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Abstract

Graph prediction problems prevail in data analysis and machine learning. The
inverse prediction problem, namely to infer input data from given output labels,
is of emerging interest in various applications. In this work, we develop invert-
ible graph neural network (iGNN), a deep generative model to tackle the inverse
prediction problem on graphs by casting it as a conditional generative task. The
proposed model consists of an invertible sub-network that maps one-to-one from
data to an intermediate encoded feature, which allows forward prediction by a lin-
ear classification sub-network as well as efficient generation from output labels
via a parametric mixture model. The invertibility of the encoding sub-network
is ensured by a Wasserstein-2 regularization which allows free-form layers in the
residual blocks. The model is scalable to large graphs by a factorized parametric
mixture model of the encoded feature and is computationally scalable by using
GNN layers. We study the invertibility of flow mapping based on theories of opti-
mal transport and diffusion process. The proposed iGNN model is experimentally
examined on synthetic data, including the example on large graphs, and the empir-
ical advantage is also demonstrated on real-application datasets of solar ramping
event data and traffic flow anomaly detection.

1 Introduction

Graph prediction is an important topic motivated by various applications, e.g., protein-protein inter-
action networks [38], wind power prediction [39], and user behavior modeling in social networks
[7]. In the so-called inverse of a graph prediction problem, one would like to infer the input graph
nodal features X given an outcome response Y . Such a problem is of interest in various real-world
applications, e.g., molecular design [33] and power outage analysis [41, 1]. The inverse graph pre-
diction problem is the focus of the current work, for which we develop an invertible deep model that
can be efficiently applied to graph data.

More formally, The forward prediction problem is to learn the conditional probability of p(Y |X).
This discriminative task can be done by a conventional classification model. The inverse prediction
problem is to learn the conditional probability of p(X|Y ) and to generate samples X from it. This
generative task is challenging when data X is in high dimensional space (e.g., graph nodal features
that scales linearly with graph size), where a grid of X can not be efficiently constructed. In addition,
in the case of categorical response, the graph label Y assigns one of the K-class labels to each node,
which makes the total possible outcomes KN many. Thus the inverse prediction problem on graph
data poses both modeling and computational challenges when scalability to large graphs is needed.

In this work, we develop a deep generative model for the conditional generation task of the inverse
prediction problem on graphs. Unlike previous conditional generative models [30, 20, 3, 4, 2],
which typically concatenate the prediction label Y with the random code Z as input or rely on
curated forms of neural network (NN) layers to ensure invertibility, we propose to encode the input
data X one-to-one by an invertible network to an intermediate feature H , from which the label Y
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Figure 1: Comparison of existing conditional generative neural network models (left) and the proposed iGNN
model (right). Most current approaches concatenate the encoded prediction label Y (e.g. one-hot encoding) as
an additional input to the generative network G. Our model takes a two-step approach: a one-to-many mapping
g from label Y to intermediate feature H by a Gaussian mixture model (which allows classification from H to
Y by f ), and a one-to-one mapping from H to input data X .

can be predicted using a linear classifier, and, in the other direction, H can also be generated from
Y by a parametric mixture model. The framework of our model is shown in Figure 1. Because the
general (non-graph) data case can be seen as a special case of graph data where the graph only has
one node, we call the proposed model invertible Graph Neural Network (iGNN), as a unified name.
In summary, the contributions of the work are

• We propose a two-step procedure, Y -to-H and H-to-X , to tackle the generative task of
inverse prediction problem viewed as a conditional generation problem and develop an
invertible flow model consisting of two subnetworks accordingly. The model is made scal-
able to graph data by a factorized formulation of the parametric mixture model H|Y and
the GNN layers in the invertible flow network between H and X .

• We introduce Wasserstein-2 regularization of the invertible flow network, which is com-
putationally efficient and compatible with free-form layer types including the GNN layers.
The effect on preserving invertibility is backed by OT theory and verified in practice.

• We theoretically study the invertibility of flowing mapping based on theories of optimal
transport and diffusion process.

• The proposed iGNN model is applied to both simulated and real-data examples, showing
improved generative performance over alternative conditional generation models.

