

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING TO REASON ON HARD PROBLEMS WITH PRIVILEGED ON-POLICY EXPLORATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) has improved the reasoning abilities of large language models (LLMs), yet state-of-the-art methods cannot use all training problems in a training dataset. On-policy RL rarely produces even a single correct rollout on hard problems, yielding no reward signal or learning altogether. Moreover, mixing easy problems into the training set can detrimental as on-policy RL may derive a larger signal to sharpen its distribution from these problems, impairing its ability to solve harder problems reliably. While one might attempt to address this by distilling human- or model-written solutions into models, these traces are not only expensive and hard to write, but also serve as poor fine-tuning targets: while they produce correct outputs, these concise paths are extremely challenging to learn from. We introduce **Privileged On-Policy Exploration** (POPE), a framework that leverages already available solutions from humans or other models to obtain a learning signal on hard problems by using them as “privileged” information that guides exploration. Concretely, POPE augments hard prompts with a minimal solution prefix as guidance, enabling RL to obtain non-zero rewards when rolling out conditioned on this prefix. We show that this approach allows RL to acquire behaviors that transfer back to original problems. This process expands the set of solvable problems and improves performance on challenging reasoning benchmarks.

1 INTRODUCTION

Reinforcement learning (RL) has substantially improved the reasoning abilities of large language models (LLMs) in math and coding. For example, relatively small models (under 2B parameters) trained with RL to make best use of test-time compute by running longer chains of thought (CoT) can outperform much larger models trained without RL (Setlur et al., 2025b; Liu et al., 2025). Concurrently, some studies also argue that RL post-training mainly amplifies capabilities already present in the model (Yue et al., 2025; Zhao et al., 2025), though others show design choices (prompt mixtures, token budgets, curricula) mitigate such concerns (Setlur et al., 2025b; Liu et al., 2025).

However, even the most effective RL methods fail to train on the full set of available problems, leaving substantial performance gains untapped. This is largely because on-policy RL cannot sample even a single rollout with a non-zero outcome reward on a sizable fraction of “hard” problems, and thus receives no reward signal¹. In many such cases, rollouts never employ the right strategy, so no correct samples are obtained at all. Procedures such as dynamic prompt sampling (Yu et al., 2025; Wang et al., 2025b) even explicitly filter these prompts out. As a result, RL plateaus once the easier problems are solved. In fact, our results show that after sufficiently many easy problems yield reward, RL simply “sharpens” its behavior on these problems, which reduces the diversity of the model’s outputs and impairs its ability to solve new problems compared to the base model. We explain this phenomenon through the lens of ray interference (Schaul et al., 2019), a phenomenon where on-policy RL exhibits a bias of maximizing reward more on states where it already attains reward.

Our goal in this paper is to design an approach that allows RL to overcome this interference issue and learn on hard problems. If the base model is unable to sample any correct rollout on these problems, how can we obtain learning signal though? A natural idea is to collect “expert” reasoning traces from an oracle (e.g., human), either for distillation (Sessa et al., 2024; Agarwal et al., 2024a) or

¹Our analysis shows that when fine-tuning Qwen3-4B on DAPO-MATH-17K (Yu et al., 2025), the model samples a correct rollout on <50% of prompts, given $K = 32$ parallel attempts at each and 16k token budget.

054 directly in RL (Yan et al., 2025). Yet reasoning traces of the kind required for LLMs are prohibitively
 055 expensive to write, and prior work finds little benefit from using available human-written data
 056 (and we corroborate these results). Even when distillation on reasoning traces from bigger models
 057 succeeds, gains are marginal (Yan et al., 2025) and upper bounded by the capabilities of bigger
 058 models. Therefore, we ask: is there a less-constraining way to use available sources of privileged
 059 information such as human-written solutions to derive learning signal on hard training problems?

060 Our key insight is that privileged information can effec-
 061 tively guide an LLM’s *on-policy* exploration on hard prob-
 062 lems, even when it is not useful as a training target. For in-
 063 stance, consider a hard problem where the LLM repeatedly
 064 pursues incorrect approaches and fails within the allocated
 065 training budget. Supplying even a short prefix of a human-
 066 written solution can significantly increase the likelihood
 067 of reaching the correct answer. This effect is especially
 068 useful when the base model already has strong instruction-
 069 following capabilities, allowing it to understand and build
 070 upon the privileged content. Our approach, **Privileged**
 071 **On-Policy Exploration** (POPE), leverages this principle
 072 to guide exploration in RL on hard problems, serving as
 073 an alternative to distillation, SFT, or off-policy RL.

074 Concretely, for any set of hard problems, POPE first gath-
 075 ers a human- or oracle-provided solution. It then trains a
 076 base LLM with RL on a prompt mixture that includes both
 077 the original hard problems and versions augmented with
 078 partial prefix of these solutions. These partial solutions
 079 provide just enough guidance to make it possible to sample
 080 at least *one* correct rollout among many attempts. Train-
 081 ing on this mixture enables RL to sample some non-zero
 082 reward on hard problems, though only when the partial
 083 solution is present. Through on-policy exploration guided
 084 by these augmented prompts, the model acquires useful be-
 085 haviors that transfer back to the original prompts, demon-
 086 strating generalization (Figure 1; blue). We also find that it
 087 is critical to ensure that the privileged information provided
 088 is such that it does not make the problem
 089 substantially simpler, or else this inhibits transfer (Figure 1; yellow). In contrast, standard on-policy
 090 exploration or RL applied after distilling human-written solutions fails to solve new problems during
 091 training. Empirically, we find that POPE enables models to solve hard training problems that remain
 092 unsolvable with standard RL training by using either human solutions or language-model generated
 093 solutions. Beyond improving pass@1 accuracy, POPE also boosts pass@k, showing that it prevents
 094 RL from collapsing into merely sharpening the distribution on problems the model already solves.

093 2 RELATED WORK

094 Our work tackles exploration on hard problems in RL-trained reasoning models when naïvely scaling
 095 on-policy RL compute makes little progress. It is related to prior works on enhancing exploration
 096 with different training objectives or those that use off-policy traces to reinforce the model being
 097 trained and prevent the training from stalling. We briefly review these below.

098 **RL exploration limits on hard problems.** Small RL-trained models trained via RL can now
 099 outperform much larger base models (Liu et al., 2025; Luo et al., 2025), largely by reinforcing
 100 long chain-of-thought traces that exhibit meta-strategies and behaviors such as self-correction (Qu
 101 et al., 2024) and reflection (Gandhi et al., 2025). Yet, without careful design, RL often *sharpens* the
 102 base model’s distribution, reducing exploration diversity and leaving hard problems underexplored.
 103 This often manifests as a degrading pass@k compared to the base model (Yue et al., 2025; Zhao
 104 et al., 2025). To mitigate this drop, one line of work focuses on regularizing RL training to prevent
 105 over-sharpening. Examples include adding exploration bonuses based on intrinsic motivation (Gao
 106 et al., 2025), entropy (Wang et al., 2025b), count-based bonuses (Song et al., 2025), or training
 107 objectives that directly optimize pass@n (Chow et al., 2024; Balashankar et al., 2025). While
 108 effective at stabilizing learning, these methods remain constrained by sparse rewards, reliance on easy

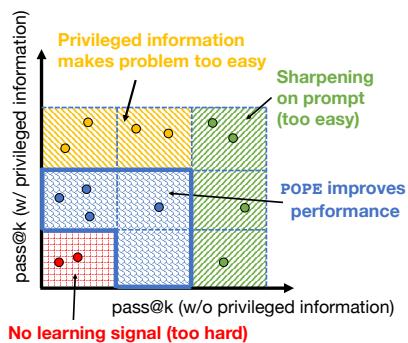


Figure 1: *Illustrating prompts as point in the 2D-plane based on their accuracy.* On prompts with low pass@k but high pass@k under privileged conditioning, POPE helps by training on a mixture of normal and augmented prompts. On easy prompts, standard RL already sharpens the model and conditioning may not help, while on prompts that become too easy under conditioning (high pass@k with conditioning but low without), POPE is less effective since transfer of behaviors does not occur. Thus, POPE uses the smallest prefix of privileged information to guide on-policy exploration to allow maximal transfer on hard prompts, in effect staying within the blue region in the figure.

