A3)−A2d(A4)− 7A2d(A2) (71)

+ 2A2d(A2)2 + 4A(d(A2)⊙ d(A3)) (72)

+ d(A2)Ad(A3) + d(A3)Ad(A2) + d(A2)A2d(A2) (73)

+ 2(A⊙A3)A+ 2(A⊙A2 ⊙A2)A+ (A2 ⊙A2 ⊙A)A− 3(A⊙A2)A+ (A⊙A3)A (74)

+ (A⊙A2)A2 + 2(A⊙A2)A2 − (A⊙A2)A (75)

+ 2A(A⊙A3) + 2A(A⊙A2 ⊙A2) +A(A2 ⊙A2 ⊙A)− 3A(A⊙A2) +A(A⊙A3) (76)

+A2(A⊙A2) + 2A2(A⊙A2)−A(A⊙A2) (77)

− 8A⊙ (A(A⊙A2))− 8A⊙ ((A⊙A2)A) (78)

− 12d(A2)(A⊙A2)− 12(A⊙A2)d(A2) (79)

−Ad(A4)A−Ad(A2)A3 −A3d(A2)A−Ad(A3)A2 −A2d(A3)A−A2d(A2)A2 (80)

− 10Ad(A2)A+ 2Ad(A2)2A (81)

+ d(A2)Ad(A2)A+Ad(A2)Ad(A2) (82)

− 3A⊙ (Ad(A2)A) (83)

− 4Ad((A⊙A2)A)− 4Ad(A(A⊙A2)) (84)

+ 3A(A⊙A2)A (85)

− 4d(A(A⊙A2))A− 4d((A⊙A2)A)A (86)

+ d(Ad(A3)A)A+ d(Ad(A2)A)A2 + d(Ad(A2)A2)A+ d(A2d(A2)A)A (87)

+Ad(Ad(A3)A) +A2d(Ad(A2)A) +Ad(A2d(A2)A) +Ad(Ad(A2)A2) (88)

+Ad(Ad(A2)A)A (89)

Basis are in

• Y1

– ⊙l
i=1A

ai : A6, A4, A2, A⊙A4, A⊙A2 ⊙A3, A2 ⊙A2 ⊙A2, A2 ⊙A2, A⊙A2

• Y2

– As1d(⊙l
i=1A

ai):Ad(A5), A4d(A2), A3d(A3), Ad(A3), A2d(A4), A2d(A2), A2d(A2)2, A(d(A2)⊙ d(A3))

– d(⊙l
i=1A

ai)As1 : d(A5)A, d(A4)A2, d(A3)A3, d(A3)A, d(A2)A4, d(A2)A2, d(A2)2A2, (d(A2)⊙ d(A3))A

– d(⊙l1
i=1A

ai)As1d(⊙l1
i=1A

bi): d(A2)Ad(A3), d(A3)Ad(A2), d(A2)A2d(A2)

– As1(⊙l
i=1A

ai): A(A ⊙ A3), A(A ⊙ A2 ⊙ A2), A(A2 ⊙ A2 ⊙ A), A(A ⊙ A2), A(A ⊙ A3), A2(A ⊙ A2),
A2(A⊙A2), A(A⊙A2)

– (⊙l
i=1A

ai)As1 : (A ⊙ A3)A, (A ⊙ A2 ⊙ A2)A, (A2 ⊙ A2 ⊙ A)A, (A ⊙ A2)A, (A ⊙ A3)A, (A ⊙ A2)A2,
(A⊙A2)A2, (A⊙A2)A

– Y2 ⊙ Y2: A⊙ ((A⊙A2)A), A⊙ ((A⊙A2)A)

– d(Y1)Y1: d(A2)(A⊙A2)

– Y1d(Y1): (A⊙A2)d(A2)

• Y3:

19

Graph As Point Set

– AsY2: Ad(A4)A, Ad(A2)A3, A3d(A2)A, Ad(A3)A2, A2d(A3)A, A2d(A2)A2, Ad(A2)A, Ad(A2)2A,
Ad(A2)Ad(A2), A(A⊙A2)A

– Y2As: d(A2)Ad(A2)A

– Y3 ⊙ Y3: A⊙ (Ad(A2)A)

– d(Y2)Y2: d(Ad(A2)A)A,d(A(A⊙A2))A,d((A⊙A2)A)A

– Y2d(Y2):Ad((A⊙A2)A),Ad(A(A⊙A2))

• Y4:

– d(Y3)Y3: d(Ad(A3)A)A, d(Ad(A2)A)A2, d(Ad(A2)A2)A, d(A2d(A2)A)A

– Y3d(Y3): Ad(Ad(A3)A), A2d(Ad(A2)A), Ad(A2d(A2)A), Ad(Ad(A2)A2)

• Y5:

– As1d(Y3)As2 :Ad(Ad(A2)A)A

5-layer PST can express it.