2 Method

1. Inverse of prediction as conditional generation. The overall framework is to (end-to-end) train
a network consisting of two sub-networks: the first sub-network maps invertibly from X to an
intermediate representation H , and the second sub-network maps from H to label Y , which is a
classifier and loses information. Specifically,

• H-Y classification sub-network. We model H|Y by a Gaussian mixture model. The para-
metric form of H|Y contains trainable parameter θgc , and the generation of H|Y is by sam-
pling the corresponding mixture component accordingly. The prediction of label Y from
H can be conducted by a linear classifier parametrized by θcc . The trainable parameters in
this sub-network are denoted as θc = (θgc , θ

c
c).

• X-H invertible sub-network. The invertible mapping from X to H is by a flow ResNet
in Rd. The sub-network parameters are denoted as θ = {θl, l = 1, · · · , L}, where L is
the number of residual blocks, and the network mapping is denoted as Fθ. The generation
of X|Y is by inversely mapping X = F−1

θ (H) once H is sampled according to p(H|Y )
parametrized by θgc .

The end-to-end training objective of the proposed network can be written as

min
{θ,θc}

Lg + µLc + γW, (1)

where Lg , Lc and W are the generative loss, the classification loss and the Wasserstein-2 regular-
ization (cf. Eq. (7)) , respectively. The scalars µ, γ ≥ 0 are penalty factors.
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Figure 2: Flow map learned by iGNN model that transports three-class data in R2 to a three-component Gaus-
sian mixture and back. The distribution X|Y has (0, 22, 0.22, 0.56) fractions in each classes respectively. The
ResNet has 48 blocks. The transported data samples (upper panel) and distribution (lower panel) of the three-
class data are illustrated along the trained invertible flow network.

Given ntr many data-label pairs {Xi, Yi}, we define Lg = 1
ntr

∑ntr

i=1 ℓg(Xi, Yi) where

− ℓg(Xi, Yi) := log pX|Yi
(Xi) = log pH|Yi

(Fθ(Xi)) + log |det JFθ
(Xi)|. (2)

In (2), we parametrize pH|Y by a Gaussian mixture model in Rd with a prefixed parameter σ as

H|Y = k ∼ N (µk, σ
2Id), k = 1, · · · ,K. (3)

In practice, we initialize µk to be sufficiently separated to ensure non-overlapping supports of Gaus-
sian components, and we can preserve the separation during training via a barrier penalty on the
distances ∥µk − µk′∥. Figure 2 provides an example of the trained flow in R2.

The classification loss is defined as Lc = 1
ntr

∑ntr

i=1 ℓc(Fθ(Xi), Yi), where ℓc(Hi, Yi) is the per-
sample K-class classification loss computed by softmax, upon using a linear classifier on Fθ(Xi).
We find the experimental results insensitive to the choice of penalty factor µ and always use µ = 1.

2. Scalable conditional generation on graph data. In this subsection, the subscript v indicates graph
node v. Suppose the graph (V,E) has N nodes in V and the edge set E. We denote a graph data
sample X and a graph label Y as

X = [X1, · · · , XN ]T ∈ RN×d′
, Xv ∈ Rd′

, Y = [Y1, · · · , YN ]T ∈ RN , Yv ∈ [K], v ∈ [N ],

where d′ is the dimension of node feature. To specify the Gaussian mixture H|Y , we can view X as
a vector in Rd, d = d′N , and label vector Y taking KN many possibilities. Yet, doing so requires
specifying a KN -component Gaussian mixture in Rd that is not scalable when N is large.

To ensure scalability of iGNN, we introduce a factorized form of H|Y as elaborated below, and pro-
pose to use GNN layers in the invertible ResNet (e.g., Chebnet [13] and L3net [11]). The scalability
of our iGNN approach is demonstrated on a larger graph with N = 500 nodes, cf. Figure 3.

Suppose we have a K-component Gaussian mixture in Rd′
. We specify the graph H|Y as

p(H|Y ) =

N∏
v=1

p(Hv|Yv), Hv|Yv ∼ N (µYv , σ
2Id′), ∀v = 1, · · · , N, (4)

that is, the joint distribution of H|Y consists of independent and identical K-component Gaussian
mixture distribution of Hv|Yv in Rd′

across the graph. As a result, on the graph sample-label pair
{X,Y }, the log p(H|Y ) term in the generative loss (2) can be computed as

log pH|Y (Fθ(X)) =

N∑
v=1

log pH1|Y1
((Fθ(X))v). (5)

Note that the factorized form of H|Y reduces the complexity of modeling H|Y in Rd′N to that of
modeling a K-class mixture model in Rd′

.

