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Abstract
In recent years, denoising problems have become
intertwined with the development of deep gen-
erative models. In particular, diffusion models
are trained like denoisers, and the distribution
they model coincide with denoising priors in the
Bayesian picture. However, denoising through
diffusion-based posterior sampling requires the
noise level and covariance to be known, prevent-
ing blind denoising. We overcome this limitation
by introducing Gibbs Diffusion (GDiff), a gen-
eral methodology addressing posterior sampling
of both the signal and the noise parameters. As-
suming arbitrary parametric Gaussian noise, we
develop a Gibbs algorithm that alternates sam-
pling steps from a conditional diffusion model
trained to map the signal prior to the family of
noise distributions, and a Monte Carlo sampler to
infer the noise parameters. Our theoretical analy-
sis highlights potential pitfalls, guides diagnostic
usage, and quantifies errors in the Gibbs station-
ary distribution caused by the diffusion model.
We showcase our method for 1) blind denoising
of natural images involving colored noises with
unknown amplitude and spectral index, and 2) a
cosmology problem, namely the analysis of cos-
mic microwave background data, where Bayesian
inference of “noise” parameters means constrain-
ing models of the evolution of the Universe.

1. Introduction
Denoising is an old problem in signal processing, which
has experienced significant advancements in the last decade,
propelled by the advent of deep learning (Tian et al., 2020;
Elad et al., 2023). Convolutional neural networks have led
to the emergence of state-of-the-art image denoisers (e.g.,
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Figure 1. Graphical model: we observe y = x + ε and aim to
infer both x and ϕ in a Bayesian framework.

Zhang et al., 2017; 2022), by learning complex prior dis-
tributions of target signals implicitly. Denoisers were also
found to be powerful tools for generative modeling, as strik-
ingly demonstrated by diffusion models (Ho et al., 2020;
Song et al., 2021; Saharia et al., 2022; Rombach et al., 2022).
Considerable effort has been devoted to recovering highly
accurate, noise-free versions of contaminated signals, often
at the expense of fully addressing the noise’s complexity.
In numerous practical scenarios, both in industry and scien-
tific research, accurately characterizing the noise itself is of
paramount importance (e.g., medical imaging, astronomy,
speech recognition, financial market analysis). This paper
addresses the challenge of blind denoising, with the objec-
tive of simultaneously recovering both the signal and the
noise characteristics.

We formalize the problem as follows. We observe a signal
y ∈ Rd that is an additive mixture of an arbitrary signal x
and a Gaussian signal ε with covariance Σϕ ∈ Rd×d:

y = x+ ε, with ε ∼ N (0,Σϕ), (1)

where ϕ ∈ RK is an unknown vector of parameters (see
Fig. 1 for a graphical model). The functional form of Σϕ

can be arbitrary, although computational constraints would
typically require that the number of parameters K remains
reasonable. For example, the vector ϕ would typically in-
clude a parameter σ > 0 controlling the overall noise am-
plitude, but could also encompass parameters describing
the local variations or spectral properties of the noise (cf
Sect. 3). We frame the problem in a Bayesian picture, where
prior information on x and ϕ is given, representing some
pre-existing knowledge or assumptions on the target data.
We will assume that the prior information over ϕ takes the
form of an analytical prior distribution p(ϕ). Crucially,
although the prior distribution p(x) on the signal x is typi-
cally analytically intractable, we assume access to a set of
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examplesx 1; : : : ; x N drawn fromp(x ). In this Bayesian
context, solvingblind denoisingamounts to sampling the
posterior distributionp(x ; � j y ).

Contributions. 1) We introduce Gibbs Diffusion (GDiff),
a novel approach for blind denoising (Sect. 2). The method
combines diffusion models with a Gibbs sampler, tackling
simultaneously the challenges of modeling the prior distribu-
tion p(x ) based on the samplesx 1; : : : ; x N , and sampling
of the posteriorp(x ; � j y ). 2) We establish conditions for
the stationary distribution's existence and quantify inference
error propagation. 3) We showcase our method in two areas
(Sect. 3). First, we tackle blind denoising of natural images
contaminated by arbitrary colored noise, outperforming stan-
dard baselines. Second, we demonstrate the interest of our
method for cosmology, where Bayesian inference of “noise”
parameters corresponds to constraining cosmological param-
eters of models describing the Universe's evolution. 4) We
provide our code on GitHub.1

Related work. Blind denoising has garnered substantial
attention in the literature, especially in image processing,
where denoisers based on convolutional neural networks
have become the standard (e.g., Zhang et al., 2017; Batson &
Royer, 2019; El Helou & S̈usstrunk, 2020). However, these
techniques predominantly focus on white Gaussian noises
and typically aim for point estimates such as the minimum
mean square error or maximum a posteriori estimates, often
neglecting the quanti�cation of uncertainties in both the
signal and the noise parameters. With the advent of diffusion
models, innovative methods for removing structured noise
have been developed (Stevens et al., 2023), and posterior
sampling has become achievable (e.g., Heurtel-Depeiges
et al., 2023; Xie et al., 2023). However, to the best of our
knowledge, no existing work has yet fully addressed blind
denoising using diffusion-based priors.

