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Abstract
Scientific document summarization, typically001
focused on a single gold summary per paper, of-002
ten overlooks the diverse perspectives inherent003
in scholarly content. In response to this lim-004
itation, the Multi-Perspective Scientific Doc-005
ument Summarization (MuP) dataset was in-006
troduced, providing multiple summaries for007
each paper. However, no existing work imple-008
mented Query-Focused Summarization (QFS),009
which can specifically generate a summary ac-010
cording to the diverse perspectives of user re-011
quirements. To address this gap, our study in-012
troduced the Hybrid Query-Focused Summa-013
rization (H-QFS) framework which are profi-014
cient in both the QFS and the General Sum-015
marization (GS) tasks. Given the absence of016
queries in the MuP dataset, a query-less re-017
source QFS strategy was applied to our frame-018
work, using proxy queries generated from sum-019
mary masking. Furthermore, guided by the020
intuition that QFS can focus on specific sum-021
maries while GS can capture the global infor-022
mation of the entire document, we employed023
multitask learning of QFS and GS tasks in our024
H-QFS. This approach aimed to enhance QFS025
performance while maintaining the GS capac-026
ity to summarize the overall content compre-027
hensively. Experimental results showed that028
the H-QFS framework outperformed existing029
works in the QFS task, achieving state-of-the-030
art performance in synthetic-query validation031
sets. Furthermore, our framework maintained032
competitive GS performance, showcasing ver-033
satility across scenarios. Our contributions in-034
clude: (1) among the first to propose a frame-035
work of QFS for scientific document summa-036
rization, (2) proposing and investigating the037
effectiveness of multitask learning to enhance038
QFS, and (3) outperforming baselines in the039
QFS tasks and maintaining competitive perfor-040
mances in the GS task.041

1 Introduction042

Scientific document summarization, traditionally043

based on datasets featuring a single gold summary044

per paper, inadvertently overlooks the inherent rich- 045

ness of diverse perspectives within scientific doc- 046

ument. Scholarly content inherently presents mul- 047

tifaceted viewpoints, methodologies, and interpre- 048

tations. In response to this limitation, Cohan et al. 049

(2022) introduced the Multi-Perspective Scientific 050

Document Summarization (MuP) dataset, aiming 051

to bridge this gap by providing multiple summaries 052

for each scientific paper. 053

However, previous research endeavors (Kumar 054

et al., 2022; Sotudeh and Goharian, 2022; Urlana 055

et al., 2022; Akkasi, 2022) treated the multi- 056

perspective aspect merely as paper-summary pairs, 057

neglecting to delve into the specificity of these per- 058

spectives. This oversight may result in a loss of the 059

unique capability to effectively summarize content 060

from various perspectives.

Figure 1: Hybrid Query-focused Summarization (H-
QFS) framework: A multitask learning approach capa-
ble of generating tailored summaries based on specific
user queries and general summaries in their absence.

061
To bridge this gap, we presented the Hybrid 062

Query-Focused Summarization (H-QFS) frame- 063

work, a novel approach capable of generating tai- 064

lored summaries based on specific user queries 065

and general summaries in their absence, as de- 066

picted in Figure 1. In the absence of queries in 067

the MuP dataset, we adopted the Mask ROUGE 068

Regression framework (MERGE) (Xu and Lap- 069

ata, 2020), a query-less resource QFS framework 070
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utilizing Unified Masked Representation (UMR)071