108 problems for signal, and persistent failure on challenging tasks (He et al., 2024). A complementary
 109 line of work (Setlur et al., 2025b) amplifies exploratory asymmetries of the base model, such as the
 110 verification-generation gap (Setlur et al., 2025a; Song et al., 2024), to generate longer traces beyond
 111 the base distribution. Negative gradients in RL can chain such asymmetries over iterations (Zhu et al.,
 112 2025), but models often “under-think” (Wang et al., 2025c), executing incorrect high-level strategies
 113 that persist despite more rollouts. Our work tackles this by conditioning on privileged information to
 114 guide new strategies, discover correct rollouts, and internalize them without explicit conditioning,
 115 thereby overcoming the exploration bottleneck.

116 **Updating LLMs with off-policy traces.** When on-policy exploration struggles due to sharpening
 117 or over-thinking, several works propose supervising the RL policy on human- or oracle-provided
 118 traces (Lightman et al., 2023; Corrado et al., 2024). However, for methods that rely on traces from a
 119 teacher model, the gains are inherently bounded by teacher capacity (Agarwal et al., 2024b). Moreover,
 120 learning from such traces typically requires additional techniques such as reward shaping (Yan et al.,
 121 2025), entropy control (Wang et al., 2025a), and extensive hyperparameter tuning Zhang et al. (2025).
 122 A more fundamental limitation is that off-policy reasoning traces are simply not available for many
 123 hard problems: although human-written solutions exist for nearly any RL training prompt and can be
 124 rephrased into more effective formats, producing long chains of thought that align with how models
 125 actually reason is much more difficult. As we show in our experiments, learning from off-policy data
 126 under such type mismatch often leads to a collapse in the diversity of responses sampled by the model.
 127 An approach that avoids using off-policy data as training targets is therefore preferable, and our
 128 method falls into this category. Related directions include conditioning on subgoals or plans (Hong
 129 et al., 2025), or providing abstractions (Qu et al., 2025), but our approach is substantially simpler
 130 since it directly conditions on a prefix of an oracle solution. The work most closely related to ours is
 131 training with on-policy exploration on adaptively revealed solutions (Amani et al., 2025). However,
 132 unlike us, this work focuses on non-reasoning didactic domains where short responses suffice and
 133 exploration is easier. A key aspect of our motivation leverages the parameterization of reasoning
 134 traces and their strong instruction-following capabilities, which are absent from this work.

3 PRELIMINARIES AND NOTATION

136 We situate this paper in the domain of RL post-training of large language models (LLMs) on math
 137 problems. For any given problem $\mathbf{x} \sim \rho$ and a rollout $\mathbf{y} \sim \pi_\theta(\cdot | \mathbf{x})$ attempting to solve this problem,
 138 we define a *binary outcome reward* $r(\mathbf{x}, \mathbf{y}) \in \{0, 1\}$ indicating correctness of the final answer
 139 produced by the rollouts. Analogous to work studying RL with 0/1 rewards, we assume that the
 140 rollout \mathbf{y} represents the final answer in a \boxed{} block. We study several measures of performance,
 141 including the pass@ k metric, given by $\text{pass}@k = \Pr[\exists y_1, \dots, y_k \sim \pi_\theta(\cdot | \mathbf{x}) \text{ s.t. } r(\mathbf{x}, y_i) = 1]$,
 142 which measures the probability that at least one of k independent attempts at the problem succeeds.
 143 This metric captures the role of parallel exploration during training and governs whether a batch can
 144 yield any positive signal for GRPO (Shao et al., 2024) or any other Monte-Carlo rollout based policy
 145 optimization algorithm for LLMs. We also use pass@ k as an evaluation metric to understand the
 146 optimization behavior of RL on the base LLM, especially in regard to interference and sharpening
 147 effects as we will see in the next section. Most RL algorithms use the *policy gradient*:

$$\nabla_\theta J(\theta) = \mathbb{E}_{y \sim \pi_\theta}[r(\mathbf{x}, \mathbf{y}) \nabla_\theta \log \pi_\theta(\mathbf{y} | \mathbf{x})]. \quad (1)$$

148 which reinforces rollouts that end in a correct final answer. This process is also called outcome-reward
 149 RL. In practice, some of the most-commonly used RL algorithms such as GRPO, uses a reference
 150 policy π_{old} for sampling and normalize rewards into *advantages* before utilizing them in the policy
 151 gradient: $A_i(\mathbf{x}, \mathbf{y}_i) = r(\mathbf{x}, \mathbf{y}_i) - \frac{1}{n} \sum_{j=1}^n r(\mathbf{x}, \mathbf{y}_j)$, so that updates depend on deviations of reward
 152 from the batch mean. This normalized structure makes RL brittle on hard problems. If all n rollouts
 153 fail on a given problem \mathbf{x} ($r(\mathbf{x}, \mathbf{y}_i) = 0$), then the advantage for all samples vanishes, $A_i = 0$, and
 154 the gradient update is exactly zero on \mathbf{x} . Thus when $\text{pass}@k \approx 0$, training stalls: GRPO cannot
 155 generate signal, even with large batch sizes or extended iterations. As we discuss in Section 4, this
 156 creates a feedback loop where the model sharpens on easy problems but halts learning on hard ones.
 157

4 RAY INTERFERENCE IN RL POST-TRAINING

158 To motivate our approach, we begin by studying the dynamics of RL training. When training with
 159 RL, we often observe that average rewards improve steadily on the training dataset. These rewards
 160 are computed by averaging over multiple rollouts for each problem (Shao et al., 2024), which means

162 a higher average reward can arise either from producing more correct rollouts on an easy problem
 163 or from producing at least one correct rollout per problem. A natural hypothesis is that the policy
 164 first learns to solve the easier problems in the mixture within a few RL updates, generating multiple
 165 correct rollouts per problem. One might then expect that longer training would eventually lead
 166 to success on the harder problems as well. However, we find that this does not occur. As shown
 167 in Figure 2, a typical RL training run first reduces the fraction of problems unsolved by the base
 168 model, but once some problems are solved, the percentage of fully solved problems increases (see
 169 step 100 in Figure 2, right), while the model’s ability to solve previously unsolved problems drops.
 170 In fact, after step 150, even some problems that were solvable by the base
 171 model before become unsolvable by the RL-trained model (the “% unsolv-
 172 able problems” increases in Figure 2). Training continues to make progress
 173 on fully solving a different subset of problems, but this pattern, represen-
 174 tative of a typical RL fine-tuning run,
 175 highlights that once RL trains mod-
 176 els to solve some easy prompts, fur-
 177 ther training actively inhibits progress
 178 on other prompts. The most natural
 179 explanation is that this stems from
 180 a form of update interference across
 181 prompts, known as ray interference in
 182 the RL literature (Schaul et al., 2019),
 183 as we discuss below.
 184

**185 *Ray interference: why learning from
 186 hard problems get harder during RL.***

187 Typical RL algorithms for post-training LLMs explore on-policy: for each prompt in the batch, we
 188 sample n parallel rollouts from the current policy and use them to compute a policy gradient update. If
 189 at least one rollout solves the problem but not all of them succeed, the update reinforces the subset of
 190 correct rollouts. If none of the n rollouts succeed, or if all of them succeed, then no update is applied
 191 on that prompt. Exploration is therefore wasteful when the model cannot sample any correct trace
 192 on a hard problem across the n parallel attempts. However, as soon as the policy begins to reliably
 193 solve easier problems, their successful rollouts dominate the reward signal. Because all prompts
 194 share the same model weights, gradient updates that improve easy problems can inadvertently reduce
 195 the probability of exploring useful directions on harder ones since the gradient on easy problems
 196 encourages the model to hone in on the right answers and “sharpen” its probability distribution. Over
 197 time, this creates a “rich-gets-richer” dynamic: prompts with some correct rollouts get reinforced
 198 further (Figure 2, Right), while prompts with no successes become increasingly unsolvable. This
 199 corroborates pass@ n declining in RL from prior work, despite more rollouts (Yue et al., 2025).
 200

201 Takeaways: Ray interference progressively hurts exploration on hard problems

- 202 • As RL starts solving some problems, its ability to solve other problems degrades.
- 203 • This manifests as a U-shaped trend in the percentage of unsolved problems during training,
 204 and a rich-gets-richer effect where prompts get disproportionately improved upon in RL.

