Bias of Stochastic Gradient Descent or the Architecture: Disentangling the
Effects of Overparameterization of Neural Networks

Amit Peleg ' > Matthias Hein ! 2

Abstract

Neural networks typically generalize well when
fitting the data perfectly, even though they are
heavily overparameterized. Many factors have
been pointed out as the reason for this phe-
nomenon, including an implicit bias of stochastic
gradient descent (SGD) and a possible simplicity
bias arising from the neural network architecture.
The goal of this paper is to disentangle the factors
that influence generalization stemming from op-
timization and architectural choices by studying
random and SGD-optimized networks that achieve
zero training error. We experimentally show, in
the low sample regime, that overparameterization
in terms of increasing width is beneficial for gen-
eralization, and this benefit is due to the bias of
SGD and not due to an architectural bias. In con-
trast, for increasing depth, overparameterization
is detrimental for generalization, but random and
SGD-optimized networks behave similarly, so this
can be attributed to an architectural bias.

1. Introduction

The generalization of neural networks challenges common
wisdom in classical statistical learning theory (Vapnik &
Chervonenkis, 1971): the number of parameters in today’s
neural networks is much larger than necessary to fit the
data (Zhang et al., 2017), and further increasing network
size, i.e., more overparameterization, yields better general-
ization (Hestness et al., 2017; Allen-Zhu et al., 2019). The
underlying mechanisms of generalization despite overpa-
rameterization remain, to a large extent, an open question.

While the contribution of certain aspects has been examined
in the past (e.g., batch size (Keskar et al., 2017a) and learn-
ing rate (Li et al., 2019)), isolating the effect of gradient-
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based optimization is more challenging due to its integral
role in today’s well-performing networks. The implicit bias
of Stochastic Gradient Descent (SGD) is thus often thought
to be the main reason behind generalization (Arora et al.,
2019; Shah et al., 2020). A recent thought-provoking study
by Chiang et al. (2023) suggests the idea of the volume hy-
pothesis for generalization: well-generalizing basins of the
loss occupy a significantly larger volume in the weight space
of neural networks than basins that do not generalize well.
They argue that the generalization performance of neural
networks is primarily a bias of the architecture and that the
implicit bias of SGD is only a secondary effect. To this end,
they randomly sample networks that achieve zero training
error (which they term Guess and Check (G&C)) and argue
that the generalization performance of these networks is
qualitatively similar to networks found by SGD.

In this work, we revisit the approach of Chiang et al. (2023)
and study it in detail to disentangle the effects of implicit
bias of SGD from a potential bias of the choice of architec-
ture. As we have to compare to randomly sampled neural
networks, our analysis is restricted to binary classification
tasks in the low sample regime. Specifically, we analyze
the behavior of the LeNet (LeCun et al., 1998), Multi-Layer
Perceptron (MLP), and ResNet (He et al., 2016) architec-
tures.

In summary, we make the following contributions:

* We show that some findings of Chiang et al. (2023)
are based on a sub-optimal initialization of SGD, which
makes SGD artificially worse. Moreover, we argue that
their normalized loss cannot be used to compare networks
of different architectures. We suggest an alternative nor-
malization and analysis scheme that allows us to study
the effects of increasing overparameterization (in terms
of width and depth).

* We show that increasing overparameterization in terms
of width improves the generalization of SGD, while for
randomly sampled networks, it remains mostly unaffected.
This indicates a clear implicit bias of SGD.