3. Invertible flow network with Wasserstein-2 regularization. We use an invertible ResNet with L
layers to construct the one-to-one mapping between X and H , following the framework of [5]. Let
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the l-th block residual mapping f(x, θl) be parametrized by θl. The ResNet mapping from X to H
is H = Fθ(X) = xL where

xl = xl−1 + f(xl−1, θl), l = 1, · · · , L, x0 = X. (6)

The ResNet architecture is illustrated on the right of Figure 1. The architecture of the residual block
is free-form: one can use any layer type inside the residual blocks and even different layer types in
different blocks.

The Wasserstein-2 (W2) regularization used in (1) takes the form

W =
1

ntr

ntr∑
i=1

ℓw(Xi), ℓw(Xi) =

L∑
l=1

∥xl − xl−1∥22, where x0 = Xi, (7)

where xl is defined as in (6). In practice, we numerically verify the invertibility of the trained ResNet
in experiments, cf. Table 1 and Appendix A. We also find a few tens of residual blocks to be enough,
including the large graph experiment.

3 Theory

In this section, we study how the proposed Wassersetein-2 regularization guarantees the invertibility
of the flow network. Theoretically, we consider continuous-time flow induced by a velocity field
v(x, t), that is, the continuous-time flow is represented by an initial value problem (IVP) of ODE

ẋ(t) = v(x(t), t), x(0) ∼ p. (8)

The transport in Rd is the solution mapping from x(0) = x to x(t) at some time t > 0. We refer to
our full paper for complete theoretical results and proofs.

3.1 Invertibility of trained flow network

The proposed Wassersetein-2 regularization serves to penalize the transport cost

T :=

∫ 1

0

Ex∼ρ(·,t)∥v(x, t)∥2dt, (9)

when the number of residual blocks L is large. In the special case of K = 1, we transport from the
source density p (the data distribution in Rd) to the target density q, which can be chosen as standard
normal N (0, Id). Our minimizing objective Lg + γW (in population form) is then equivalent to

T + γ̃KL(ρ(·, 1)||q) (10)

with some positive scalar γ̃. Compared to the Benamou-Brenier formula [35, 6], the objective (10)
relaxes the terminal condition that ρ(·, 1) = q to be the KL divergence, which does not change the
solution of the optimal v. The optimal flow induced by the minimizer also gives the Wasserstein
geodesic from p to the normal density q, and is smooth when p is a smooth density. More details
of the K = 1 case are given in Section 3.2. In our problem of conditional generation, when there
are K > 1 classes, the limiting continuous time flow differs from the Wasserstein geodesic from
ρ(·, 0) = p(X|Y ) to ρ(·, 1) = p(H|Y ) for fixed Y , but is expected to give a shared flow in Rd from
X to H , cf. Figure 2. Under regularity conditions, one would expect the transport-cost regularized
continuous-time flow to also be regular.

As a result, the velocity field v(x, t) would have a finite x-Lipschitz constant B on any bounded
domain. Divide the time interval [0, 1] into L time steps, ∆t = tl+1− tl = 1/L. Then, the transport
from x(tl−1) to x(tl) induced by v(x, t) on the interval [tl−1, tl] is invertible when B∆t < 1,
which holds when L > B. In this case, also assuming that the solved discrete-time transport map
Tl(x) := x + f(x, θl) is close to that induced by v(x, t), one can expect the invertibility of Tl in
each residual block, and then the composed transport Fθ over L blocks is also invertible.

3.2 The special case of K = 1

For the continuous-time flow, the transport mapping by the IVP (8) is invertible as long as (8) is
well-posed. The normalizing flow from p to normal q is typically not unique. We introduce two
constructions here that are related to the proposed Wasserstein-2 regularization.
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(i) Flow by Benamou-Brenier formula. Consider (8) on t ∈ [0, 1], the flow F maps from x = x(0) to
x(1). Let ρ(·, t) be the density of x(t), ρ(·, 0) = p and ρ(·, 1) = F#p, the push-forward final density
by F . For the flow induced by the optimal v(x, t) in (10) which is equivalent to the Benamou-Brenier
formula, the regularity of v and ρ follows from classical OT theory:
Proposition 3.1 ([9, 36]). Suppose p is smooth on Rd with finite moments, then the optimal velocity
field v(x, t) that minimizes (10) is smooth, the induced IVP (8) is well-posed on Rd × [0, 1] and the
flow mapping is smooth and invertible.