205 **5 POPE: PRIVILEGED ON-POLICY EXPLORATION**

206 In this section, we develop our approach for training LLMs on hard problems, thereby avoiding the
 207 issue outlined above. To address the limitations of on-policy exploration, we make use of privileged
 208 data (e.g., human solutions or LLM solutions) to enable experiencing some positive reward on such
 209 problems. A natural way to exploit this data is through distillation of oracle traces. However, this
 210 strategy can be problematic: LLMs solve hard problems via reasoning traces, which introduces
 211 a “type mismatch” with the human or oracle data available. Indeed, we find in our experiments,
 212 fine-tuning on oracle data naïvely reduces output diversity on hard problems (Figure 8) without
 213 meaningfully improving success rates on the same or related tasks. We therefore build an alternative
 214 approach called POPE, which utilizes two main motivating insights in this section.
 215

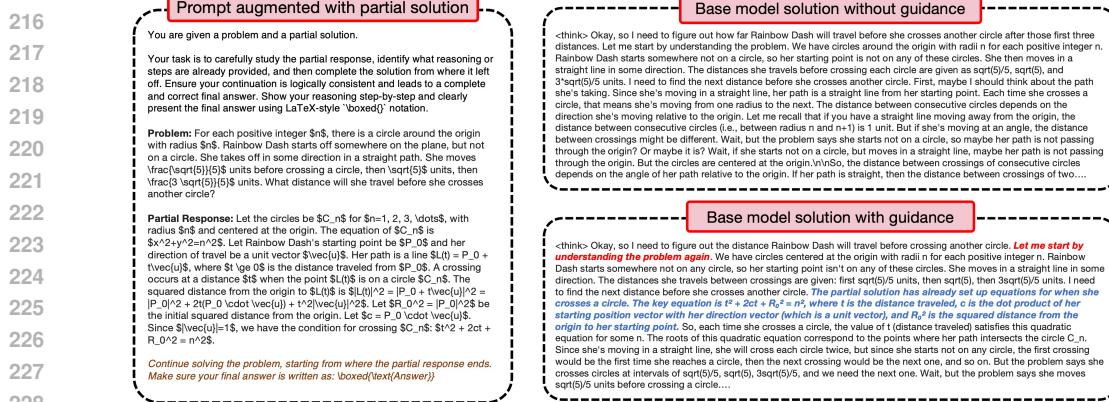


Figure 3: *An example of rollout generated by Qwen3-4B base model on a hard training problem* when conditioning and not conditioning on partial oracle solution (guidance). Observe that the rollout with guidance not only refers back to the solution, but it recalls the partial solution in its reasoning, restating many of the facts, and continues the solution from there. This confirms the motivation behind the design of POPE.

5.1 MOTIVATING INTUITIONS BEHIND POPE

1) Conditioning guides better exploration when the base model exhibits strong instruction-following capabilities. Our first main motivating intuition informing the design of POPE is that an effective way to use privileged information that also avoids distillation is to condition the base model on the prefix of an oracle solution along with the prompt for training. The system prompt then asks the model to complete the solution after carefully analyzing the provided partial oracle solution. This process reduces the difficulty of the problem for the base model in many ways. For instance, some partial solutions might already tackle a *subproblem*, leaving a fewer number of subproblems to be solved for the model’s rollout (Figure 3); some other partial solutions may verbalize a plan to tackle the problem, which keeps the model on track (Figure 10). In summary, prefixes of oracle solutions can provide useful privileged information for reducing problem complexity, and address the issue with cloning target solutions. Given a base model with strong instruction-following abilities, conditioning in this way allows the model to sample correct traces by following the information provided by the partial oracle solution (Figure 3) or by tackling a simpler version of the problem that remains unsolved after the partial solution is provided. As a result, the model can obtain non-zero reward on augmented versions of otherwise unsolvable hard problems. Our approach, POPE prescribes training on versions of problems augmented with partial attempts, as we discuss below.

2) Training on augmented and normal prompts transfers to successful rollouts on unaugmented prompts. While the above mechanism allows us to obtain reward on augmented versions of hard prompts, it is not obvious whether training on these prompts with partial solutions leads to effective *transfer* to the original unaugmented prompts. Our second motivation is that when models use a reasoning format that encloses computation within “think” blocks and reiterates the problem statement (and the privileged information in the case of augmented prompts; see Figure 3), training on augmented prompts should often suffice to induce non-zero success on the original problems without privileged guidance. We attribute this to the conditional next-token distributions reinforced early on during training on augmented prompts: reasoning traces on augmented prompts rephrase the problem and reproduce the privileged information, and get reinforced if they experience reward. When the model is presented with unaugmented prompts, it first rephrases the problem statement, and the conditional next-token distributions learned on augmented prompts then help fill in the missing privileged content and guide the remainder of the solution. In effect, learning to solve the augmented prompt also teaches the model how to approach the unaugmented version through a form of a “gluing

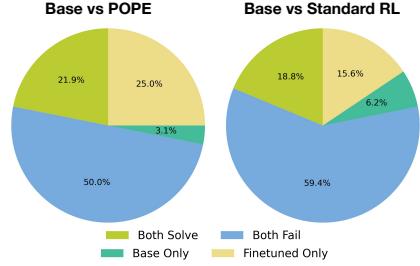


Figure 4: *Fraction of problems solved by POPE and standard RL* (evaluated without conditioning on privileged information) compared to the base model, normalized over all problems where conditioning the base model on privileged information yields at least one successful rollout. POPE solves more problems than standard RL, showing that conditioning on privileged information enables it to transfer successful rollouts obtained with conditioning on these training problems to the setting when no conditioning is provided.

270 mechanism”, inherent to reasoning parameterizations. We present an example rollout illustrating
 271 this mechanism later in Figure 10. Quantitatively, Figure 4 shows the fraction of problems solved by
 272 POPE, standard RL, and the base model without conditioning, out of all problems solvable by the
 273 base model when given privileged information. Training on both augmented and normal prompts
 274 enables POPE to solve more of these problems compared to RL without requiring conditioning,
 275 which shows that training on a mixture of prompts transfers to unaugmented prompts.

276 5.2 THE POPE ALGORITHM

277 We now present a concrete algorithm based on the insights developed in the previous section. Instead
 278 of using human or oracle-written solutions as training targets, we condition on partial prefixes of
 279 these solutions as privileged information to generate on-policy rollouts. Formally, given an oracle
 280 solution \mathbf{z} to a hard training problem $\mathbf{x} \sim \mathcal{D}_{\text{hard}}$, we condition rollouts on a prefix $\mathbf{z}^{0:i}$ of \mathbf{z} , i.e.,
 281 $\mathbf{y} \sim \pi(\cdot | \mathbf{x}, \mathbf{z}^{0:i})$. In principle, any prefix $\mathbf{z}^{0:i}$ could be used, but we only need the minimal prefix
 282 that allows on-policy rollouts to obtain *some* non-zero reward on \mathbf{x} , thereby driving learning on \mathbf{x} .
 283 We therefore choose the shortest prefix that yields non-zero reward under the base model for every
 284 prompt \mathbf{x} . Formally, for a given prompt \mathbf{x} and base model $\pi_{\theta}^{\text{base}}$, the minimal privileged prefix is:
 285

$$286 i^*(\mathbf{x}) := \arg \min_i \left\{ i \in [0, L_{\mathbf{x}}] : \mathbb{E}_{\mathbf{y} \sim \pi_{\theta}^{\text{base}}(\cdot | \mathbf{x}, \mathbf{z}^{0:i})} [r(\mathbf{x}, \mathbf{y})] \geq \alpha \right\}, \quad (2)$$

288 where $L_{\mathbf{x}}$ is the length of the oracle solution \mathbf{z} for prompt \mathbf{x} . Since $i^*(\mathbf{x})$ is defined per prompt, we
 289 compute these indices in a pre-processing stage before RL training. Using this, we construct an
 290 augmented set of hard prompts:

$$291 \mathcal{D}_{\text{hard}}^{\text{aug}} := \left\{ \text{concat}(\mathbf{x}, \mathbf{z}^{0:i^*(\mathbf{x})}) \mid \mathbf{x} \in \mathcal{D}_{\text{hard}} \right\}. \quad (3)$$

293 POPE then trains on a dataset consisting of a 1:1 mixture of hard prompts $\mathcal{D}_{\text{hard}}$ and their augmented
 294 versions $\mathcal{D}_{\text{hard}}^{\text{aug}}$. As we show, while unaugmented prompts do not yield reward early in training,
 295 the augmented prompts do, and these gains eventually transfer back to the unaugmented prompts,
 296 especially when the augmented prompt uses the minimal prefix (Eq. 2). This enables POPE to learn
 297 effectively on hard prompts. Finally, we emphasize that POPE operates fully on-policy: although
 298 privileged information guides exploration, the exploration itself is carried out by the model through
 299 on-policy rollouts. This procedure does not utilize interventions, off-policy corrections, or off-policy
 300 completions during RL, keeping the training procedure simple to implement yet effective at learning.

