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Abstract
In recent years, denoising problems have become
intertwined with the development of deep gen-
erative models. In particular, diffusion models
are trained like denoisers, and the distribution
they model coincide with denoising priors in the
Bayesian picture. However, denoising through
diffusion-based posterior sampling requires the
noise level and covariance to be known, prevent-
ing blind denoising. We overcome this limitation
by introducing Gibbs Diffusion (GDiff), a gen-
eral methodology addressing posterior sampling
of both the signal and the noise parameters. As-
suming arbitrary parametric Gaussian noise, we
develop a Gibbs algorithm that alternates sam-
pling steps from a conditional diffusion model
trained to map the signal prior to the family of
noise distributions, and a Monte Carlo sampler to
infer the noise parameters. Our theoretical analy-
sis highlights potential pitfalls, guides diagnostic
usage, and quantifies errors in the Gibbs station-
ary distribution caused by the diffusion model.
We showcase our method for 1) blind denoising
of natural images involving colored noises with
unknown amplitude and spectral index, and 2) a
cosmology problem, namely the analysis of cos-
mic microwave background data, where Bayesian
inference of “noise” parameters means constrain-
ing models of the evolution of the Universe.

1. Introduction
Denoising is an old problem in signal processing, which
has experienced significant advancements in the last decade,
propelled by the advent of deep learning (Tian et al., 2020;
Elad et al., 2023). Convolutional neural networks have led
to the emergence of state-of-the-art image denoisers (e.g.,
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Figure 1. Graphical model: we observe y = x + ε and aim to
infer both x and ϕ in a Bayesian framework.

Zhang et al., 2017; 2022), by learning complex prior dis-
tributions of target signals implicitly. Denoisers were also
found to be powerful tools for generative modeling, as strik-
ingly demonstrated by diffusion models (Ho et al., 2020;
Song et al., 2021; Saharia et al., 2022; Rombach et al., 2022).
Considerable effort has been devoted to recovering highly
accurate, noise-free versions of contaminated signals, often
at the expense of fully addressing the noise’s complexity.
In numerous practical scenarios, both in industry and scien-
tific research, accurately characterizing the noise itself is of
paramount importance (e.g., medical imaging, astronomy,
speech recognition, financial market analysis). This paper
addresses the challenge of blind denoising, with the objec-
tive of simultaneously recovering both the signal and the
noise characteristics.

We formalize the problem as follows. We observe a signal
y ∈ Rd that is an additive mixture of an arbitrary signal x
and a Gaussian signal ε with covariance Σϕ ∈ Rd×d:

y = x+ ε, with ε ∼ N (0,Σϕ), (1)

where ϕ ∈ RK is an unknown vector of parameters (see
Fig. 1 for a graphical model). The functional form of Σϕ

can be arbitrary, although computational constraints would
typically require that the number of parameters K remains
reasonable. For example, the vector ϕ would typically in-
clude a parameter σ > 0 controlling the overall noise am-
plitude, but could also encompass parameters describing
the local variations or spectral properties of the noise (cf
Sect. 3). We frame the problem in a Bayesian picture, where
prior information on x and ϕ is given, representing some
pre-existing knowledge or assumptions on the target data.
We will assume that the prior information over ϕ takes the
form of an analytical prior distribution p(ϕ). Crucially,
although the prior distribution p(x) on the signal x is typi-
cally analytically intractable, we assume access to a set of
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examples x1, . . . ,xN drawn from p(x). In this Bayesian
context, solving blind denoising amounts to sampling the
posterior distribution p(x,ϕ |y).

Contributions. 1) We introduce Gibbs Diffusion (GDiff),
a novel approach for blind denoising (Sect. 2). The method
combines diffusion models with a Gibbs sampler, tackling
simultaneously the challenges of modeling the prior distribu-
tion p(x) based on the samples x1, . . . ,xN , and sampling
of the posterior p(x,ϕ |y). 2) We establish conditions for
the stationary distribution’s existence and quantify inference
error propagation. 3) We showcase our method in two areas
(Sect. 3). First, we tackle blind denoising of natural images
contaminated by arbitrary colored noise, outperforming stan-
dard baselines. Second, we demonstrate the interest of our
method for cosmology, where Bayesian inference of “noise”
parameters corresponds to constraining cosmological param-
eters of models describing the Universe’s evolution. 4) We
provide our code on GitHub.1

Related work. Blind denoising has garnered substantial
attention in the literature, especially in image processing,
where denoisers based on convolutional neural networks
have become the standard (e.g., Zhang et al., 2017; Batson &
Royer, 2019; El Helou & Süsstrunk, 2020). However, these
techniques predominantly focus on white Gaussian noises
and typically aim for point estimates such as the minimum
mean square error or maximum a posteriori estimates, often
neglecting the quantification of uncertainties in both the
signal and the noise parameters. With the advent of diffusion
models, innovative methods for removing structured noise
have been developed (Stevens et al., 2023), and posterior
sampling has become achievable (e.g., Heurtel-Depeiges
et al., 2023; Xie et al., 2023). However, to the best of our
knowledge, no existing work has yet fully addressed blind
denoising using diffusion-based priors.

Denoising problems can be seen as a subset of the broader
category of linear inverse problems, for which observations
read y = Ax + ε with A a general linear operator. Dif-
fusion models have proven to be of great interest for these
problems, generating a wealth of literature adjacent to our
problem. In various techniques, diffusion-based priors have
been integrated as plug-and-play models (see e.g., Kadkho-
daie & Simoncelli, 2021; Meng & Kabashima, 2022; Kawar
et al., 2022; Chung et al., 2023; Song et al., 2023a; Zhu
et al., 2023; Rout et al., 2023), relying on the decomposition
of the conditional score ∇xt log pt(xt |y). These meth-
ods typically involve approximations of the guiding term
∇xt

log pt(y |xt). In Appendix E, we discuss limitations
of some of these methods for our problem. Still employing
the diffusion model as a plug-and-play prior but avoiding

1https://github.com/rubenohana/
Gibbs-Diffusion
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Figure 2. We train diffusion models to define a stochastic linear
interpolation between the signal prior distribution p(x) and the
noise distribution p(ε′) ∼ N (0,Σφ).

such approximations, Cardoso et al. (2024) introduced a
sequential Monte Carlo method for Bayesian inverse prob-
lems. Interestingly, Murata et al. (2023) developed a Gibbs
sampler to address the case of a linear operator A depending
on unknown parameters ϕ. While the methodology bears
similarities with the approach taken in this paper, it does not
seem easily adaptable to the blind denoising problem we
address in this work. Finally, let us mention Laroche et al.
(2024), which addresses blind deconvolution problems by
estimating the maximum a posteriori using an Expectation-
Minimization algorithm combined with a guidance-based
sampling method.

2. Method
Our method builds on the ability of diffusion models to
perform posterior sampling in denoising contexts. We elab-
orate on this aspect in Sect. 2.1, a topic we found to be
not directly addressed in the existing denoising literature.
Then, in Sect. 2.2, we introduce GDiff, a method that ad-
dresses posterior sampling of p(x,ϕ |y). Finally, we study
theoretical properties of GDiff in Sect. 2.3.

2.1. Diffusion Models as Denoising Posterior Samplers

In a non-blind denoising setting, noise parameters ϕ are
known. In the Bayesian picture, solving a denoising prob-
lem means sampling the posterior distribution p(x |y,ϕ)
for a given prior p(x). We show here, that a diffusion model
can be naturally trained to both define a prior p(x) and
yield an efficient means to sample the posterior distribution
p(x |y,ϕ). This idea was leveraged in Heurtel-Depeiges
et al. (2023) for a scientific application in cosmology. This
was also the concern of Xie et al. (2023).

Diffusion models are a class of deep generative models
that are trained to reverse a process consisting in gradually
adding noise to the target data. These models are well de-
scribed using the formalism of stochastic differential equa-
tions (SDE, Song et al., 2021).