as a proxy query derived from summary masking.072

Moreover, guided by the idea that QFS and GS can073

mutually benefit each other, i.e., QFS tasks tend to074

focus more on the granular perspective while GS075

focus more on the global information of the entire076

document, led us to employ multitask learning for077

both QFS and GS tasks in our H-QFS framework.078

This strategy aimed to enhance QFS performance079

while preserving the GS capacity to comprehen-080

sively summarize the overall content.081

Experimental results showed that our H-QFS082

framework effectively outperformed existing works083

in the QFS task, achieving state-of-the-art perfor-084

mance in ROUGE scores in the synthetic-query085

validation set, an synthesized query to MuP dataset086

for QFS task validation. Simultaneously, it main-087

tained GS performance, achieving state-of-the-art088

results in the validation set, and securing the 2nd089

place in the blind test set.090

Our contributions are threefold: (1) we propose091

a novel framework for QFS in scientific document092

summarization, (2) propose and investigate the ef-093

fectiveness of multitask learning to enhance QFS094

performance named H-QFS framework, and (3)095

outperform baseline models in the QFS tasks, while096

maintaining GS capacity to summarize the overall097

content.098

2 Related Work099

This section reviews three domains: (1) scientific100

document summarization, (2) Multi-Perspective101

Scientific Document Summarization (MuP), and102

(3) Query-Focused Summarization (QFS). In the103

following sections, we delved into each domain,104

emphasizing their contributions and highlighting105

evolving trends in text summarization research.106

2.1 Scientific document summarization107

Scientific documents, distinguished by specific108

characteristics like well-structured hierarchies and109

domain-specific knowledge requirements, often110

pose challenges for summarization. Existing stud-111

ies (Cohan et al., 2018; Xiao and Carenini, 2019;112

Gidiotis and Tsoumakas, 2020; Cui et al., 2020;113

Grail et al., 2021) predominantly use arXiv and114

PubMed datasets for training, relying on abstracts115

as gold summaries. However, the suitability of ab-116

stracts may not align with summarization goals.117

The LongSumm dataset (Chandrasekaran et al.,118

2020), introduced in the Scholarly Document Pro-119

cessing (SDP) 2020 shared tasks, addresses the 120

need for longer, in-depth summaries. It includes 121

both extractive and abstractive summaries derived 122

from video recordings and blog posts, respectively. 123

Numerous studies (Li et al., 2020; Sotudeh et al., 124

2020; Gidiotis et al., 2020; Kaushik et al., 2021; 125

Roy et al., 2021; Ying et al., 2021) participated in 126

this shared task, employing diverse approaches to 127

tackle challenges in scientific document summa- 128

rization. In abstractive summarization, researchers 129

often use extractive models to highlight key in- 130

formation, especially when dealing with lengthy 131

source documents. However, a notable drawback 132

in these studies is the application of models gen- 133

erating only one summary per source document, 134

potentially overlooking diverse perspectives within 135

the summaries. 136

2.2 Multi-Perspective Summarization (MuP) 137

Multi-Perspective Scientific Document Summariza- 138

tion (MuP) debuted in the Scholarly Document Pro- 139

cessing (SDP) share task 2022 (Cohan et al., 2022), 140

introducing a novel challenge with multiple gold 141

summaries for each document. Four participat- 142

ing studies included Kumar et al. (2022), employ- 143

ing an extractive-abstractive approach with section 144

identification; Sotudeh and Goharian (2022), us- 145

ing a two-step LED process for salient sentence 146

extraction; Urlana et al. (2022), exploring self- 147

pretrained models with BART performing the best; 148

and Akkasi (2022), applying graph attention net- 149

works (GATs) without an abstractive phase. Eval- 150

uation results showed Kumar et al. (2022) outper- 151

forming in ROUGE-2 and ROUGE-L, while So- 152

tudeh and Goharian (2022) and Urlana et al. (2022) 153

demonstrated competitive performances. Besides 154

automatic evaluations, the MuP share task con- 155

ducted human evaluations on faithfulness, read- 156

ability, and coverage. Kumar et al. (2022) scored 157

highest in readability and coverage, closely trailing 158

GATs in faithfulness. However, organizers noted 159

studies treating MuP as a general summarization 160

task, potentially overlooking its unique capability 161

to summarize content from various perspectives, 162

i.e., the original intended objective of the MuP 163

dataset. 164

2.3 Query-Focused Summarization (QFS) 165

Query-Focused Summarization (QFS) created con- 166

cise summaries from a document corpus, condi- 167

tioned on predefined queries or user-specified cri- 168

teria. Earlier QFS frameworks (Nema et al., 2017; 169
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Baumel et al., 2018; Laskar et al., 2020; Su et al.,170