301 Summary: Privileged On-Policy Exploration (POPE)

- 303 • POPE conditions on partial solutions from an oracle as privileged information to guide
 304 on-policy rollouts during RL training, instead of directly using oracle data as training targets.
- 305 • POPE utilizes the smallest prefix of the oracle solution that attains reward $\geq \alpha$ for maximal
 306 transfer to unaugmented prompts during RL and best performance.

307 6 EXPERIMENTAL EVALUATION

309 We evaluate the efficacy of POPE in providing training signal on hard problems, and how training on
 310 such hard problems translates to test performance. We also wish to understand if POPE alleviates the
 311 ray interference issue, and whether the design choices introduced above are crucial.

313 **POPE implementation.** To instantiate POPE, we begin by constructing a dataset of hard training
 314 problems on which the base model fails completely. To do this, we evaluate the base model (e.g.,
 315 Qwen3-4B) with a rollout budget of $k = 32$ samples per problem. We mark a problem as hard if the
 316 model achieves zero success rate, meaning no single rollout produces the correct final answer. For
 317 each hard problem, we derive the minimal guidance prefix from an oracle solution that can help the
 318 base model obtain non-zero reward. Oracle solutions are obtained either from human-written data or
 319 from stronger models such as Gemini 2.5 Pro in our experiments. To identify candidate prefixes, we
 320 first chunk each solution at meaningful logical points, for example, individual steps of a derivation,
 321 applications of lemmas or theorems, or transitions between reasoning steps. Each chunk boundary
 322 provides for a boundary of the potential prefix. We then evaluate the performance of the base model
 323 (Qwen3-4B model in our setting) conditioned on these prefixes, checking whether at least one rollout
 324 yields the correct answer. We use a token budget of 16K tokens for this evaluation, since this is
 325 also the token budget that we run RL training at subsequently. The minimal privileged prefix $i^*(\mathbf{x})$

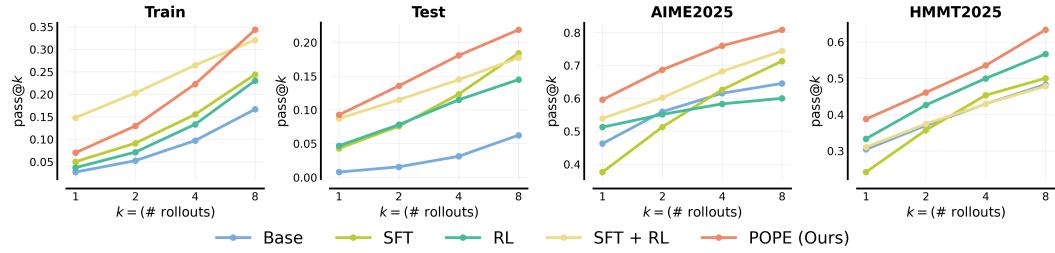


Figure 5: **Pass@ k performance of different approaches**, using Gemini 2.5 Pro as the oracle. Importantly, we do not assume access to Gemini’s reasoning traces, only a prefix of the final solution as privileged information. POPE achieves the best pass@ k performance overall on both the i.i.d. held-out test set of hard problems and the standardized AIME 2025/HMMT 2025 benchmarks. On the training set, POPE also improves pass@8, although SFT+RL (yellow) outperforms it. This is expected since SFT+RL leverages large-scale rejection sampling to obtain correct traces by combining oracle-provided prefixes with base LLM rollouts conditioned on them.

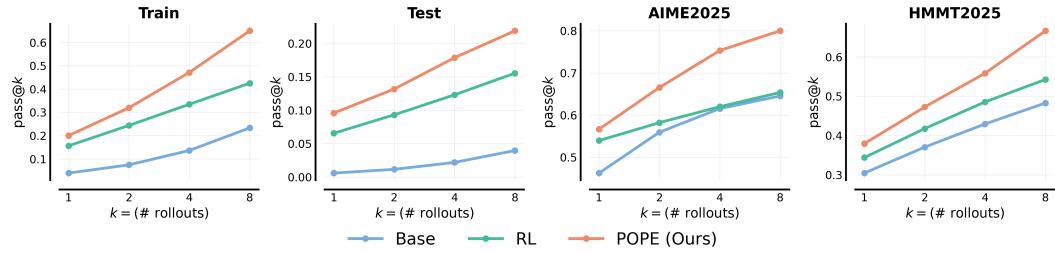


Figure 6: **Pass@ k performance of different approaches**, using human solutions as the oracle on Omni-MATH. Observe that POPE outperforms running RL without any form of privileged information, as well the base model. These gains are observed both on the train and test sets, as well as AIME2025 and HMMT2025 benchmarks.

(Equation 2) for a problem x is defined as the shortest prefix of the oracle solution that leads to some non-zero success on the problem. In our experiments, we choose a threshold success rate of 0.3 over 16 rollouts conditioned on a partial oracle prefix to define this minimal prefix $i^*(x)$. In cases where no prefix leads to success, we still select one prefix at random, ensuring every problem is paired with at some sort of a partial solution from the oracle. While these random prefixes do not immediately induce correct rollouts, they may still facilitate exploration and allow the model to evolve useful behaviors during training. This process yields a dataset of hard problems paired with either minimal or fallback prefixes, providing structured yet lightweight privileged information for exploration. In this work, we train on 495 problems when privileged prefixes are derived from a stronger model, and on 165 problems when they are derived from human-written solutions.

Evaluation protocol. We evaluate whether POPE enables models to learn on hard problems during RL. To this end, we measure pass@ k performance for $k \in \{1, 2, 4, 8\}$, using 32 evaluation rollouts per prompt to obtain statistically reliable estimates on the training dataset (without conditioning on partial solutions for evaluation). We further assess generalization by evaluating accuracy on a held-out test set drawn from the same distribution as the training set, consisting of problems of comparable difficulty where the base model has a low success rate. Finally, we report performance on standardized competition benchmarks, including AIME2025 and HMMT2025 (Balunović et al., 2025). Together, these metrics allow us to compare approaches on the optimization of training rewards, generalization to problems similar to the training distribution, and also to external benchmarks.

Comparisons and baselines. We compare POPE against the following baselines: **(1) Standard RL**, where we run RL on the same prompt set as POPE but without any privileged oracle information for conditioning and thus provides a representative RL training algorithm; **(2) SFT**, where we fine-tune on the complete oracle solution for each hard training problem. This approach corresponds to the default approach for using privileged information as a training target. We also experimented with running RL on top of such SFT checkpoints, but found that these models—particularly when trained on human data—memorized the training data to quite a large extent, making them poor initializations for RL training; and **(3) SFT+RL**, where the base LLM is first supervised fine-tuned on oracle privileged information concatenated with successful reasoning traces generated by the base model when conditioned on that information, and then further trained with RL. This setup resembles a “mid-trained” initialization, similar to rejection fine-tuning (RFT) (Zelikman et al., 2022; Yuan et al., 2023), where privileged information is used to construct RFT data but is not employed during subsequent RL training. Comparing with approach **(1)** enables us to establish the role of oracle

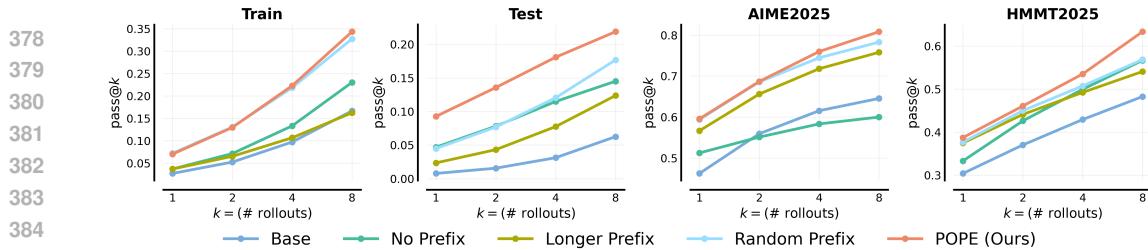


Figure 7: **Ablation on the amount of privileged information used for conditioning.** POPE with minimal prefixes achieves the best performance across train, test, and AIME/HMMT benchmarks. Random prefixes perform comparably on train and AIME 2025 but lag on test and HMMT 2025. Providing longer prefixes is detrimental, as it exacerbates the rich-gets-richer effect and slows progress compared to standard RL.

privileged information for learning in the first place; (2) establishes the benefits from conditioning over using privileged information as training targets; and (3) allows us to particularly establish the role of on-policy exploration (as opposed to off-policy RFT) for exploration.

