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Abstract

Typical LiDAR-based 3D object detection models are trained with real-world data
collection, which is often imbalanced over classes. To deal with it, augmentation
techniques are commonly used, such as copying ground truth LiDAR points and
pasting them into scenes. However, existing methods struggle with the lack of
sample diversity for minority classes and the limitation of suitable placement. In
this work, we introduce a novel approach that utilizes pseudo LiDAR point clouds
generated from low-cost miniatures or real-world videos, which is called Pseudo
Ground Truth augmentation (PGT-Aug). PGT-Aug involves three key steps: (i)
volumetric 3D instance reconstruction using a 2D-to-3D view synthesis model,
(ii) object-level domain alignment with LiDAR intensity simulation, and (iii) a
hybrid context-aware placement method from ground and map information. We
demonstrate the superiority and generality of our method through performance
improvements in extensive experiments conducted on popular benchmarks, i.e.,
nuScenes, KITTI, and Lyft, especially for the datasets with large domain gaps
captured by different LiDAR configurations. The project webpage is https://just-
add-100-more.github.io.
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Figure 1: Overview. We present PGT-Aug, a novel
cost-effective pipeline that generates and augments
pseudo-LiDAR samples (from miniatures and web
videos) to effectively reduce the performance gap
between majority-class vs. minority-class objects.

LiDAR-based 3D object detection has garnered
growing interest thanks to its wide applications,
including fully autonomous vehicles (or robots)
where the LiDAR point cloud is a main reli-
able source for 3D scene understanding. There
exists a large volume of literature on LiDAR-
based 3D object detection models [1–7], and
they have achieved remarkable performance im-
provements via better model architectures and
efficient LiDAR points representation. Still, we
observe that these models often suffer from the
so-called class imbalance problem – they tend
to be overfitted to frequently observed objects
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(of majority classes) and underfitted to rarely observed objects (of minority classes), causing a severe
performance gap. Such an imbalance problem is commonly observed in real-world data collections,
such as KITTI [8] and nuScenes [9].

A naïve solution for the imbalance problem is collecting more LiDAR data, but achieving a sufficient
number of long-tail samples is still practically challenging. Due to the inherent imbalance in the
natural distribution, the more data we collect, the worse the imbalance. In literature, one common
strategy to deal with class imbalance is a copy-and-paste-based sample augmentation [1, 10–12],
where objects (of minority classes) from other frames are copied into the current frame, balancing
class-wise occurrences during training (see Fig. 1 top). However, these methods are still limited in
that (i) the areas where objects can be pasted depend on their original position (thus limiting the
positional diversity), and (ii) sample diversity where the same object (of minority classes) can be
repeatedly copied and pasted.

An ideal sample augmentation method for balancing performance across classes may need the 3D
shape information of diverse samples (of minority classes) to enable flexible placements into a given
scene. Recent Neural Radiance Field (NeRF)-based approaches [13–16] have demonstrated the
ability to generate high-quality 3D scenes from multiple viewpoints at low computational costs.
Here, we advocate utilizing NeRF-based approaches to obtain the 3D shape of objects from external
sources (not from other scenes within the same data). However, generating diverse real-world 3D
objects, especially of minority classes, can pose challenges due to the need for images from multiple
viewpoints. To address this, we propose using miniatures and public videos to obtain 3D-rendered
samples of target objects. Miniatures, commonly used for practical effects in the film industry, offer a
practical solution to collect diverse samples, particularly for various types of vehicles.

In this work, we introduce Pseudo Ground Truth Augmentation (PGT-Aug), which generates point
clouds of minority-class objects from two sources: (i) surround-view videos of given miniatures
and (ii) public videos of real-world objects. As shown in Fig. 1 bottom, we first utilize a 2D-to-3D
renderer to reconstruct an object’s 3D volumetric representation. Then, we transform it into LiDAR-
like 3D point clouds by rearranging and filtering points and estimating their intensities. During
training, such generated pseudo-LiDAR points are sampled and placed into appropriate places of
a scene without where-to-paste technical constraints. Our experiments with public datasets (i.e.
nuScenes [9], KITTI [8], and Lyft [17]) demonstrate that our data augmentation with pseudo-LiDAR
points effectively improves detection performance for minority classes. Our contributions can be
summarized into three-fold:

• We introduce PGT-Aug, a novel cost-effective pipeline for LiDAR-based object detectors to solve
the class imbalance problem by (i) generating pseudo-LiDAR samples (from multi-view images of
miniatures and public videos of an object) and (ii) augmenting them during training to balance the
performance gap across classes.

• Our pipeline involves a novel view-agnostic pseudo-LiDAR sample generation where we reduce the
domain gap between the real-world and the generated LiDAR point clouds. A series of processes,
such as spatial distribution matching and data-driven intensity adjustments, achieve this.

• We propose a novel map-aware augmentation technique that determines where to paste the pseudo-
LiDAR samples based on map-based scene context (i.e. placing an object into the appropriate
locations in the given scene).

2 Related Work

LiDAR-based 3D Object Detection Datasets for Autonomous Driving. The automotive industry
has shown a surge of interest in LiDAR-based 3D object detection, enhancing system reliability
compared to camera-based detectors. However, creating large-scale annotations face challenges due
to sensor costs, spatial distribution variations, and annotation difficulties caused by reflections and
occlusions. While several annotated datasets [9, 17–20] exists, the limited quantity, compared to the
image domain, leads to both generalization issues and class imbalance [21, 22]. To mitigate this, we
propose a novel approach for generating high-quality rare objects inexpensively for data augmentation
in 3D object detection, addressing the class imbalance. (see Fig. 7 in the Supplementary Material.)

Data Augmentation of LiDAR Point Clouds. Data augmentation plays a crucial role in increasing
the diversity of training samples and addressing class imbalance in datasets. Two common strategies
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Figure 2: Overview of Pseudo GT (PGT)-Aug Framework. Given multiview images, we first
reconstruct their volumetric representations (Section 3.1). We post-process RGB point clouds using
spatial rearrangement and LiDAR intensity simulator (Section 3.2), producing pseudo-LiDAR point
clouds. Such points are stored in a psuedo LiDAR bank, and we paste the sampled objects into the
target scene with the proposed augmentation scheme (Section 3.3).

for mitigating overfitting and enhancing model robustness are data resampling and data synthesis.
Data resampling [23–27] primarily focus on oversampling minority classes by replicating existing
samples, thereby increasing the frequency of minority classes and balancing class distributions during
model training. In contrast, data synthesis [28–30] relies on blending of original samples or utilizing
synthetic data from generative models. This approach enhances the diversity of the training set,
helping to address data scarcity and improve overall model generalization.

Recent works have tackled 3D annotation difficulties through LiDAR simulation [10, 31–33] for 3D
renderings or data augmentation [1, 12, 34–37] for utilizing existing data. Some works [10, 32, 38]
attempted to reduce a domain gap between simulated and real-world data by combining them, as
seen in SHIFT3D [11], which employs deep signed distance functions to refine object’s shape and
pose adversarially. GT-Aug [1] used copy-and-paste strategies, while Real-Aug [12] enhanced data
utilization with realistic placement. Creating diverse, non-standard shapes requires considerable
time and effort through 3D CAD modeling. On the other hand, 3D objects in the target dataset are
partially observed, making free placement challenging. Different from previous approaches, we
collect miniatures and real-world objects to render realistic 3D samples with low cost from diverse
domains, and introduce an object-level augmentation with flexible placeability.