(ii) Flow by Fokker-Planck equation. We use the Fokker-Planck equation of stochastic process
to provide another theoretical construction of the invertible flow. Because q is standard normal,
the stochastic process is an Ornstein-Uhlenbeck (OU) process in Rd, for which the Fokker-Planck
equation can be written as

∂tρ = ∇ · (ρ∇V +∇ρ), V (x) = |x|2/2, ρ(x, 0) = p(x), (11)

where ρ(x, t) represents the probability density of the OU process at time t. The Liouville equation
of (8) is ∂tρ = −∇ · (ρv), where ρ(x, t) represents the density of x(t). Comparing to (11), we see
that the density evolution can be made the same if the velocity field v(x, t) is set to satisfy

− v(x, t) = ∇V (x) +∇ log ρ(x, t) = x+∇ log ρ(x, t). (12)

The smoothness of v follows from the explicit expression of ρ(x, t) as the solution of (11).
Proposition 3.2. Let ρ(x, t) be the solution to (11) from ρ(x, 0) = p, then the IVP (8) induced by
velocity field v(x, t) as in (12) is well-posed on Rd × (0, T ) for any T > 0 and the flow mapping is
smooth and invertible.

While theoretically the density ρ(x, t) in (11) converges to the normal equilibrium q in infinite time,
the convergence is exponentially fast [8]. Thus the transported density F#p = ρ(·, T ) for a finite
T ∼ log(1/ϵ) can be ϵ-close to q.

4 Experiment

We experimentally examine the proposed iGNN model on simulated data and real graph data (so-
lar ramping event data and traffic flow anomaly detection). We also compare spectral and spatial
GNN layers on a simulated example. The experimental setup is provided in Appendix A.1, and
further details are in Appendix A.2. Code is available at https://github.com/hamrel-cxu/
Invertible-Graph-Neural-Network-iGNN.

4.1 Simulated examples

We consider three simulated examples in this section. The first considers non-graph Euclidean vector
data, and the second and the third consider graph data on small and large graphs.

1. Non-graph data in R2. The dataset contains a Gaussian mixture of eight components with four
classes, where each X|Y is further divided into two disjoint Gaussian distributions in R2. Figure
A.2 compares our generative results with cINN-MMD, where both methods can generate data that
are reasonably close to X|Y at each Y .

2. Data on a small graph. At each node v, Yv ∈ {0, 1} and features Xv ∈ R2, thus the graph node
label vector Y ∈ {0, 1}3. Detailed data-generating procedures can be found in Appendix A.1. In
this example, iGNN yields comparable generative performance with cINN-MMD, see Figure A.4
and more results in Appendix A.2.

Table 1: Relative inversion error EX [∥F−1(F (X)) − X∥2] on the solar ramping event test data. Generative
quality and data details are described in Section 4.2.

γ 0 0.5 1 2 5 10

Inversion error 4.09e+04 2.74e-06 1.03e-06 3.14e-06 2.61e-06 1.60e-06
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(a) 503-node graph (b) 1-hop neighborhood of node 100 (c) 2-hop neighborhood of node 100

(d) 1-hop neighborhood of node 500 (e) 2-hop neighborhood of node 500

Figure 3: Generating performance by iGNN of graph data X|Y on a 503-node chordal cycle graph, where the
node feature dimension d′ = 2, and the per-node class number K = 2. To evaluate the conditional generation
quality, we plot the covariance matrix of model-generated data X̂|Y (right in (b)-(e)) restricted to sub-graphs
produced by 1 or 2-hop neighborhoods of a graph node in comparison with the ground truth (left in (b)-(e)).

3. Data on a large graph. We consider a 503-node chordal cycle graph [27], which is an expander
graph. We design binary node labels and let node features X|Y ∼ N(µY ,ΣY ), where Xv ∈ R2

and the mean µY and covariance matrix ΣY contain graph information. Detailed data-generating
procedures can be found in Appendix A.1. Because enumerating all values of Y is infeasible, we
randomly choose 50 values of outcome Y , each of which has 50% randomly selected node labels
to be 1. To visualize the generative performance of iGNN, we compare the covariance of true
and generated data restricted to subgraphs. Specifically, we plot the covariance matrix of model-
generated data X̂|Y and true data X|Y on sub-graphs produced by 1 or 2-hop neighborhoods of
a graph node. Figure 3 shows the resemblance between learned and true covariance matrices on
different neighborhoods on the graph.