2021) predominantly employed a supervised ap-171

proach, requiring explicit queries in the document-172

query-summary triplet.173

Addressing the limitations of explicit queries174

during training, Xu and Lapata (2020) proposed the175

Masked ROUGE Regression framework (MERGE),176

shifting towards a query-less architecture. This177

innovative approach transformed generic dataset178

summaries into proxy queries, forming the Unified179

Masked Representation (UMR). Drawing inspira-180

tion from Fan et al. (2017), Xu and Lapata (2020)181

discretized summary length into discrete bins and182

prepend these lengths along with other inputs. Re-183

sults highlighted the model’s ability to learn effec-184

tively during training and perform well with user185

queries during inference.186

Inspired by Xu and Lapata (2020)’s work, our187

study leveraged the query-less advantage of the188

MERGE framework. In addition, we applied the189

concept of multitask learning to further enhance the190

QFS tasks. As a positive side effect, our framework191

permits usage with or without explicit queries.192

3 H-QFS: Hybrid Query-focused193

summarization framework194

We introduced the Hybrid Query-Focused Sum-195

marization (H-QFS) framework, a fusion of QFS196

and GS frameworks. Specifically, H-QFS learns197

from both QFS & GS in a mulit-task learning man-198

ner. We chose Multi-perspective scientific docu-199

ment dataset (MuP) as it provides summaries of200

multiple perspectives. Specifically, MuP dataset201

{(D,S)} comprises a document D, a set of sum-202

maries S =
{
s1, s2, ..., s|S|

}
. Due to the absense203

of specific query, the QFS framework incorporated204

the Unified Masked Representation (UMR) as a piv-205

otal component for query guidance, and GS frame-206

work, replace UMR by a mask token in order to207

integrate with the QFS framework. H-QFS excels208

in both QFS and GS scenarios. When presented209

with an input featuring UMR, the framework is210

geared towards generating a query-focused sum-211

mary, while substituting UMR with a mask token212

enables it to produce a general summary, showcas-213

ing its adaptability across a spectrum of summa-214

rization tasks.215

In particular, the H-QFS framework comprised216

two main modules: (1) a Ranking module for Ex-217

tractive summarization and (2) a Summary Gen-218

erator module for Abstractive summarization, as219

illustrated in Figure 2. This section provided a 220

detailed exploration of UMR followed by an in- 221

depth discussion of the Ranking module and the 222

Summary Generator module. 223

3.1 Unified Masked Representation (UMR) 224

The Unified Masked Representation (UMR), 225

served as a powerful tool for generating query- 226

focused summaries from query-free resources. Dur- 227

ing the training phase, UMR was derived from the 228

entities-masked summary (UMRS), forming a foun- 229

dational understanding of salient information a user 230

needs. In the inference phase, UMR was shaped 231

by masking question-words from the user query 232

(UMRQ), aligning the summarization process with 233

the user’s query. In the context of our work on sci- 234

entific document summarization, Packed Levitated 235

Marker (PL-Marker) (Ye et al., 2021), a state-of- 236

the-art entity-relation extraction model for scien- 237

tific documents, was leveraged. (See Appendix A 238

for more detail) 239

3.2 Ranking module 240

The ranking module, also referred to as the ex- 241

tractive summarization module, was tasked with 242

sentence scoring and ranking to identify the most 243

salient sentences in the source paper related to the 244

query. Each paper was segmented to candidate 245

sentences using spaCy (Honnibal et al., 2020). To 246

predict the relevant scores of those candidate sen- 247

tences, a BERT regression model, characterized by 248

a BERT classification model with a single neuron 249

in the output classification layer, was employed. 250

Specifically, the model was tasked to minimize the 251

MES loss. By giving each candidate sentence to- 252

gether with UMR or mask token, the ranked of 253

sentences was guided by a target score (y), calcu- 254

lated based on ROUGE score (Lin, 2004) metrics. 255

In the QFS task, the target score (y) was calcu- 256

lated from pair of candidate sentence and reference 257

summary, specifically y = R2 + λ ∗R1, where R1 258

and R2 represented ROUGE-1 and ROUGE-2 F1 259

scores, respectively, and λ was set to 0.15, follow- 260

ing the optimization approach of Xu and Lapata 261

(2020). In the GS task, our hypothesis suggested 262

that sentences consistently relevant across multiple 263

summaries should be prioritized. To implement 264

this, we employed a scoring strategy in which the 265

candidate sentence’s score (y) was averaged with 266

the scores derived from multiple summaries. 267

Specific for QFS, the input sample (x) was con- 268

structed by concatenating the UMR with each can- 269
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Figure 2: Overview of the H-QFS framework consists of two main modules: (1) Ranking module and (2) Summary
Generator module. Each module was guided by UMR in QFS scenarios and a mask token (MASK) in GS scenarios.

didate paper sentence. This concatenation began270

with a [CLS] token (classification) and was sepa-271

rated by [SEP] tokens (separator). Since the ab-272

sence of a query in GS task, the input samples (x)273

of both tasks were added the section and position274

detail sentence (si). The section title of the sen-275

tence, denoted by tn, was prepend and separated by276

[SEP] tokens. Additionally, to indicate the number277

of sentence sections, the count of [SEP] tokens was278

increased by the number of sections (n) to which279

the sentence belonged. The final input sequence280

was represented as:281

xi =

{
concat([CLS],UMR, [SEP], tn, n ∗ [SEP], si) if QFS case
concat([CLS], [MASK], [SEP], tn, n ∗ [SEP], si) else GS case

(1)282

Furthermore, in the context of score visualization283

(y ∈ [0, 1.15]), the 90th percentile of the training284

dataset revealed a score of 0.0475, signifying that a285

substantial portion of candidate sentences were con-286

sidered irrelevant. This observation prompted con-287

cerns about potential overemphasis on less relevant288

sentences if the model were trained on the complete289

dataset. To address this issue, we introduced a low290

score sampling technique, randomly excluding291

samples with scores below 0.05—specifically, 90292

percent of such low-score samples. This approach293

not only ensured a more balanced distribution of294

scores for effective model training but also opti-295

mized computational efficiency, thereby reducing296

overall computation time. Further details and the297

score distribution can be found in Appendix B.298

3.3 Summary generator module 299

After extracting the most relevant sentences 300

through the Ranking Module, the Summary Gen- 301

erator Module, or the Abstractive Summarization 302

Module leverages these pertinent sentences to gen- 303

erate summaries. Illustrated in Figure 2, this mod- 304

ule relied on three primary input components: (1) a 305

summary length bin token for summary length con- 306

trol, (2) UMR for query-focused guidance in the 307

QFS task or a mask token for general summariza- 308

tion, and (3) the ranked sentences and important 309

sections from the source paper. 310

Following the summary length control strategy 311

of Xu and Lapata (2020), inspired from Guo et al. 312

(2016), our system employed discrete length bins. 313

The summary length, computed using the BART 314

tokenizer, was discretized into 10 bins with a range 315

of 30 words (tokens) per bin, except for the last 316

length bin, which aggregated all samples with a 317

summary length exceeding 270 tokens. 318

4 Experimental results and Analysis 319

4.1 Dataset 320

In our research, we primarily utilized the Multi- 321

Perspective Scientific Document Summarization 322

(MuP) dataset. The MuP dataset, created for the 323

MuP shared task at SDP 2022, encompasses 1-10 324

summaries per scientific paper, with 8379, 1060, 325

and 1052 papers in the train, validation, and blind 326

test sets, respectively. The total summaries include 327

18934, 3604, and 4611 in the respective sets. 328
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For validation in the QFS task, we augmented329