Count cycle is closely related to counting path. A L+ 1 cycle contains edge (i, j) can be decomposed into a L-path from i
to j and edge (i, j). Therefore, the vector of count of cycles rooted in each node CL+1 = diagonal(APL)

Theorem A.13. The diagonal elements of attention matrix of 2-layer PST can express C3, 3-layer PST can express C4,
4-layer PST can express C5, C6, 6-layer PST can express C7.

Proof. It is a direct conjecture of Theorem A.12 as CL+1 = diagonl(APL) and ∀k, PL ∈ Yk ⇒ APL ∈ Yk+1

B. Expressivity Comparision with Other Models
Algorithm A is considered more expressive than algorithm B if it can differentiate between all pairs of graphs that algorithm
B can distinguish. If there is a pair of links that algorithm A can distinguish while B cannot and A is more expressive than B,
we say that A is strictly more expressive than B. We will first demonstrate the greater expressivity of our model by using
PST to simulate other models. Subsequently, we will establish the strictness of our model by providing a concrete example.

Our transformer incorporates inner products of coordinates, which naturally allows us to express shortest path distances and
various node-to-node distance metrics. These concepts are discussed in more detail in Section 5.1. This naturally leads to
the following theorem, which compares our PST with GIN (Xu et al., 2019a).

Theorem B.1. A k-layer Point Set Transformer is strictly more expressive than a k-layer GIN.

Proof. We first prove that one PST layer can simulate an GIN layer.

Given node features si and vi. Without loss of generality, we can assume that one channel of vi contains Udiag(Λ1/2). The
sv-mixer can simulate an MLP function applied to si. Leading to s′i. A GIN layer will then update node representations as
follows,

si ← s′i +
∑

j∈N(i)

s′j (90)

By inner products of coordinates, the attention matrix can express the adjacency matrix. By setting W s
q ,W

s
k = 0, and

W v
q ,W

v
k be a diagonal matrix with only the diagonal elements at the row corresponding the the channel of Udiag(Λ1/2).

Kij = (W s
q si ⊙W s

k sj)∥diagonal(W v
q v

T
i vjW

v
k)→ ⟨diag(Λ1/2)Ui, diag(Λ1/2)Uj⟩ = Aij (91)

Let MLP express an identity function.
Attenij = MLP(Kij)→ Aij (92)

20

Graph As Point Set

The attention layer will produce
si ←

∑
j

Aijs
′
j =

∑
j∈N(i)

s′j (93)

with residual connection, the layer can express GIN

si ← s′i + si = s′i +
∑

j∈N(i)

s′j (94)

Moreover, as shown in Theorem 5.3, MPNN cannot compute shortest path distance, while PST can. So PST is strictly more
expressive.

Moreover, our transformer is strictly more expressive than some representative graph transformers, including
Graphormer (Ying et al., 2021) and GPS with RWSE as structural encoding (Rampásek et al., 2022).

Theorem B.2. A k-layer Point Set Transformer is strictly more expressive than a k-layer Graphormer and a k-layer GPS.

Proof. We first prove that k-layer Point Set Transformer is more expressive than a k-layer Graphormer and a k-layer GPS.

In initialization, besides the original node feature, Graphormer further add node degree features and GPS further utilize
RWSE. Our PST can add these features with the first sv-mixer layer.

s′i ← MLP1(si∥diagonal(W1v
T
i viW

T
2)) (95)

Here, diagonal(W1viv
T
i W

T
2) add coordinate inner products, which can express RWSE (diagonal elements of random walk

matrix) and degree (see Appendix D), to node feature.

Then we are going to prove that one PST layer can express one GPS and one Graphormer layer. PST’s attention matrix is as
follows,

Attenij = MLP(Kij), Kij = (W s
q si ⊙W s

k sj)∥diagonal(W v
q v

T
i vjW

v
k)→ ⟨diag(Λ1/2)Ui, diag(Λ1/2)Uj⟩ (96)

The Hadamard product (W s
q si⊙W s

k sj) with MLP can express the inner product of node representations used in Graphormer
and GPS. The inner product of coordinates can express adjacency matrix used in GPS and Graphormer and shortest path
distance used in Graphormer. Therefore, PST’ attention matrix can express the attention matrix in GPS and Graphormer.

To prove strictness, Figure 2(c) in (Zhang et al., 2023b) provides an example. As PST can capture resistance distance
and simulate 1-WL, so it can differentiate the two graphs according to Theorem 4.2 in (Zhang et al., 2023b). However,
Graphormer cannot distinguish the two graphs, as proved in (Zhang et al., 2023b).