(a) Raw data (b) X|Y (left), iGNN X̂|Y (right) (c) cINN X̂|Y (d) iGNN loss

Figure 4: Comparison of iGNN versus cINN-MMD on solar ramping event data. The graph has ten nodes with
node features in R2. Each row in (b)-(c) shows the model generated X̂|Y in comparison to the ground truth
X|Y for different values of Y .
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Figure 5: Predicted probabilities of graph labels Y by iGNN model where Y takes different values on graph
nodes on test data. Given a node feature matrix X , we compute P(Yi = 1|X) on each node using the linear
classifier f(·; θcc) in H-Y sub-network applied to the flow-mapped graph node feature H = Fθ(X). The true
node label Yi is shown on top of each node in the plot.

4.2 Real-data examples

We apply the iGNN model to two graph prediction data in real applications. The inverse prediction
problem is formulated as a conditional generation task.

1. Solar ramping events data. Consider the anomaly detection task on California solar data in 2017
and 2018, which were collected in ten downtown locations representing nodes. Each node records
non-negative bi-hourly radiation recordings measured in Global Horizontal Irradiance (GHI). After
pre-processing, features Xt ∈ R10×2 denote the average of raw radiation recordings every 12 hours
in the past 24 hours, and response vectors Yt ∈ {0, 1}10 contain the anomaly statusy.

Figure 4 shows that the learned conditional distribution X̂|Y by iGNN model closely resembles that
of the true data X|Y , and outperforms the generation of cINN-MMD. The quantitative evaluation is
given in Table 2, which shows that iGNN has comparable or better performance than the alternative
approaches (smaller test statistics indicate better generation). The table also shows that cINN-Flow
performs significantly worse than cINN-MMD and iGNN on this example, which is consistent with
the visual comparison of X̂|Y (not shown). Lastly, Figure 5 shows the predictive capability of
iGNN: given a test node feature matrix X , we can compute P(Yi = 1|X) for node i using the

(a) Raw data (b) X|Y (left), iGNN X̂|Y (right) (c) cINN X̂|Y (d) iGNN loss

Figure 6: Comparison of iGNN versus cINN-MMD on traffic anomaly detection data. The graph has 15 nodes
with node features of dimension d′ = 2. Each row in (b)-(c) shows the model generated X̂|Y in comparison
to the ground truth X|Y for a different value of Y .
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Table 2: Two-sample testing statistics under formulas (15) and (17) on test data.

Solar data MMD Energy Traffic data MMD Energy

iGNN 0.062 0.341 iGNN 0.128 0.537

cINN-MMD 0.061 0.344 cINN-MMD 0.152 1.484

cINN-Flow 0.402 3.488 cINN-Flow 0.281 6.183

cGAN 0.572 3.422 cGAN 0.916 4.132

trained linear classifier on FΘ(X). The predicted probabilities learned by the model are consistent
with the true nodal labels, and provide more information than the binary prediction output.

2. Traffic flow anomalies. We study the anomaly detection task on Los Angeles traffic flow data from
April to September 2019. The whole network has 15 sensors with hourly recordings. Features Xt ∈
R15×2 denote the raw hourly recording in the past two hours, and response vectors Yt ∈ {0, 1}15
contain the anomaly status of each traffic sensor. The graph topology is shown in Figure 6(a), along
with the raw input features in R2 (over all graph nodes). The generative performance by iGNN
resembles the ground truth, as shown in Figure 6(b), and is better than the generative performance
by cINN-MMD in (c). The quantitative evaluation metrics also reveal the better performance of
iGNN over alternative baselines, cf. Table 2.

4.3 Comparison of GNN layers

We examine the empirical performance of different GNN layers in learning the flow of graph data.
Here we provide an example on a three-node graph where spectral graph filters lack expressiveness
due to constructed symmetry.