Denoising problems can be seen as a subset of the broader
category of linear inverse problems, for which observations
ready = Ax + " with A a general linear operator. Dif-
fusion models have proven to be of great interest for these
problems, generating a wealth of literature adjacent to our
problem. In various techniques, diffusion-based priors have
been integrated as plug-and-play models (see e.g., Kadkho-
daie & Simoncelli, 2021; Meng & Kabashima, 2022; Kawar
et al., 2022; Chung et al., 2023; Song et al., 2023a; Zhu
et al., 2023; Rout et al., 2023), relying on the decomposition
of the conditional scorer x t logpt (x t j y ). These meth-
ods typically involve approximations of the guiding term
r x t logpt (y j x t ). In Appendix E, we discuss limitations
of some of these methods for our problem. Still employing
the diffusion model as a plug-and-play prior but avoiding

1https://github.com/rubenohana/
Gibbs-Diffusion

p0(z0)

t = 0

p1(z1 )

t = 1

~y � pt � (z t � j� )

Figure 2.We train diffusion models to de�ne a stochastic linear
interpolation between the signal prior distributionp(x ) and the
noise distributionp(" 0) � N (0; � ' ).

such approximations, Cardoso et al. (2024) introduced a
sequential Monte Carlo method for Bayesian inverse prob-
lems. Interestingly, Murata et al. (2023) developed a Gibbs
sampler to address the case of a linear operatorA depending
on unknown parameters� . While the methodology bears
similarities with the approach taken in this paper, it does not
seem easily adaptable to the blind denoising problem we
address in this work. Finally, let us mention Laroche et al.
(2024), which addresses blind deconvolution problems by
estimating the maximum a posteriori using an Expectation-
Minimization algorithm combined with a guidance-based
sampling method.

2. Method

Our method builds on the ability of diffusion models to
perform posterior sampling in denoising contexts. We elab-
orate on this aspect in Sect. 2.1, a topic we found to be
not directly addressed in the existing denoising literature.
Then, in Sect. 2.2, we introduce GDiff, a method that ad-
dresses posterior sampling ofp(x ; � j y ). Finally, we study
theoretical properties of GDiff in Sect. 2.3.

2.1. Diffusion Models as Denoising Posterior Samplers

In a non-blind denoising setting, noise parameters� are
known. In the Bayesian picture, solving a denoising prob-
lem means sampling the posterior distributionp(x j y ; � )
for a given priorp(x ). We show here, that a diffusion model
can be naturally trained to both de�ne a priorp(x ) and
yield an ef�cient means to sample the posterior distribution
p(x j y ; � ). This idea was leveraged in Heurtel-Depeiges
et al. (2023) for a scienti�c application in cosmology. This
was also the concern of Xie et al. (2023).

Diffusion models are a class of deep generative models
that are trained to reverse a process consisting in gradually
adding noise to the target data. These models are well de-
scribed using the formalism of stochastic differential equa-
tions (SDE, Song et al., 2021).

The noising process is called the forward SDE, and we only
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consider here noising Itô processes(zt )t 2 [0;1] de�ned by:

(
dzt = � f (t)zt dt + g(t)�

1
2
' dw t ;

z0 = x ;
(2)

wheref; g : [0; 1] ! R+ are two continuous functions,
(w )t 2 [0;1] is a standardd-dimensional Wiener process, and
� ' corresponds to a normalized version of the covariance
matrix � � introduced in Eq.(1) (e.g.,� ' = � � =k� � k).
Within the noise parameters� , we make a distinction be-
tween the noise amplitude� (i.e. typicallyk� � k1=2), and
the rest of the parameters represented as' . These play dis-
tinct roles in the noising process:' modulates the structure
of the noise while� is muddled with timet (see App. A). In
this setting, the following proposition applies.

Proposition 2.1. For a forward SDE(z)t 2 [0;1] de�ned by
Eq.(2), for all t 2 [0; 1], zt reads

zt = a(t)x + b(t)" 0; with "0 � N (0; � ' ); (3)

with a : [0; 1] ! R+ a decreasing function witha(0) = 1 ,
andb : [0; 1] ! R+ an increasing function withb(0) = 0 .2

Moreoever, forf andg suited so that� � b(1)=a(1), there
existst � 2 [0; 1] such that

~y := a(t � )y d= zt � : (4)

Proof: See App. A.