Neural Radiance Fields and 3D Rendering. Many works have attempted to represent 3D scenes
as continuous implicit representations or differentiable structures [13, 14, 39–41]. NeRF [13] rep-
resented 3D geometry by approximating density and view-dependent RGB using a simple MLP
architecture. Among many subsequent works [14–16, 42, 43], both Instant-NGP [15] and Plenox-
els [14] contributed to faster training and rendering of 3D scenes. Instant-NGP accelerated MLPs
using multilevel hash tables, while Plenoxels utilized sparse voxel grids for interpolating color and
density field. These advances can make the reconstruction of 3D objects easier and more precise [16],
facilitating their use in various perception tasks [44].

3 Method

We introduce PGT-Aug, a fast, realistic, and low-cost pipeline that generates (and collects) pseudo-
LiDAR point clouds of minority-class objects from multi-view images of miniatures or real-world
objects. Then, to reduce the class imbalance problem, the generated point clouds are augmented into
the current scene, balancing the number of occurrences across classes during training. As shown
in Fig. 2, our pipeline consists of three main modules: (i) Volumetric 3D Instance Collection,
where we reconstruct objects’ 3D volumetric representation from multi-view images of real-world
miniatures or objects (Section 3.1). (ii) Object-level Domain Alignment, where we reduce the
domain gap (i.e., between the generated vs. the collected from LiDAR sensors) by transforming the
point clouds based on sensor configurations and intensity simulation models (Section 3.2). Lastly,
(iii) Pseudo LiDAR Point Clouds Augmentation, where we augment the generated pseudo-LiDAR
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point clouds into the current scene by determining more realistic object insertion areas based on the
estimated ground areas and map information (Section 3.3).

3.1 Volumetric 3D Instance Collection of Minority Class Objects

Data Collection. Conventional Ground truth (GT) sampling-based data augmentation approaches
resample minority-class 3D instances (e.g., trucks, trailers, buses, construction vehicles) from in-
domain collections, but their placement flexibility and contextual diversity are often limited. To
resolve this issue, we want to augment minority-class 3D instances from out-of-domain sources,
efficiently resolving the data imbalance problem by sampling more diverse types and shapes of
minority-class samples in the wild. To this end, we advocate for utilizing the following two cost-
effective sources: (i) videos capturing the surround view of miniatures and (ii) publicly available
videos capturing multiple views of minority-class objects (see Fig. 2). As the title suggests, we
purchased dozens of realistic miniatures for just $100. Plus, we collect public videos from YouTube,
followed by manual filtering to ensure those videos capture an object from multiple viewpoints.

Preprocessing. Given collected video frames, we first estimate the following three pieces of
information as a preprocessing for the later 2D-to-3D rendering: (i) a camera intrinsic matrix, (ii)
camera poses (3D camera position and its orientation for each frame), and (iii) binary masks for
a foreground object. For (i) and (ii), we use COLMAP [45], similar to the preprocess of existing
NeRF-based approaches [13, 14, 46]. For (iii), we use the off-the-shelf video segmentation model,
i.e., Segment and Track Anything [47], to extract segmentation masks for foreground objects.

2D-to-3D Rendering. Our framework is built on advanced 2D-to-3D renderers, such as Plenoxels [14]
and Gaussian-Splatting [16], known for efficient, high-quality 3D reconstruction. Unlike some
3D conditional generative models for specific classes such as Shap-E [48] and Zero-1-to-3 [49],
these methods offer dense 3D point clouds suitable for increasing out-of-distribution samples. In
general, these methods [14, 16] predict view-dependent representation, but obtaining fully visible
and uniformly high-density data from all viewpoints is necessary to generate pseudo-LiDAR objects
and axis-aligned bounding boxes. Therefore, we propose an ad-hoc module to obtain representative
colors for each voxel grid or point based on the estimated mean color values from different views.
More specifically, iterating through N views, it determines which voxel grid or point’s camera ray
passes through and calculates the color value of voxels or points by doing a dot product between
corresponding spherical harmonic coefficients and view-dependent harmonics basis. If a certain voxel
or a point is hit multiple times by rays from different views, we update the existing value by adding
the new color value and store the total number of passes. Notably, this straightforward module is
applicable not only to 2D-to-3D rendering techniques such as Plenoxels and Gaussian Splatting, but
also to renderers that do not rely on spherical harmonics2.

3.2 Object-level Domain Alignment

We aim to augment real LiDAR data with simulated minority-class samples derived from RGB-colored
point clouds. However, these point clouds lack crucial information regarding spatial distribution from
sensor configurations and LiDAR’s intensity, which is essential for accurate LiDAR modeling and
evaluation. Thus, we propose object-level domain alignment between RGB-colored point cloudsDrgb

and real-world point clouds Dint, employing two alignment techniques as (i) view-dependent points
filtering and rearrangement and (ii) LiDAR intensity simulation.

View-dependent Points Filtering. This step simulates realistic data variations based on
the object’s relative position to the LiDAR sensors and their settings. Therefore, we re-
quire alignment parameters based on factors such as type, position, quantity, and specifica-
tions (Field of View and azimuth resolution) of LiDAR sensors in the target dataset. We ap-
ply the following three steps: (i) transformation of points to the range view representation,
(ii) filtering of points on the invisible side, and (iii) reprojection of points into 3D space.

2If a renderer with spherical harmonic lighting is selected, the 0th coefficient of the spherical harmonics can
be directly used to extract view-agnostic colors. However, we empirically observed that our approach is more
robust at capturing the original object’s color and areas of dark shades (see Table 13 in Appendix).
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In (i), given points in the spherical co-
ordinates system, we map points into a
range view R(u, v) ∈ RH×W , where
u and v are the spatial grid indexes.
For each grid (u, v), a point with mini-
mum depth remains, and the others are
filtered out (i.e., points on visible parts
remain). The remaining points are ir-
regularly located in 3D space, gener-
ally different from those of real-world
LiDAR points. We therefore rearrange each point to be regularly spaced by adjusting their inclination
ϕ and azimuth θ in the spherical coordinate system: ϕ′ =

[
1−

(
v+0.5
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)]
FOVtotal − FOVdown, θ

′ =

π
[
2
(
u+0.5
W

)
− 1

]
, where FOVdown and FOVtotal represent the down part and the total range of the

field of view, respectively. Rearranged inclination and azimuth ϕ′, θ′ are calculated by backprojecting
image coordinates u, v to spherical coordinates following the above equations. The results on different
LiDAR settings are shown in Fig. 3.

LiDAR Intensity Simulation. Since object surface reflectivity cannot be derived from images, we
use a data-driven model for intensity estimation. As no real-world LiDAR points match generated
RGB points, we create an unpaired domain transfer model specifically for point clouds based on
CycleGAN [50] framework. Also, we design a novel region matching loss that directly reduces the
intensity error between two samples, even with varying point counts, as shown in Fig. 4. To compute
the loss, both generated points GDrgb→Dint

(prgb) and real-world points pint are grouped into an
equal number of ball patches whose centers are obtained via farthest point sampling. After dividing
into N ball patches, Hungarian matching is used to find the optimal assignment of ball patch pairs by
computing the center distances for all matchings SN ,

σ̂ = argmin
σ∈SN

N∑
i

||ci − cσ(i)||1, (1)

where ci and cσ(i) are centers of ball patches from GDrgb→Dint
(prgb) and pint, respectively.
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Figure 4: Region Matching Loss.