For GPS, Two graphs in Figure 2(c) have the same RWSE: RWSE is

diagonal(Ûdiag(Λ̂k)ÛT), k = 1, 2, 3, ..., (97)

where the eigendecomposition of normalized adjacency matrix D−1/2AD−1/2 is Û . By computation, we find that two
graphs share the same Λ̂. Moroever, diagonal(Ûdiag(Λ̂k)ÛT) are equal in two graphs for k = 0, 1, 2, ..., 9, where 9 is the
number of nodes in graphs. Λk and diagonal(Ûdiag(Λ̂k)ÛT) with larger k are only linear combinations of Λk and thus
diagonal(Ûdiag(Λ̂k)ÛT) for k = 0, 1, ..., 9. So the RWSE in the two graphs are equal and equivalent to simply assigning
feature h1 to the center node and feature h2 to other nodes in two graphs. Then GPS simply run a model be a submodule of
Graphormer on the graph and thus cannot differentiate the two graphs either.

Even against a highly expressive method such as 2-FWL, our models can surpass it in expressivity with a limited number of
layers:

Theorem B.3. For all K > 0, a graph exists that a K-iteration 2-FWL method fails to distinguish, while a 1-layer Point
Set Transformer can.

Proof. It is a direct corollary of Theorem 5.2.

21

Graph As Point Set

C. Some Graph Transformers Fail to Compute Shortest Path Distance
First, we demonstrate that computing inner products of node representations alone cannot accurately determine the shortest
path distance when the node representations are permutation-equivariant. Consider Figure 2 as an illustration. In cases where
node representations exhibit permutation-equivariance, nodes v2 and v3 will share identical representations. Consequently,
the pairs (v1, v2) and (v1, v3) will yield the same inner products of node representations, despite having different shortest
path distances. Consequently, it becomes evident that the attention matrices of some Graph Transformers are incapable of
accurately computing the shortest path distance.

Theorem C.1. GPS with RWSE (Rampásek et al., 2022) and Graphormer without shortest path distance encoding cannot
compute shortest path distance with the elements of adjacency matrix.

Proof. Their adjacency matrix elements are functions of the inner products of node representations and the adjacency matrix.

Attenij = ⟨si, sj⟩||Aij . (98)

This element is equal for the node pair (v1, v2) and (v1, v3) in Figure 2. However, two pairs have different shortest path
distances.

Furthermore, while Graph Transformers gather information from the entire graph, they may not have the capacity to
emulate multiple MPNNs with just a single transformer layer. To address this, we introduce the concept of a vanilla Graph
Transformer, which applies a standard Transformer to nodes using the adjacency matrix for relative positional encoding.
This leads us to the following theorem.

Theorem C.2. For all k ∈ N, there exists a pair of graph that k + 1-layer MPNN can differentiate while k-layer MPNN
and k-layer vanilla Graph Transformer cannot.

Proof. Let Hl denote a circle of l nodes. Let Gl denote a graph of two components, one is H⌊l/2⌋ and the other is H⌈l/2⌉.
Let H ′

l denote adding a unique feature 1 to a node in Hl (as all nodes are symmetric for even l, the selection of node does
not matter), and G′

l denote adding a unique feature 1 to one node in Gl. All other nodes have feature 0. Now we prove that

Lemma C.3. For all K ∈ N, (K + 1)-layer MPNN can distinguish H ′
4(K+1) and G′

4(K+1), while K-layer MPNN and
K-layer vanilla Graph Transformer cannot distinguish.

Given H ′
4(K+1), G

′
4(K+1), we assign each node a color according to its distance to the node with extra label 1: c0 (the

labeled node itself), c1 (two nodes connected to the labeled node), c2 (two nodes whose shortest path distance to the labeled
node is 2),..., cK (two nodes whose shortest path distance to the labeled node is K), c>K (nodes whose shortest path distance
to the labeled node is larger than K). Now by simulating the process of MPNN, we prove that at k-th layer k <= K,
∀i ≤ k, ci nodes have the same representation (denoted as hk

i), respectively, ck+1, ck+2, ..., cK , c>K nodes all have the
same representation (denoted as hk

k+1).

Initially, all c0 nodes have representation h0
0, all other nodes have representation h0

1 in both graph.