Remark:Forward SDEs of denoising probabilistic diffusion
models (DDPM, Sohl-Dickstein et al., 2015; Ho et al., 2020)
are particular cases of Eq.(2) wheref (t) = � (t)=2 and
g(t) =

p
� (t) for an increasing function� : [0; 1] ! R+ .

Denoting by pt (zt ) the distribution ofzt , Prop. (2.1)
presents the forward process(z)t 2 [0;1] as a stochastic lin-
ear interpolant betweenp0(z0) � p(x ) andp1(z1) (for a
broader perspective, see Albergo et al., 2023). In particu-
lar, provided that� � b(1)=a(1), our observationy can be
viewed as a rescaled realization ofzt � with t � 2 [0; 1] (see
Fig. 2 for an illustration).

The existence of a reverse process associated with the for-
ward SDE is proved in Anderson (1982). For the forward
SDE(2), it takes the form of a process( �zt )t 2 [0;1] de�ned
by:

8
><

>:

d �zt =
�
� f (t) �zt � g(t)2� ' r �z t logpt ( �zt )

�
dt

+ g(t)�
1
2
' dw t ;

�z1
d= z1

(5)

where time �ows backward andw t denotes a standard
backward-time Wiener process. According to Anderson

2See App. A for expressions ofa andbas functions off andg.

Algorithm 1 GDiff: Gibbs Diffusion for Blind Denoising
Input: observationy , pinit (� ), M
Initialize � 0 � pinit (� ).
Initialize x 0 � q(x j y ; � 0) (Diffusion step)
for k = 1 to M do

" k � 1  y � x k � 1

� k � q(� j " k � 1) (HMC step)
x k � q(x j y ; � k ) (Diffusion step)

end for
Output: samples(x k ; � k )1� k � M .

(1982), ( �zt )t 2 [0;1] and (zt )t 2 [0;1] are equal in law. This
implies that the marginal distributions of( �zt ) and (zt )
coincide for all t, but also that the joint distributions
p(zt 1 ; zt 2 ) andp( �zt 1 ; �zt 2 ) coincide for all pair(t1; t2) 2
[0; 1]2. Thanks to this latter fact, samplingp(z0 jzt � ) can
be achieved by solving the reverse SDE(5) starting from
time t = t � and initialization�y . This sampling procedure
naturally yields an (approximate) sample ofp(x j y ; � ).

2.2. Blind Denoising with Gibbs Diffusion

We now address the problem of solving blind denoising,
where the noise parameters� are to be inferred. In our
Bayesian picture, the goal is to sample the joint posterior
distributionp(x ; � j y ), for given priorsp(x ) andp(� ).

Gibbs Sampling. GDiff takes the form of a Gibbs
algorithm that iteratively constructs a Markov chain
(x k ; � k )0� k � M by alternating the sampling between the
conditional distributionsp(x j y ; � ) andp(� j y ; x ). For
ideal sampling, after an initial warm-up phase allowing
the system to reach its stationary regime, the iterations
of the chains produce samples from the joint distribution
p(x ; � j y ).

1. Sampling of p(x j y ; � ). Sect. 2.1 has shown that a
diffusion model can be trained to naturally address
posterior sampling ofp(x j y ; � ) provided that the for-
ward process meets certain conditions. In practice, our
forward process must take the form of Eq.(2) andf
andg have to be such that� � b(1)=a(1), which is
always easily achievable (cf Sect. 3). Moreover, since
� is a priori unknown, we train a conditional diffusion
model where� is given an an input to the score net-
work, using a range of values consistent with the prior
distributionp(� ).

2. Sampling of p(� j y ; x ). If y andx are known, then
" = y � x is known, so that samplingp(� j y ; x )
is equivalent to samplingp(� j " ). We address the
sampling ofp(� j " ) using a Hamiltonian Monte Carlo
(HMC) sampler (see Neal, 2010; Betancourt, 2018,
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for a review). Provided we can ef�ciently evaluate
and differentiate the (unnormalized) target distribution
p(� j " ) with respect to� , a HMC sampler constructs a
Markov chain that yields (weakly) correlated samples
of the target distribution once the stationary regime
is reached. In our case, the log posterior distribution
logp(� j " ) = log [ p(" j � )] + p(� ) + C" requires the
ability to evaluate and differentiate ef�ciently the prior
distribution (assumed to be analytically tractable) and
the log likelihoodlogp(" j � ), which reads:

log [p(" j � )] = �
1
2

log [det(� � )] �
1
2

" T � � 1
� " + C;

(6)

due to the Gaussianity of" . This can be easily achieved
for the applications considered in Sect. 3. It is impor-
tant to note, however, that our Gibbs algorithm does
not strictly require HMC for this step. Alternative
sampling strategies (e.g., neural estimation with nor-
malizing �ows) could also be employed and may be
more appropriate for other types of applications.