6.1 MAIN PERFORMANCE RESULTS

POPE with stronger LLM solutions. Figure 5 shows results when privileged information for POPE and other methods is provided by Gemini 2.5 Pro. We do not assume access to Gemini’s reasoning traces, only a short prefix of its final solution. In this setting, POPE consistently achieves the best pass@ k performance on both the held-out test set of hard problems and on standardized math benchmarks such as AIME2025 and HMMT2025. On the training set, POPE also improves pass@8, although SFT+RL can outperform it because it leverages large-scale rejection sampling that combines oracle-provided prefixes with model rollouts. This comparison highlights the importance of on-policy exploration guided by privileged information as opposed to passively distilling it into a model. Overall, we find that prefixes of solutions from a stronger LLM can substantially improve exploration on hard problems. All reported numbers are computed with 32 rollouts.

POPE with human-written solutions. Figure 6 shows results using prefixes of human-written solutions from Omni-MATH (Gao et al., 2024) difficulty 5–8 problems as privileged information. Many of these training and test problems are substantially harder than those in the Gemini setting, to the point that even strong proprietary LLMs fail on them. Nevertheless, POPE again outperforms baselines across train, test, and benchmark evaluations. The gains are especially pronounced over standard RL, which is unable to make progress in this regime. These findings demonstrate that POPE can leverage even human solutions to unlock RL training on problems beyond the reach of current LLMs. Taken together with the Gemini setting, these results illustrate the overall efficacy of POPE in improving exploration and performance on harder problems.

6.2 ABLATION STUDIES

Next, we present a series of ablation experiments for POPE to better understand the role of different design choices in our approach and in the baselines. We focus on three key questions: (1) How does the amount of privileged information influence the efficacy of POPE? (3) How do different sources of privileged information, such as a stronger language model (Gemini 2.5 Pro in our case) and human data, compare in their effectiveness? (3) To what extent does POPE address the ray interference issue outlined in Figure 2 with standard RL? and (4) Does POPE enable transfer of strategies learned under privileged guidance to the original prompt without guidance? We address the first three questions below and provide a qualitative example for answering (4).

1) Amount of privileged information. To answer the first question, we ablated POPE by varying the amount of privileged information used for conditioning. Specifically, we compared POPE against: **a**) a *longer prefix*, where the first $1/4$ of the oracle solution was provided for every problem, and **b**) a *random prefix*, where a randomly sampled prefix of the oracle solution was used as privileged information. As shown in Figure 7, using the minimal prefix prescribed by POPE performs best across the train set, test set, and the AIME/HMMT benchmarks. The random prefix strategy generally performs second best, roughly matching POPE on the train set and AIME 2025, but falling behind on the test set and HMMT 2025. In contrast, providing excessive privileged information through the longer prefix was detrimental: the percentage of unsolved problems decreased no faster than in standard RL without any privileged information. We suspect this is because longer prefixes exacerbate the rich-gets-richer problem: by making some problems substantially easier by revealing a longer prefix than what is needed to attain a particular accuracy under the base model, this strategy can induce a disparate distribution over prompt difficulty in the training set.

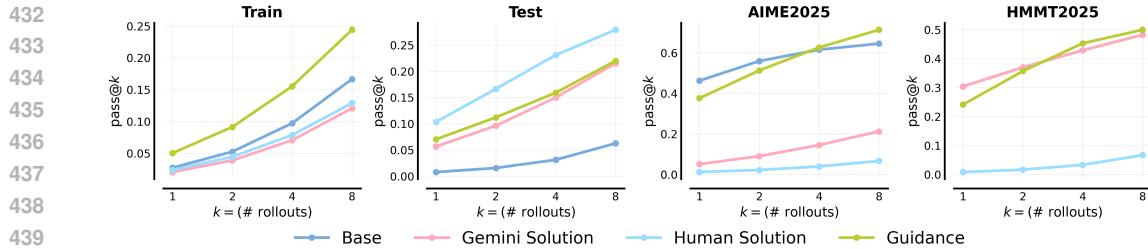


Figure 8: **Comparison of different sources of oracle data as training target.** Cloning reasoning traces generated from the base model itself generated by running rejection sampling on the prompt augmented with privileged prefixes outperforms cloning human or Gemini solutions. However, the base model often performs better than most SFT variants, especially on train, test, and at larger k for AIME and HMMT. This shows that directly using oracle solutions as training targets can degrade pass@ k performance.

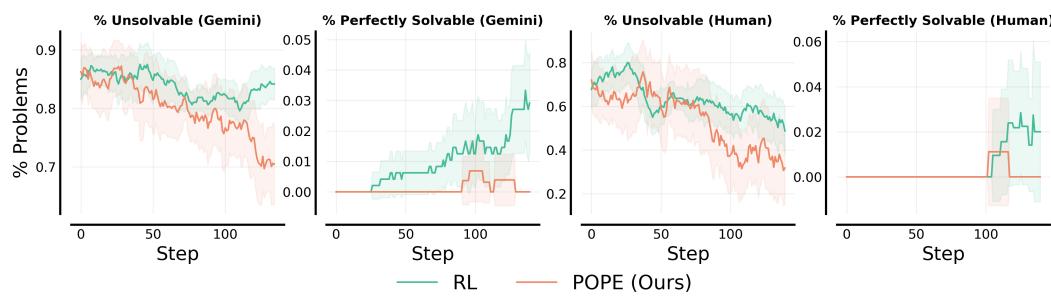


Figure 9: **Assessing ray interference with POPE.** We plot the percentage of unsolved and perfectly solved problems over the course of training, evaluated without privileged information. Naïve RL exhibits the same failure mode as in Figure 3: it initially solves new problems but soon over-sharpenes on a subset of prompts, and eventually even unlearns problems solved earlier in training. In contrast, POPE steadily reduces the fraction of unsolved problems and avoids excessive sharpening, thereby mitigating ray interference.

2) Comparing different sources of oracle data. We next compare the efficacy of different types of oracle data when used only for supervised fine-tuning (SFT). For this experiment, we fine-tune the base model on three sources: **a)** human-written solutions, **b)** language model generated solutions from Gemini, and **c)** reasoning traces generated by prompting the base model with a prefix of the Gemini solution (the same setup used in our SFT+RL comparison). As shown in Figure 8, SFT with approach **c**), which clones reasoning traces largely obtained through rejection sampling from the base model, outperforms cloning either human or Gemini solutions. However, we also find that in many cases the base model itself achieves higher performance than any SFT variant, particularly on the train set, the test set, and at larger k values for AIME and HMMT. This result is consistent with prior observations in synthetic data (Setlur et al., 2024) and reinforces our motivation: directly using oracle solutions as training targets is not effective, since it often reduces pass@ k performance.

3) Assessing ray interference with POPE. Finally, we assess the extent of ray interference under POPE by plotting the percentage of unsolved and perfectly solved problems over the course of training in Figure 9, analogous to Figure 2. Although training uses a mixture of augmented and unaugmented prompts, evaluation is performed without any privileged information. As shown in the figure, naïve RL fine-tuning follows the same failure mode as in Figure 2: the model initially learns to solve new problems, but soon begins to sharpen on a subset of prompts where it consistently produces correct rollouts, while progress on other problems stalls. In fact, as training goes on, the model unlearns certain problems that it could solve earlier in training. In contrast, POPE steadily reduces the fraction of unsolved problems throughout training and avoids excessive sharpening (perfectly solved problems is lower for POPE), thereby addressing the challenge of ray interference.

7 DISCUSSION AND PERSPECTIVES ON FUTURE WORK

We introduce POPE: a framework for enabling reinforcement learning on hard reasoning problems by guiding exploration with minimal oracle prefixes. We show that POPE consistently outperforms standard RL and SFT baselines, improves pass@ k on both training and held-out test problems, and achieves state-of-the-art results on math benchmarks such as AIME 2025 and HMMT 2025, while mitigating ray interference. Looking forward, we envision extending POPE to multimodal reasoning tasks and adaptive prefix selection strategies that further automate privileged guidance.