Assume at k-th layer, ∀i ≤ k, ci nodes have the same representation hk
i , respectively, ck+1, ck+1, ..., cK , c>K nodes all

have the same representation hk
k+1. At k + 1-th layer, c0 node have two neighbors of representation hk

1 . all ci, 1 < i <= k

node two neighbors of representations hk
i−1 and hk

i+1, respectively. ck+1 nodes have two neighbors of representation hk
k and

hk
k+1. All other nodes have two neighbors of representation hk

k+1. So ci, i ≤ k + 1 nodes have the same representation
(denoted as hk+1

i), respectively, ck+1+1, ..., cK , c>K nodes all have the same representation (denoted as hk
k+1).

The same induction also holds for K-layer vanilla graph transformer.

However, in the K +1-th message passing layer, only one node in G4(K+1) is of shortest path distance K +1 to the labeled
node. It also have two neighbors of representation hK

K . While such a node is not exist in H4(K+1). So (K + 1)-layer MPNN
can distinguish them.

The issue with a vanilla Graph Transformer is that, although it collects information from all nodes in the graph, it can only
determine the presence of features in 1-hop neighbors. It lacks the ability to recognize features in higher-order neighbors,
such as those in 2-hop or 3-hop neighbors. A straightforward solution to this problem is to manually include the shortest

22

Graph As Point Set

Figure 2. The failure of using inner products of permutation-equivariant node representations to predict shortest path distance. v2
and v3 have equal node representations due to symmetry. Therefore, (v1, v2) and (v1, v3) will have the same inner products of node
representations but different shortest path distance.

Table 5. Connection between existing structural embeddings and our parameterized coordinates. The eigendecomposition are Â← Û Λ̂Û ,
D −A← Ũ Λ̃ŨT , A← UΛUT . di denote the degree of node i.

Method Description Connection

Random walk matrix (Li
et al., 2020; Dwivedi et al.,
2023; Rampásek et al.,
2022)

k-step random walk matrix is (D−1A)k, whose
element (i, j) is the probability that a k-step ran-
dom walk starting from node i ends at node j.

(D−1A)kij
= (D−1/2(Â)kD1/2)ij

=
√

dj
di
⟨Ûi, diag(Λ̂k)Ûj⟩

Heat kernel matrix (Mi-
alon et al., 2021)

Heat kernel is a solution of the heat equation. Its
element (i, j) represent how much heat diffuse
from node i to node j

(I+Ũ(diag(exp(−tΛ̃))−I)ŨT)ij
=δij+⟨Ũi, (diag(exp(−tΛ̃))−I)Ũj⟩

Resistance dis-
tance (Zhang & Li,
2021; Zhang et al., 2023b)

Its element (i, j) is the resistance between node
i, j considering the graph as an electrical network.
It is also the pseudo-inverse of laplacian matrix L,

(Ũdiag(Λ̃−1)ŨT)ij
= ⟨Ũi, diag(Λ̃−1)Ũj⟩

Equivariant and stable
laplacian PE (Wang et al.,
2022)

The encoding of node pair i, j is ∥1K⊙(Ui−Uj)∥,
where 1K means a vector ∈ Rr with its elements
coresponding to K largest eigenvalue of L

∥1K ⊙ (Ui − Uj)∥2
= ⟨Ui, diag(1K)Ui⟩
+⟨Uj , diag(1K)Uj⟩
−2⟨Ui, diag(1K)Uj⟩

Degree and number of tri-
angular (Bouritsas et al.,
2023)

di is the number of edges, and ti is the number of
triangular rooted in node i.

di = ⟨Ui, diag(Λ2)Uj⟩.
ti = ⟨Ui, diag(Λ3)Uj⟩

path distance as a feature. However, our analysis highlights that aggregating information from the entire graph is insufficient
for capturing long-range interactions.

D. Connection with Structural Embeddings
We show the equivalence between the structural embeddings and the inner products of our PSRD coordinates in Table 5.
The inner products of PSRD coordinates can unify a wide range of positional encodings, including random walk (Li et al.,
2020; Dwivedi et al., 2023; Rampásek et al., 2022), heat kernel (Mialon et al., 2021), and resistance distance (Zhang & Li,
2021; Zhang et al., 2023b).

E. Datasets
We summarize the statistics of our datasets in Table 6. Synthetic is the dataset used in substructure counting tasks provided
by Huang et al. (2023b), they are random graph with the count of substructure as node label. QM9 (Wu et al., 2017),
ZINC (Gómez-Bombarelli et al., 2016), and ogbg-molhiv are three datasets of molecules. QM9 use 13 quantum chemistry
property as the graph label. It provides both the graph and the coordinates of each atom. ZINC provides graph structure
only and aim to predict constrained solubility. Ogbg-molhiv is one of Open Graph Benchmark dataset, which aims to
use graph structure to predict whether a molecule can inhibits HIV virus replication. We further use MUTAG, PTC-MR,
PROTEINS, and IMDB-BINARY from TU database (Ivanov et al., 2019). MUTAG comprises 188 mutagenic aromatic

23

Graph As Point Set

Table 6. Statistics of the datasets. #Nodes and #Edges denote the number of nodes and edges per graph. In split column, ’fixed’ means the
dataset uses the split provided in the original release. Otherwise, it is of the formal training set ratio/valid ratio/test ratio.