The noising process is called the forward SDE, and we only
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consider here noising Itô processes (zt)t∈[0,1] defined by:{
dzt = −f(t)zt dt+ g(t)Σ

1
2
φ dwt,

z0 = x,
(2)

where f, g : [0, 1] → R+ are two continuous functions,
(w)t∈[0,1] is a standard d-dimensional Wiener process, and
Σφ corresponds to a normalized version of the covariance
matrix Σϕ introduced in Eq. (1) (e.g., Σφ = Σϕ/∥Σϕ∥).
Within the noise parameters ϕ, we make a distinction be-
tween the noise amplitude σ (i.e. typically ∥Σϕ∥1/2), and
the rest of the parameters represented as φ. These play dis-
tinct roles in the noising process: φ modulates the structure
of the noise while σ is muddled with time t (see App. A). In
this setting, the following proposition applies.

Proposition 2.1. For a forward SDE (z)t∈[0,1] defined by
Eq. (2), for all t ∈ [0, 1], zt reads

zt = a(t)x+ b(t)ε′,with ε′ ∼ N (0,Σφ), (3)

with a : [0, 1]→ R+ a decreasing function with a(0) = 1,
and b : [0, 1]→ R+ an increasing function with b(0) = 0.2

Moreoever, for f and g suited so that σ ≤ b(1)/a(1), there
exists t∗ ∈ [0, 1] such that

ỹ := a(t∗)y
d
= zt∗ . (4)

Proof: See App. A.

Remark: Forward SDEs of denoising probabilistic diffusion
models (DDPM, Sohl-Dickstein et al., 2015; Ho et al., 2020)
are particular cases of Eq. (2) where f(t) = β(t)/2 and
g(t) =

√
β(t) for an increasing function β : [0, 1]→ R+.

Denoting by pt(zt) the distribution of zt, Prop. (2.1)
presents the forward process (z)t∈[0,1] as a stochastic lin-
ear interpolant between p0(z0) ∼ p(x) and p1(z1) (for a
broader perspective, see Albergo et al., 2023). In particu-
lar, provided that σ ≤ b(1)/a(1), our observation y can be
viewed as a rescaled realization of zt∗ with t∗ ∈ [0, 1] (see
Fig. 2 for an illustration).

The existence of a reverse process associated with the for-
ward SDE is proved in Anderson (1982). For the forward
SDE (2), it takes the form of a process (z̄t)t∈[0,1] defined
by:

dz̄t =
[
−f(t)z̄t − g(t)2Σφ∇z̄t log pt(z̄t)

]
dt

+g(t)Σ
1
2
φ dwt,

z̄1
d
= z1

(5)

where time flows backward and wt denotes a standard
backward-time Wiener process. According to Anderson

2See App. A for expressions of a and b as functions of f and g.

Algorithm 1 GDiff: Gibbs Diffusion for Blind Denoising
Input: observation y, pinit(ϕ), M
Initialize ϕ0 ∼ pinit(ϕ).
Initialize x0 ∼ q(x |y,ϕ0) (Diffusion step)
for k = 1 to M do

εk−1 ← y − xk−1

ϕk ∼ q(ϕ | εk−1) (HMC step)
xk ∼ q(x |y,ϕk) (Diffusion step)

end for
Output: samples (xk,ϕk)1≤k≤M .

(1982), (z̄t)t∈[0,1] and (zt)t∈[0,1] are equal in law. This
implies that the marginal distributions of (z̄t) and (zt)
coincide for all t, but also that the joint distributions
p(zt1 , zt2) and p(z̄t1 , z̄t2) coincide for all pair (t1, t2) ∈
[0, 1]2. Thanks to this latter fact, sampling p(z0 |zt∗) can
be achieved by solving the reverse SDE (5) starting from
time t = t∗ and initialization ȳ. This sampling procedure
naturally yields an (approximate) sample of p(x |y,ϕ).

2.2. Blind Denoising with Gibbs Diffusion

We now address the problem of solving blind denoising,
where the noise parameters ϕ are to be inferred. In our
Bayesian picture, the goal is to sample the joint posterior
distribution p(x,ϕ |y), for given priors p(x) and p(ϕ).

Gibbs Sampling. GDiff takes the form of a Gibbs
algorithm that iteratively constructs a Markov chain
(xk,ϕk)0≤k≤M by alternating the sampling between the
conditional distributions p(x |y,ϕ) and p(ϕ |y,x). For
ideal sampling, after an initial warm-up phase allowing
the system to reach its stationary regime, the iterations
of the chains produce samples from the joint distribution
p(x,ϕ |y).

1. Sampling of p(x |y,ϕ). Sect. 2.1 has shown that a
diffusion model can be trained to naturally address
posterior sampling of p(x |y,ϕ) provided that the for-
ward process meets certain conditions. In practice, our
forward process must take the form of Eq. (2) and f
and g have to be such that σ ≤ b(1)/a(1), which is
always easily achievable (cf Sect. 3). Moreover, since
ϕ is a priori unknown, we train a conditional diffusion
model where ϕ is given an an input to the score net-
work, using a range of values consistent with the prior
distribution p(ϕ).

2. Sampling of p(ϕ |y,x). If y and x are known, then
ε = y − x is known, so that sampling p(ϕ |y,x)
is equivalent to sampling p(ϕ | ε). We address the
sampling of p(ϕ | ε) using a Hamiltonian Monte Carlo
(HMC) sampler (see Neal, 2010; Betancourt, 2018,
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for a review). Provided we can efficiently evaluate
and differentiate the (unnormalized) target distribution
p(ϕ | ε) with respect to ϕ, a HMC sampler constructs a
Markov chain that yields (weakly) correlated samples
of the target distribution once the stationary regime
is reached. In our case, the log posterior distribution
log p(ϕ | ε) = log [p(ε |ϕ)] + p(ϕ) +Cε requires the
ability to evaluate and differentiate efficiently the prior
distribution (assumed to be analytically tractable) and
the log likelihood log p(ε |ϕ), which reads:

log [p(ε |ϕ)] = −1

2
log [det(Σϕ)]−

1

2
εTΣ−1

ϕ ε+ C,

(6)

due to the Gaussianity of ε. This can be easily achieved
for the applications considered in Sect. 3. It is impor-
tant to note, however, that our Gibbs algorithm does
not strictly require HMC for this step. Alternative
sampling strategies (e.g., neural estimation with nor-
malizing flows) could also be employed and may be
more appropriate for other types of applications.

Algorithm and practical details. Algo 1 describes our
algorithm. It requires specifying the number of Gibbs itera-
tions M , which includes both the iterations needed for the
warm-up phase and the desired number of output samples
from the target distribution. Additionally, an initialization
strategy for the chains must be defined, represented by the
distribution pinit. In theory, any strategy of initialization
of ϕ is viable, as the stationary distribution is independent
from pinit. A natural choice for this is the prior distribution
p(ϕ). However, in practice, to aid in the convergence of the
Gibbs sampler, initial guesses informed by simple heuristics
or auxiliary inference strategies might be advantageous.

2.3. Properties of the Gibbs Sampler

Under certain regularity conditions, the ordinary Gibbs sam-
pler converges to the posterior distribution (Geman & Ge-
man, 1984). However, in our setting, as we do not draw
samples from the exact conditionals of x and ϕ, additional
care must be taken to understand our algorithm’s behavior.

Let T be the transition kernel of the Gibbs sampler, that
is the probability of evolving from a state (ϕk−1,xk−1)
to a state (ϕk,xk). Then the stationary distribution π
is the distribution left invariant by T , meaning that if
(ϕk−1,xk−1) ∼ π and we take one step with the Gibbs
sampler, then it is also the case that (ϕk,xk) ∼ π. Now, T
is a composition of two transition kernels: Tϕ, the HMC
step, and Tx, the diffusion model step.
Proposition 2.2. The transition kernel Tϕ leaves invariant
any joint distribution π(ϕ,x | y) satisfying π(ϕ | y,x) =
p(ϕ | y,x), while Tx leaves invariant any joint distribution
π̃(ϕ,x | y) satisfying π̃(x | y,ϕ) = q(x | y,ϕ).