Algorithm and practical details. Algo 1 describes our
algorithm. It requires specifying the number of Gibbs itera-
tionsM , which includes both the iterations needed for the
warm-up phase and the desired number of output samples
from the target distribution. Additionally, an initialization
strategy for the chains must be de�ned, represented by the
distributionpinit . In theory, any strategy of initialization
of � is viable, as the stationary distribution is independent
from pinit . A natural choice for this is the prior distribution
p(� ). However, in practice, to aid in the convergence of the
Gibbs sampler, initial guesses informed by simple heuristics
or auxiliary inference strategies might be advantageous.

2.3. Properties of the Gibbs Sampler

Under certain regularity conditions, the ordinary Gibbs sam-
pler converges to the posterior distribution (Geman & Ge-
man, 1984). However, in our setting, as we do not draw
samples from the exact conditionals ofx and� , additional
care must be taken to understand our algorithm's behavior.

Let T be thetransition kernelof the Gibbs sampler, that
is the probability of evolving from a state(� k � 1; x k � 1)
to a state(� k ; x k ). Then the stationary distribution�
is the distribution left invariant byT, meaning that if
(� k � 1; x k � 1) � � and we take one step with the Gibbs
sampler, then it is also the case that(� k ; x k ) � � . Now,T
is a composition of two transition kernels:T� , the HMC
step, andTx , the diffusion model step.

Proposition 2.2. The transition kernelT� leaves invariant
any joint distribution� (� ; x j y ) satisfying� (� j y ; x ) =
p(� j y ; x ), whileTx leaves invariant any joint distribution
~� (� ; x j y ) satisfying~� (x j y ; � ) = q(x j y ; � ).

Proof. The proof is detailed in App. D.

T� has the same invariant distribution, whether we use an
HMC step or exact sampling fromp(� j y ; x ). Therefore,
the details ofT� , such as the number of HMC steps we take
per iteration and the tuning of HMC itself impact conver-
gence rate but not the stationary distribution. On the other
hand, using a diffusion model rather than sampling from
p(x j y ; � ) changes the stationary distribution.

Existence of the stationary distribution. In general,
there may not exist a joint distribution overx and� , which
matches the conditionalsp(� j y ; x ) andq(x j y ; � ), in
which case we say the conditionals areincompatible. In-
compatibility can notably arise ifq(x j y ; � ) poorly ap-
proximates the true conditionalp(x j y ; � ) (e.g., Hobert &
Casella, 1998; Liu et al., 2012). We show in App. D that the
main necessary condition for compatibility is,

Z

X

q(x j y ; � )
p(� j y ; x )

dx < 1 : (7)

We adapt this result from Arnold et al. (2001, Theorem 1)
and emphasize in our formulation the relationship between
the conditionals. Conceptually, Eq.(7) tells us that there can
be no measurable set in whichx is likely given� but � is
unlikely givenx . If the compatibility condition is veri�ed,
then under mild conditions the stationary distribution is
unique and we say the two conditionals verifydeterminacy;
see Gourieroux & Montfort (1979) and Liu et al. (2021) for
a more detailed discussion.

Error in the Gibbs sampler. Assume now compatibility
and determinacy. Denote� (� ; x j y ) the unique station-
ary distribution. How do the approximations in our Gibbs
sampler impact our inference on� ? Let� M (� j y ) be the
distribution of� afterM sampling iterations and letDTV

denote the total variation distance. Then,

DTV [� M (� j y ); p(� j y )] (8)

� DTV [� M (� j y ); � (� j y )] + DTV [� (� j y ); p(� j y )]:

The �rst term on the right-hand-side of Eq.(8) is due to non-
convergence. The second term is the error at stationarity
due to the diffusion model. We can formally show that, in
general,� (� j y ) 6= p(� j y ) and quantify this error.