our dataset with a synthetic query dataset gener-330

ated from Llama2, a Large Language Model (LLM)331

(Touvron et al., 2023). The synthetic-query vali-332

dation dataset was created using a 2-shot prompt-333

ing strategy, incorporating the abstract, summary,334

and a manually crafted query for each example.335

This method not only introduced specificity into336

the summarization process but also enhanced the337

validation for the QFS task. The resulting synthetic338

query dataset exhibited an average of 111 words339

per query and 5.62 sentences per query, offering a340

rich and diverse set of queries for validation. (Refer341

to the Appendix for detailed examples of the 2-shot342

prompting strategy.)343

4.2 Implementation details344

The implementation utilized a single A6000 GPU345

for both the ranking and summary generator mod-346

ules. The ranking modules in all frameworks em-347

ployed a BERT-base-uncased model (Devlin et al.,348

2018), accessible on Hugging Face 1. The models349

underwent fine-tuning with a learning rate of 3×350

10−5 and a batch size of 64 for 3 epochs. Models351

were saved according to the highest Kendall’s Tau352

ranking (Kendall, 1938). The summary generator353

modules in all frameworks utilized a BART-Large-354

CNN model, a pretrained BART model (Lewis355

et al., 2019) previously fine-tuned with CNN on the356

CNN Daily Mail summarization dataset (Hermann357

et al., 2015). The model is publicly available on358

Hugging Face 2. The models underwent fine-tuning359

with a dynamic learning rate approach, maximum360

5× 10−5, 1000 warm-up steps, gradient accumu-361

lation every 10 steps, and a batch size of 4. In362

single-task modules, such as those in the QFS and363

GS frameworks, the models were fine-tuned for364

5 epochs. In contrast, for the summary generator365

module of the H-QFS framework, operating in a366

multi-tasking environment, the dataset was dou-367

bled, necessitating fine-tuning for 3 epochs. Mod-368

els were saved according to the highest ROUGE-1369

score (Lin, 2004).370

4.3 Ranking module performance371

In the Ranking Module, the primary objective is372

to predict scores for candidate sentences, where a373

higher score indicates the suitability of the candi-374

date sentence for inclusion in the input sequence of375

1https://huggingface.co/bert-base-uncased
2https://huggingface.co/facebook/

bart-large-cnn

Framework Pearson’s Spearman’s Kendall’s
QFS (UMRS) 0.868* 0.917** 0.766**
QFS (UMRQ) 0.523∼ 0.788* 0.602*
GS 0.790* 0.880* 0.705*
H-QFS
(QFS task) 0.615∼ 0.758* 0.577*
(GS task) 0.792* 0.881* 0.706*
(multi-task) 0.648∼ 0.792* 0.609*

Table 1: The score correlation performance, utilizing
Pearson’s, Spearman’s, and Kendall’s Tau ranking cor-
relations. The symbols ’∼’, ’*’ and ’**’ represent
the interpretation that predicted scores have moderate,
strong and very strong correlations, respectively, with
reference scores

the Summary Generator Module. The evaluation 376

process involved two key aspects. First, the corre- 377

lation between target scores and predicted scores 378

was meticulously examined to assess the model’s 379

ability to accurately assign scores. This analysis 380

provided insights into the consistency and reliabil- 381

ity of the ranking module. Second, the effective- 382

ness of the module in retrieving relevant sentences 383

was evaluated using the ROUGE-2 Recall score 384

against the gold summary. This metric gauged the 385

module’s performance in capturing essential infor- 386

mation from the source document, emphasizing its 387

role in selecting sentences with a higher degree of 388

relevance for subsequent summarization. 389

Score correlation performance In this study, 390

we utilized three well-established correlation mea- 391

sures—Pearson’s (Benesty et al., 2009), Spear- 392

man’s (Spearman, 1961), and Kendall’s Tau rank- 393

ing (Kendall, 1938), to evaluate the score correla- 394

tion performance. The results, presented in Table 395

1. For the QFS framework, we conducted valida- 396

tion using (UMRS) and (UMRQ). When utilizing 397

(UMRS), the ranking module exhibited a strong 398

correlation in Pearson’s, and notably, very strong 399

correlations in both Spearman’s and Kendall’s Tau 400

ranking. However, when using (UMRQ), the scor- 401

ing performance witnessed a significant drop to 402

a moderate correlation in Pearson’s, while main- 403

taining strong correlations in both Spearman’s and 404

Kendall’s Tau ranking. This outcome suggested 405

that the ranking module of the QFS framework 406

exhibits limited adaptability to real queries. Con- 407

versely, the GS framework displayed strong cor- 408

relations across all three measures, affirming the 409

proficiency of the ranking modules in accurately 410

predicting scores compared to the reference scores. 411

In the H-QFS framework, the correlation perfor- 412
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R2 recall
Framework k=10 k=20 k=30 truncated
Baseline - - - 16.48
QFS (UMRS) 18.84 23.06 25.45 24.59
QFS (UMRQ) 10.74 15.06 17.89 17.01
GS 12.76 17.20 20.00 18.73
H-QFS
(QFS task) 12.61 16.99 19.85 19.40
(GS task) 12.80 17.26 20.01 18.92
((multi-task) 12.70 17.13 19.93 19.16