Proof. The proof is detailed in App. D.

Tϕ has the same invariant distribution, whether we use an
HMC step or exact sampling from p(ϕ | y,x). Therefore,
the details of Tϕ, such as the number of HMC steps we take
per iteration and the tuning of HMC itself impact conver-
gence rate but not the stationary distribution. On the other
hand, using a diffusion model rather than sampling from
p(x | y, ϕ) changes the stationary distribution.

Existence of the stationary distribution. In general,
there may not exist a joint distribution over x and ϕ, which
matches the conditionals p(ϕ | y,x) and q(x | y,ϕ), in
which case we say the conditionals are incompatible. In-
compatibility can notably arise if q(x | y, ϕ) poorly ap-
proximates the true conditional p(x | y, ϕ) (e.g., Hobert &
Casella, 1998; Liu et al., 2012). We show in App. D that the
main necessary condition for compatibility is,∫

X

q(x | y,ϕ)
p(ϕ | y,x)dx <∞. (7)

We adapt this result from Arnold et al. (2001, Theorem 1)
and emphasize in our formulation the relationship between
the conditionals. Conceptually, Eq. (7) tells us that there can
be no measurable set in which x is likely given ϕ but ϕ is
unlikely given x. If the compatibility condition is verified,
then under mild conditions the stationary distribution is
unique and we say the two conditionals verify determinacy;
see Gourieroux & Montfort (1979) and Liu et al. (2021) for
a more detailed discussion.

Error in the Gibbs sampler. Assume now compatibility
and determinacy. Denote π(ϕ,x | y) the unique station-
ary distribution. How do the approximations in our Gibbs
sampler impact our inference on ϕ? Let ρM (ϕ | y) be the
distribution of ϕ after M sampling iterations and let DTV
denote the total variation distance. Then,

DTV[ρM (ϕ | y), p(ϕ | y)] (8)
≤ DTV[ρM (ϕ | y), π(ϕ | y)] +DTV[π(ϕ | y), p(ϕ | y)].

The first term on the right-hand-side of Eq. (8) is due to non-
convergence. The second term is the error at stationarity
due to the diffusion model. We can formally show that, in
general, π(ϕ | y) ̸= p(ϕ | y) and quantify this error.

Theorem 2.3. Suppose p(ϕ | y,x) and q(x | y,ϕ) are
compatible and are the conditionals of the joint π(ϕ,x | y).
Then the Kullback-Leibler divergence is

KL[p(ϕ | y)||π(ϕ | y)] = Ep(ϕ|y) logEp(x|y)
q(x | y,ϕ)
p(x | y,ϕ) .

Proof: The proof is given in App. D.
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Theorem 2.3 upper-bounds Eq. (8) via Pinsker’s inequality,

DTV(p(ϕ | y), π(ϕ | y)) ≤
1

2

√
KL[p(ϕ | y)||π(ϕ | y)].

Without detailed knowledge of q(x | y, ϕ) and p(x, ϕ | y),
we cannot say more about the error in our Gibbs sampler
using theory alone. Compatibility between conditionals has
been studied in restricted contexts, for instance when the
conditionals belong to certain parametric families (Arnold
et al., 2001; Liu et al., 2012), but this does not describe our
setting where the conditionals are intractable. Motivated
by the variational autoencoder, Liu et al. (2021) recently
proposed a loss function (eq. 2 in reference) which, when
minimized to 0, enforces compatibility; checking the via-
bility of this strategy in our setting is left as future work.
Ergodicity and convergence rates for the Gibbs and HMC
samplers are discussed in references (Geman & Geman,
1984; Livingstone et al., 2019) but typically, these rates
cannot be computed explicitly.

In practice, we recommend empirically checking conver-
gence and the algorithm’s calibration. Convergence diag-
nostics help us detect if the Gibbs sampler has been run for
a sufficient number of iterations and whether a stationary
distribution exists. If poor calibration persists after conver-
gence has been detected, then by Theorem 2.3, the diffusion
model introduces a non-negligible error in our inference.

3. Applications
We apply GDiff in two independent contexts: 1) blind de-
noising of natural images considering colored noises with
unknown amplitude and spectral index, 2) a cosmological
problem, namely the analysis of cosmic microwave back-
ground (CMB) data, for which the noise is the signal of
cosmological interest and its parameters constrain models
of the evolution of the Universe.

Common technical details. In this section, we work with
diffusion models relying on the DDPM forward SDE. With
the notations of Eq. (2), we take f(t) = β(t)/2 and g(t) =√

β(t) with β : [0, 1]→ R+ a linearly increasing function
with β(0) = 0 and β(1) calibrated to be higher than the
maximum noise level considered in the prior p(σ).

Moreover, in both cases, we consider a covariance ma-
trix Σϕ that is diagonal in Fourier space. We write
Σϕ = σ2F TDφF , where F is the (orthonormal) discrete
Fourier transform (DFT) matrix, σ > 0 controls the noise
amplitude and Dφ is a diagonal matrix parametrized by
φ ∈ RK−1. With these notations, ϕ represents the pair
(σ,φ). We identify Dφ to a power spectrum function Sφ,
in the sense that the diagonal coefficients of Dφ correspond
to the evaluation of Sφ on a discrete set of Fourier modes
k. In this context, the expression of the log likelihood

log p(ε |ϕ) in Eq. (6) takes a simpler form:

log [p(ε |ϕ)] =− 1

2

∑
k

log σ2Sφ(k)−
1

2

∑
k

|ε̂k|2
σ2Sφ(k)

+ C, (9)

where ε̂ denotes the DFT of ε. Technical details on the HMC
algorithm employed in this section are given in App. B.

3.1. Denoising for Natural Images

Data and setting. We address blind denoising on nat-
ural images contaminated by colored noises, that it sta-
tionary noises with power spectrum following a power law
Sφ(k) = |k|φ for k ̸= 0 and Sφ(0) = 1, with φ ∈ R. We
train our diffusion model on the ImageNet data set (Deng
et al., 2009; Russakovsky et al., 2015), made of ∼ 1.2 M
images, generating noises with parameters drawn from a
uniform prior (σ, φ) ∼ p(ϕ) = U([0, 1]× [−1, 1]). For the
validation of our method, we will also consider a heldout set
of ImageNet images, as well as images from the CBSD68
dataset (Martin et al., 2001). The latter dataset will serve as
a means to quantify the transfer properties of our model.

Architecture and training. Our diffusion model relies on
a U-net architecture with attention layers. It is conditioned
by both the time t and parameter φ. This architecture is
suited to 256x256 RGB images. Input data is rescaled and
cropped accordingly. The diffusion model is trained by
minimizing the denoising score matching loss in a discrete
time setting with 5,000 time steps. Further technical details
are provided in App. C.

Initialization. Algo 1 requires to provide an initialization
distribution pinit(ϕ) to initialize the Markov chains. For
the initialization of the spectral index φ, we simply use the
prior distribution U([−1, 1]). To initialize σ, we design a
simple heuristic based on a linear regression of σ given
observations y fitted on a heldout set.