After finding optimal pairs, we reduce all intensity
distances between fake and real pairs of patches. For
normalized points x, y and a given ball radius r,

Lgroup =

N∑
j

||Ex∈brj
(x)− Ey∈br

σ̂(j)
(y)||1, (2)

where Ex∈brj
(x), Ey∈br

σ̂(j)
(y) denote the average of

intensity values of optimal ball patch pairs brj , b
r
σ̂(j)

and r is 0.1. The overall objective function is

Ltotal = LCycleGAN + λLgroup, (3)

where λ is a regularizing factor set to 0.1.

Instance Size Setting. We analyzed the average object size per class in the dataset. We determine the
size by adding Gaussian noise with σ of 0.1. The noise exceeding one σ range was clipped to σ.

3.3 Pseudo LiDAR Point Clouds Augmentation

Ground and Map Synthesis for Object Insertion. To determine feasible insertion areas, Real-
Aug [12] and Lidar-Aug [10] utilized estimated ground estimation. However, relying solely on this
data may not cover areas adequately as shown in Fig. 5. To address this, we propose a method that
combines map information and estimated ground areas for more realistic scene composition. We first
create a rasterized map with a 0.128m per pixel resolution within a radius of 51.2m around the ego
vehicle, assigning proper layouts (e.g., Road, Sidewalk, etc.) for inserted objects. Additionally, we
construct a rasterized ground map based on estimated ground points. The two pieces of information
may overlap at pixels where dynamic object are present or where ground area is not estimated due to
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Figure 5: Comparison of Ground-only and Ground+Map Scene Composition. Blue and
Pink-colored points denote the feasible location of insertion derived from (a) ground-only and
(b) ground+map synthesized insertions, respectively.

insufficient points. To deal with it, we prioritize map values for pixels with low point density, while
using ground values otherwise. As shown in Fig. 5-(b), the proposed method can predict broader and
feasible areas for more realistic data augmentation than ground-only composition.

Aligning to Data Geometry. The generated objects need to be axis-aligned to easily obtain accurate
bounding box annotations for the detection task. For this, we first use PCA to align the generated
points and rotate them around the normal direction in xy, yz, and zx planes to align its axes. We also
need to classify objects’ front and back for heading information, so we adopt PointNet++ [51] as a
heading classifier trained using binary cross-entropy loss. Since PointNet++ is rotation sensitive [52]
and is trained without rotation augmentation, the model can distinguish between front and back.

Virtual Object Sweeps. LiDAR scan sweeping is commonly used to increase the point density
in some popular benchmarks [8, 9]. Since our pipeline can generate objects that appear from a
single scan, additional techniques are required to apply them to such datasets. We employ a rigid
body motion model to stack points over time. Given the dataset, we first collect the velocity and
acceleration of each class’s center points at each time step and estimate a motion trajectory. We
translate the center of generated object points along the selected trajectory. Ultimately, we can
generate virtual objects that closely resemble what is acquired from the real LiDAR sweeps.

4 Experiments

Implementation Details. We use Plenoxels [14] to reconstruct a given object’s 3D shape from multi-
view images. Also, we utilize PointNeXt [53] in our CycleGAN-based LiDAR intensity simulator.
Note that we sample 300 instances (that has at least 256 LiDAR points) for each minority class from
the nuScenes dataset [9] to train our intensity simulator. We implement and evaluate our proposed
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ranges given reconstructed 3D volumetric representations.
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Table 1: Detection performance comparison on nuScenes val set in terms of AP, mAP, and
NDS. Based on CV-Voxel [5], we compare different placement methods, such as random [1], ground-
based [12], and our placement. We also report the effect of using our pseudo-LiDAR samples.

GT-Aug [1] (Random Placement) ✓ ✓ ✗ ✗ ✗ ✗
Real-Aug [12] (Ground-based Placement) ✗ ✗ ✓ ✓ ✗ ✗
Ours (Ground+Map-based Placement) ✗ ✗ ✗ ✗ ✓ ✓

w/ Pseudo-LiDAR Samples ✗ ✓ ✗ ✓ ✗ ✓

Class # of objects in val Performance

Bus 3,009 69.1 71.3 (+2.2%) 71.8 71.7 (-0.1%) 73.0 72.1 (-0.9%)

Construction Vehicle 2,387 18.0 18.1 (+0.1%) 22.7 24.0 (+1.3%) 23.7 24.2 (+0.5%)

Trailer 3,765 36.1 35.7 (-0.4%) 41.6 41.4 (-0.2%) 42.3 40.4 (-1.9%)

Truck 13,950 56.9 57.8 (+0.9%) 57.3 58.3 (+1.0%) 58.8 59.8 (+1.0%)

Motorcycle 2,227 60.3 61.5 (+1.2%) 67.1 68.0 (+0.9%) 68.7 70.3 (+1.6%)

Bicycle 2,071 41.5 45.1 (+3.6%) 54.9 57.1 (+2.2%) 56.7 58.3 (+1.6%)

mAP (for all 10 classes) 59.0 59.8 (+0.8%) 62.3 63.0 (+0.7%) 63.3 63.5 (+0.2%)

NDS (for all 10 classes) 66.5 66.9 (+0.4%) 68.4 68.7 (+0.3%) 68.7 69.1 (+0.4%)

method based on LiDAR-based 3D object detection implementations from OpenPCDet [54] with
default parameter settings. All detectors are trained with a batch size of 32 on 4×A100 GPUs for
20 epochs. We conducted all experiments with the fixed seed for a fair comparison. Details on
architectures and hyperparameters can be found in the Supplementary Material.

Pseudo Object Bank Details. To validate our system, we have chosen nuScenes [9] dataset. For
the pseudo object bank, we generated minority class objects in 13 heading directions (from −180◦
to 180◦ at intervals of 30◦) within the entire perception range (from -50m to 50m at intervals of 5
meters). During training, we discard objects with less than 16 points to prevent ambiguity between
classes and add a small variation at the center. As a result, our bank has 36,960 trucks, 52,800
construction vehicles, 12,960 buses, 19,280 trailers, 25,279 motorcycles, and 4,300 bicycles.

Performance on NuScenes val set. We assess the effect of adding pseudo-LiDAR samples during
training using CP-Voxel [5] with a voxel size of [0.075, 0.075, 0.2]. As shown in Table 1, the
incorporation of pseudo-LiDAR samples into the GT database significantly improves the overall
detection performance, including minority classes, in terms of mAP and NDS (compare 1st vs. 2nd,
3rd vs. 4th, and 5th vs. 6th columns). Our placement approach surpasses existing methods (compare
1st, 3rd vs. 5th columns). Combining our two methods achieves the best performance, with 69.1%
in NDS and 63.5% in mAP, suggesting that our high-quality pseudo-LiDAR samples effectively
improve detection performance for minority classes without compromising majority classes.

Performance on NuScenes test set. Lastly, we evaluate our model on nuScenes test set based on
CP-Voxel [5] and Transfusion-L [55] as baseline detection models. We observe in Table 2 that our
model consistently achieves the best NDS and mAP scores (compared to Real-Aug [12]). Notably,
our method shows significant performance gains for minor classes such as Trailer, Truck, Motorcycle,
etc. Note that we applied the same Test Time Augmentation (TTA) technique to CP-Voxel as their
official submission to nuScenes leaderboard.