Theorem 2.3. Supposep(� j y ; x ) and q(x j y ; � ) are
compatible and are the conditionals of the joint� (� ; x j y ).
Then the Kullback-Leibler divergence is

KL[p(� j y )jj � (� j y )] = Ep( � jy ) logEp(x jy )
q(x j y ; � )
p(x j y ; � )

:

Proof: The proof is given in App. D.
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Theorem 2.3 upper-bounds Eq.(8) via Pinsker's inequality,

DTV(p(� j y ); � (� j y )) �
1
2

p
KL[p(� j y )jj � (� j y )]:

Without detailed knowledge ofq(x j y ; � ) andp(x ; � j y ),
we cannot say more about the error in our Gibbs sampler
using theory alone. Compatibility between conditionals has
been studied in restricted contexts, for instance when the
conditionals belong to certain parametric families (Arnold
et al., 2001; Liu et al., 2012), but this does not describe our
setting where the conditionals are intractable. Motivated
by the variational autoencoder, Liu et al. (2021) recently
proposed a loss function (eq. 2 in reference) which, when
minimized to 0, enforces compatibility; checking the via-
bility of this strategy in our setting is left as future work.
Ergodicity and convergence rates for the Gibbs and HMC
samplers are discussed in references (Geman & Geman,
1984; Livingstone et al., 2019) but typically, these rates
cannot be computed explicitly.

In practice, we recommend empirically checking conver-
gence and the algorithm's calibration. Convergence diag-
nostics help us detect if the Gibbs sampler has been run for
a suf�cient number of iterations and whether a stationary
distribution exists. If poor calibration persists after conver-
gence has been detected, then by Theorem 2.3, the diffusion
model introduces a non-negligible error in our inference.

3. Applications

We apply GDiff in two independent contexts: 1) blind de-
noising of natural images considering colored noises with
unknown amplitude and spectral index, 2) a cosmological
problem, namely the analysis of cosmic microwave back-
ground (CMB) data, for which the noise is the signal of
cosmological interest and its parameters constrain models
of the evolution of the Universe.

Common technical details. In this section, we work with
diffusion models relying on the DDPM forward SDE. With
the notations of Eq.(2), we takef (t) = � (t)=2 andg(t) =p

� (t) with � : [0; 1] ! R+ a linearly increasing function
with � (0) = 0 and� (1) calibrated to be higher than the
maximum noise level considered in the priorp(� ).

Moreover, in both cases, we consider a covariance ma-
trix � � that is diagonal in Fourier space. We write
� � = � 2F T D ' F , whereF is the (orthonormal) discrete
Fourier transform (DFT) matrix,� > 0 controls the noise
amplitude andD ' is a diagonal matrix parametrized by
' 2 RK � 1. With these notations,� represents the pair
(�; ' ). We identifyD ' to a power spectrum functionS' ,
in the sense that the diagonal coef�cients ofD ' correspond
to the evaluation ofS' on a discrete set of Fourier modes
k . In this context, the expression of the log likelihood

logp(" j � ) in Eq. (6) takes a simpler form:

log [p(" j � )] = �
1
2

X

k

log � 2S' (k ) �
1
2

X

k

j"̂ k j2

� 2S' (k )

+ C; (9)

where"̂ denotes the DFT of" . Technical details on the HMC
algorithm employed in this section are given in App. B.

3.1. Denoising for Natural Images

Data and setting. We address blind denoising on nat-
ural images contaminated bycolored noises, that it sta-
tionary noises with power spectrum following a power law
S' (k ) = jk j ' for k 6= 0 andS' (0) = 1 , with ' 2 R. We
train our diffusion model on the ImageNet data set (Deng
et al., 2009; Russakovsky et al., 2015), made of� 1:2 M
images, generating noises with parameters drawn from a
uniform prior(�; ' ) � p(� ) = U([0; 1] � [� 1; 1]). For the
validation of our method, we will also consider a heldout set
of ImageNet images, as well as images from the CBSD68
dataset (Martin et al., 2001). The latter dataset will serve as
a means to quantify the transfer properties of our model.

Architecture and training. Our diffusion model relies on
a U-net architecture with attention layers. It is conditioned
by both the timet and parameter' . This architecture is
suited to 256x256 RGB images. Input data is rescaled and
cropped accordingly. The diffusion model is trained by
minimizing the denoising score matching loss in a discrete
time setting with 5,000 time steps. Further technical details
are provided in App. C.

Initialization. Algo 1 requires to provide an initialization
distributionpinit (� ) to initialize the Markov chains. For
the initialization of the spectral index' , we simply use the
prior distributionU([� 1; 1]). To initialize � , we design a
simple heuristic based on a linear regression of� given
observationsy �tted on a heldout set.