Denoising results. We demonstrate the performance of
our GDiff method on a noisy ImageNet test image (Fig. 3)
characterized by σ = 0.2 and φ = 0.4. We run our Gibbs al-
gorithm on M = 40 iterations for 16 chains in parallel. We
reach approximate convergence in less than 20 iterations.
For our analysis, we consider only the final 20 samples
from each chain. The figure presents, on the left, the origi-
nal noisy image y alongside the true image x, a denoised
sample x̂, and the estimate of the posterior mean E [x |y]
obtained by averaging all retained samples3. On the right,

3Note that the posterior mean estimate could have been alterna-
tively computed using Tweedie’s formula (Robbins, 1956; Efron,
2011).
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Noisy y [14.05 dB] True x Denoised x̂ [27.57 dB] Denoised E[x |y] [30.60 dB] R̂ = 1.10
ESS = 119
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Figure 3. Example of blind denoising with GDiff on an ImageNet sample for σ = 0.2 and φ = 0.4. Left: Noisy example y next to the
noise-free image x, a denoised sample x̂ and an estimate of the posterior mean E [x |y] (with PSNR on top when relevant). Right:
Inferred posterior distribution over the noise parameters.

Dataset Noise
Level σ

φ = −1 → Pink noise φ = 0 → White noise φ = 1 → Blue noise

BM3D DnCNN GDiff
x̂

GDiff
E [x |y] BM3D DnCNN GDiff

x̂

GDiff
E [x |y] BM3D DnCNN GDiff

x̂

GDiff
E [x |y]

ImageNet
0.06 31.0±0.2 (30.2)±0.2 29.3±0.3 32.2±0.3 33.7±0.3 33.4±0.3 31.5±0.3 34.4±0.3 34.7±0.4 (33.8)±0.4 32.3±0.4 35.3±0.4

0.1 27.8±0.2 (26.8)±0.1 26.7±0.2 29.4±0.2 31.8±0.3 31.8±0.4 29.7±0.4 32.7±0.4 32.1±0.4 (31.5)±0.3 29.9±0.4 32.9±0.3

0.2 23.5±0.2 (21.7)±0.1 23.0±0.3 25.7±0.3 28.1±0.4 28.4±0.4 26.5±0.4 29.3±0.4 29.5±0.4 (28.6)±0.4 27.6±0.4 30.5±0.4

CBSD68
0.06 31.2±0.2 (30.6)±0.1 29.2±0.2 32.2±0.2 33.8±0.3 34.2±0.3 31.2±0.3 34.4±0.3 35.0±0.3 (34.8)±0.3 32.2±0.3 35.5±0.3

0.1 27.9±0.2 (26.9)±0.1 26.2±0.3 29.1±0.3 31.3±0.3 31.7±0.3 28.6±0.3 31.8±0.3 33.0±0.3 (32.7)±0.3 30.6±0.4 33.8±0.4

0.2 23.5±0.2 (21.7)±0.1 23.0±0.3 25.6±0.2 27.8±0.3 28.2±0.3 25.4±0.3 28.5±0.3 29.6±0.3 (28.9)±0.2 27.4±0.3 30.6±0.3

Table 1. Denoising performance in terms of PSNR (↑, in dB) for GDiff (blind) and baselines BM3D (non-blind) and DnCNN (blind). We
report mean PSNR and standard error computed on batches of 50 images. For GDiff, we provide performance for both posterior samples
x and estimates of the posterior mean E [x |y]. We point out that DnCNN was trained with white noises only, hence results obtained for
φ ̸= 0 could be sub-optimal.

the inferred posterior distribution q(ϕ |y) is shown, demon-
strating tight constraints around the true parameters and
indicative of effective inference. Notably, the denoised pos-
terior sample x̂ significantly enhances the image’s peak
signal-to-noise ratio (PSNR). It is well known that optimal
PSNR is attained for the posterior mean E [x |y] in the
Bayesian picture. This is illustrated on this figure where the
posterior mean estimate improves the PSNR of the sample
by ∼3 dB. This is an interesting illustration of the antago-
nism between PSNR optimization and posterior sampling.
The posterior sample is by construction a more realistic
reconstruction in the light of the prior. Conversely, while
the posterior mean yields a higher PSNR, indicating closer
proximity to the true image, it may represent a less probable
realization within the prior’s distribution. We provide in
Fig. F.1 additional denoising examples.

We now benchmark our blind denoiser against established
methods, specifically focusing on the PSNR. We compare
our performance with that of BM3D (Dabov et al., 2007;
Mäkinen et al., 2020) and DnCNN (color-blind model,
Zhang et al., 2017) and report our results in Table 1. We
show mean performance on subsets of 50 images taken from
the ImageNet validation set and CBSD68. It is important to
note that the DnCNN model was initially trained for white
noise conditions only, hence comparisons for φ ̸= 0 should
be interpreted with caution. Interestingly, posterior sam-

ples yielded by our method perform worse than BM3D and
DnCNN for these metrics. On the contrary, the posterior
mean estimates systematically outperform both BM3D and
DnCNN. This is a clear success of our algorithm, which
in a blind setting can outperform state-of-the-art denoisers.
Moreover, we believe that these results could be further
improved with additional finetuning of the diffusion model
architecture. Finally, we report in Table 2 equivalent re-
sults for the structural similarity index measure (SSIM) met-
ric (Wang et al., 2004). Similarly, for this metric, posterior
mean estimates provided by GDiff systematically outper-
form BM3D and DnCNN.
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Figure 4. Posterior accuracy diagnostic of GDiff with simulation-
based calibration on natural images blind denoising.
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Validation. We validate our inference pipeline by focus-
ing on the accuracy of the estimation of the noise parameters
ϕ = (σ, φ). We generate 800 noisy images using the Ima-
geNet validation set, with noise parameters ϕ sampled from
their prior distribution p(ϕ). For each of the noisy image y,
we conduct inferences using 4 parallel chains, each running
for M = 60 iterations. We discard the initial 30 samples as
a warm-up phase. For each noisy observation, we compute
the R̂ convergence diagnostic and the effective sample size
(ESS) (see e.g., Vehtari et al., 2021, and references therein).
Fig. F.2 provides a scatter plot of these diagnostics across
the parameter space. We find that the Markov chains achieve
reasonable convergence, as indicated by R̂ ⪅ 1.1, and that
the ESS per chain is comparable to M .

R̂ and ESS tell us how well the Markov chain converges
to and explores its stationary distribution, but not how well
the stationary distribution approximates the posterior. To
check the latter, we implement the simulation-based cali-
bration diagnostic (SBC, Talts et al., 2018). This entails
computing the empirical distribution of the ranks of the true
parameter values within the sampled values. For a well-
calibrated inference pipeline, these empirical distributions
should follow a uniform distribution. In Fig. 4, we present
the resulting normalized rank statistics. The rank statistics
for σ align well with a uniform distribution, suggesting rea-
sonable accuracy. However, the rank statistics for φ reveal
some biases in the predictions. As discussed in Sect.2.3,
this discrepancy highlights potential limitations of the dif-
fusion model in accurately modeling the true conditional
distribution p(x |y,ϕ).

3.2. Cosmological Inference from CMB Observations

The cosmic microwave background (CMB) is a pivotal
cosmological observable for constraining models that de-
scribe the Universe’s dynamical evolution over its nearly
14 billion-year history (Planck Collaboration I, 2020). Yet,
CMB observations suffer from the contamination of vari-
ous astrophysical signals, known as “foregrounds”, neces-
sitating their removal through precise component separa-
tion methods (e.g., Planck Collaboration IV, 2020). The
quest for primordial B-modes in CMB polarization obser-
vations (Kamionkowski & Kovetz, 2016) underscores the
challenge of accurately modeling the thermal emission from
interstellar dust grains, or the ”dust foreground,” which ob-
scures the CMB signal (BICEP2/Keck Array and Planck
Collaborations, 2015).

The CMB closely approximates a Gaussian distribution, for
which the covariance Σϕ relates to cosmological models
and ϕ denotes the target cosmological parameters. Inter-
estingly, component separation for CMB analysis can be
viewed as a blind denoising problem of the form of Eq. (1)
where the “noise” ε corresponds to the CMB, and the signal

x represents the foregrounds. Following a rich history of
dust foreground modeling efforts (e.g., Planck Collabora-
tion XI, 2014; Allys et al., 2019; Vansyngel et al., 2017;
Aylor et al., 2021; Regaldo-Saint Blancard et al., 2020;
2021; Thorne et al., 2021; Krachmalnicoff & Puglisi, 2021;
Régaldo-Saint Blancard et al., 2023; Mudur & Finkbeiner,
2022) and going beyond the work of Heurtel-Depeiges et al.
(2023), we focus here on a diffusion-based dust prior trained
on simulations and apply GDiff for the Bayesian inference
of cosmological parameters ϕ given a mixture of CMB ε
and interstellar dust emission x.