Table 2: Detection performance comparison on nuScenes test set in terms of minority class AP,
mAP for all 10 classes, and NDS. †: our reproduction, ‡: test time augmentation enabled.

Model Aug. Minority classes mAP NDS
Bus C.V Trailer Truck M.C B.C

CP-Voxel‡ [5]
GT-Aug 64.4 31.0 60.0 47.2 65.7 41.0 63.8 68.7

Real-Aug† 64.5 29.0 60.1 57.3 72.2 47.1 65.8 71.3
PGT-Aug 68.1 29.0 61.7 57.7 74.0 48.6 67.1 (+1.3%) 72.3 (+1.0%)

Transfusion-L [55]
GT-Aug 63.7 29.0 58.7 46.3 67.1 44.2 63.9 68.6

Real-Aug† 64.3 31.0 60.0 47.3 65.7 41.0 63.8 68.7
PGT-Aug 67.3 30.1 60.2 56.9 68.2 40.6 65.1 (+1.3%) 69.9 (+1.2%)
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Table 3: Comparisons between baseline and PGT-Aug for individual models on nuScenes val set.
Abbr. C.V: Construction Vehicle, Ped: Pedestrian, T.C: Traffic Cone, M.C: Motorcycle, B.C: Bicycle.
†: our reproduction.

Model Aug.
Majority classes Minority classes

mAP NDSCar Ped Barrier T.C Bus C.V Trailer Truck M.C B.C

SECOND [1]
GT-Aug 81.5 77.3 58.3 57.9 67.2 15.2 36.2 50.6 40.7 16.2 50.11 61.56
Real-Aug† 84.5 80.1 61.8 67.4 72.0 24.1 44.2 58.7 61.5 36.6 59.09 67.23
PGT-Aug 84.8 80.0 62.2 67.2 71.9 24.4 42.4 58.8 64.0 38.1 59.37 67.30

CP-Pillar [5]
GT-Aug 83.1 82.5 65.0 65.8 63.0 14.1 23.7 54.4 51.4 25.5 52.85 62.57
Real-Aug† 82.9 84.0 65.7 67.9 64.9 19.5 26.3 57.2 64.6 46.2 58.03 64.85
PGT-Aug 83.3 83.5 65.7 67.4 66.0 22.1 27.5 56.3 65.0 47.0 58.39 65.49

CP-Voxel [5]
GT-Aug 84.9 85.4 68.3 69.9 69.1 18.0 36.1 56.9 60.3 41.5 59.04 66.54
Real-Aug† 84.7 85.0 67.5 70.0 71.8 22.7 41.6 57.3 67.1 54.9 62.27 68.39
PGT-Aug 85.4 85.4 68.0 71.1 72.1 24.2 40.4 59.8 70.3 58.3 63.52 69.11

Transfusion-L [55]
GT-Aug 86.6 86.6 69.4 73.6 72.7 23.3 43.9 53.3 69.4 56.1 63.48 68.58
Real-Aug† 86.6 86.9 69.9 73.6 73.1 25.9 42.2 53.8 68.3 55.1 63.54 68.57
PGT-Aug 87.0 86.4 69.4 74.0 73.4 26.7 46.9 50.6 71.3 56.3 64.20 68.83

VoxelNeXt [6]
GT-Aug 83.7 84.5 68.9 68.4 71.4 20.9 37.5 56.1 62.9 49.8 60.42 67.03
Real-Aug† 83.4 85.0 67.8 69.6 70.9 22.6 38.7 58.0 69.8 56.7 62.25 67.62
PGT-Aug 84.2 85.0 67.7 70.6 72.4 23.9 40.6 57.5 70.9 56.6 62.95 68.30

Comparison with Different Model Architectures. We compared detection performance among
GT-Aug, Real-Aug, and PGT-Aug using five baselines, as detailed in Table 3. All detectors were
tested under same conditions, ensuring that no additional information about the generated objects
was utilized during the evaluation process. PGT-Aug brings significant improvements over other
augmentations in all types of models, such as center-based models (CP-Pillar, CP-Voxel [5]), anchor-
based model (SECOND [1]), and other types (VoxelNeXt [6], Transfusion-L [55]). This confirms
that our method can generally be applied to various detection models, boosting the model’s accuracy
for minority classes without sacrificing accuracy for majority classes.

5 Ablation Studies

Quality of Pseudo Labels. To evaluate the quality of our generated objects, we measure FID scores
using SE(3)-transformer [56] trained on the nuScenes dataset. As shown in Table 4, our generated
pseudo-LiDAR objects show similar or lower FID scores (than true samples), which may confirm
their plausibility and high quality (compare 5th and 6th vs. 7th and 8th columns). We also observe
that the pseudo-LiDAR object quality improves with (i) similar Azimuth resolution to the target
dataset sensor, (ii) the use of RGB values additionally as input, and (iii) the regularization by group

Table 4: Quality of Pseudo LiDAR Point Clouds. FID scores (squared Wasserstein distance between
given samples and nuScenes samples, thus lower is better) comparison between variants of our models
and public LiDAR datasets, Lyft [17] and A2D2 [18]. Abbr. G.S: Gaussian Splatting

Pseudo-LiDAR Point Clouds Lyft [17] A2D2 [18]

Volumetric 3D type Plenoxels [14] G.S [16] - -
Azimuth Resolution (px) 3600 1080 1080 1080 1080 1080 - -
RGB features ✓ ✗ ✗ ✓ ✓ ✓ - -
Group intensity Loss ✓ ✗ ✓ ✗ ✓ ✓ - -

Bus 17.7 14.6 13.1 13.0 13.2 11.2 8.7 19.8
Construction Vehicle 7.0 7.5 7.6 7.5 7.6 7.6 - 6.0
Trailer 20.6 12.7 11.9 11.9 12.2 13.7 - 36.5
Truck 8.9 8.4 7.6 7.6 7.3 6.9 6.6 13.4
Motorcycle 20.7 2.5 7.0 7.2 3.7 1.3 3.0 10.1
Bicycle 9.0 3.3 2.2 2.4 2.1 1.8 1.8 0.7

Avg. FID Score 14.2 8.2 8.3 8.3 7.7 7.1 4.8 14.4
mAP (for all 10 classes) 63.40 63.44 63.48 63.41 63.52 63.77 63.45 63.17
NDS (for all 10 classes) 68.83 68.99 69.02 68.87 69.11 69.35 68.88 68.73
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Table 5: Mixing ratio between GT and PGT
objects.

GT:PGT 0:1 1:3 1:1 3:1 1:0

mAP (↑) 61.29 63.35 63.52 63.40 63.34
NDS (↑) 67.63 69.08 69.11 68.78 68.71

Table 6: Continuously increasing pseudo-
LiDAR data.

Size bank 1/4 bank 1/2 Full bank

mAP (↑) 63.18 63.43 63.52
NDS (↑) 68.72 68.94 69.11

Table 7: Comparison between other methods that aim for class imbalance problems. Abbr. C.V:
Construction Vehicle, Ped: Pedestrian, T.C: Traffic Cone, M.C: Motorcycle, B.C: Bicycle. †: our
reproduction.