#Graphs #Nodes #Edges Task Metric Split

Synthetic 5,000 18.8 31.3 Node Regression MAE 0.3/0.2/0.5.
QM9 130,831 18.0 18.7 Regression MAE 0.8/0.1/0.1
ZINC 12,000 23.2 24.9 Regression MAE fixed

ZINC-full 249,456 23.2 24.9 Regression MAE fixed
ogbg-molhiv 41,127 25.5 27.5 Binary classification AUC fixed

MUTAG 188 17.9 39.6 classification Accuracy 10-fold cross validataion
PTC-MR 344 14.3 14.7 classification Accuracy 10-fold cross validation

PROTEINS 1113 39.1 145.6 classification Accuracy 10-fold cross validataion
IMDB-BINARY 1000 19.8 193.1 classification Accuracy 10-fold cross validataion
PascalVOC-SP 11,355 479.4 2710.5 Node Classification Macro F1 fixed
Peptides-func 15,535 150.9 307.3 Classification AP fixed

Peptides-struct 1 15,535 150.9 307.3 Regression MAE fixed

Table 7. Hyperparameters of our model for each dataset. #warm means the number of warmup epochs, #cos denotes the number of cosine
annealing epochs, gn denotes the magnitude of the gaussian noise injected into the point coordinates, hiddim denotes hidden dimension,
bs means batch size, lr represents learning rate, and #epoch is the number of epochs for training.

dataset #warm #cos wd gn #layer hiddim bs lr #epoch #param

Synthetic 10 15 6e-4 1e-6 9 96 16 0.0006 300 961k
qm9 1 40 1e-1 1e-5 8 128 256 0.001 150 1587k
ZINC 17 17 1e-1 1e-4 6 80 128 0.001 800 472k
ZINC-full 40 40 1e-1 1e-6 8 80 512 0.003 400 582k
ogbg-molhiv 5 5 1e-1 1e-6 6 96 24 0.001 300 751k
MUTAG 20 1 1e-7 1e-4 2 48 64 2e-3 70 82k
PTC-MR 25 1 1e-1 1e-3 4 16 64 3e-3 70 15k
PROTEINS 25 1 1e-7 3e-3 2 48 8 1.5e-3 80 82k
IMDB-BINARY 35 1 1e-7 1e-5 3 48 64 3e-3 80 100k
PascalVOC-SP 5 5 1e-1 1e-5 4 96 6 0.001 40 527k
Peptide-func 40 20 1e-1 1e-6 6 128 2 0.0003 80 1337k
Peptide-struct 40 20 1e-1 1e-6 6 128 2 0.0003 40 1337k

and heteroaromatic nitro compounds. PROTEINS represents secondary structure elements as nodes with edges between
neighbors in amino-acid sequence or 3D space. PTC involves 344 chemical compounds, classifying carcinogenicity for rats.
IMDB-BINARY features ego-networks for actors/actresses in movie collaborations, classifying movie genre graphs. We also
use three datasets in Long Range Graph Benchmark (Dwivedi et al., 2022b). They consists of larger graphs. PascalVOC-SP
comes from the computer vision domain. Each node in it representation a superpixel and the task is to predict the semantic
segmentation label for each node. Peptide-func and peptide struct are peptide molecular graphs. Task in Peptides-func is to
predict the peptide function. Peptides-struct is to predict 3D properties of the peptide. PTC is a collection of 344 chemical
compounds represented as graphs which report the carcinogenicity for rats. There are 19 node labels for each node.

F. Experimental Details
Our code is available at https://github.com/GraphPKU/GraphAsSet. Our code is primarily based on Py-
Torch (Paszke et al., 2019) and PyG (Fey & Lenssen, 2019). All our experiments are conducted on NVIDIA RTX 3090
GPUs on a linux server. We use l1 loss for regression tasks and cross entropy loss for classification tasks. We select the
hyperparameters by running optuna (Akiba et al., 2019) to optimize the validation score. We run each experiment with 8
different seeds, reporting the averaged results at the epoch achieving the best validation metric. For optimization, we use
AdamW optimizer and cosine annealing scheduler. Hyperparameters for datasets are shown in Table 7. All PST and PSDS
models (except these in ablation study) decompose laplacian matrix for coordinates.