* On the contrary, increasing overparameterization in terms
of depth is detrimental to generalization both for SGD
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and G&C. As they behave similarly, the negative impactfeatures.
of increased depth can be mainly attributed to a bias i

the architecture. rI'_oss landscape perspectivesseveral works connect gen-

eralization properties to the geometry of the loss land-

scape, often involving sharpness quantities (Dziugaite &
Note that we do not claim that increasing depth is alwaysRoy, 2017; Keskar et al., 2017b; Jiang* et al., 2020; Foret
detrimental to generalization, but rather that improvementsst al., 2021). The relevance of this relation, however, is
regarding depth are due to architectural bias and not dugnclear (Andriushchenko et al., 2023a). This connection
to SGD. In contrast, increasing width, even for randomlypetween atness and well-performing models is also present
sampled networks, does not harm generalization, and thi@ the Bayesian literature (Izmailov et al., 2018; Wilson &
implicit bias of SGD leads to networks with higher margins, |zmailov, 2020).

signi cantly improving generalization. o
The volume hypothesis. Pérez et al. (2019) observed a

bias towards simple functions in deep networks, irrespective
2. Related Work of optimization. Huang et al. (2020) hypothesized that the

Understanding the generalization properties of deep neurdP!Ume of bad minima in weight space might be smaller
networks is a long-standing research topic that has beejjan that of well-generalizing minima. Mingard et al. (2021)

tackled from different angles (Cybenko, 1989; Hornik, 1991;further argued that, in simpli ed terms, SGD behaves like a
Wolpert, 1995 Bartlett & Mendelson, 2002; Hoffer et al Bayesian sampler and that the inductive bias in deep learn
2017 Jakubovitz et al. 2019). ’ ’ " ing does not primarily stem from the optimizer. However,

their approximation requires in nite width and thus does
Overparameterization and generalization. Traditional  not apply to practical networks. Geiping et al. (2022) ques-
learning theory with complexity measures, e.g., the VC ditioned the relevance of stochasticity in SGD by illustrating
mension (Vapnik & Chervonenkis, 1971), suggests that fothat gradient descent with explicit regularization can per-
generalization, models should not be able to t any possiform comparably. Chiang et al. (2023) argued that the im-
ble training data (Shalev-Shwartz & Ben-David, 2014). Inplicit bias of SGD is only a secondary effect, and the main
particular, heavily over-parametrized models should over tcontribution to generalization comes from the architecture.
the data (Hastie et al., 2001). However, even though net-
works are large enough to t the data perfectly (Haeffele &3 Setup
Vidal, 2017; Nguyen & Hein, 2018), we essentially observe™"
the opposite (Belkin et al., 2018; Neal et al., 2019; Bartlettour main goal in this work is to disentangle the architectural
etal., 2020). Speci cally, Zhang et al. (2017) showed thathjas — the bias inherent in the function class obtained by
a CNN architecture can obtain perfect train accuracy bothandomly sampling the network parameters — from the bias
on random and non-random labels on the CIFAR10 datasesf SGD regarding generalization in the overparameterized
proving that the models are expressive enough to memorizgetting. Our setup is similar to Chiang et al. (2023). How-
while still being able to generalize. Additionally, Arpit et al. ever, we deviate in our evaluation, arguing below that their
(2017) illustrated that the networks do not just memorizeconclusions are potentially inaccurate due to issues in their
the data but learn simple patterns rst, and Neal et al. (2019 pplication of SGD and the quantities they considered. To
reported that both bias and variance can decrease as thghieve our objective, we utilize a random sampling pro-
number of parameters grows. cedure, termed G&C in Chiang et al. (2023), as well as
Implicit bias from the optimizer. The success of modern SGD to attain neural networks that achieve zero training

deep learning is often attributed to the implicit bias of the€T0r- However, due to the exponentially increasing compu-
optimizers (Neyshabur et al., 2015): Soudry et al. (2018Jfatlonal cost of G&C, we limit our study to binary classi ca-
showed that SGD on linearly separable data converges to 9" tasks rom MNIST (LeCun et al., 1998) and CIFAR10
maximum-margin linear classi er, and Arora et al. (2019) (Krizhevsky et al., 2009) in the low sample regime.
hypothesized that the implicit regularization of gradient- .