Model Aug.
Majority classes Minority classes

mAPCar Ped Barrier T.C Bus C.V Trailer Truck M.C B.C

PointPillars [3]

CBLoss† 82.7 74.7 54.0 52.1 51.2 61.7 17.9 30.5 48.7 20.5 49.4
DWA 81.0 72.3 50.2 50.1 49.0 63.4 10.7 34.3 32.9 6.9 44.6
PGT-Aug 83.0 71.8 54.8 51.1 54.9 69.7 20.2 39.5 49.6 14.5 50.9
PGT Aug + CBLoss 82.7 74.7 56.5 55.9 54.4 68.7 20.9 34.1 53.5 20.5 52.2 (+1.3%)

intensity loss. Finally, we used objects generated by Plenoxel with the parameters that gave the best
FID score for all 3D object detection tasks. We provide more details in the Supplementary Material.

Performance based on FID scores. We conducted experiments to assess how the quality of generated
objects as FID scores affects detection performance. We generated objects in all comparison groups
to have the same shape distribution. As shown in the last three rows of columns 1 to 5 of Table 4, we
observe a positive correlation between the average FID scores and the detection performance.

Samples from Other Datasets. The evaluation was conducted not only through self-validation
but also using other public datasets such as Lyft [17] and A2D2 [18]. Despite differences in class
ontology and sensor settings from nuScenes, we can prove the effectiveness of our augmentation
and confirm a correlation between the FID score and the number of samples in performance gain as
shown in Table 4. See the Supplementary Material for matching classes across datasets.

Samples from Different Renderer. To demonstrate the baseline capability of the proposed pipeline,
we applied the results generated by replacing the rendering model with Gaussian-splatting [16]
instead of Plenoxels [14]. Due to Gaussian-splatting [16] generates higher-quality objects, so the
detection performance improves accordingly, as shown in Table 4.

Mixing Ratio for Domain Alignments. Even when several methods are applied to reduce the domain
gap between the original and generated pseudo objects, there is still a difference between the two
sample groups. Therefore, when out-of-distribution data are only used, we can see that the detection
performance might drop. To alleviate this discrepancy, we used a strategy that combines the original
object bank with the pseudo object bank to reduce the gap. We experimentally demonstrate that this
strategy can mitigate the domain gap, allowing pseudo objects to be used effectively for detection
tasks. It is especially effective when the mixing ratio is 1:1, which can be confirmed through Table 5.

Performance based on Bank Size. We discuss the importance of the size of the object bank in the
detection task. To examine the impact of varying object shapes, we adjusted the size of the generated
bank by decreasing the number of object shapes per class by 1/2 and 1/4. As shown in Table 6, we
found that as the types of object increased, the performance improved in the validation set.

Comparison between other approaches for class imbalance problems. As shown in Table 7, we
provide the results of comparative experiments with [34, 57]. To align with the baseline of Dynamic
Weight Average (DWA) [34], we conducted experiments on PointPillars [3]. We re-implemented
Class-Balanced Loss (CBLoss) [57] with a beta value of 0.9999 and resampled the number of objects.
While we observed that loss-balancing methods like DWA [34] and CBLoss [57] effectively improve
the performance on minority classes, PGT-Aug, a data-augmentation-based method, achieved the
largest performance improvement among all methods. Furthermore, our experiments demonstrate
that combining these two types of methods can yield a synergistic effect.
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Table 8: PGT Performance on KITTI val set in terms of AP and mAP.

Model
Class

Target classes Other classes

mAPCyclist Car Pedestrian

# of objects in val 290 262 56 2980 5082 3116 1139 605 434

Difficulty Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

SECOND [1] GT-Aug 62.3 55.3 49.8 91.4 82.4 79.6 87.1 67.9 63.8 68.5
PGT-Aug 63.3 56.2 50.2 90.7 82.1 79.3 90.3 72.1 67.7 70.1 (+1.6%)

Table 9: PGT Performance on Lyft val set. Abbr. E.V: Emergency Vehicle, O.V: Other Vehicle,
M.C: Motorcycle, B.C: Bicycle. Ped: Pedestrian

Model Class
Target classes Other classes

mAPTruck Bus O.V M.C B.C Car Ped.

# of objects in val 2,721 1,653 4,920 187 3,347 91529 4952

CP-Voxel [5] GT-Aug 19.15 20.48 31.91 4.54 5.31 37.14 6.00 13.84
PGT-Aug 19.85 21.11 31.99 4.39 5.48 37.11 6.12 14.01 (+0.17%)

Performance on Other Datasets. Lastly, we applied the proposed framework to KITTI [8] and
Lyft [17] with different sensor configurations, ranges, and the number of sweeps. Both datasets
did not provide map information, so we modified our scene composition similar to the ground-only
composition by using Patchworks [58] to estimate ground. As shown in Table 8 and Table 9, we can
see that our framework demonstrates performance improvement across all datasets and is applicable
in various environments.

6 Conclusion, Limitations, and Broader Impacts

In this paper, we propose PGT-Aug, a low-cost yet effective data augmentation framework for class
imbalance in 3D object detection. To efficiently obtain rare class objects, we start by generating
objects from miniatures or web videos at a low cost, then transform them to resemble real LiDAR
data, and finally apply map-assistant data augmentation to insert them consistently into the scene
information. Even though PGT-Aug achieves significant improvements on various 3D object detec-
tion benchmarks, we believe that domain discrepancies still exist in both datasets and categories.
Furthermore, our approach must be extended to dynamic and deformable objects, such as animals.
While the generated pseudo objects have the potential to render both images and point clouds, our
current implementation is limited to point clouds. Regarding broader impact, our work applies not
only to objects for autonomous driving but also to secure facilities or military equipment in the
same data format. Thus, it could be used for the development of AI models in military or security
applications.
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A Appendix

A.1 Dataset Details

Motivation. We provide a distribution of an-
notated instances across different classes for
three benchmarks (nuScenes [9], KITTI [18],
and Lyft [17]) in Fig. 7. Even in a few categories,
severe class imbalance is observed in the datasets.
This class imbalance can induce a significant per-
formance gap between detecting the majority and
minority classes. The original skewed distribu-
tion of ground truth data (Blue) is mitigated by
adding pseudo-LiDAR samples generated by the
PGT-Aug pipeline for instances of the minority
class (Green).

Figure 7: Instance Distribution on various benchmarks.

Data Collections. We first provide the number of videos collected from miniatures and web pages as
shown in Table 10. We purchased various miniatures within a budget of around $100, and crawled
data using the following keywords on Google: 360◦ camera, surround view, turntable, sales, and
second-hand. Finally, the video collection consists of 64 trucks3, 21 motorcycles4, and 10 buses5

from YouTube, along with additional footage of construction vehicles from the Ritchie Bros Auction
website6. We provide examples of our dataset collection in Fig. 8.

Table 10: Statistics for our data collection. (i) Videos capturing surround view of miniatures and
(ii) publicly available videos of given minor-class objects. Abbr. C.V: Construction Vehicle, M.C:
Motorcycle, B.C: Bicycle

Data Source C.V Trailer Truck Bus M.C B.C Total

Miniatures 10 4 5 3 6 3 31
Public Videos 2 - 64 10 21 - 97

3https://www.youtube.com/@brucknersusedtruckcenterokc
4https://www.youtube.com/@MHDSuperStore
5https://www.youtube.com/@kagamotors
6https://www.rbauction.com/
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Figure 8: Dataset Collection. We demonstrate our collection of miniature images and crawled web
videos.
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Volumetric 3D Instance Collection. To aid in understanding the operation of the proposed frame-
work, we present all results from input images to output results including foreground segmentation
masks, extracted foreground objects, camera poses, and the corresponding dense RGB-colored point
clouds in Fig. 9.