Data and setting. We introduce the simulated data in
App. C.1. The CMB covariance Σϕ is parametrized by the
CMB amplitude σ and cosmological parameters φ. As in
Heurtel-Depeiges et al. (2023), we only consider cosmo-
logical parameters φ = (H0, ωb). We choose a broad prior
p(φ) ∼ U([50, 90] × [0.0075, 0.0567]). We also consider
σ ∈ [σmin, 1.2] where σmin is taken to be very close to 0.4

Architecture and training. The architecture of the diffu-
sion model is a three-level U-net with ResBlocks, trained
with a reweighted score matching loss as in Eq.(18). The
model is conditioned by both t and parameters φ. We en-
countered substantial training instabilities due to the large
(∼ 104) condition number of Σφ. By renormalizing the loss
and model outputs, we were able to mitigate these issues.
Further technical details are provided in App. C.

Initialization. For this cosmological application, the ini-
tialization of the Gibbs sampler plays a more critical role
than in Sect. 3.1. Typically, chains initialized far from poste-
rior typical set are likely to converge slowly, if not become
stuck in local minima of the posterior distribution. In order
to speed-up convergence and improve sampling efficiency,
we initialize ϕ using a CNN trained to estimate the poste-
rior mean E[ϕ |y] (i.e. moment network Jeffrey & Wandelt,
2020). We give further details on this model in App. B.

Cosmological inference. We showcase GDiff for this
blind component separation context in Fig. 5 considering a
mock mixture y with σ = 0.5 and (H0, ωb) = (70, 0.032).
On the left, we show the true maps x and ε composing
y, next to a pair of reconstructed samples x̂ and ε̂. On
the right, we show a corner plot of the posterior distribu-
tion on ϕ (marginalized over x). This inferred posterior
distribution imposes tight constraints on the cosmological
parameters, accurately encompassing the true parameters
(marked in red). We observe that the large scales of the
dust map are well reconstructed, as anticipated, due to their
lower levels of perturbation. Conversely, at smaller scales,

4For stability reasons in the diffusion model, σmin must be
strictly positive.
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Figure 5. Left: Observed maps and maps reconstructed with GDiff. The true dust x and CMB ε maps compose the observed mixture y.
We reconstruct the dust x̂ and CMB ε̂ with our diffusion model. The global unit is arbitrary. Right: Inferred cosmological parameters.
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Figure 6. Power spectra of the mixture and the true and recon-
structed dust and CMB maps.

the reconstruction process exhibits more stochastic behavior.
In the case of the CMB, the situation is reversed: smaller
scales are accurately reconstructed, while the reconstruction
of larger scales tends to be more stochastic. We comple-
ment this visual assessment, by a power spectrum analysis,
presented in Fig. 6. This figure displays the power spec-
tra of both the true and reconstructed dust and CMB maps.
The agreement between the true and reconstructed statistics
across all scales quantitatively demonstrates the success of
our reconstruction process.

Validation. We validate our inference pipeline similarly
to Sect. 3.1. The R̂ and ESS statistics (see Figs. F.3) for test
observations generated across the entire parameter space,
indicate that our sampler converges and mixes well. In ad-
dition, we conduct SBC for the parameters ϕ and show in
Fig. 7 the resulting rank statistics. These rank distributions

are mostly compatible with the uniform distribution, indicat-
ing a well calibrated pipeline in particular for the inference
of H0 and ωb. However, for σ, the distribution is slanted,
indicating bias for some of the chains. Here again, this must
be the consequence of errors in the diffusion model, which
impact the reconstructed power of the CMB estimates.
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Figure 7. Posterior accuracy diagnostic of GDiff with simulation-
based calibration on the cosmological application.

4. Conclusion and Perspectives
We introduced Gibbs Diffusion (GDiff), a new method to
address blind denoising in a Bayesian framework. GDiff
takes the form of a Gibbs sampler that alternates sampling
of the target signal conditioned on the noise parameters and
the observation, and sampling of the noise parameters given
the estimated noise. We employed diffusion models for the
first step, showing that they can be naturally trained to both
address signal prior modeling and posterior sampling of the
target signal. For the second step, we opted for a Hamil-
tonian Monte Carlo sampler, although other alternatives
could have been considered. We also derived theoretical
properties of the Gibbs sampler, pertaining to existence and
invariance properties of the stationary distribution, as well
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as a quantification of the propagation of errors.

We showcased our method’s versatility by applying it to
two distinct problems: denoising natural images affected
by colored noises with unknown amplitude and spectral in-
dex, and performing cosmological inference from simulated
cosmic microwave background (CMB) data, which consists
of an additive mixture of CMB and a Galactic foreground.
Interestingly, while the primary goal in natural image de-
noising is to recover the noise-free image, the cosmological
problem shifts focus to cosmological parameters that char-
acterize the CMB covariance. These parameters assume the
role of noise parameters when viewing this task as a blind
denoising problem. In both cases, we have shown that our
Gibbs sampler converges very well in most situations and
constitutes an efficient sampler. Nevertheless, further vali-
dation indicated a slight bias due to approximation errors in
the diffusion model, suggesting areas for future refinement.

Although diffusion models enable the definition of highly
refined prior models, the computational cost of sampling re-
mains significant. Further improvement of our method to ac-
celerate inference would need to take advantage of the recent
literature on more efficient ways to address diffusion-based
sampling (e.g., Rombach et al., 2022; Song et al., 2023b).
Additionally, our method’s applicability is currently limited
to scenarios where noise follows a Gaussian distribution.
Going beyond this Gaussian assumption while maintaining
a rigorous and methodologically sound approach remains
an open question, with potentially important applications in
signal processing and natural sciences.
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A. Proof of Prop. 2.1
Let f and g be two positive real valued functions of time t on the interval [0, 1]. We consider the following SDE:

dzt = f(t)zt dt+ g(t) dwt, (10)

Proposition A.1. For a forward SDE (z)t∈[0,1] defined by Eq. (2), for all t ∈ [0, 1], zt reads

zt = a(t)x+ b(t)ε′,with ε′ ∼ N (0,Σφ), (11)

with a : [0, 1]→ R+ a decreasing function with a(0) = 1, and b : [0, 1]→ R+ an increasing function with b(0) = 0.5

Moreover, for f and g suited so that σ ≤ b(1)/a(1), there exists t∗ ∈ [0, 1] such that

ỹ := a(t∗)y
d
= zt∗ . (12)

Proof: We write here the proof when Σφ is the identity but the proofs holds for any matrix.

If f can be integrated, let F (t) be a primitive of f with value 0 at time 0. If zt is an Ito process then so is yt = exp(F (t))zt
and we have:

dyt = exp(F (t))dF (t)zt + exp(F (t))dzt

= exp(F (t))f(t)zt,dt+− exp(F (t))f(t)zt dt+ exp(F (t))g(t) dwt

= exp(F (t))g(t) dwt.

Therefore, integrating this equation from 0 to t yields:

yt = y0 +

∫ t

0

exp(F (u))g(u) dwu.

And since zt = exp(−F (t))yt, we have:

zt = exp(−F (t))y0 +

∫ t

0

exp(F (u)− F (t))g(u) dwu.