Table 2: Retrieval performance represented by ROUGE-
2 recall

mance improved in both tasks, underscoring the413

positive complementarity of multi-task learning for414

identifying relevant sentences.415

Retrieval performance To evaluate the retrieval416

performance of the Ranking Module, ROUGE-2417

(Recall) scores were calculated against the gold418

summary. The top-k sentences extracted by the419

ranking module underwent reordering to their orig-420

inal sequence in the paper. Subsequently, these421

reordered sentences were concatenated to create a422

candidate sequence, and the ROUGE-2 recall was423

calculated between the candidate sequence and the424

reference sequence, which served as the summary.425

The results aligned with score correlation trends.426

The QFS framework, using (UMRS), demonstrated427

notable retrieval performance with ROUGE-2 Re-428

call surpassing the baseline when k=10. However,429

a significant drop occurred when transitioning to430

(UMRQ), although it still outperformed the trun-431

cated baseline, where all paper contents were trun-432

cated to 1024 tokens, when k=30 as presented in433

Table 2.434

Furthermore, we hypothesized that, without or-435

der correction, the BART model can handle and436

generate a specific summary from the most relevant437

sentence based on the specific query or the most438

salient sentence for a general summary. Moreover,439

with an increased value of k and reordering, some440

relevant sentences may be moved to the last po-441

sition and consequently cut out in the truncation442

process due to the maximum input token limit of443

the Pre-trained Language Model (PLM). Therefore,444

an alternative exploration involved considering all445

ranked sentences without reordering them to the446

original sequence in the paper. In this scenario,447

all ranked sentences were concatenated, and the448

resulting sequence was truncated to 1024 tokens,449

adhering to the maximum input token limit of the450

BART-Large model. 451

The results showed that truncated sentences from 452

all frameworks outperformed the baseline. This 453

finding suggested that the extracted sentences from 454

our ranking module contain more relevant infor- 455

mation for the summary compared to the baseline, 456

potentially leading to better results in the summary 457

generator module. 458

4.4 Summary generator module performance 459

Within the Summary Generator Module, we con- 460

ducted a comprehensive experiment to assess the 461

impact of various factors on summarization per- 462

formance. Specifically, we explored the impact of 463

the top-k sentences, the influence of paper sections, 464

and the module’s ability to control the length of 465

generated summaries. The evaluation tasks were 466

bifurcated into two categories: the QFS task and 467

GS task. For the QFS task, the evaluation involved 468

using the generated queries for the Llama 2 model 469

on the validation set. In contrast, the GS task was 470

evaluated without any explicit queries, encompass- 471

ing both the validation set and the blind test set. 472

Impact of top-k sentences For this experiment, 473

we systematically varied the values of k from 4 474

to 30 to investigate the impact of top-k sentences 475

selection on the overall performance of our frame- 476

work. The results shown that the optimal value 477

for k is determined to be k=10. (for more top-k 478

analysis, please see Appendix D) 479

QFS task performance In the QFS task, the 480

evaluation involved utilizing the generated queries 481

for the Llama 2 model on the validation set. We 482

systematically explored different combinations of 483

paper sections combined with ranked sentences, 484

as detailed in Table 3. Specifically, the ALiR set- 485

ting followed the experiment conducted by Kumar 486

et al. (2022). Furthermore, we explored two types 487

of ranked sentences: (1) k=10, representing a se- 488

quence of top-k sentences where k=10, determined 489

as the optimal value. These sentences were re- 490

ordered to align with the original paper order. (2) 491

Ranked, representing a sequence of all ranked sen- 492

tences without original reordering. This dual ex- 493

ploration aimed to ensure an understanding of the 494

performance implications. The QFS framework 495

demonstrated performance in the AR scenario for 496

both k=10 and ranked types. Notably, the ranked 497

type showed a slight improvement in all ROUGE- 498

1, 2, L, and average scores compared to the k=10 499

type. On the other hand, H-QFS excelled in the R 500
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Framework R-1 R-2 R-L R-avg
Baseline 39.48 11.86 24.25 25.05
GATS (Akkasi, 2022) 35.46 9.53 19.63 21.54
GUIR (Sotudeh and Goharian, 2022) 41.05 12.18 24.61 25.95
QFS framework
R (k=10) 43.82 17.50 27.40 29.57
R (ranked) 44.09 17.73 27.49 29.77
AR (k=10) 44.17 17.80 27.58 29.85
AR (ranked) 44.29 17.88 27.67 29.95
AIR (k=10) 44.05 17.72 27.52 29.76
AIR (ranked) 44.18 17.79 27.55 29.84
ALiR (k=10) 43.88 17.51 27.30 29.56
ALiR (ranked) 44.11 17.67 27.47 29.75
H-QFS
R (k=10) 44.83 17.34 27.63 29.93
R (ranked) 44.76 17.57 27.85 30.06
AR (k=10) 44.19 17.14 27.43 29.59
AR (ranked) 44.29 17.11 27.50 29.63
AIR (k=10) 44.20 17.04 27.57 29.61
AIR (ranked) 44.60 17.71 27.76 30.02
ALiR (k=10) 44.48 17.13 27.47 29.69
ALiR (ranked) 44.27 17.06 27.58 29.64

Table 3: Summary generator performance in query-
focused summarization (QFS) task; Bold: 1st place,
underline: 2nd place. The section abbreviation indi-
cates that the summary generator utilized (1) R: ranked
sentences from the ranking module, (2) AR: ranked sen-
tences prepended with the Abstract section, (3) AIR:
concatenation of Abstract, Introduction, and Ranked
sentences, and (4) ALiR: concatenation of Abstract,
Last 5 sentences of the Introduction, and Ranked sen-
tences.

scenario, especially in the ranked type, which show-501

cased a state-of-the-art performance in ROUGE-L502

and ROUGE-average. Moreover, in both QFS and503

H-QFS frameworks for the QFS task, all experi-504

ments significantly outperformed existing works on505

the validation set. This underscores the efficiency506

of our framework in generating query-specific sum-507

maries, reaffirming its potential in advancing the508

field.509

GS task performance Similar to the QFS task,510

an experiment in the GS task also explored the im-511

pact of paper sections and ranked sentence types.512

In both the validation set and the blind test set,513

the GS framework demonstrated competitive per-514

formance with the baseline. However, the perfor-515

mance was observed to be lower than that of previ-516

ous works. In contrast, the Hybrid Query-Focused517

Summarization (H-QFS) framework, which, in the518

GS scenario, is similar to the GS framework but519

was multi-task trained together with the QFS task,520

outperformed previous works in the validation set521

and competitively performed in the blind test set,522

securing the second place in ROUGE-1 score, as523

shown in Table 4. It’s noteworthy that, in the val-524

idation set, there was summary length control ac-525

Validation set Blind test set
Framework R-1 R-avg R-1 R-avg

Baseline 39.48 25.05 40.80 25.87
GATS (Akkasi, 2022) 35.46 21.54 33.85 19.66
LTRC (Urlana et al., 2022) - - 40.68 26.05
GUIR (Sotudeh and Goharian, 2022) 41.05 25.95 41.36 26.24
AINLPML (Kumar et al., 2022) - - 41.08 26.58
GS framework
R (k=10) 39.57 25.17 40.65 25.82
R (ranked) 39.56 25.08 40.52 25.69
AR (k=10) 39.65 25.16 40.57 25.77
AR (ranked) 39.71 25.28 40.58 25.89
AIR (k=10) 39.36 24.95 40.22 25.51
AIR (ranked) 39.60 25.08 40.42 25.61
ALiR (k=10) 39.02 24.83 40.88 25.87
ALiR (ranked) 39.13 24.92 40.80 25.90
H-QFS framework
R (k=10) 41.63 26.00 40.16 25.08
R (ranked) 41.39 26.02 41.14 25.86
AR (k=10) 41.14 25.80 40.79 25.83
AR (ranked) 40.80 25.57 40.82 25.77
AIR (k=10) 40.81 25.78 40.28 25.11
AIR (ranked) 40.41 25.43 40.91 25.80
ALiR (k=10) 41.46 25.93 40.93 25.85
ALiR (ranked) 41.11 25.82 40.81 25.84