(a) Camera Images (b) Masks (c) Foreground (d) Camera Poses (e) RGB Point Clouds

Miniatures

Web Images

Figure 9: Volumetric 3D rendering Results of RGB Point Clouds.
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Object-level Domain Alignment. We demonstrate the effect of our rearranged range projection as
shown in Fig. 10. Not only qualitative differences, but also by reflecting the sensor configuration, we
can reduce the discrepancy to the actual data domain.

Figure 10: Examples of Generated Point Clouds (a) with and (b) without rearranged range
projection. We use Azimuth resolution: 1080, Vertical FOV: -30◦ 10◦, Channels: 32 for sensor
configuration.

A.2 Implementation Details

View-agnostic Color Representation. We provide a pseudo-code for ad-hoc module to obtain
representative colors for each voxel grid or point based on the estimated mean color values from
different views. We mainly adopt PeRFception [44] framework to implement view-agnostic 2D-to-3D
rendering.

Algorithm 1 Pseudocode for estimating mean RGB value of point cloud in a pretrained voxel grid or
point cloud.

Input (H ×W ) rays from N views, Spherical Harmonic (SH) coefficients sh, step size tstep,
Spatial indices of the 3D data structure (Voxels or 3D Gaussians) l

Output RGB PointCloud
1: for each i-th view in N do
2: for each j-th ray in H ×W do
3: Define RGBsum, count to store RGB value and counts at i-th view.
4: Calculate ray origin and direction rd, ro ← ray rij
5: Calculate SH basis shbasis with rd/r̂d.
6: Calculate the ray rij’s far bound tmax, and the near bound tmin.
7: Set t as tmin.
8: while t < tmax do
9: Extract the position in the range [t, t+ tstep) of ray rij .

10: Obtain spatial index lidx of the position.
11: Obtain SH coefficients shc ← sh[lidx].
12: Calculate RGB of voxels or Gaussians by Σ(shc × shbasis).
13: Add RGB value and one to RGBsum, count at index lidx, respectively.
14: Increment t by tstep
15: end while
16: end for
17: Append RGB sum, and counts of voxels or Gaussians in i-th view to arrays
18: end for
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Front-back Classification. For the front-and-back binary classifier, we build a conventional PointNet-
based model and train the model during 100 epochs with binary cross-entropy loss, using Adam
optimizer [59] with beta values (0.9, 0.999). The learning rate decreases from 0.001 through the
step decay scheduler with a step size of 20 and a gamma of 0.5. We used NuScenes [9] point clouds
as the training set and flipped the point cloud with a probability of 0.5 to the model input. The
model transfers input data into 128-dimensional feature vectors. These are then mapped into scalar
probability to classify whether the vehicle is heading forward or backward.

LiDAR Intensity Simulator. Our model is based on CycleGAN [50] for unpaired translation between
RGB and intensity, including class-specific PointNeXt [53] generators and discriminators. For the
intensity domain, we randomly selected 300 target class samples from nuScenes dataset [9]. We then
generated another 300 samples for the RGB domain by performing view-dependent point filtering
on RGB dense point clouds from 2D-to-3D renderers according to the location and heading of the
nuScenes sample. For batch training, we convert input samples more than 256 points into samples
with 256 points using farthest point sampling. Consequently, we trained the intensity simulator for
each target class over 200 epochs with batch size 16, using Adam optimizer [59] with beta values
(0.5, 0.999) and a learning rate of 0.001.

For two generators GDrgb→Dint
, GDint→Drgb

, and two discriminators DDint
, DDrgb

, we use a
weighted loss consisting of group intensity loss, cyclic loss, and LSGAN loss [60],

L
(
GDrgb→Dint

, GDint→Drgb
, DDrgb

, DDint

)
=

LLSGAN

(
GDrgb→Dint

, DDint
,Dint,Drgb

)
+LLSGAN

(
GDint→Drgb

, DDrgb
,Drgb,Dint

)
+Lcyc

(
GDrgb→Dint

, GDint→Drgb

)
+λLgroup

(
GDrgb→Dint

,Dint, GDint→Drgb
,Drgb

)
.

(4)

A.3 Experiments Details

Pseudo Object Bank Details. To verify the impact of the proposed pipeline on the 3D object
detection task on nuScenes dataset [9], we created a pseudo object bank from RGB points generated
by Plenoxel [14]. We used the intensity estimator trained from the point cloud with RGB features,
with group intensity loss and CycleGAN loss, and performed point filtering and rearrangement
according to the sensor configuration of the nuScenes dataset [9]. This pseudo object bank has the
FID score 7.7 on the nuScenes GT object bank (see Table 4). For each dense RGB point cloud object,
our 2D-to-3D renderer, including view-agnostic color extraction, took approximately 20 minutes.
Training the intensity simulator for each class took approximately 30 minutes, and the generation
of pseudo object bank samples, which includes axis alignment and projection, took 1 hour. These
processes were completed using 4 AMD EPYC 7313 16-Core Processors and an NVIDIA A100.

Detection Models. We provide all the YAML configuration files for the OpenPCDet [54] models
used in the paper. Note that we only modified the augmentation part of the configuration for a fair
comparison. We adopt Adam optimizer with one-cycle learning rate policy and Patchwork++ [61] to
obtain ground points of the input scenes. Note that SECOND [1] was performed on a voxel with a
size of [0.1, 0.1, 0.2]. The CP-Pillar [5] was performed on a voxel with a size of [0.1, 0.1, 8], while
the other remaining models were performed with a voxel size of [0.075, 0.075, 0.2]. Training each
model took approximately 36 hours using four Nvidia A100s, 256Gi memory and 4 AMD EPYC
7313 16-Core Processors on a single workstation.

A.4 Ablation Studies Details

To demonstrate the effect of the quality and quantity of the pseudo object banks, we performed
various ablation studies. All experiments for the 3D object detection task are conducted based on
CP-Voxel [5] operating on the input voxel size [0.075, 0.075, 0.2], while maintaining the setting of
the remaining hyperparameters from OpenPCDet [54].
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Quality of Pseudo Labels. We conducted experiments to assess how plausible and realistic our
generated object points are compared to existing real-world datasets. To measure FID scores, we
use a SE(3)-transformer [56] model trained on nuScenes dataset over 100 epochs with batch size 4,
using Adam optimizer [59] with a learning rate of 0.002 and a weight decay parameter of 0.5. We
first sort the objects in nuScenes in descending order based on the number of points, divide them
into 32 groups, and sequentially sample objects with many points, resulting in class sets with 593
objects. Note that A2D2 [18], Lyft [17], and our pseudo GT bank use all available samples. The class
mapping between different detection datasets is shown in Table 11. In feature extraction, the object
is sampled with 64 points, followed by local grouping with the nearest 32 points. These features
are inputted into the SE(3)-transformer [56] to extract the object-aware feature. Our implementation
codes originate from https://github.com/NVIDIA/DeepLearningExamples/tree/master/
DGLPyTorch/DrugDiscovery/SE3Transformer.