based optimizers goes beyond what can be expressed Byl- Neural Network Architecture

standard regularizers. Galanti & Poggio (2022) '”VeSt'gat_eq:ollowing the setup of Chiang et al. (2023), we focus on ver-

the effects of small batch size on the network's rank. Liugjons of the LeNet architecture (LeCun et al., 1998) in all of
etal. (2020) related the gradient signal and noise to genergyr experiments. Additionally, we con rm our main results
ization, Advani et al. (2020) highlighted that learning with \yith an MLP and a small ResNet (He et al., 2016). Details
gradient descent effectively takes place in a subspace of thg, the architectures can be found in Appendix B.1. For the
weights, and Lee et al. (2020) observed simpli ed learny aNet the Rel U activation functiom(z) = max f z; 0g, is

ing dynamics for wider network;. Andriushchenko et a'-applied after each layer (except for the pooling layers). The
(2023b) showed that large step-size SGD leads to low-rank
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resulting functiorf : R% ! RX induced by this network asg(W;x) with respect to the weights. Furthermore, as

can be written as, shown belowj (x)j provides a lower bound on the distance
to the decision boundary. Letbe on the decision boundary,
F(Wg i Wesx)= W oa W ir a Wax; that isg(W; z) = 0. Then,

with |nputd|men§|ord andK classes. Note that the output IgOW:x)j = jg(W:x)  g(W:z2)j  L(g(W)) kx
vector off contains the logits of the classes.

When using the ReLU activation function, the functiois ~ thusj (x)j is a lower bound on the,-distance ok to the

one-homogeneous in the weight of each layer and in decision boundary aj. However, it is dif cult to determine
the inputx. That is, for each > 0, the Lipschitz constant of a neural network.

zK, ;

As a RelLU-network is piecewise linear as a functionxpit
holds

For compactness, we use the notafigkV; x), wherew = L(g(W)) = max kr xg(W;x)k,:

F(Wa g Wi aWEx) = F (We oW W X):

_ ) o We determine a lower bound dn(g(W)) by taking the
We use thd 1, 1g label encoding for binary classi cation  maximum over the union of train and test data, i.e.,
and denote the two componentsfofisf; andf ;. Let

Stain = (Xi; Vi), be the training set, wherg 2 RY, and _ g(W; x) ] 5
yi 2f 1;1g. The one-homogeneity of the ReLU network = axs warlS s KT xG(W; 2)K; - @
implies that if a network realizes zero-training error, that is
We then plug~(x) into the loss instead af(\W; x) and term
yi (Fa(Wixi)  f a(Wixi)) O i=15:00n; it Lipschitz normalized loss We note that by replacing the
) __true Lipschitz constant with a lower bound, we cannot argue

and one uses cross-entropy loss (which reduces to '09'St§nymore that~(x)j is a lower bound of the distance to the
loss in the binary case), decision boundary. However, this data-based estimate is a
tighter estimate ok (g(W)) than a direct upper bound that
uses thel-Lipschitzness of the ReLU activation,

|(y,f(W,X)):|Og 1+ e yi(f2(Wixi) f 1(Wxi)) ;

then simply upscaling the weights of any layer to in n- £
ity yields zero loss. Since upscaling the weights does not L(g(W)) kWik,., ;
change the classi er, the training loss itself is not a suit- 1=1 '

able criterion for distinguishing two ReLU networks that

achieve zero training error. Therefore, as the goal of thigvherekWik,., denotes the spectral norm of the weight
paper is to study the overparameterized regime, where th@atrix. In fact, the normalization of Chiang et al. (2023) by
network is large enough to achieve zero training error, ondh€ product of Frobenius norms,

needs a suitable normalization, which is discussed in the g(W: x)

next paragraph. xX)= o——; 3)
=1 kW, kF

3.2. Geometric Margin as a Criterion to Compare

Networks Achieving Zero Training Error is even a coarser upper bound. To sh Lat, lew) be
g g the singular values diV, thenkW k. :%V i iZ(W)