Table 4: Summary generator performance in general
summarization (GS) task; Bold: 1st place, underline:
2nd place. The section abbreviation indicates that the
summary generator utilized (1) R: ranked sentences
from the ranking module, (2) AR: ranked sentences
prepended with the Abstract section, (3) AIR: concate-
nation of Abstract, Introduction, and Ranked sentences,
and (4) ALiR: concatenation of Abstract, Last 5 sen-
tences of the Introduction, and Ranked sentences.

cording to the summary, while in the blind test set, 526

the ’<len04>’ bin was utilized based on our length 527

bin variation for the blind test set. 528

Furthermore, through multi-task learning, perfor- 529

mance of H-QFS framework in QFS and GS tasks 530

was improved from QFS and GS framework, re- 531

spectively. As per our hypothesis, the result showed 532

that the global capturing of the GS task has a posi- 533

tive impact on the performance in QFS task. The 534

H-QFS framework not only excels in handling the 535

QFS task when users want the summary to focus on 536

their query but also maintains performance of GS 537

task when users do not have any query and desire 538

only a general summary. 539

Summary length control By prepending each 540

length token to the input of the blind test set, we 541

examined the impact of length tokens on the gener- 542

ated summary lengths, as illustrated in Fig. 3. The 543

generated summary lengths exhibit a consistent in- 544

crease corresponding to the length token, except 545

for the <len01> token. This anomaly is attributed 546

to the scarcity of samples in the <len01> category 547

in the training set. Consequently, the model strug- 548

gled to learn the appropriate summary length to 549
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ROUGE avg
GS task QFS task

QFS (AR-ranked) - 29.95
-Len - 29.7 (-0.25)
-UMR - 25.54 (-4.41)
-UMR -Len - 24.56 (-5.39)
H-QFS (R-ranked) 26.02 30.06
-Len 24.76 (-1.26) 29.46 (-0.6)
-UMR 26.31 (0.29) 27.34 (-2.72)
-UMR -Len 24.72 (-1.30) 25.78 (-4.28)

Table 5: Ablation study for QFS and H-QFS frameworks
in both GS and QFS task. The value in parenthesis is the
different score between main framework and ablation
experiments

generate within this token category. This nuanced550

observation underscores the importance of an ade-551

quately diverse training set to ensure the model’s552

proficiency in adapting to various length specifica-553

tions during the summarization process. To address554

this issue, we proposed a solution: combining the555

<len01> and <len02> tokens together. The sum-556

mary length for this combined bin can be adjusted557

to span from 1 to 60 words (tokens). This strategic558

modification aims to enhance the model’s learn-559

ing and adaptability, particularly in scenarios with560

limited training data, ensuring more robust perfor-561

mance across a wider spectrum of summary length562

requirements.563

Figure 3: Generated summary length from each length
bin

4.5 Ablation study564

We conducted an extensive ablation study to assess565

the importance of each input element in the QFS566

and H-QFS frameworks for both GS and QFS tasks.567

Specifically, we removed length control (-Len),568

UMR (-UMR), and both length control and UMR (-569

UMR -Len) from the best-performing experiments570

of the QFS and H-QFS frameworks, which were571

AR (ranked) and R (ranked), respectively as shown 572

in Table 5. 573

The results reveal that the QFS framework pre- 574

dominantly relies on UMR guidance, with a notable 575

4.41-point drop in ROUGE average when UMR is 576

removed. Conversely, the performance drop is only 577

0.25 when length control is removed. However, 578

when comparing ’-UMR’ and ’-UMR -Len’, the 579

performance drop is 0.98. This indicates that with- 580

out UMR, the model leans more heavily on length 581

control. 582

For the H-QFS framework in the QFS task, re- 583

moving UMR results in a performance drop of 584

only 2.72. This suggests that multi-task training 585

with the GS task enhances the robustness of QFS. 586

Even with the ’-UMR -Len’ configuration dropping 587

1.56 points from ’-UMR’, the H-QFS framework 588

continues to perform well compared to the QFS 589

framework. 590

In the general task of the H-QFS framework, 591

the model predominantly relies on length control 592

because, in the GS task, the UMR of H-QFS is rep- 593

resented by a <mask> token. Interestingly, when 594

UMR is removed in both tasks, it appears that the 595

input data of the QFS task without UMR is quite 596

similar to the input data of the GS task, except for 597

the ranked sentence. This increase in the number 598

of samples in the GS task during the training phase 599

may contribute to improved performance in the 600

GS task when UMR is removed from the H-QFS 601

framework. 602

5 Conclusion 603

This study pioneers the application of QFS in Multi- 604

Perspective Scientific Summarization. We intro- 605

duced the Hybrid Query-Focused Summarization 606

(H-QFS) framework, proficient in generating both 607

query-focused and general summaries. Leveraging 608

this multi-task approach, our framework outper- 609

formed existing works in the QFS task, achiev- 610

ing state-of-the-art performance in synthetic-query 611

validation sets. Furthermore, H-QFS maintained 612

strong GS performance, securing the 2nd place in 613

ROUGE 2 and L in validation set and 2nd place in 614

ROUGE 1 in blind test set. 615

Limitations 616

One limitation of our study is that the validation 617

for the Query-Focused Summarization (QFS) task 618

relied on a synthetic dataset. This choice was neces- 619

sitated by the absence of a dedicated query-focused 620

8



summarization dataset within the scientific docu-621

ment domain. It’s important to note that the syn-622

thetic dataset used in our validation may potentially623

overemphasize information derived from the sum-624

mary, introducing a constraint in the generalizabil-625

ity of our findings.626
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A Unified Masked Representation (UMR) 784