ZINC, ZINC-full, PascalVOC-SP, Peptide-func, and Peptide-struct have 500k parameter budgets. Other datasets have
no parameter limit. Graphormer (Ying et al., 2021) takes 47000k parameters on ogbg-molhiv. 1-2-3-GNN takes 929k
parameters on qm9. Our PST follows these budgets on ZINC, ZINC-full and PascalVOC-SP. However, on the peptide-func

24

https://github.com/GraphPKU/GraphAsSet

Graph As Point Set

Table 8. Results on peptide-func and peptide-struct dataset with 1M parameter budget.

peptide-func peptide-struct

Graph-MLPMixer 0.6970± 0.0080 0.2475± 0.0015
GraphGPS 0.6535± 0.0041 0.2500± 0.0005
PST 0.6984± 0.0051 0.2470± 0.0015

Laplacian Matrix

D
eepS

et

Rank 𝑟

Eigen-
decomposition

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 2 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 2

Eigenvector 𝑉

Rank 𝑟

Eigenvalue Λ

Rank 𝑟
Hidden

dimension 𝑑

#
n

o
d

e
𝑛

Diagonal
matrice

Batch Matrix Multiplication

#
n

o
d

e
𝑛

Rank 𝑟
Hidden

dimension 𝑑

Figure 3. The pipeline of parameterized SRD. We first decompose Laplacian matrix or other matrice for the non-zero eigenvalue and the
corresponding eigenvectors. Then the eigenvalue is transformed with DeepSet (Zaheer et al., 2017). Multiply the transformed eigenvalue
and the eigenvector leads to coordinates.

and peptide-struct datasets, we find that hidden dimension is quite crucial for good performance. So we use a comparable
number of hidden dimension and transformer layers. This leads to about 1M parameters because our PST employs two sets
of parameters (one for scalar and one for vector), which resulted in twice the parameters with the same hidden dimension
and number of transformer layers. We conduct experiments with baselines with larger hidden dimensions for these datasets.
The results are shown in Table 8. When the PST and baselines are all to 1M parameters, out PST outperforms baselines with
the same parameter budget 1M, and our method is effective on the two datasets.

Other datasets we explored do not have explicit parameter constraints, and it’s worth noting that our PST has fewer
parameters compared to representative baselines in these cases. Hyperparameter Configuration:

Our experiments involved tuning seven hyperparameters: depth (4, 8), hidden dimension (64, 256), learning rate (0.0001,
0.003), number of warmup epochs (0, 40), number of cosine annealing epochs (1, 20), magnitude of Gaussian noise added
to input (1e-6, 1e-4), and weight decay (1e-6, 1e-1). We observed that [1] also used seven hyperparameters in their setup.
Batch size was determined based on GPU memory constraints and was not a parameter that we optimized.

G. Architecture
The architecture of parameterized SRD is shown in Figure 3. As illustrated in Section 3.2, it first do eigendecomposition for
non-zero eigenvalues and the corresponding eigenvectors, then use DeepSet (Zaheer et al., 2017) to process the eigenvalues,
leading to coordinates with multiple channels. The architecture of PST is shown in Figure 4. As illustrated in Section 4, it is
composed of scalar-vector mixers and attention layers.

H. Ablation
To assess the design choices made in our Point Set Transformer (PST), we conducted ablation experiments. First, we replace
the PSRD coordinates (see Section 3.2) with SRD coordinates, resulting in a reduced version referred to as the PST-gc
model. Additionally, we introduced a variant called PST-onelayer, which is distinct from PST in that it only computes
the attention matrix once and does not combine information in scalar and vector features. Furthermore, PST decompose
Laplacian matrix by default to produce coordinates. PST-adj uses adjacency matrix instead. Similar to PST, PSDS takes
node coordinates as input. However, it use DeepSet (Zaheer et al., 2017) rather than transformer as the set encoder. For
better comparison, we also use our strongest baseline on QM9 dataset, DF (Zhou et al., 2023).

The results of the ablation study conducted on the QM9 dataset are summarized in Table 2. Notably, PST-gc exhibits only

25

Graph As Point Set

𝑠௜ = 𝑥௜

Attention

(a) (b)

sv mixer

𝑣௜ = 𝑄௜

N ×

𝑠௜ 𝑣௜

𝑠௜ 𝑣௜

 ⟨⋅,⋅⟩

 𝑊ଵ 𝑊ଶ

 MLPଵ

𝑠௜
ᇱ

 MLPଶ

 𝑊ଷ 𝑊ସ

𝑣௜′

(c)

𝑠௜ 𝑣௜

 𝑊௤
௦ 𝑊௞

௦ 𝑊௞
௩ 𝑊௤

௩

𝑠௝ 𝑣௝

⟨⋅,⋅⟩

 MLP

Atten௜௝

௝

௝

𝑠௜ 𝑣௜

Figure 4. Architecture of Point Set Transformer (PST) (a) PST contains several layers. Each layer is composed of an scalar-vector
(sv)-mixer and an attention layer. (b) The architecture of sv-mixer. (c) The architecture of attention layer. si and s′i denote the scalar
representations of node i, and v⃗i and v⃗′i denote the vector representations. xi is the initial features of node i. Qi and point coordinates of
node i produced by parameterized SRD in Section 3.2.