486 8 ETHICS STATEMENT
487488 Our training and empirical evaluation centers on mathematical reasoning tasks (e.g., AIME, HMMT,
489 Omni-MATH), which are widely regarded as low-risk, since they rely on publicly available bench-
490 marks without private or sensitive personal data. The risk of producing toxic or harmful outputs
491 in these structured reasoning tasks is minimal relative to open-ended generation. That said, we
492 recognize the broader ethical implications of advancing LLM capabilities. While enhanced reasoning
493 holds significant promise for scientific and educational progress, it also entails dual-use risks, such as
494 potential misuse in generating sophisticated disinformation.495
496 9 REPRODUCIBILITY STATEMENT
497498 We have taken several steps to ensure reproducibility of our results. The full description of the
499 POPE algorithm is given in Sec. 5, with training details and datasets described in Sec. 6. Training
500 hyperparameters for both supervised fine-tuning and RL are reported in Appendix A (Tables 1 and
501 2). Qualitative examples of rollouts with and without guidance are provided in Figs. 2, 7. Together,
502 these resources should allow independent researchers to replicate and extend both the empirical and
503 methodological contributions of this work.504
505 REFERENCES
506507 Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos Garea, Matthieu
508 Geist, and Olivier Bachem. On-policy distillation of language models: Learning from self-
509 generated mistakes. In *The Twelfth International Conference on Learning Representations*, 2024a.
510 URL <https://openreview.net/forum?id=3zKtaqxLhW>.511 Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos, Matthieu Geist,
512 and Olivier Bachem. On-policy distillation of language models: Learning from self-generated
513 mistakes, 2024b. URL <https://arxiv.org/abs/2306.13649>.514 Mohammad Hossein Amani, Aryo Lotfi, Nicolas Mario Baldwin, Samy Bengio, Mehrdad Farajtabar,
515 Emmanuel Abbe, and Robert West. RL for reasoning by adaptively revealing rationales, 2025. URL
516 <https://arxiv.org/abs/2506.18110>.517 Ananth Balashankar, Ziteng Sun, Jonathan Berant, Jacob Eisenstein, Michael Collins, Adrian Hutter,
518 Jong Lee, Chirag Nagpal, Flavien Prost, Aradhana Sinha, Ananda Theertha Suresh, and Ahmad
519 Beirami. Infalign: Inference-aware language model alignment, 2025. URL <https://arxiv.org/abs/2412.19792>.520 Mislav Balunović, Jasper Dekoninck, Ivo Petrov, Nikola Jovanović, and Martin Vechev. Math-
521 arena: Evaluating llms on uncontaminated math competitions, February 2025. URL <https://matharena.ai/>.522 Yinlam Chow, Guy Tennenholz, Izzeddin Gur, Vincent Zhuang, Bo Dai, Sridhar Thiagarajan, Craig
523 Boutilier, Rishabh Agarwal, Aviral Kumar, and Aleksandra Faust. Inference-aware fine-tuning for
524 best-of-n sampling in large language models. *arXiv preprint arXiv:2412.15287*, 2024.525 Nicholas E. Corrado, Yuxiao Qu, John U. Balis, Adam Labiosa, and Josiah P. Hanna. Guided
526 data augmentation for offline reinforcement learning and imitation learning, 2024. URL <https://arxiv.org/abs/2310.18247>.527 Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D. Goodman. Cognitive
528 behaviors that enable self-improving reasoners, or, four habits of highly effective stars, 2025. URL
529 <https://arxiv.org/abs/2503.01307>.530 Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
531 Liang Chen, Runxin Xu, Zhengyang Tang, Benyou Wang, Daoguang Zan, Shanghaoran Quan,
532 Ge Zhang, Lei Sha, Yichang Zhang, Xuancheng Ren, Tianyu Liu, and Baobao Chang. Omni-
533 math: A universal olympiad level mathematic benchmark for large language models, 2024. URL
534 <https://arxiv.org/abs/2410.07985>.

540 Jingtong Gao, Ling Pan, Yeting Wang, Rui Zhong, Chi Lu, Qingpeng Cai, Peng Jiang, and Xi-
 541 angyu Zhao. Navigate the unknown: Enhancing llm reasoning with intrinsic motivation guided
 542 exploration, 2025. URL <https://arxiv.org/abs/2505.17621>.

543

544 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
 545 Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. Olympiad-
 546 bench: A challenging benchmark for promoting agi with olympiad-level bilingual multimodal
 547 scientific problems, 2024. URL <https://arxiv.org/abs/2402.14008>.

548 Joey Hong, Anca Dragan, and Sergey Levine. Planning without search: Refining frontier llms with
 549 offline goal-conditioned rl. *arXiv preprint arXiv:2505.18098*, 2025.

550

551 Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan Leike,
 552 John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step, 2023.

553

554 Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
 555 Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models,
 556 2025. URL <https://arxiv.org/abs/2505.24864>.

557

558 Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
 559 Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-preview with
 560 a 1.5b model by scaling rl, 2025. URL <https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005b>
 561 Notion Blog.

562

563 Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive introspection: Teaching
 564 language model agents how to self-improve. *arXiv preprint arXiv:2407.18219*, 2024.

565

566 Yuxiao Qu, Anikait Singh, Yoonho Lee, Amirth Setlur, Ruslan Salakhutdinov, Chelsea Finn, and
 567 Aviral Kumar. Learning to discover abstractions for LLM reasoning. In *ICML 2025 Workshop on
 568 Programmatic Representations for Agent Learning*, 2025. URL <https://openreview.net/forum?id=zwE00KT8G>.

569

570 Tom Schaul, Diana Borsa, Joseph Modayil, and Razvan Pascanu. Ray interference: a source of
 571 plateaus in deep reinforcement learning. *CoRR*, abs/1904.11455, 2019. URL <http://arxiv.org/abs/1904.11455>.

572

573 Pier Giuseppe Sessa, Robert Dadashi, Léonard Hussenot, Johan Ferret, Nino Vieillard, Alexandre
 574 Ramé, Bobak Shariari, Sarah Perrin, Abe Friesen, Geoffrey Cideron, Sertan Girgin, Piotr Stanczyk,
 575 Andrea Michi, Danila Sinopalnikov, Sabela Ramos, Amélie Héliou, Aliaksei Severyn, Matt
 576 Hoffman, Nikola Momchev, and Olivier Bachem. Bond: Aligning llms with best-of-n distillation,
 577 2024. URL <https://arxiv.org/abs/2407.14622>.

578

579 Amirth Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar. Rl on
 580 incorrect synthetic data scales the efficiency of llm math reasoning by eight-fold. *arXiv preprint
 581 arXiv:2406.14532*, 2024.

582

583 Amirth Setlur, Nived Rajaraman, Sergey Levine, and Aviral Kumar. Scaling test-time compute without
 584 verification or rl is suboptimal, 2025a. URL <https://arxiv.org/abs/2502.12118>.

585

586 Amirth Setlur, Matthew Y. R. Yang, Charlie Snell, Jeremy Greer, Ian Wu, Virginia Smith, Max
 587 Simchowitz, and Aviral Kumar. e3: Learning to explore enables extrapolation of test-time compute
 588 for llms, 2025b. URL <https://arxiv.org/abs/2506.09026>.

589

590 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 591 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
 592 mathematical reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.

593

594 Yuda Song, Hanlin Zhang, Carson Eisenach, Sham Kakade, Dean Foster, and Udaya Ghai. Mind
 595 the gap: Examining the self-improvement capabilities of large language models. *arXiv preprint
 596 arXiv:2412.02674*, 2024.

594 Yuda Song, Julia Kempe, and Remi Munos. Outcome-based exploration for llm reasoning, 2025.
 595 URL <https://arxiv.org/abs/2509.06941>.
 596

597 Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
 598 Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
 599 effective reinforcement learning for llm reasoning. *arXiv preprint arXiv:2506.01939*, 2025a.

600 Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Liyuan Liu, Baolin Peng, Hao Cheng, Xuehai
 601 He, Kuan Wang, Jianfeng Gao, Weizhu Chen, Shuohang Wang, Simon Shaolei Du, and Yelong
 602 Shen. Reinforcement learning for reasoning in large language models with one training example,
 603 2025b. URL <https://arxiv.org/abs/2504.20571>.

604 Yue Wang, Qizhi Liu, Jiahao Xu, Tian Liang, Xingyu Chen, Zhiwei He, Linfeng Song, Dian Yu,
 605 Juntao Li, Zhuosheng Zhang, et al. Thoughts are all over the place: On the underthinking of
 606 o1-like llms. *arXiv preprint arXiv:2501.18585*, 2025c.

607

608 Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang.
 609 Learning to reason under off-policy guidance, 2025. URL <https://arxiv.org/abs/2504.14945>.
 610

611 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 612 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
 613 scale. *arXiv preprint arXiv:2503.14476*, 2025.