Denoising results. We demonstrate the performance of
our GDiff method on a noisy ImageNet test image (Fig. 3)
characterized by� = 0 :2 and' = 0 :4. We run our Gibbs al-
gorithm onM = 40 iterations for 16 chains in parallel. We
reach approximate convergence in less than 20 iterations.
For our analysis, we consider only the �nal 20 samples
from each chain. The �gure presents, on the left, the origi-
nal noisy imagey alongside the true imagex , a denoised
samplex̂ , and the estimate of the posterior meanE [x j y ]
obtained by averaging all retained samples3. On the right,

3Note that the posterior mean estimate could have been alterna-
tively computed using Tweedie's formula (Robbins, 1956; Efron,
2011).
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Figure 3.Example of blind denoising with GDiff on an ImageNet sample for� = 0 :2 and' = 0 :4. Left: Noisy exampley next to the
noise-free imagex , a denoised samplêx and an estimate of the posterior meanE [x j y ] (with PSNR on top when relevant).Right:
Inferred posterior distribution over the noise parameters.

Dataset Noise
Level �

' = � 1 ! Pink noise ' = 0 ! White noise ' = 1 ! Blue noise

BM3D DnCNN GDiff
x̂

GDiff
E [x j y ] BM3D DnCNN GDiff

x̂
GDiff

E [x j y ] BM3D DnCNN GDiff
x̂

GDiff
E [x j y ]

ImageNet
0.06 31.0� 0 : 2 (30.2)� 0 : 2 29.3� 0 : 3 32.2� 0 : 3 33.7� 0 : 3 33.4� 0 : 3 31.5� 0 : 3 34.4� 0 : 3 34.7� 0 : 4 (33.8)� 0 : 4 32.3� 0 : 4 35.3� 0 : 4
0.1 27.8� 0 : 2 (26.8)� 0 : 1 26.7� 0 : 2 29.4� 0 : 2 31.8� 0 : 3 31.8� 0 : 4 29.7� 0 : 4 32.7� 0 : 4 32.1� 0 : 4 (31.5)� 0 : 3 29.9� 0 : 4 32.9� 0 : 3
0.2 23.5� 0 : 2 (21.7)� 0 : 1 23.0� 0 : 3 25.7� 0 : 3 28.1� 0 : 4 28.4� 0 : 4 26.5� 0 : 4 29.3� 0 : 4 29.5� 0 : 4 (28.6)� 0 : 4 27.6� 0 : 4 30.5� 0 : 4

CBSD68
0.06 31.2� 0 : 2 (30.6)� 0 : 1 29.2� 0 : 2 32.2� 0 : 2 33.8� 0 : 3 34.2� 0 : 3 31.2� 0 : 3 34.4� 0 : 3 35.0� 0 : 3 (34.8)� 0 : 3 32.2� 0 : 3 35.5� 0 : 3
0.1 27.9� 0 : 2 (26.9)� 0 : 1 26.2� 0 : 3 29.1� 0 : 3 31.3� 0 : 3 31.7� 0 : 3 28.6� 0 : 3 31.8� 0 : 3 33.0� 0 : 3 (32.7)� 0 : 3 30.6� 0 : 4 33.8� 0 : 4
0.2 23.5� 0 : 2 (21.7)� 0 : 1 23.0� 0 : 3 25.6� 0 : 2 27.8� 0 : 3 28.2� 0 : 3 25.4� 0 : 3 28.5� 0 : 3 29.6� 0 : 3 (28.9)� 0 : 2 27.4� 0 : 3 30.6� 0 : 3

Table 1.Denoising performance in terms of PSNR (" , in dB) for GDiff (blind) and baselines BM3D (non-blind) and DnCNN (blind). We
report mean PSNR and standard error computed on batches of 50 images. For GDiff, we provide performance for both posterior samples
x and estimates of the posterior meanE [x j y ]. We point out that DnCNN was trained with white noises only, hence results obtained for
' 6= 0 could be sub-optimal.

the inferred posterior distributionq(� j y ) is shown, demon-
strating tight constraints around the true parameters and
indicative of effective inference. Notably, the denoised pos-
terior samplex̂ signi�cantly enhances the image's peak
signal-to-noise ratio (PSNR). It is well known that optimal
PSNR is attained for the posterior meanE [x j y ] in the
Bayesian picture. This is illustrated on this �gure where the
posterior mean estimate improves the PSNR of the sample
by � 3 dB. This is an interesting illustration of the antago-
nism between PSNR optimization and posterior sampling.
The posterior sample is by construction a more realistic
reconstruction in the light of the prior. Conversely, while
the posterior mean yields a higher PSNR, indicating closer
proximity to the true image, it may represent a less probable
realization within the prior's distribution. We provide in
Fig. F.1 additional denoising examples.