Table 9. Ablation study on qm9 dataset.
µ α εhomo εlumo ∆ε R2 ZPVE U0 U H G Cv

Unit 10−1D 10−1a3
0 10−2meV 10−2meV 10−2meV a2

0 10−2meV meV meV meV meV 10−2cal/mol/K

PST 3.19±0.04 1.89±0.04 5.98±0.09 5.84±0.08 8.46±0.07 13.08±0.16 0.39±0.01 3.46±0.17 3.55±0.10 3.49±0.20 3.55±0.17 7.77±0.15

PST-onelayer 3.72±0.02 2.25±0.05 6.62±0.11 6.67±0.07 9.37±0.15 15.95±0.29 0.55±0.01 3.46±0.06 3.50±0.14 3.50±0.03 3.45±0.07 9.62±0.24

PST-gc 3.34±0.02 1.93±0.03 6.08±0.11 6.10±0.10 8.65±0.10 13.71±0.12 0.40±0.01 3.38±0.13 3.43±0.12 3.33±0.08 3.29±0.11 8.04±0.15

PST-adj 3.16±0.02 1.86±0.01 6.31±0.06 6.10±0.05 8.84±0.01 13.60±0.09 0.39±0.01 3.59±0.12 3.73±0.08 3.65±0.06 3.60±0.016 7.62±0.21

PST-normadj 3.22±0.04 1.85±0.02 5.97±0.23 6.15±0.07 8.79±0.04 13.42±0.15 0.41±0.01 3.36±0.25 3.41±0.24 3.46±0.18 3.38±0.23 8.10±0.12

PSDS 3.53±0.05 2.05±0.02 6.56±0.03 6.31±0.05 9.13±0.04 14.35±0.02 0.41±0.02 3.53±0.11 3.49±0.05 3.47±0.04 3.56±0.14 8.35±0.09

DF 3.46 2.22 6.15 6.12 8.82 15.04 0.46 4.24 4.16 3.95 4.24 9.01

a slight increase in test loss compared to PST, and even outperforms PST on 4 out of 12 target metrics, highlighting the
effectiveness of the Graph as Point Set approach with vanilla symmetric rank decomposition. In contrast, PST-onelayer
performs significantly worse, underscoring the advantages of PST over previous methods that augment adjacency matrices
with spectral features. PST-adj and PST-normadj achieves similar performance to PST, illustrating that the choice of matrix
to decompose does not matter. DeepSet performs worse than PST, but it still outperforms our strongest baseline DF, showing
the potential of combining set encoders other than transformer with our convertion from graph to set. On the long-range
graph benchmark, PST maintains a significant performance edge over PST-onelayer. However, it’s worth noting that the gap
between PST and PST-gc widens, further confirming the effectiveness of gc in modeling long-range interactions.

I. Scalability
We present training time per epoch and GPU memory consumption data in Table 11 and Table 12. Due to architecture, PST
has higher time complexity than existing Graph Transformers and does not scale well on large graphs like pascalvoc-sp
dataset. However, on the ZINC dataset, PST ranks as the second fastest model, and its memory consumption is comparable
to existing models with strong expressivity, such as SUN and SSWL, and notably lower than PPGN.

J. Results on TU datasets
Following the setting of Feng et al. (2022), we test our PST on four TU datasets (Ivanov et al., 2019). The results are shown
in Table 13. Baselines include WL subtree kernel (Shervashidze et al., 2011), GIN (Xu et al., 2019a), DGCNN (Zhang et al.,
2018), GraphSNN (Wijesinghe & Wang, 2022), GNN-AK+ (Zhao et al., 2022), and three variants of KP-GNN (Feng et al.,
2022) (KP-GCN, KP-GraphSAGE, and KP-GIN). We use 10-fold cross-validation, where 9 folds are for training and 1 fold
is for testing. The average test accuracy is reported. Our PST consistently outperforms our baselines.