Using the fact that F (0) = 0, we obtain:

zt = exp(−F (t))z0 +

∫ t

0

exp(F (u)− F (t))g(u) dwu. (13)

Finally, we have:∫ t

0

exp(F (u)− F (t))g(u) dwu ∼ N
(
0, exp(−2F (t))

∫ t

0

exp(2F (u))g(u)2 du

)
(14)

zt ∼ N
(
exp(−F (t))z0, exp(−2F (t))

∫ t

0

exp(2F (u))g(u)2 du

)
. (15)

Denoting a(t) = exp−F (t) and b(t)2 = exp(−2F (t))
∫ t

0
exp(2F (u))g(u)2 du, we have:

zt = a(t)x+ b(t)ε′,with ε′ ∼ N (0,Σφ). (16)

Furthermore, because f is postive, F is increasing and a is a decreasing function of time with a(0) = 1. If g is not too small6

then b is increasing. As a consequence, the amount of noise in the mixture zt is b(t)/a(t), itself an increasing function of
time and ∀σ ≤ b(1)/a(1),∃t∗ ∈ [0, 1], a(t∗)y ∼ zt∗ .

This is why, for reasonable functions f and g, we can identity any mixture of the form y = z0 + σε with a realisation of zt
at time t for some t and initial condition z0 (this is a stopped forward process, up to a time-dependent rescaling constant).
The corresponding time t is often unique for common choices of f and g (both VPSDE, VESDE and all Ornstein-Uhlenbeck
like processes used in DM). When tractable, we implement a function t(σ) that yields t∗ corresponding to σ and otherwise,
the equation σ = b(t)/a(t) is solved via an iterative method.

5Expressions of a and b as functions of f and g are in App. A.
6∀t, g(t) ≥ b(t)

√
2f(t)
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B. Additional Details on HMC
We give details on the practical implementation of the HMC sampler used for the applications of this paper.

Integrator. During sampling, Hamilton’s equations of motion are solved using a leapfrog integrator. Moreover, to improve
calibration of the HMC algorithm, for each HMC step, we solve Hamilton’s equations over a random number of time
steps drawn from a uniform distribution U({5, . . . , 15}). Since both applications of this paper involve compact prior
distributions p(ϕ), we also had to implement domain constraints in the integrator. We take into account the prior boundaries
by implementing elastic collisions in the leapfrog scheme as described in Betancourt (2011).

Initialization Heuristic. For the cosmological application, initialization of the parameters ϕ of the Gibbs sampler was
found to be more critical than in Sect.3.1. As explained in Sect.3.2, we intialize ϕ = (φ, σ) using a CNN with ResBlocks
trained to estimate the posterior mean E[ϕ |y]. In practice, we sample φ, σ according to their prior distribution and
then sample y = x + ε with x ∼ pdata and ε ∼ N (0,Σϕ). The network is then trained to minimize the MSE loss
Ey[||ϕ̂(y)− ϕ||2], thus yielding a posterior mean estimator. We found that this moment network was less accurate on the
boundary of our (compact) prior. To avoid initializing chains outside the prior, which would get stuck, all posterior mean
estimates are projected within the prior domain.

Warm-up. In the first iteration of the Gibbs sampler (see Algo. 1), we first follow a warm-up phase of P = 300 iterations
allowing to adapt the step size and estimate a mass matrix. We adapt the step size using a dual averaging procedure (Nesterov,
2009) parametrized by a target acceptance rate of 0.65, a regularization scale γ = 0.05, an iteration offset T0 = 10, and a
relaxation exponent κ = 0.75. The inverse of the mass matrix is estimated at iteration ⌊3P/4⌋ using the (unbiased) sample
covariance matrix of the warm-up samples after having discarded samples from iterations up to ⌊P/4⌋.

C. Models and Training Details
C.1. Datasets and Training

Natural images application. We train our diffusion model on the ImageNet 2012 dataset, which consists of 1,281,167
training images. Images are resized to 3× 256× 256 and centered crop. During training, we augment the data with random
horizontal flips and rescale the images to the [0, 1] range.

We train over 100 epochs on a node of 8 H100 GPUs 80GB with a batch size per GPU of 128 images. Training takes about
41 hours using Data Parallelism. We use the AdamW (Loshchilov & Hutter, 2019) optimizer and report good stability of
training with respect to learning rate (tested on 0.0001, 0.001, 0.005), with no learning rate schedule. Observing no impact
from weight decay, we set its value to 0.

Cosmological application. We use the same data as in Heurtel-Depeiges et al. (2023). We construct simulated dust
emission maps in total intensity from a turbulent hydrodynamic simulation of the diffuse interstellar medium taken from
the CATS database (Burkhart et al., 2020). We assume here that dust emission is proportional to the gas density of the
simulation. Simulated maps then simply correspond to gas column density maps. Our dataset consists of 991 dust emission
maps of size 256 × 256 (for an example, see Fig. 5 top left panel). We withheld 10% of the 991 images to validate the
denoising and inference pipeline based on our diffusion model trained on the other 90%.

If we neglect secondary anisotropies, CMB anisotropies are extremely well described by an isotropic Gaussian random field
on the sphere (Planck Collaboration I, 2020), entirely characterized by its covariance matrix (or power spectrum). As a
consequence, we can obtain CMB maps by sampling Gaussian draws with covariance Σϕ parametrized by cosmological
parameters φ (for an example, see Fig. 5 top middle panel). CMB power spectra are computed using CAMB (Lewis et al.,
2000), and Gaussian draws on the sphere are projected on 256× 256 patches using pixell 7 with a pixel size of 8′. In
this work, we consider a standard cosmological model. We only vary the cosmological parameters H0 and ωb and choose
for the remaining ones fiducial values consistent with Planck 2018 analysis (Planck Collaboration I, 2020).8 The resulting
simulated maps cover an effective angular surface of approximately 34× 34 deg2.

Training examples are generated by combining dust samples and CMB realizations for cosmological parameters randomly

7https://github.com/simonsobs/pixell
8We choose ΩK = 0, ωc = 0.12, τ = 0.0544, ns = 0.9649, ln(1010As) = 3.044, mν = 0.08.
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drawn from the prior p(ϕ). Since the computation of a single covariance matrix Σϕ takes a few seconds, we train neural
emulator to approximate ϕ → Σϕ as described in the Appendix of Heurtel-Depeiges et al. (2023). This emulator is
differentiable, thus enabling the differentiation of Eq. (9) for HMC.

We train over 100,000 epochs on a single A100 80GB using a batch size of 64 images. Training takes about 96 hours.
We use the AdamW optimizer with an inverse square root scheduler with warm-up. We observed that continuing training
after the loss had plateaued significantly improved the diffusion model’s precision, as evidenced by the simulation-based
calibration (SBC) diagnostic.

C.2. Architectures

Natural images application. Our diffusion model is a U-Net, that takes images of size 256x256 as an input. It is composed
of 5 Downsampling layers, a bottleneck of size 16x16 and 5 Upsampling layers. We add 2 self-Attention layers before the
bottleneck and one after the bottleneck. The total number of parameters is ∼ 70, 000, 000.

As it is standard in a U-Net architecture, each Upsampling layer is concatenated with the corresponding Downsampling
layer. A sinusoidal time embedding is added to each DownConv and UpConv. A 2 layer neural network of inner dimension
100 and SiLU activations are used to embed the exponent φ of the colored noise to add this information into the network.
We choose a variance preserving DDPM with a discrete time composed of tr = 5, 000 time-steps with the schedule
β(t) = 0.1

tr
+ βmax−βmin

tr
. t, with βmin = 0.1 and βmax = 20.

Cosmological application. For the cosmological application, our score network is a UNet with ResBlocks and a bottleneck
of size 32× 32 or 16× 16. Each ResBlock has three convolution, with GroupNorm as normalization, SiLU for activation
and rescaled skip-connection. Long skip connections are concatenated, contrary to internal skip connections who are added.
We do not use attention, due to the small size of the dataset. Since both our data and noise have periodic boundary conditions,
we use ‘circular’ padding in the convolutions. As in (Ho et al., 2020; Song et al., 2021), time is also seen as an input. We
use the continuous time framework from (Song et al., 2021) with Fourier embedding.