We now benchmark our blind denoiser against established
methods, speci�cally focusing on the PSNR. We compare
our performance with that of BM3D (Dabov et al., 2007;
Mäkinen et al., 2020) and DnCNN (color-blind model,
Zhang et al., 2017) and report our results in Table 1. We
show mean performance on subsets of 50 images taken from
the ImageNet validation set and CBSD68. It is important to
note that the DnCNN model was initially trained for white
noise conditions only, hence comparisons for' 6= 0 should
be interpreted with caution. Interestingly, posterior sam-

ples yielded by our method perform worse than BM3D and
DnCNN for these metrics. On the contrary, the posterior
mean estimates systematically outperform both BM3D and
DnCNN. This is a clear success of our algorithm, which
in a blind setting can outperform state-of-the-art denoisers.
Moreover, we believe that these results could be further
improved with additional �netuning of the diffusion model
architecture. Finally, we report in Table 2 equivalent re-
sults for the structural similarity index measure (SSIM) met-
ric (Wang et al., 2004). Similarly, for this metric, posterior
mean estimates provided by GDiff systematically outper-
form BM3D and DnCNN.

Figure 4.Posterior accuracy diagnostic of GDiff with simulation-
based calibration on natural images blind denoising.

6



Listening to the Noise: Blind Denoising with Gibbs Diffusion

Validation. We validate our inference pipeline by focus-
ing on the accuracy of the estimation of the noise parameters
� = ( �; ' ). We generate 800 noisy images using the Ima-
geNet validation set, with noise parameters� sampled from
their prior distributionp(� ). For each of the noisy imagey ,
we conduct inferences using 4 parallel chains, each running
for M = 60 iterations. We discard the initial 30 samples as
a warm-up phase. For each noisy observation, we compute
theR̂ convergence diagnostic and the effective sample size
(ESS) (see e.g., Vehtari et al., 2021, and references therein).
Fig. F.2 provides a scatter plot of these diagnostics across
the parameter space. We �nd that the Markov chains achieve
reasonable convergence, as indicated byR̂ / 1:1, and that
the ESS per chain is comparable toM .

R̂ and ESS tell us how well the Markov chain converges
to and explores its stationary distribution, but not how well
the stationary distribution approximates the posterior. To
check the latter, we implement the simulation-based cali-
bration diagnostic (SBC, Talts et al., 2018). This entails
computing the empirical distribution of the ranks of the true
parameter values within the sampled values. For a well-
calibrated inference pipeline, these empirical distributions
should follow a uniform distribution. In Fig. 4, we present
the resulting normalized rank statistics. The rank statistics
for � align well with a uniform distribution, suggesting rea-
sonable accuracy. However, the rank statistics for' reveal
some biases in the predictions. As discussed in Sect.2.3,
this discrepancy highlights potential limitations of the dif-
fusion model in accurately modeling the true conditional
distributionp(x j y ; � ).

3.2. Cosmological Inference from CMB Observations

The cosmic microwave background (CMB) is a pivotal
cosmological observable for constraining models that de-
scribe the Universe's dynamical evolution over its nearly
14 billion-year history (Planck Collaboration I, 2020). Yet,
CMB observations suffer from the contamination of vari-
ous astrophysical signals, known as “foregrounds”, neces-
sitating their removal through precise component separa-
tion methods (e.g., Planck Collaboration IV, 2020). The
quest for primordialB -modes in CMB polarization obser-
vations (Kamionkowski & Kovetz, 2016) underscores the
challenge of accurately modeling the thermal emission from
interstellar dust grains, or the ”dust foreground,” which ob-
scures the CMB signal (BICEP2/Keck Array and Planck
Collaborations, 2015).

The CMB closely approximates a Gaussian distribution, for
which the covariance� � relates to cosmological models
and� denotes the target cosmological parameters. Inter-
estingly, component separation for CMB analysis can be
viewed as a blind denoising problem of the form of Eq.(1)
where the “noise”" corresponds to the CMB, and the signal

x represents the foregrounds. Following a rich history of
dust foreground modeling efforts (e.g., Planck Collabora-
tion XI, 2014; Allys et al., 2019; Vansyngel et al., 2017;
Aylor et al., 2021; Regaldo-Saint Blancard et al., 2020;
2021; Thorne et al., 2021; Krachmalnicoff & Puglisi, 2021;
Régaldo-Saint Blancard et al., 2023; Mudur & Finkbeiner,
2022) and going beyond the work of Heurtel-Depeiges et al.
(2023), we focus here on a diffusion-based dust prior trained
on simulations and apply GDiff for the Bayesian inference
of cosmological parameters� given a mixture of CMB"
and interstellar dust emissionx .