Example 1 (Insufficient expressiveness of spectral graph filters). Consider a graph with three nodes
{1, 2, 3} and two edges {(1, 2), (2, 3)} between nodes. Self-loops at each node are also inserted.
For nodal features X ∈ R3, assume X ∼ N (0,Σ). Let the covariance matrix Σ and permutation
matrix π take the form

Σ :=

[
1 ρ 0
ρ 0 ρ1
0 ρ1 1

]
, π =

[
0 0 1
0 1 0
1 0 0

]
.

(a) X|Y (b) ChebNet X̂|Y (c) ChebNet losses (d) L3Net X̂|Y (e) L3Net losses

Figure 7: Comparison of using spectral and spatial GNN layer in iGNN model for conditional generation. Data
in (a) are generated based on Example 1 as two-dimensional graph node features lying on a three-node graph
having binary node labels. We visualize samples generated by iGNN using the spectral GNN layer (ChebNet)
in (b) and spatial GNN layer (L3Net) in (d), as well as the losses over training epochs in (c) and (e).
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One can see that πΣπT ̸= Σ if ρ ̸= ρ1. On the other hand, πAπT = A at this chosen permutation π,
so that any spectral graph filter f(A) as a matrix function of A satisfies that πf(A)πT = f(A). As a
result, f(A) for any f will make an O(1) error in approximating Σ and thus fail to generate correct
samples. Because (possibly normalized) graph Laplacian is either a polynomial of A or preserves
the same symmetry pattern as A, the issue happens with any spectral convolutional filter.

We simulate data based on the three-node graph in Example 1. Figure 7 compares the generative
performance of iGNN by using ChebNet and L3Net layers. In this example, iGNN with ChebNet
layers fails to learn the conditional distribution X|Y . The plot (b) shows that the learned X̂|Y has
a symmetry of nodes 1 and 3, which explains the cause of insufficiency. Meanwhile, iGNN with
L3Net layers yields satisfactory performance by having sufficient model expressiveness.

5 Related works

Generative deep models and normalizing flow. At present, generative adversarial networks (GAN)
[15, 19] and variational auto-encoders (VAE) [23, 24] are two of the most popular frameworks that
have achieved various successes [29, 40, 26]. However, they also suffer from clear limitations such
as notable difficulties in training, such as mode collapse [32] and posterior collapse [28]. On the
other hand, normalizing flows (see [25] for a comprehensive review) estimate arbitrarily complex
densities via the maximum likelihood estimation (MLE), and they transport original random features
X into distribution that are easier to sample from (e.g., standard multivariate Gaussian) through in-
vertible neural networks. Flow-based models can be classified into two broad classes: the discrete-
time models (some of which include coupling layers [14], autoregressive layers [37] and residual
networks [5, 10]), and the continuous-time models as exemplified by neural ODE [17, 31]. Most
normalizing flow methods focus on unconditional generation with little development in a condi-
tional generation. In addition, to achieve numerically reliable training, regularization of the density
transport trajectories in flow networks are necessary but remain a challenge.

Conditional generation networks. The conditional generation versions of GAN (cGAN) have been
studied in several places [30, 20], where the prediction outcome Y (one-hot encoded as eY ) are typ-
ically concatenated with random noise Z and taken as input to the generator network, as illustrated
in the left of Figure 1. The one-hot encoding of categorical Y concatenated with Gaussian Z poses
challenges in training cGAN models, in addition to known issues of their unconditional counter-
parts, such as mode collapse, posterior collapse, and failures to provide exact data likelihood. When
the prediction label Y is lying on a graph having N nodes, the one-hot coding will increase up to
O(N) more coordinates to the input (Z, eY ), which significantly increases the model complexity
and computational load with large graphs. Conditional invertible neural network (cINN) model was
developed in [3] for analyzing inverse problems. The model inherits the approach of cGAN mod-
els to concatenate one-hot encoded prediction label eY with normal code Z while using Real-NVP
layers [14] to ensure neural network invertibility. In terms of training objective, [3] proposed to
use maximum mean discrepancy (MMD) losses to encourage both the matching of the input data
distribution and the independence between label Y and normal code Z. We call the method in [3]
cINN-MMD. Replacing the MMD losses with a flow-based objective, [4, 2] extended the invertible
network approach in [3] and applied to image generation problems. In the models in [4] and [2],
which we call cINN-Flow and cINN-Flow+ respectively, the inputs to the Real-NVP layers contain
encoded information of the prediction label Y so as to learn label-conditioned generation.