Table 11: Categories agreement among datasets for FID evaluation and 3D object detection.
A2D2 Dataset [18] Lyft Dataset [17] nuScenes Dataset [9]

Truck Truck Truck

Bus Bus Bus

MotoBiker, Motorcycle Motorcycle Motorcycle

Bicycle, Cyclist Bicycle Bicycle

Trailer - Trailer

Utility Vehicle - Construction Vehicle

Animal
Caravan Transporter Emergency Vehicle -

Other Vehicle

Samples from Other Datasets. Besides pseudo LiDAR generation for nuScenes dataset, we also
generated object banks for KITTI [18] and Lyft [17] to demonstrate PGT-Aug’s effectiveness on
different detecction benchmarks. We adopt perception range of x from -40 to 40m and y from
0 to 70m at the interval of 5m for KITTI [18], and adopt range from -80m to 80m for Lyft [17]
according to dataset specific evaluation schemes. We use 13 heading directions (from -180◦ to 180◦
at intervals of 30◦). We augment pseudo LiDAR for [cyclist] class for KITTI [18], and augment
[truck, motorcycle, bicycle, bus, other vehicle] classes for Lyft [17].

A.5 Efficiency and Real-time Applicability of Pre-trained Models

Memory usage and inference time If Object-level Domain Alignment is performed during detection
training, it may introduce additional time overhead compared to GT-Aug or Real-Aug. In 3D object
detection methods, the objects to be inserted are generated and stored prior to training, and these
stored objects are loaded and inserted during the training phase. The process of loading these objects
from disk into memory for scene insertion incurs time, and the memory and time complexity per
batch is O(n) for the number of objects n to be inserted, similar to Real-Aug. As a result, real-time
performance was not a primary consideration in our approach.

We would like to emphasize two key points: (1) the pseudo LiDAR point clouds are generated
and stored offline, and (2) these generated point clouds are loaded from memory and augmented
during the training of 3D object detectors. Therefore, the requirement to run pre-trained models
(e.g., unpaired domain transfer models) in real-time becomes less critical. In other words, we would
like to emphasize two key points: (1) the pseudo LiDAR point clouds can be stored offline, and (2)
the insertion of sampled objects from a ground truth instance bank is already a common practice,
in typical 3D object detector training. Additionally, in Table 12, we analyze the processing time
and memory usage for generating pseudo LiDAR point clouds across various object classes, such
as construction vehicles, trucks, and trailers. This analysis confirms that our pipeline can efficiently
generate point clouds, with a total processing time of less than 300ms.
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Table 12: Average processing time (per instance, in msec) and memory usage (MB) C.V: Con-
struction Vehicle, Ped: Pedestrian, T.C: Traffic Cone, M.C: Motorcycle, B.C: Bicycle.

Minority classes

Bus C.V Trailer Truck M.C B.C

Intensity Estimation 150 140 250 40 34 178
View Dependent Point Sampling 67 44 40 30 6 78

Rigid body motion 8.80 8.65 8.6 8.53 8.55 9.09

Memory 4.006 4.052 4.098 4.013 4.012 4.074

A.6 Qualitative Analysis for 3D Detection Task

We provide additional qualitative results for the model trained with the proposed PGT-Aug in Fig. 11.

Figure 11: Detection output comparison between Real-Aug and PGT-Aug (ours). We provide
bounding boxes of (a) ground truth and detected by (b) Real-Aug [12] and (c) PGT-Aug.
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B Additional experiments.

B.1 Additional Ablation Studies.

Comparison with using only first spherical harmonic coefficient. As shown in Table 13, we
compare our method with a variant model (where Plenoxel’s spherical harmonic (SH) coefficients
are set to 0) to see the quality of generated pseudo LiDAR point clouds in terms of FID score. The
experimental results confirm that our approach can generate point clouds that are more similar to the
real LiDAR data.

Table 13: FID score evaluation between SH coefficient 0 and ours. Abbr. C.V: Construction
Vehicle, Ped: Pedestrian, T.C: Traffic Cone, M.C: Motorcycle, B.C: Bicycle.

Bus C.V. Trailer Truck M.C B.C Average FID

SH coefficient 0 14.9 13.2 8.0 7.2 2.3 3.0 8.1
Ours 13.2 13.2 7.6 7.3 2.1 2.1 7.7

Ablation study on the impact of pre-trained models. To assess the impact of pre-trained models,
we conducted additional experiments under the following conditions: (A) constant intensity without
intensity generation, (B) random sampling without view-dependent point filtering, (C) no rigid
motion model, and (D) and (E) instance generation based on changes in the number of images.
As shown in Table 14, the removal of intensity generation in pseudo LiDAR led to a performance
decline in downstream detection tasks. Moreover, as the percentage of multiview images used
for 3D reconstruction decreased, the overall detection performance decreased accordingly. Lastly,
we performed experiments on general alignment by replacing object-level alignment with random
sampling of points from dense RGB point clouds and removing the motion models. Both experiments
demonstrated suboptimal performance compared to PGT-Aug.

Table 14: Ablation study in intensity, the number of images, data alignment on nuScenes val set.
Abbr. C.V: Construction Vehicle, Ped: Pedestrian, T.C: Traffic Cone, M.C: Motorcycle, B.C: Bicycle.
†: our reproduction.

Experiments
Majority classes Minority classes

mAP NDSCar Ped Barrier T.C Bus C.V Trailer Truck M.C B.C

Constant Intensity (A) 85.4 85.0 68.1 71.5 72.6 23.6 38.9 60.0 68.3 54.2 62.75 68.75

Random sampling (B) 85.4 85.1 67.2 71.4 73.2 22.8 39.2 59.8 68.1 55.4 62.76 68.56
No-motion (C) 85.4 85.2 67.8 71.5 71.9 23.7 41.0 60.1 69.0 56.6 63.22 68.80

25% of the number of image (D) 85.3 85.0 67.3 71.1 73.4 23.1 40.1 59.2 70.2 56.4 63.12 68.78
50% of the number of image (E) 85.5 84.9 68.5 71.4 72.0 23.1 41.4 59.8 69.5 56.4 63.26 69.03

PGT-Aug 85.4 85.4 68.0 71.1 72.1 24.2 40.4 59.8 70.3 58.3 63.52 69.11

B.2 Effect of PGT-Aug on the majority of classes

Our primary objective is to generate and insert the minority classes instead of the majority classes
to relieve the class imbalance issue. Thus, we anticipated that the performance of the minority
would improve, while the performance of the majority classes would either remain stable or improve
slightly due to the synergy effect from addressing the imbalance. To verify the effectiveness of
the pipeline to majority classes, we compare PGT-Aug with other 3D data augmentation methods,
including LiDAR-Aug [10], 3D-VField [62], and CA-Aug [63], on the KITTI [18] Car benchmark.
To match their baseline, we conducted the experiments on PointPillars [3]. We reconstructed 10 cars
of 3D RGB point clouds from CO3D dataset [64] and created about 16,000 pseudo LiDARs of Car
class. We apply pseudo LiDARs along with GT LiDARs during augmentation, and our PGT-Aug
performance largely outperforms GT-Aug, Real-Aug, and other augmentation methods in the car
detection benchmark as shown in Table 15.