Data and setting. We introduce the simulated data in
App. C.1. The CMB covariance� � is parametrized by the
CMB amplitude� and cosmological parameters' . As in
Heurtel-Depeiges et al. (2023), we only consider cosmo-
logical parameters' = ( H0; ! b). We choose a broad prior
p(' ) � U ([50; 90] � [0:0075; 0:0567]). We also consider
� 2 [� min ; 1:2] where� min is taken to be very close to0.4

Architecture and training. The architecture of the diffu-
sion model is a three-level U-net with ResBlocks, trained
with a reweighted score matching loss as in Eq.(18). The
model is conditioned by botht and parameters' . We en-
countered substantial training instabilities due to the large
(� 104) condition number of� ' . By renormalizing the loss
and model outputs, we were able to mitigate these issues.
Further technical details are provided in App. C.

Initialization. For this cosmological application, the ini-
tialization of the Gibbs sampler plays a more critical role
than in Sect. 3.1. Typically, chains initialized far from poste-
rior typical set are likely to converge slowly, if not become
stuck in local minima of the posterior distribution. In order
to speed-up convergence and improve sampling ef�ciency,
we initialize� using a CNN trained to estimate the poste-
rior meanE[� j y ] (i.e. moment networkJeffrey & Wandelt,
2020). We give further details on this model in App. B.

Cosmological inference. We showcase GDiff for this
blind component separation context in Fig. 5 considering a
mock mixturey with � = 0 :5 and(H0; ! b) = (70 ; 0:032).
On the left, we show the true mapsx and" composing
y , next to a pair of reconstructed samplesx̂ and "̂ . On
the right, we show a corner plot of the posterior distribu-
tion on � (marginalized overx ). This inferred posterior
distribution imposes tight constraints on the cosmological
parameters, accurately encompassing the true parameters
(marked in red). We observe that the large scales of the
dust map are well reconstructed, as anticipated, due to their
lower levels of perturbation. Conversely, at smaller scales,

4For stability reasons in the diffusion model,� min must be
strictly positive.

7



Listening to the Noise: Blind Denoising with Gibbs Diffusion

Figure 5.Left: Observed maps and maps reconstructed with GDiff. The true dustx and CMB" maps compose the observed mixturey .
We reconstruct the dust̂x and CMB"̂ with our diffusion model. The global unit is arbitrary.Right: Inferred cosmological parameters.

Figure 6.Power spectra of the mixture and the true and recon-
structed dust and CMB maps.

the reconstruction process exhibits more stochastic behavior.
In the case of the CMB, the situation is reversed: smaller
scales are accurately reconstructed, while the reconstruction
of larger scales tends to be more stochastic. We comple-
ment this visual assessment, by a power spectrum analysis,
presented in Fig. 6. This �gure displays the power spec-
tra of both the true and reconstructed dust and CMB maps.
The agreement between the true and reconstructed statistics
across all scales quantitatively demonstrates the success of
our reconstruction process.

Validation. We validate our inference pipeline similarly
to Sect. 3.1. ThêR and ESS statistics (see Figs. F.3) for test
observations generated across the entire parameter space,
indicate that our sampler converges and mixes well. In ad-
dition, we conduct SBC for the parameters� and show in
Fig. 7 the resulting rank statistics. These rank distributions

are mostly compatible with the uniform distribution, indicat-
ing a well calibrated pipeline in particular for the inference
of H0 and! b. However, for� , the distribution is slanted,
indicating bias for some of the chains. Here again, this must
be the consequence of errors in the diffusion model, which
impact the reconstructed power of the CMB estimates.

Figure 7.Posterior accuracy diagnostic of GDiff with simulation-
based calibration on the cosmological application.

4. Conclusion and Perspectives

We introduced Gibbs Diffusion (GDiff), a new method to
address blind denoising in a Bayesian framework. GDiff
takes the form of a Gibbs sampler that alternates sampling
of the target signal conditioned on the noise parameters and
the observation, and sampling of the noise parameters given
the estimated noise. We employed diffusion models for the
�rst step, showing that they can be naturally trained to both
address signal prior modeling and posterior sampling of the
target signal. For the second step, we opted for a Hamil-
tonian Monte Carlo sampler, although other alternatives
could have been considered. We also derived theoretical
properties of the Gibbs sampler, pertaining to existence and
invariance properties of the stationary distribution, as well

8


	Introduction
	Method
	Diffusion Models as Denoising Posterior Samplers
	Blind Denoising with Gibbs Diffusion
	Properties of the Gibbs Sampler

	Applications
	Denoising for Natural Images
	Cosmological Inference from CMB Observations

	Conclusion and Perspectives
	Proof of Prop. 2.1
	Additional Details on HMC
	Models and Training Details
	Datasets and Training
	Architectures
	Loss Functions

	Properties of the Gibbs sampler
	Formal notation
	Proof of Proposition 2.2: invariant distributions
	Existence of Stationary Distribution
	Error in the Stationary Distribution

	Limitations of Guidance-based Posterior Sampling Methods
	Additional Results