614

615 Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Chuanqi Tan, and Chang Zhou. Scaling
 616 relationship on learning mathematical reasoning with large language models. *arXiv preprint
 617 arXiv:2308.01825*, 2023.

618 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, and Gao Huang.
 619 Does reinforcement learning really incentivize reasoning capacity in llms beyond the base model?,
 620 2025. URL <https://arxiv.org/abs/2504.13837>.
 621

622 Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
 623 reasoning. *Advances in Neural Information Processing Systems*, 35:15476–15488, 2022.

624

625 Wenhao Zhang, Yuexiang Xie, Yuchang Sun, Yanxi Chen, Guoyin Wang, Yaliang Li, Bolin Ding,
 626 and Jingren Zhou. On-policy rl meets off-policy experts: Harmonizing supervised fine-tuning
 627 and reinforcement learning via dynamic weighting, 2025. URL <https://arxiv.org/abs/2508.11408>.
 628

629 Rosie Zhao, Alexandru Meterez, Sham Kakade, Cengiz Pehlevan, Samy Jelassi, and Eran Malach.
 630 Echo chamber: Rl post-training amplifies behaviors learned in pretraining, 2025. URL <https://arxiv.org/abs/2504.07912>.
 631

632 Xinyu Zhu, Mengzhou Xia, Zhepei Wei, Wei-Lin Chen, Danqi Chen, and Yu Meng. The surprising
 633 effectiveness of negative reinforcement in llm reasoning, 2025. URL <https://arxiv.org/abs/2506.01347>.
 634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 Appendices

651 A TRAINING HYPERPARAMETERS

653 A.1 HYPERPARAMETERS FOR SFT

655 For POPE and RL runs, we utilize the [TRL](#) codebase. The base models are directly loaded from
 656 Hugging Face: [Qwen3-4B](#)

658 Hyperparameter	659 Values
660 learning_rate	1.0e-5
661 num_train_epochs	3
662 batch_size	128
663 gradient_checkpointing	True
664 max_seq_length	16384
665 bf16	True
666 num_gpus	8
667 warmup_ratio	0.1

668 Table 1: Hyperparameters used for POPE

671 A.2 HYPERPARAMETERS FOR RL

672 We utilize the [verl](#) codebase to run GRPO. We use [Qwen3-4B](#) as the base model for training.

675 Hyperparameter	676 Values
677 max_prompt_length	2048
678 max_response_length	16384
679 clip_ratio_low	0.2
680 clip_ratio_high	0.35
681 train_batch_size	32
682 learning_rate	1.0e-6
683 kl_loss_coeff	0.001
684 temperature	0.8
685 critic_warmup	0
686 total_training_steps	300
687 num_gpus	16

688 Table 2: Hyperparameters used for POPE & RL

690 B USE OF LARGE LANGUAGE MODELS

693 We used large language models (LLMs) as an assistive tool primarily for rephrasing arguments more
 694 crisply and for generating LaTeX templates (e.g., tables, algorithm boxes, or figure formatting). All
 695 research ideas, developments, experiments, and empirical results were conceived, executed, and
 696 validated by the authors. The LLM did not contribute to the scientific content, claims, or findings of
 697 this work.

702 C PROMPTS
703704 We use the following prompt to guide the model in solving a problem with a partial solution.
705706 Prompt for Solving with Partial Solution
707708 You are given a problem and a partial solution. Your task is to
709 carefully study the partial response, identify what reasoning
710 or steps are already provided, and then complete the solution
711 from where it left off. Ensure your continuation is logically
712 consistent and leads to a complete and correct final answer.
713 ****Important**:** Show your reasoning step-by-step, and clearly
714 present the final answer using LaTeX-style `\boxed{}` notation.
715

716 Problem: <Problem>

717 Partial Response: <Partial Response>

718 Continue solving the problem, starting from where the partial
719 response ends. Make sure your final answer is written as:
720`<Answer>`721
722 D EXAMPLES723 Here we provide an example from the Omni-MATH dataset with a human solution.
724725 Question from Omni-MATH
726727 Let $k \geq 2$ be an integer. Find the smallest integer $n \geq k + 1$ with
728 the property that there exists a set of n distinct real numbers
729 such that each of its elements can be written as a sum of k other
730 distinct elements of the set.
731732 Human Solution
733734 Let $k \geq 2$ be an integer. We need to find the smallest integer
735 $n \geq k + 1$ such that there exists a set S of n distinct real numbers,
736 where each element of S can be expressed as a sum of k other
737 distinct elements of S .
738 To solve this problem, we consider the construction of such a set
739 S .
740741 1. ****Understanding the Problem:****742 - For each element $s \in S$, we need k distinct elements from $S \setminus \{s\}$ that
743 sum up to s .744 2. ****Minimum Size Construction:****745 - We start by proving that with $n = k + 4$, such a set can indeed be
746 constructed.

747 - Consider a construction where:

748 - Choose $k+1$ elements as the base set: $\{a_1, a_2, \dots, a_{k+1}\}$.749 - Introduce an additional four elements: $\{b_1, b_2, b_3, b_4\}$.750 - We construct our set S as:

751
$$S = \{a_1, a_2, \dots, a_{k+1}, b_1, b_2, b_3, b_4\}$$

752 3. ****Illustrating the Construction:****

753 - Arrange the elements such that:

754 - Each a_i is expressed as the sum of any k of the other a_j 's and some
755 b 's if necessary.756 - Each b_i can be expressed using a combination of a 's and other b 's.757 4. ****Verification:****

756

- By choosing specific numbers for each b_i , we ensure that each number in the constructed set can indeed be expressed as a sum of k distinct others.
- For example, by choosing values and testing that the sum condition holds, we verify that each possibility works, fulfilling the problem's conditions.
- 5. **Conclusion:**
- Testing smaller n for valid configurations will fail due to insufficient numbers to formulate each possible sum using k distinct numbers.
- Therefore, the smallest n for which such a configuration is possible indeed turns out to be $n = k + 4$.
Thus, the smallest integer n such that a set S with the given conditions can be constructed is: $\boxed{k + 4}$

769

770 Here we provide an example from the DAPO dataset with a solution generated by gemini-2.5-pro.
771

772

Question from DAPO

773

774

775 Find the smallest natural number n such that the expression $n^2 - n + 11$
776 has exactly four prime factors, which may not be distinct.

777

778

Solution generated by Gemini

779

780 Let the given expression be $f(n) = n^2 - n + 11$. We are looking for
781 the smallest natural number n such that $f(n)$ has exactly four prime
782 factors, including multiplicity. This means $\Omega(f(n)) = 4$, where $\Omega(k)$
783 is the total number of prime factors of k .

784 Let's analyze the expression $f(n) = n(n - 1) + 11$. Since $n(n - 1)$
785 is always an even number, $f(n)$ is always odd. So, 2 cannot be a
786 prime factor of $f(n)$. Let's check for other small prime factors:

787 - Modulo 3: $n(n - 1)$ can be $0 \times (-1) \equiv 0$, $1 \times 0 \equiv 0$, or $2 \times 1 \equiv 2$.
788 So $n^2 - n + 11 \equiv n(n - 1) + 2 \pmod{3}$ can be $0 + 2 = 2$, $0 + 2 = 2$,
789 or $2 + 2 = 4 \equiv 1$. So $f(n)$ is never divisible by 3. - Modulo 5:
790 $n(n - 1) + 11 \equiv n(n - 1) + 1 \pmod{5}$. $n(n - 1)$ can be $0, 2, 6 \equiv 1, 12 \equiv 2, 20 \equiv 0$.
791 So $n(n - 1) + 1 \pmod{5}$ can be $1, 2, 3$. So $f(n)$ is never divisible by
792 5. - Modulo 7: $n(n - 1) + 11 \equiv n(n - 1) + 4 \pmod{7}$. $n(n - 1)$ can
793 be $0, 2, 6, 12 \equiv 5, 20 \equiv 6, 30 \equiv 2, 42 \equiv 0$. So $n(n - 1) + 4 \pmod{7}$ can be
4, 6, 10 $\equiv 3, 9 \equiv 2$. So $f(n)$ is never divisible by 7. - Modulo 11:
794 $f(n) = n^2 - n + 11 \equiv n(n - 1) \pmod{11}$. $f(n)$ is divisible by 11 if and only
795 if $n(n - 1) \equiv 0 \pmod{11}$. Since 11 is prime, this occurs when $n \equiv 0$
796 $\pmod{11}$ or $n \equiv 1 \pmod{11}$.