Figure 4: Unified Masked Representation (UMR)

As illustrated in Figure 4, (UMRS) was derived 785

from the entities-masked summary, while (UMRQ) 786

was shaped by masking question-words from the 787

user query. Our work utilized PL-Marker (Ye et al., 788

2021), a state-of-the-art model in scientific entity- 789

relation extraction. 790

B Low score sampling technique 791

From score visualization, in the training dataset, 792

more than 90 percent of all samples have their 793

scores lower than 0.05 (while the score range is 794

from 0 to 1.15, with a maximum score of 0.91). 795

This observation indicates that if we train on all 796

samples, the model may excessively focus on less 797

relevant sentences. To address this, we imple- 798

mented a low score sampling technique by ran- 799

domly removing samples with scores lower than 800

0.05. Specifically, we sampled out 90 percent of 801

low-score samples, and the resulting distribution 802

is illustrated in Figure 5. This not only ensures a 803

more balanced distribution of scores for effective 804
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Figure 5: Distribution of target score in Ranking mod-
ule (a) before sampling technique (b) after sampling
technique

model training but also optimizes computational805

efficiency, reducing computation time.806

C Synthetic query dataset807

While the MuP dataset contains multiple sum-808

maries for each source paper, a crucial aspect ab-809

sent is the inclusion of explicit queries. Recog-810

nizing the significance of queries in the Query-811

Focused Summarization (QFS) task, we employed812

the llama2 model (Touvron et al., 2023), a Large813

Language Model (LLM), utilizing a 2-shot prompt-814

ing strategy for query creation. Each example in815

our query dataset comprises the abstract of the pa-816

per, its summary, and a manually crafted query, as817

illustrated in Figure 6. This method not only intro-818

duces specificity into the summarization process819

but also enhances the validation process for the820

QFS task.821

The resulting query dataset exhibits an average822

of 111 words per query and 5.62 sentences per823

query, providing a rich and diverse set of queries for 824

validation. This approach ensures that the queries 825

align with the content of the papers, contributing 826

to the effectiveness of the subsequent QFS frame- 827

work. 828

D Impact of top-k sentences 829

For this experiment, we systematically varied the 830

values of k from 4 to 30 to investigate the impact 831

of top-k sentences selection on the overall perfor- 832

mance of our framework. The results, depicted in 833

Fig. 6, reveal an interesting trend: the module’s 834

performance shows improvement with increasing 835

k values until reaching k=10, after which there is a 836

slight decrease in performance. 837

While the retrieval performance increases with 838

higher k values, it’s important to note that the real 839

summary generator, BART, has an input token lim- 840

itation set at 1024 tokens. As a consequence, ex- 841

cessively high values of k may lead to the removal 842

of important sentences located in the middle or late 843

in the original paper during the truncation process. 844

Therefore, considering both performance and the 845

token limitation, the optimal value for k is deter- 846

mined to be k=10. 847

E Full experimental results 848

The full experimental results of summary generator 849

modules GS task, and ablation study were shown 850

in Table 7 and Table 8 respectively. In addition, 851

the output generated from our frameworks were 852

illustrated in Table 9. 853
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Input
Instruction: Query-Focus Summarization (QFS) aims to create a short summary from a set of documents
that answers a specific query. However, My dataset contain only document and summary, and exclude
query. Let generate query based on Abstract of a paper and Summary of the paper as following example.
An example: [Abstract] Unsupervised dataset alignment estimates a transformation that maps two or more
... [/Abstract] [Summary] This paper proposes a flow-based method for the unsupervised data set alignment
problem. ... [/Summary] [Query] What is the main proposal of this paper ? How does the paper address the
minimization problem over density models, and what theoretical insight does it provide? What is the novel
regularizer introduced by the authors? ... [/Query]
An example: [Abstract] ... [/Abstract] [Summary] ... [/Summary] [Query] ... [/Query]
Query generation: [Abstract] The principle of optimism in the face of (aleatoric and epistemic) uncer-
tainty has been utilized ... [/Abstract] [Summary] This work introduces max-Q Entropy Search (MQES)
exploration principle for ... [/Summary] [Query]
Output
What does this paper study? How does this paper identify and address major concerns? What is the
proposed algorithm sqSGD? How does the proposed algorithm sqSGD address concerns? What is the
gradient subsampling strategy proposed by the authors? How does it achieve better performance? What is
the randomized rotation proposed by the authors? What role does it play in the preprocessing step of the
proposed algorithm? In what ways does the proposed algorithm sqSGD successfully learn large models
like LeNet and ResNet with local privacy constraints? How does the performance of sqSGD significantly
dominate that of baseline algorithms? [/Query]

Table 6: A 2-shot learning strategy for query synthesis

Validation set Blind test set
Framework Experiment R-1 R-2 R-L R-avg R-1 R-2 R-L R-avg

Baseline 39.48 11.86 24.25 25.05 40.80 12.33 24.48 25.87
GATS (Akkasi, 2022) 35.46 9.53 19.63 21.54 33.85 7.40 17.74 19.66
LTRC (Urlana et al., 2022) - - - - 40.68 12.47 24.99 26.05
GUIR (Sotudeh and Goharian, 2022) 41.05 12.18 24.61 25.95 41.36 12.52 24.83 26.24
AINLPML (Kumar et al., 2022) - - - - 41.08 13.29 25.36 26.58
GS R (k=10) 39.57 11.83 24.10 25.17 40.65 12.33 24.49 25.82