26

Graph As Point Set

Table 10. Ablation study on Long Range Graph Benchmark dataset.
Model PascalVOC-SP Peptides-Func Peptides-Struct

PST 0.4010±0.0072 0.6984±0.0051 0.2470±0.0015

PST-onelayer 0.3229±0.0051 0.6517±0.0076 0.2634±0.0019

PST-gc 0.4007±0.0039 0.6439±0.0342 0.2564±0.0120

Table 11. Training time per epoch and GPU memory consumption on zinc dataset with batch size 128.

PST SUN SSWL PPGN Graphormer GPS SAN-GPS

Time/s 15.20 20.93 45.30 20.21 123.79 11.70 79.08
Memory/GB 4.08 3.72 3.89 20.37 0.07 0.25 2.00

K. Point Set DeepSet
Besides Transformer, we also propose a DeepSet (Zaheer et al., 2017)-Based set encoder, Point Set DeepSet (PSDS),
for point set to illustrate the versatility of our graph-to-set method. Similar to PST, PSDS also operates with points
carrying two types of representations: scalars, which remain invariant to coordinate orthogonal transformations, and vectors,
which adapt equivariantly to coordinate changes. For a point i, its scalar representation is denoted by si ∈ Rd, and its
vector representation is denoted by vi ∈ Rr×d, where d is the hidden dimension, and r is the rank of coordinates. si
is initialized with the input node feature Xi, and vi is initialized with the parameterized coordinates containing graph
structural information, as detailed in Section 3.2. Similar to DeepSet, PSDS transforms point representations individually,
aggregates them to produce global feature, and combine global features and individual point representations to update point
representations.

Scalar-Vector Mixer. This component individually transforms point representations. To enable the information exchange
between vector and scalar features, we design a mixer architecture as follows.

s′i ← MLP1(si∥diagonal(W1v
T
i viW

T
2)), (99)

v′i ← vidiag(MLP2(si))W3 + viW4 (100)

Here, W1,W2,W3, and W4 ∈ Rd×d are learnable matrices for mixing different channels of vector features. Additionally,
MLP1 : R2d→d and MLP2 : Rd→d represent two multi-layer perceptrons transforming scalar representations. The operation
diagonal(W1v

T
i viW2) takes the diagonal elements of a matrix, which translates vectors to scalars, while diag(MLP2(si))vi

transforms scalar features into vectors. As vTi R
TRvi = vTi vi,∀R ∈ O(r), the scalar update is invariant to orthogonal

transformations of the coordinates. Similarly, the vector update is equivariant to O(r).

Aggregator. This component aggregates individual point representations for global features s, v, vsq.

s←
∑
i∈V

MLP3(si) (101)

v ←
∑
i∈V

viW5 (102)

vsq ←
∑
i∈V

viW6W7v
T
i (103)

Here, W5,W6 and W7 ∈ Rd×d denote the linear transformations vectors. MLP3 : Rd → Rd is an MLP converting scalars.
Global feature s ∈ Rd is scalar, vRr×d is vector, and vsq ∈ Rr×r is the sum of square for each vector.

Point Representation Update. Each point representation is updated by combining global features.

si ← MLP4(si + s) (104)
vi ← vsqvi + vW8 (105)

si is combined with global scalar s and transformed with an MLP MLP4 : Rd → Rd. vi is combined with vsq and v with
linear layer W8 ∈ Rd×d.

27

Graph As Point Set

Table 12. Training time per epoch and GPU memory consumption on pascalvoc-sp dataset with batch size 6.

PST SUN SSWL PPGN Graphormer GPS SAN-GPS

Time/s 15.20 20.93 45.30 20.21 123.79 11.70 79.08
Memory/GB 4.08 3.72 3.89 20.37 0.07 0.25 2.00

Table 13. TU dataset evaluation result.
Method MUTAG PTC-MR PROTEINS IMDB-B

WL 90.4±5.7 59.9±4.3 75.0±3.1 73.8±3.9

GIN 89.4±5.6 64.6±7.0 75.9±2.8 75.1±5.1
DGCNN 85.8±1.7 58.6 ±2.5 75.5±0.9 70.0±0.9

GraphSNN 91.24±2.5 66.96±3.5 76.51±2.5 76.93±3.3
GIN-AK+ 91.30±7.0 68.20±5.6 77.10±5.7 75.60±3.7

KP-GCN 91.7±6.0 67.1±6.3 75.8±3.5 75.9±3.8
KP-GraphSAGE 91.7±6.5 66.5±4.0 76.5±4.6 76.4±2.7
KP-GIN 92.2±6.5 66.8±6.8 75.8±4.6 76.6±4.2

PST 94.4±3.5 68.8±4.6 80.7±3.5 78.9±3.6

Pooling. After several layers, we pool all points’ scalar representations as the set representation s.

s← Pool({si|i ∈ V }), (106)

where Pool is pooling function like sum, mean, and max.

28