Comparison to spectral normalization. iResNet [5] proposed spectral normalization to ensure the
invertibility of each residual block. Given a weight matrix W ∈ RC×C′

in a fully-connected layer,
the method first computes an estimator σ̃ of the spectral norm ∥W∥2 by power iteration [16], and
then modify the weight matrix W to be cW/σ̃ if c/σ̃ < 1, where c < 1 is a pre-set scaling parameter.
It was proposed to apply the procedure to all weight matrices in all ResNet blocks in every stochastic
gradient descent (SGD) step with mini-batches. When the number of blocks L is large, this involves
expensive computation, especially if the hidden layers are wide, i.e., C and C ′ being large. In addi-
tion, while spectral normalization of fully-connected layers together with contractive nonlinearities
(e.g., ReLU, ELU, Tanh) ensures invertibility, it may not be directly applicable to other layer types,
e.g., GNN layers. In contrast, the proposed Wasserstein-2 regularization are obtained from the for-
ward passes of the residual blocks on training samples without additional computation. It is also
generally compatible with free-form neural network layer types.
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A Additional experimental details

A.1 Experimental set-up

A.1.1 Computation of log det

To compute the log determinant in (2), we adopt the following unbiased log determinant approxima-
tion technique as proposed in [10]. Let Fθ(x) = x+ fθ(x) denote the output from a generic ResNet
block with parameter θ. First, observe that for any input x, log |det JFθ

(x)| = tr(log JFθ
(x)) be-

cause the matrix JFθ
(x) is non-singular. We thus have tr(log JFθ

(x)) = tr(log(I + Jfθ (x))). As a
result, the trace of the matrix logarithm can be expressed as

tr(log(I + Jfθ (x))) = tr

( ∞∑
k=1

(−1)k+1

k
[Jfθ (x)]

k

)
. (13)

Based on (13), which takes infinite time to compute, we can obtain an unbiased estimator in finite
time based on the “Russian roulette“ estimator approach [21, 10]. For a ResNet as a concatena-
tion of L ResNet blocks, the approximation is applied to each block and summed over all blocks.
Lastly, to speed up gradient computation of the approximation, we further adopt memory efficient
backpropagation through the early computation of gradients [10].

A.1.2 Baselines and evaluation metric.

We consider three competing conditional generative models:

• Conditional generative adversarial network (cGAN) [20].
• Conditional invertible neural network with maximum mean discrepancy (cINN-MMD) [3].
• Conditional invertible neural network using normalizing flow (cINN-Flow) [4].

To quantify performance, we measure the difference between two distributions (X|Y versus X̂|Y
at different Y ) by kernel maximum mean discrepancy (MMD) [18] and energy statistics [34]. De-
tails of the MMD and energy statistics metrics are contained in Appendix A.1.4. We also provide
qualitative comparison by visualizing the generated data samples.

A.1.3 Data and ResNet architecture.

In the examples of graph data, the number of graph nodes ranges from 3 to 500. All graphs are
undirected and unweighted, with inserted self-loops. Regarding the ResNet block layer type: for
non-graph data, we use 2 fully-connected hidden layers of 64 neurons in all ResNet blocks. For
graph data, in each residual block, we replace the first hidden layer to be a GNN layer (either Cheb-
Net or L3Net layer); the second layer is a shared fully-connected layer that applies channel mixing
across all the graph nodes (which can be viewed as a GNN layer with identity spatial convolution).
The activation function is chosen as ELU [12] or LipSwish [10], which have continuous derivatives.
The network is trained end-to-end with the Adam optimizer [22].

A.1.4 Model evaluation metrics

MMD statistics metric. Given two sets of samples X = {x1, . . . , xn},X′ = {x′
1, . . . , x

′
n} of same

sample size n, the MMD two-sample statistic between X and X′ is defined as

MMD(X,X′) :=
1

n2

n∑
i=1

n∑
j=1

k(xi, xj) +
1

n2

n∑
i=1

n∑
j=1

k(x′
i, x

′
j)−

2

n2

n∑
i=1

n∑
j=1

k(xi, x
′
j), (14)

where we use the radial basis kernel k(x, x′) = exp(−α∥x− x′∥2) with α = 0.1.