In order to manage a parameterized family of SDE (Eq. (2)) we train a diffusion model to reverse each SDE independently
by also providing φ as an argument to the model. The dependency on φ is managed similarly to that of the time t with the
exception that the embedding is a linear layer with activation function of the parameters φ. In each ResBlock, the time
embedding and the parameters embedding are then transformed by a small MLP with a depth of 1, prior to being added to
the input of the respective ResBlock.

In addition, for the cosmological component separation task only, we trained a model exclusively on low noise levels by
reducing the value of βmax to 2, as opposed to 20. Consequently, our network is limited to denoising images for σ values
within the specified prior range. This adjustment restricts the model’s utility as a generative prior but enhances its precision
in reconstructing summary statistics and calibrating the inference method. Furthermore, we found that at lower noise-levels,
feeding the network Fourier features (as in Kingma et al., 2021) improved calibration of the posterior distribution.

C.3. Loss Functions

Our models are trained by minimizing a modified denoising score-matching loss whose original formulation would be:

L(θ) = Et,ϕ

[
λ(t)Ez0, zt|(z0,ϕ)

[∥∥∥sθ(zt, t) +Σϕ
−1

(
zt −

√
ᾱ(t)z0

)
/ (1− ᾱ(t))

∥∥∥2
2

]]
, (17)

with ᾱ(t) = exp(−
∫ t

0
β(u)du). As in Heurtel-Depeiges et al. (2023), we re-normalize all vectors in this loss by multiplying

them by −
√
1− ᾱ(t)Σϕ to stabilize the learning process and reduce numerical errors. Consequently, the adjusted loss

function read:

L(θ) = Et,ϕ

 λ(t)Ez0, zt|(z0,ϕ)

∥∥∥∥∥mθ(zt, t, ϕ)−
1√

1− ᾱ(t)

(
zt −

√
ᾱ(t)z0

)∥∥∥∥∥
2

2

 (18)

This loss in turns corresponds to the standard loss from Ho et al. (2020) where one tries to estimate the added noise (up to a
rescaling constant).

In order to verify that the model is not overfitting, we check for mode collapse and dataset copying with a specific L2
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distance taking into account the periodic boundary conditions. This was particularly important as our models seem more
prone to overfitting than model trained under white noise.

D. Properties of the Gibbs sampler
In this section, we derive theoretical properties of the proposed Gibbs sampler. Specifically, we work out the sampler’s
stationary distribution, review conditions for its existence, and quantify its error.

In what follows, all distributions are conditioned on y, and so we drop this dependency to alleviate the notation.

D.1. Formal notation

Any Markov chain Monte Carlo (MCMC) sampler defines a transition kernel between a current state (ϕ,x) and a new state
(ϕ′,x′). We denote this transition T ((ϕ,x)→ (ϕ′,x′)). The invariant distribution π is the distribution that verifies

∫
T ((ϕ,x)→ (ϕ′,x′))π(ϕ,x) dϕdx = π(ϕ′,x′). (19)

In words, if we apply the transition kernel T to a state (ϕ,x) drawn from π, then the new state (ϕ′,x′) is also distributed
according to π.

The transition kernel T of the Gibbs sampler decomposes into two kernels T = Tϕ ◦ Tx. The first transition kernel Tϕ

updates ϕ but maintains x fixed, while Tx updates x and leaves ϕ unchanged.

Tϕ draws ϕ from an MCMC sampler that admits p(ϕ | x,y) as its stationary distribution. In our paper, we use Hamiltonian
Monte Carlo but the results we derive here would hold for any MCMC algorithm with the right stationary distribution. The
MCMC sampler defines a transition density τ(ϕ→ ϕ′ | x), and moreover

Tϕ = τ(ϕ→ ϕ′ | x)δ(x′ = x), (20)

where δ is the dirac delta function. τ may correspond to the transition obtained after applying either a single or multiple
iterations of the MCMC sampler.

Next, Tx draws samples from a diffusion model that approximates the data generating process p(x | ϕ,y). It what follows,
we assume that the distribution of the samples produced by the diffusion model admits a probability density q(x | ϕ,y).
Then

Tx = q(x′ | ϕ)δ(ϕ′ = ϕ). (21)

D.2. Proof of Proposition 2.2: invariant distributions

Proof. Let π(ϕ,x) be any joint distribution, such that π(ϕ | x) = p(ϕ | x). Then

∫
Tϕ((ϕ,x)→ (ϕ′,x′))π(ϕ,x)dϕdx =

∫
τ(ϕ→ ϕ′ | x)δ(x′ = x)π(ϕ,x)dϕdx

=

∫
τ(ϕ→ ϕ′ | x′)p(ϕ | x′)π(x′)dϕ

= π(x′)

∫
τ(ϕ→ ϕ′ | x′)p(ϕ | x′)dϕ

= π(x′)p(ϕ | x′)

= π(ϕ′,x′), (22)

where for the penultimate line we used the assumption that τ ’s stationary distribution is p(ϕ | x). From 19, we then have
that π(ϕ,x) is an invariant distribution of Tϕ.
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Similarly let π̃(ϕ,x) be any joint distribution such that π̃(x | ϕ) = q(x | ϕ). Then∫
Tx((ϕ,x)→ (ϕ′,x′))π̃(ϕ,x)dϕdx =

∫
q(x′ | ϕ)δ(ϕ′ = ϕ)π̃(ϕ,x)dϕdx

= q(x′ | ϕ′)

∫
π̃(ϕ′,x)dx

= q(x′ | ϕ′)π̃(ϕ′)

= π̃(ϕ′,x′). (23)

Hence π̃(ϕ,x) is invariant under Tx.

D.3. Existence of Stationary Distribution

Definition D.1. Consider two families of conditional distributions, f(ϕ | x) and g(ϕ | x). We say f and g are compatible if
there exists a joint distribution π(ϕ,x) such that π(ϕ | x) = f(ϕ | x) and π(x | ϕ) = g(x | ϕ). Else, we say that f and g
are incompatible.

More general definitions of compatibility can be found in references (Arnold et al., 2001; Liu et al., 2012). Sufficient
conditions for compatibility are provided by Arnold et al. (2001, Theorem 1), restated here for convenience (and adapted to
our notation).9

Theorem D.2. f(ϕ | x) and g(x | ϕ) are compatible if

1. {(ϕ,x) : f(ϕ | x) > 0} = {(ϕ,x) : g(x | ϕ) > 0} := S,

2. There exist functions u(x) and v(ϕ) such that for every (ϕ,x) ∈ S,

g(x | ϕ)
f(ϕ | x) = u(x)v(ϕ), (24)

with u(x) integrable, that is ∫
X
u(x)dx <∞. (25)

We find it enlightening to rewrite the last condition as an integral over the left-hand-side of Eq. (25). Applying this condition
to our problem we have ∫

X

q(x | ϕ,y)
p(ϕ | x,y)dx <∞,

which is Eq. (7).

D.4. Error in the Stationary Distribution

Moving forward, we assume that p(ϕ | x) and q(x | ϕ) are compatible, and so our Gibbs sampler admits a stationary
distribution π(x, ϕ). We now prove Theorem 2.3, which tells us the KL-divergence from the true (posterior) distribution
p(ϕ) to the marginal stationary distribution π(ϕ) of our Gibbs sampler.