Instance sample details. As shown in Fig. 12, we create pseudo LiDAR point clouds for
our method by randomly sampling ten cars from the CO3D dataset. The instances used
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Table 15: Performance comparison with other data augmentation approaches. †: our reproduc-
tion

Method AP_car 70 (40% recall)

Easy Moderate Hard

Baseline 88.08 74.85 70.55

GT-Aug [1] 87.80 78.36 75.41
LiDAR-Aug [10] 87.75 78.24 75.35
Real-Aug† [12] 88.13 78.97 76.06
3D-VField [62] 87.05 77.13 75.55
CA-Aug [63] 88.82 78.66 75.75

PGT-Aug 90.00 79.45 76.35

are as follows: 106_12650_23736, 106_12662_23043, 157_17286_33548, 185_19982_37678,
194_20899_41094, 216_22796_47484, 216_22827_48422, 421_58405_112551, 206_21799_45886,
and 421_58407_112553.

Figure 12: Examples of pseudo GT samples generated by our pipeline for the Car class from the
CO3D dataset.

B.3 Discussion Towards Better Performance

We introduce some novel techniques for improving the effectiveness of PGT-Aug that were not
applied in the main paper for a fair comparison in Table 16. We expect that these methods will be
helpful for future research. In these experiments, the same pseudo-object bank in Section 4 was used.

Ray tracing and Distance filtering. Ray tracing can simulate a partially occluded form of objects
when obstacles exist between the newly inserted object and the location of the LiDAR sensor by a
range projection. Through this method, we can generate realistic scenes. For distance filtering, we
observed that ground truths located outside the perception range can increase the class uncertainty
due to sparsity. Therefore, we can reduce the sample uncertainty by eliminating those samples in the
ground truth bank. In this experiment, we set a distance threshold of 54m.

Bandit Algorithm for Object Placement. The advantage of our pipeline is that it can generate
fully volumetric objects, allowing it to be inserted at any location. To maximize the advantage,
we used Thompson sampling [65] to determine the candidate positions for pseudo LiDAR samples
during training. We formulate this position decision as a bandit problem of selecting cells of a grid
representing a quantized space around the ego vehicle. First, for cells with the ground truth box, if
the confidence score of the prediction is greater than 0.5, the detector is considered to have performed
well in the cell area and the success count of the cell increases. On the other hand, if the confidence
score of the negative samples is greater than 0.5, it is considered a failure, and the failure count of
the cell increases. For each cell, Thompson Sampling is performed by setting the alpha of the beta
distribution as the failure count and the beta as the success count. After that, the top n cells with
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the highest probability are selected. This process allows us to insert objects where the detector fails
during training. We set the grid size 0.075× 8m in this experiment.

Table 16: Detection performance comparison for additional modules on nuScenes val set in
terms of AP, mAP, and NDS. We use CP-Voxel [5] and Transfusion-L [55] as a baseline model.

Model CP-Voxel [5] Transfusion-L [55]

A B C D E F G H

w/ PGT-Aug ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
w/ Ray Tracing ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓
w/ Distance Filtering ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓
w/ Thompson Sampling ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓

mAP (↑, for all 10 classes) 63.5 63.8 63.6 63.7 64.2 65.0 64.4 65.2
NDS (↑, for all 10 classes) 69.1 69.3 69.0 69.3 68.8 69.2 68.7 69.4

C Significance of the Proposed Method

In 3D object detection, there have been studies aimed at addressing class imbalance problems by
modifying model structures (CBGS) [35] or adjusting the loss function [34]. The most widely
used method is the over-sampling known as GT-Aug, which involves inserting objects from other
frames into the current frame. However, this method is limited to inserting objects from a predefined
pool (training set), which restricts learning intra-class diversity, and generating or collecting 3D
data for various objects has been extremely challenging and expensive. Recent advancements in
differentiable 3D reconstruction techniques, such as NeRF and Gaussian Splatting, have made it
possible to reconstruct dense 3D points at a lower cost. By leveraging these 3D reconstruction
techniques, we proposed a novel and practical pipeline that overcomes the limitations of traditional
insertion methods, particularly in terms of cost and diversity. Also, our pipeline is not limited to a
specific generative model and can be applied to any renderers.

C.1 Generalization by Different Renderers.

To prove the capability of the proposed framework, we show the generated RGB-colored point clouds
and the simulated LiDAR point clouds of the yellow loader by different renderers: Plenoxels [14],
Gaussian-Splatting [16], and DUSt3R [66] in Fig. 13. Even when different models are applied, we
can observe that our proposed framework can consistently generate high-quality LiDAR objects.

DUSt3R

Gaussian 
Splatting

Plenoxels

nuScenes KITTI LyftRGB Point Clouds2D-3D 
Renderers

Figure 13: Examples of RGB Point Clouds and Generated Pseudo LiDAR from Various 2D to
3D Renderers.
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C.2 Reason for using Neural Scene Representations, not Generations.

In order to place the restored objects in various positions, it is necessary to restore the entire shape of
the object and create a bounding box. We chose explicit 3D representation models (3DGS Plenoxel,
or various NeRF methods) that can reliably reconstruct the entire shape and perform robustly with
relatively small objects, rather than Text-to-3D Generation models (Shap-E [48], MeshGPT [67],
etc.), which tend to collapse modes when the target image distribution is overly concentrated in
a single peak, resulting in abnormal 3D objects that are strongly related to specific views (Janus
problem) [68].

C.3 Data Size.

Our dataset is created to provide pseudo-LiDAR point clouds of minority-class objects, which can
be augmented into typical driving datasets to compensate for the class imbalance problem. Thus,
the volume of our dataset should be smaller than that of these datasets but sufficient to compensate
for the class imbalance problem, as we reported in our experiments. Moreover, our approach offers
significant advantages in data generation and flexibility: (i) We provide an automated pipeline to
generate pseudo-LiDAR point clouds, enabling the community to easily produce and expand datasets
with various objects. (ii) Our method can generate view-dependent pseudo-LiDAR point clouds that
can be flexibly placed anywhere in the scene. These features allow for rapid and efficient dataset
expansion, significantly improving data efficiency and enabling researchers to quickly increase their
dataset size with minimal effort.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our claims in abstract and introduction clearly elaborate on our work’s moti-
vation to solve class-imbalance in 3D LiDAR-based detection and three contributions. We
also provided experimental results to certify our claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We addressed the limitations of our synthetic datasets and pipeline in the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA] .
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a detailed explanation of the methodology for reproducing our
results and experimental settings and demonstrate the robustness of our approach through
various experimental results. Through a fixed seed, we ensure deterministic behavior in all
experiments. More details on the implementation are provided in the supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We attached our dense RGB point cloud data, part of the pseudo-LiDAR object
bank, and a visualization code as the supplemental material. Our code and data will be made
available through the project page.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have specified our details of training and test datasets, and details of
experimental settings such as batch size, hyperparameters, hardwares, codebase, size of
synthetic datasets.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We answered no but created the fixed object bank for augmentation to eliminate
randomness. Through a fixed seed, we ensure deterministic behavior in all experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We clearly address the computer resources for our experiments in both main
paper and supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed our work according to NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have addressed societal impacts of our work in the paper.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our released datasets and detector checkpoints do not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We specified the source of scraped real-world videos of long-tail classes
and properly cited the use of existing models, code package, and dataset. The source
code of PeRFception and OpenPCDet have Apache License 2.0 and the source code of
CycleGAN has BSD License, and Segment-and-Track-Anything has AGPL-3.0 License.
The corresponding license is properly inserted in each readme.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided along with the assets?
Answer: [Yes]
Justification: We provide detailed description of our newly created pseudo-LiDAR object
bank in the main paper, alongside analysis on integration of new assets with existing
detection pipeline. We also provide README instructions that include execution methods
for the source code and folder structure for our object bank.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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