For the K-class conditional distribution X|Y , where we denote by {X|Y = k} the set of samples
{xi : yi = k}ni=1, the overall MMD statistic is defined using (14) as

MMD =

K∑
k=1

wkMMD({X|Y = k}, {X′|Y = k}), wk =

∑n
i=1 1(yi = k)

n
. (15)
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Figure A.1: The invertibility of iGNN on non-graph data in R2. We visualize F−1
θ (Fθ(X)) (forward then

invert) and Fθ(F
−1
θ (X)) (invert then forward) on in-distribution data (i.e., X as a part of two-moon data) and

out-of-distribution data (i.e., X having random U [0, 1) entries).

Note that on graph data where Y concatenates all nodal labels, the summation is over all types of Y
(up to KN many).

Energy statistic metric. Given two sets of samples X = {x1, . . . , xn},X′ = {x′
1, . . . , x

′
n}, The

energy statistic under ℓ2 norm is defined as

Energy(X,X′) :=
2

n2

n∑
i=1

n∑
j=1

∥xi−x′
j∥2−

1

n2

n∑
i=1

n∑
j=1

∥xi−xj∥2−
1

n2

n∑
i=1

n∑
j=1

∥x′
i−x′

j∥2, (16)

For K-class conditional distribution X|Y , the weighted energy statistics is defined using (16) as

Energy =

K∑
k=1

wkEnergy({X|Y = k}, {X′|Y = k}), wk =

∑n
i=1 1(yi = k)

n
. (17)

Computation of the weighted statistics on graph data is identical to that of the weighted MMD
statistics on graph.

Model invertibility error. We see from Figure A.1 that iGNN under the Wasserstein-2 regularization
ensures model invertibility up to very high accuracy.

A.1.5 Construction of simulated graph data

We describe the construction of simulated graph data on small graphs (corresponding to Figures 7
and A.4). Each node has a binary label so that Y ∈ {0, 1}3 is a binary vector. Conditioning on a
specific binary vector Y out of the eight choices, the distribution of X|Y is defined as

X|Y := PA

(
Z|Y +

[
−4 0 4
0 0 0

])
,

where PA := D−1
A A is the graph averaging matrix. The distribution of Z|Y is independent but

non-identically distributed over nodes. On node 0 and 2, we let it be rotated and shifted noisy two
moons, whereas on node 1, we let it be a Gaussian mixture in R2.

On large graphs (corresponding to Figure 3), each node has a binary label so that Y ∈ {0, 1}503 is
a binary vector. Conditioning on a specific binary vector Y out of the eight choices, the distribution

(a) X|Y (left) and iGNN X̂|Y (right) (b) iGNN loss (c) cINN X̂|Y (d) cINN loss

Figure A.2: Compare iGNN vs. cINN-MMD on simulated data in R2, the data observes a mixture model
having eight components but are attributed to four classes (indicated by color).
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Figure A.3: Confidence region of three moons by conditional-INN. The setup is identical to that in Figure 2,
where we visualize the confidence region of X|Y based on that of H|Y . The confidence region in the input
space of X can be computed from that in the feature space H based on the parametric mixture model of H .

of X|Y is defined as

X|Y := R((1− δ)I + δPA)Z|Y s.t. Zv|Yv ∼
{N ((0, 12)T , I2) if Yv = 0

N ((0, 0)T , I2) if Yv = 1
,

where R denotes a counter-clockwise rotation matrix for 90 degrees and PA := D−1
A A is the graph

averaging matrix. We choose δ = 0.2 so that a soft graph averaging is applied to the hidden variables
Z|Y .

A.2 Additional experimental results

This subsection contains experimental results to augment those in the main text. In particular,

• We show conditional generation performance by iGNN and cINN-MMD on non-graph data
in Figure A.2.

• We show the confidence region on the three-moon non-graph conditional generation data
in Figure A.3. The generative quality is presented in Figure 2 in the main text.

• We compare the generative quality of iGNN and cINN-MMD on simulated three-node
graph conditional generation data in Figure A.4.

(a) X|Y iGNN X̂|Y (b) cINN-MMD X̂|Y (c) iGNN losses
Figure A.4: Compare iGNN vs. cINN-MMD on generating two-dimensional graph node features on the three-
node graph. Color indicates node index and rows are determined by two different values of Y ∈ {0, 1}3. We
connect the two-dimensional node features belonging to the same 3-by-2 feature matrix X by light blue lines
to illustrate the distribution of X|Y .
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