797 So, the smallest possible prime factor of $f(n)$ is 11. We want $f(n)$
798 to be a product of four primes, $p_1 p_2 p_3 p_4$. To find the smallest n , we
799 should look for the smallest possible value of $f(n)$. The function
800 $f(n) = n^2 - n + 11$ is increasing for $n \geq 1$. So smaller values of n give
801 smaller values of $f(n)$.

802 The smallest number that is a product of four primes, where each
803 prime is at least 11, is 11^4 . Let's see if $f(n)$ can be equal to
804 $11^4 = 14641$. We need to solve $n^2 - n + 11 = 14641$ for a natural
805 number n . $n^2 - n - 14630 = 0$. Using the quadratic formula, $n =$
806 $\frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-14630)}}{2(1)} = \frac{1 \pm \sqrt{1+58520}}{2} = \frac{1 \pm \sqrt{58521}}{2}$. For n to be an integer,
807 58521 must be a perfect square. Let's estimate $\sqrt{58521}$. $200^2 = 40000$,
808 $250^2 = 62500$. $240^2 = 57600$. $241^2 = (240 + 1)^2 = 57600 + 480 + 1 = 58081$.
809 $242^2 = (240 + 2)^2 = 57600 + 960 + 4 = 58564$. Since $241^2 < 58521 < 242^2$, 58521
is not a perfect square. Thus, there is no integer n for which
 $f(n) = 11^4$.

810 Let's find the next smallest number composed of four prime factors,
811 each at least 11. The candidates for the smallest such numbers are
812 $11^4 = 14641$, $11^3 \times 13 = 1331 \times 13 = 17303$, $11^2 \times 13^2 = 121 \times 169 = 20449$, etc. The

smallest is 11^4 , which we've ruled out. The next smallest is $11^3 \times 13$. Let's check if $f(n)$ can be equal to $11^3 \times 13 = 17303$. We need to solve $n^2 - n + 11 = 17303$. $n^2 - n - 17292 = 0$. Using the quadratic formula, $n = \frac{1 \pm \sqrt{1-4(1)(-17292)}}{2} = \frac{1 \pm \sqrt{1+69168}}{2} = \frac{1 \pm \sqrt{69169}}{2}$. For n to be an integer, 69169 must be a perfect square. Let's estimate $\sqrt{69169}$. $200^2 = 40000$, $300^2 = 90000$. $260^2 = 67600$. The last digit is 9, so the root could end in 3 or 7. Let's try $263^2 = (260 + 3)^2 = 67600 + 2 \times 3 \times 260 + 9 = 67600 + 1560 + 9 = 69169$. So, 69169 is a perfect square, and its square root is 263. Then $n = \frac{1+263}{2}$. This gives two possible integer values for n : $n_1 = \frac{1+263}{2} = \frac{264}{2} = 132$. $n_2 = \frac{1-263}{2} = \frac{-262}{2} = -131$. Since we are looking for a natural number n , we have $n = 132$. For $n = 132$, $f(132) = 132^2 - 132 + 11 = 17424 - 132 + 11 = 17292 + 11 = 17303$. And $17303 = 11^3 \times 13$. The prime factors are 11, 11, 11, 13. There are exactly four prime factors. So, $n = 132$ is a candidate.

To be sure that $n = 132$ is the smallest such natural number, we need to confirm that no smaller n results in a four-prime-factor number. The function $f(n)$ is increasing for $n \geq 1$. So for any $n < 132$, $f(n) < f(132) = 17303$. If there were a smaller $n_0 < 132$ such that $f(n_0)$ has four prime factors, then $f(n_0)$ would have to be a number smaller than 17303 with four prime factors, each being at least 11. The smallest such number is $11^4 = 14641$. We have already shown that $f(n)$ cannot be 14641. The next smallest such number is $11^3 \times 13 = 17303$, but this value is not smaller than 17303. Any other combination of four primes (e.g., $11^2 \times 13^2 = 20449$) will be larger. Therefore, there is no value of $f(n)$ with four prime factors smaller than 17303. This means that no $n < 132$ can produce a value of $f(n)$ with four prime factors. Thus, the smallest natural number n is 132.

Final check: For $n = 132$, $f(132) = 132^2 - 132 + 11 = 17303$. Prime factorization of 17303: $17303 = 11 \times 1573$. $1573 = 11 \times 143$. $143 = 11 \times 13$. So $f(132) = 11 \times 11 \times 11 \times 13 = 11^3 \times 13$. This number has $3+1=4$ prime factors.

Here we provide example rollouts from a model fine-tuned with POPE.

841
842
843 Prompt augmented with partial solution

844 You are given a problem and a partial solution.

845 Your task is to carefully study the partial response, identify what reasoning or steps are already provided, and then complete the solution from where it left off. Ensure your continuation is logically consistent and leads to a complete and correct final answer. Show your reasoning step-by-step and clearly present the final answer using LaTeX-style ‘boxed’ notation.

846

847

Problem: How many real numbers x satisfy the equation $\frac{1}{5} \log_2 x = \sin(5\pi x)$?

Partial Response: Let the given equation be $\$f(x) = g(x)\$, where $\$f(x) = \frac{1}{5} \log_2 x\$$ and $\$g(x) = \sin(5\pi x)\$. First, let's determine the domain of possible solutions. The domain of $\$f(x) = \frac{1}{5} \log_2 x\$$ is $\$x > 0\$$. The range of $\$g(x) = \sin(5\pi x)\$$ is $\$[-1, 1]\$$. For a solution to exist, $\$f(x)\$$ must be in the range of $\$g(x)\$$. So, we must have $\$-1 \leq \frac{1}{5} \log_2 x \leq 1\$$. This inequality is equivalent to $\$-5 \leq \log_2 x \leq 5\$$. Exponentiating with base 2, we get $\$2^{-5} \leq x \leq 2^5\$$, which is $\$32 \leq x \leq 32\$$. So, we only need to search for solutions in the interval $\$[32, 32]\$$. We can split the analysis into two main intervals: $\$[32, 32]\$$ and $\$[32, 32]\$$.$$

855 Continue solving the problem, starting from where the partial response ends. Make sure your final answer is written as: `{boxed{[text]}}{Answer}}`

POPE model with oracle guidance

<input type="text" value="Okay, let me try to figure out how to solve this equation: (1/5)log x = sin(5x). The **partial response already set up the domain and split it into two intervals, [0,1] and [1,3], I need to check both of these intervals and count the number of real solutions.** First, I remember that the sine function oscillates between -1 and 1. Since we already have the domain restricted to between 1/32 and 32, we need to consider how the logarithmic function behaves in those intervals.\n\nLet me think about the function $f(x) = (1/5) \log x$. For x in $[0,1]$, $\log x$ is negative or zero. Since $x > 0$, when x is in $(0,1)$, $\log x$ is negative, and when $x = 1$, $\log x$ is 0. So, multiplying by $1/5$, $f(x)$ will be between $-1/5$ and 0 in that interval. Wait, but the partial response said that the equation requires $f(x)$ to be between -1 and 1.

POPE model without oracle guidance

<input> Okay, so I need to figure out how many real numbers x satisfy the equation $\log_2 x = 5$. Hmm, let me start by understanding what each side of the equation represents.
 <input> First, the left-hand side is $\log_2 x$. That means it's a logarithmic function scaled by 1/2. The logarithm is only defined for $x > 0$, so that restricts the domain to positive real numbers so the left side is $1/2$. When $x=1/2$, $\log_2(1/2) = -1$, so left side is $-1/2$.
 <input> Now, the right side is $\sin(5x)$, which oscillates between -1 and 1. So, if we multiply both sides by 5, the equation becomes $\log_2 x = 5 \sin(5x)$. Therefore, since $\log_2 x$ can be any real number (as x is positive), but $5 \sin(5x)$ is between -5 and 5. However, since $\log_2 x$ must be between -5 and 5 for the equation to have solutions. Therefore, we can find the range of x where $\log_2 x$ is between -5 and 5. Let me solve that:
 $\log_2 x = 5 \sin(5x) \Rightarrow x = 2^{\sin(5x)}$
 <input> The equation can only have solutions for x in the interval $[1/32, 32]$. But wait, but $\log_2 x$ is

Figure 10: *Example rollouts from a model fine-tuned with POPE*, shown with and without conditioning on a partial oracle solution. In both cases the model adopts a similar strategy: when guidance is provided it follows the partial solution, and when guidance is absent it independently proposes the same strategy. This illustrates at least some form of knowledge sharing across augmented and unaugmented versions of the prompts.