R (ranked) 39.56 11.73 23.94 25.08 40.52 12.19 24.36 25.69
AR (k=10) 39.65 11.80 24.05 25.16 40.57 12.27 24.47 25.77
AR (ranked) 39.71 11.95 24.20 25.28 40.58 12.40 24.68 25.89
AIR (k=10) 39.36 11.59 23.91 24.95 40.22 12.11 24.20 25.51
AIR (ranked) 39.60 11.64 24.00 25.08 40.42 12.13 24.27 25.61
ALiR (k=10) 39.02 11.55 23.91 24.83 40.88 12.31 24.43 25.87
ALiR (ranked) 39.13 11.65 23.98 24.92 40.80 12.28 24.62 25.90

H-QFS R (k=10) 41.63 12.00 24.35 26.00 40.16 11.64 23.43 25.08
R (ranked) 41.39 12.12 24.56 26.02 41.14 12.29 24.15 25.86
AR (k=10) 41.14 11.91 24.34 25.80 40.79 12.22 24.49 25.83
AR (ranked) 40.80 11.73 24.19 25.57 40.82 12.29 24.19 25.77
AIR (k=10) 40.81 11.98 24.54 25.78 40.28 11.76 23.30 25.11
AIR (ranked) 40.41 11.75 24.13 25.43 40.91 12.30 24.20 25.80
ALiR (k=10) 41.46 11.96 24.37 25.93 40.93 12.24 24.38 25.85
ALiR (ranked) 41.11 11.96 24.40 25.82 40.81 12.24 24.47 25.84

Table 7: General Summarization (GS) task performance in term of ROUGE 1, 2, L, and average; Bold: 1st place,
underline: 2nd place
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General summarization task QFS task
R1 R2 RL R-avg R1 R2 RL R-avg

QFS (AR-ranked) - - - - 44.29 17.88 27.67 29.95
-Len - - - - 44.01 (-0.28) 17.67 (-0.21) 27.41 (-0.26) 29.7 (-0.25)
-UMR - - - - 40.66 (-3.63) 11.74 (-6.14) 24.21 (-3.46) 25.54 (-4.41)
-UMR -Len - - - - 38.73 (-5.56) 11.30 (-6.58) 23.65 (-4.02) 24.56 (-5.39)
H-QFS (R-ranked) 41.39 12.12 24.56 26.02 44.76 17.57 27.85 30.06
-Len 39.36 (-2.03) 11.3 (-0.82) 23.61 (-0.95) 24.76 (-1.26) 43.93 (-0.83) 16.99 (-0.58) 27.47 (-0.38) 29.46 (-0.6)
-UMR 42.25 (0.86) 12.2 (0.08) 24.48 (-0.08) 26.31 (0.29) 43.12 (-1.64) 13.41 (-4.16) 25.49 (-2.36) 27.34 (-2.72)
-UMR -Len 39.30 (-2.09) 11.28 (-0.84) 23.58 (-0.98) 24.72 (-1.30) 39.83 (-4.93) 12.73 (-4.84) 24.77 (-3.08) 25.78 (-4.28)

Table 8: Ablation study for QFS and H-QFS frameworks in both GS and QFS task. The value in parenthesis is the
different score between main framework and ablation experiments

Gold target: This paper focuses on deep reinforcement learning methods and discusses the
presence of inductive biases in the existing RL algorithm. Specifically, they discuss biases that
take the form of domain knowledge or hyper-parameter tuning. The authors state that such
biases rise the tradeoff between generality and performance wherein strong biases can lead to
efficient performance but deteriorate generalization across domains. Further, it motivates that
most inductive biases has a cost associated to it and hence it is important to study and analyze
the effect of such biases.
Query: How does this paper discuss the trade off between generality and performance in deep
RL? How does this paper address the issue of injecting domain specific inductive biases in deep
RL? How does this paper study the presence of different inductive biases in RL algorithms?
Length control: <len04> (91-120 words)
QFS†∗: Does this paper discuss the trade off between generality and performance in deep RL?
How does this paper address the issue of injecting domain specific inductive biases in deepRL?
What does this study the presence of different inductive bias in RL algorithms? The main benefit
of having fewer domain-specific components.
GS: This paper studies the impact of inductive biases on generalization in reinforcement
learning. In particular, the authors consider the effect of different types of biases, including
domain knowledge and pretuned hyperparameters, on the generalization ability of deep RL
algorithms. The authors compare the performance of two RL algorithms, AlphaZero and
AlphaGo, with and without domain-specific biases, and show that the performance improves
with fewer domain specific biases.
H-QFS (QFS)†∗: This paper studies the trade-off between generality and performance when
we inject inductive biases into deep reinforcement learning (RL) algorithms. In particular, the
authors consider two ways of injecting inductive bias: 1) sculpting the agent’s objective (e.g.,
clipping and discounting rewards), 2) crafting the agent-environment interface. The authors
evaluate the performance of the proposed methods on the Atari games.
H-QFS (GS)∗: This paper re-examines several domain-specific components that modify the
agent’s objective and environmental interface. The authors argue that inductive biases may mask
the generality of other parts of the system as a whole; if a learning algorithm tuned for a specific
domain does not generalize out of the box to a new domain, it can be unclear whether the
underpinning learning algorithm is lacking something important. They then investigate the main
benefit of having fewer domain specific components, by comparing the learning performance of
the two systems on a different set of continuous control problems.

Table 9: Generated summary from our frameworks (†: involve query guidance in summary generator, ∗: involve
length control in summary generator)
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Figure 6: Performance of summary generator while vary k
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