Proof. Standard application of the probability chain rule gives

p(x) = p(ϕ)
p(x | ϕ)
p(ϕ | x) . (26)

Clearly, p(ϕ) must act as a normalizing constant and so

p(ϕ) =
1∫

X
p(x|ϕ)
p(ϕ|x)dx

. (27)

9As argued by Liu et al. (2021, Theorem 2.3), the conditions by Arnold et al. (2001) are not necessary and item 1 in Theorem D.2 can
be replaced with a weaker condition.
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Recalling that π(ϕ | x) = p(ϕ | x), a similar argument yields

π(ϕ) =
1∫

X
q(x|ϕ)
p(ϕ|x)dx

. (28)

Then

1
p(ϕ) − 1

π(ϕ) =

∫
X

p(x | ϕ)− q(x | ϕ)
p(ϕ | x) dx

⇐⇒ π(ϕ)−p(ϕ)
p(ϕ)π(ϕ) =

∫
X

p(x | ϕ)− q(x | ϕ)
p(ϕ | x) dx

⇐⇒ π(ϕ)−p(ϕ)
π(ϕ) =

∫
X
(p(x | ϕ)− q(x | ϕ)) p(x)

p(x | ϕ)dx

⇐⇒ 1− p(ϕ)
π(ϕ) = 1−

∫
X

q(x | ϕ)
p(x | ϕ)p(x)dx

⇐⇒ p(ϕ)
π(ϕ) =

∫
X

q(x | ϕ)
p(x | ϕ)p(x)dx. (29)

Finally recall that

KL(p(ϕ)||π(ϕ)) =
∫
Φ

log
p(ϕ)

π(ϕ)
p(ϕ)dϕ, (30)

and so taking on both sides of Eq. (29) the logarithm and the expectation value with respect to p(ϕ), we obtain the wanted
result.

Remark. Eq. (29), which applies to the density ratio at any point, provides a more general result than the result on averaged
density ratios stated in Theorem 2.3.

E. Limitations of Guidance-based Posterior Sampling Methods
By examining the applicability of existing methods DPS (Chung et al., 2023) and Π-GDM (Song et al., 2023a) in the
cosmology application presented in Sect. 3.2, we identified limitations in these guidance-based methods, which further
legitimize the interest in our approach. We report our investigation in this appendix.

First, it is important to note that, since the exact conditional guidance term is typically intractable, guidance-based posterior
sampling methods require methodological approximations. These approximations may impact the estimation of the posterior
distribution in unpredictable ways. For scientific applications like our problem of cosmological inference from CMB data,
this can be a significant downside. Furthermore, we encountered significant numerical difficulties with DPS and Π-GDM,
which we consider strong evidence of the limitations of these methods for our cosmology application.

Let us first rewrite Eq. (1) as a standard linear inverse problem equation (i.e., involving white Gaussian noise). Starting from
Eq. (1):

y = x+ ε, with ε ∼ N (0,Σϕ), (31)

and assuming Σϕ is invertible, we define ε̃ = Σ
−1/2
ϕ ε, so that ε̃ ∼ N (0, Id). Then, introducing ỹϕ = Σ

−1/2
ϕ y and

Aϕ = Σ
−1/2
ϕ , we get:

ỹϕ = Aϕx+ ε̃, (32)

which resembles a standard linear inverse problem where the linear operator is Aϕ = Σ
−1/2
ϕ . Also, note that the observation

ỹϕ depends on the parameters ϕ, which adds a layer of complexity when the goal is to infer ϕ.

We implemented off-the-shelf DPS (Chung et al., 2023) and Π-GDM (Song et al., 2023a) algorithms in the context of
our cosmology application10. The standard regularization (guidance strength) schemes initially yielded numerical float
overflows. To avoid these numerical limitations, we had to decrease the guidance strength to a point where it was clear that

10Note that, in our case, the Π-GDM guidance term is straightforward to compute since the operator Σ−1/2
ϕ is diagonal in Fourier

space.
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Figure E.1. Best results when optimizing the guidance strength for the standard off-the shelf Π-GDM algorithm.
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Figure E.2. Best results when optimizing a regularization in a modified Π-GDM.

we were not sampling the posterior distribution (large scales structure were off, as shown in Fig. E.1). Our most satisfying
approach turned out to be a variation of Π-GDM involving a time-dependent regularization term (Song et al., 2023a, App.
A.3) way outside the normal range for any inverse problems. Fig. E.2 depicts our results with associated summary statistics,
proving that the posterior distribution is very poorly estimated. Furthermore, when trying to use this last method in our
Gibbs pipeline, we could not reach convergence to any posterior distribution over ϕ.

We interpret these numerical challenges as the result of the significant dynamic range of eigenvalues of Σϕ. For our
cosmology application, the condition number of Σϕ is approximately 6 × 105, and the largest eigenvalue of Σ

−1/2
ϕ

is 1.6 × 102. In comparison, standard inverse problems such as inpainting, deblurring, or super-resolution problems,
typically involve operators with eigenvalues bounded between 0 and 1. Since guidance-based methods rely on estimates
of ∇xt

log p(xt|y,ϕ), these large eigenvalues lead to numerical instabilities along their corresponding eigenvectors (i.e.,
for our problem, at high frequencies). If we attempt to mitigate this instability using regularization, the guidance along
eigenvectors linked to the smallest eigenvalues of Σ−1/2

ϕ becomes insufficient, resulting in impaired low frequencies/large-
scale structures.

F. Additional Results

Dataset Noise Level
σ

φ = −1 → Pink noise φ = 0 → White noise φ = 1 → Blue noise

BM3D DnCNN GDiff x̂
GDiff

E [x |y]
BM3D DnCNN GDiff x̂

GDiff
E [x |y]

BM3D DnCNN GDiff x̂
GDiff

E [x |y]

ImageNet
0.06 0.90±0.01 (0.88)±0.00 0.86±0.01 0.92±0.00 0.92±0.00 0.92±0.00 0.88±0.01 0.93±0.00 0.94±0.00 (0.92)±0.00 0.90±0.00 0.95±0.00
0.1 0.81±0.01 (0.76)±0.01 0.77±0.01 0.86±0.01 0.90±0.01 0.90±0.01 0.84±0.01 0.91±0.00 0.90±0.01 (0.88)±0.01 0.85±0.01 0.92±0.00
0.2 0.63±0.01 (0.53)±0.01 0.62±0.02 0.74±0.02 0.79±0.01 0.80±0.01 0.74±0.01 0.83±0.01 0.83±0.01 (0.79)±0.01 0.78±0.01 0.87±0.01

CBSD68
0.06 0.90±0.01 (0.88)±0.00 0.84±0.01 0.92±0.00 0.93±0.00 0.94±0.00 0.88±0.00 0.94±0.00 0.94±0.00 (0.94)±0.00 0.90±0.00 0.95±0.00
0.1 0.82±0.01 (0.78)±0.01 0.75±0.01 0.85±0.01 0.89±0.00 0.90±0.00 0.81±0.01 0.90±0.00 0.91±0.00 (0.90)±0.00 0.86±0.00 0.93±0.00
0.2 0.65±0.01 (0.55)±0.01 0.61±0.01 0.74±0.01 0.79±0.01 0.80±0.01 0.69±0.01 0.81±0.01 0.83±0.01 (0.79)±0.01 0.76±0.01 0.86±0.01

Table 2. Image quality in terms of SSIM (↑) after denoising with GDiff (blind) and baselines BM3D (non-blind) and DnCNN (blind). We
report mean PSNR and standard error computed on batches of 50 images. For GDiff, we provide performance for both posterior samples
x and estimates of the posterior mean E [x |y]. We point out that DnCNN was trained with white noises only, hence results obtained for
φ ̸= 0 could be sub-optimal.
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Figure F.1. Examples of blind denoising with GDiff on noisy ImageNet mocks with σ = 0.2 and φ ∈ {−0.4,−0.2, 0.0, 0.2, 0.4} (from
top to bottom). Left: Noisy examples y next to the noise-free images x, denoised samples x̂ and estimates of the posterior mean E [x |y].
Right: Inferred posterior distributions over the noise parameters.
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Figure F.2. ESS (left) and R̂ (right) statistics for inferences on noisy natural images across the parameter space.
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Figure F.3. ESS (top) and R̂ (bottom) statistics for inferences on dust/CMB mixtures across the parameter space.
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