As discussed above, the (cross-entropy) loss itself is notmax; (W) = kWk,.,. Note that this gap grows with the
suitable criterion to distinguish networks that achieve zeraank of W. In their analysis, (x) is plugged into the loss,
training error. A proper criterion should eliminate the degreewhich we termweight normalized loss While their nor-
of freedom for upscaling weights (Farhang et al., 2022). Letmalized loss is ne when comparing neural networks of the
samearchitecture, it is problematic when comparifiéfer-
gW;x) = f1(W;x)  f 1(W;x); entarchitectures with different ranks @, e.g., networks
of different widths. In Section 4.2, we show that this ambi-
guity in the de nition of the normalized loss can change the
interpretation of the results of Chiang et al. (2023). While
g(W;x) we believe the ipschitz normalized lossis a more accu-
L(g(W))’ (1) rate estimate, we base our main observations on guantities
independent of this normalization to avoid the resulting
eliminates the scaling degree of freedom in the weights aambiguities. If not speci ed differently in the paper, “nor-
the Lipschitz constarit (g(W)) has the same homogeneity malized loss” always denotes our Lipschitz normalized loss.

and denote with_(g(W)) its Lipschitz constant for the
" ,-distance with respect to the inpxit Then, the criterion

(x)
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Uniform [-1, 1] Uniform [-0.2, 0.2] Kaiming Uniform Kaiming Gaussian

SGD
Test accuracy

G&C
Test accuracy

Train loss (normalized) Train loss (normalized) Train loss (normalized) Train loss (normalized)

Figure 1.Generalization of SGD (optimized) versus G&C (randomly sampled) in dependency of the prior on the weighB(W):

We “train” 2000 LeNet models td00%train accuracy fof 6 training samples from class@sind7 of MNIST. Test accuracies for G&C

are similar across initializations, and the normalized loss (see Section 3) is similar across the uniform distriBotions. 1: For

U[ 1;1]initialization, as used by Chiang et al. (2023), the normalized losses and the test accuracies of SGD and G&C are similar, except
for the convergence of SGD towards more low-margin solutions. The claim in Chiang et al. (2023) that the average test accuracy of
G&C resembles SGD, conditional on the normalized loss bin (black dots), is an artifact of the suboptimal convergence of SGD caused by
this initialization. Columns 2-4: For other initializations, SGD ( rst row) improves considerably both in terms of loss and accuracy. In
contrast, G&C remains unaffected, as it is independent of the scale of the weights in each layer. Results for different numbers of samples
and other classes from MNIST and CIFAR10 are in Appendix C.

3.3. Training of SGD and Guess and Check (G&C) we can estimate this probability as

We deliberately avoid commonly used techniques for im- N

proving generalization, such as augmentation, weight decay, Pw pw)(Train ElTo{W) =0 jSyain) 17—

and sophisticated learning rate schedulers (Ruder, 2016). In- Stain

stead, we train SGD using cross-entropy losssfoepochs  This probability indicates how dif cult it is to t the data
and a batch size d, with a xed learning rate. We run perfectly. A random functioi : R | f  1;1g yields
SGD from random initialization (see Section 4.1) and onlyprobability P; (Train Erro(W) = 0 j Syain) = zin for n

keep networks that achieve zero training error. Due to thgraining samples. This baseline is indicated with a black
strong overparameterization and our small number of traingotted line when we plot the probability to nd a perfectly
ing samples, zero training error is attained for almost everytting network vs the training set size in Figures 3 and 4.
initialization. Note that random networks can be biased towards constant

The main analysis tool of this work is randomly sampling predictions and thus be worse than a random function for a

networks from a prior on the weights and only acceptingSMall number of training samples.
networks that achieve zero training error. This is called
Guess and Check algorithm (G&C) in Chiang et al. (2023)4. Experiments

and we keep this name for simplicity. We discuss the effects o ]
of different priors in Section 4.1. In the case of overparameterization, SGD typically con-

verges to a solution with zero training error. It is also a
The advantage of random sampling networks from a priogommon belief that SGD is biased towards networks that
P(w) is that we can directly estimate the probability of generalize better. Thus, we clearly expect, even in a low
achieving zero training error for a given training $gtin = sample regime, that SGD nds, on average, better general-
(Xi;Yi)iz1 - Given that the prior distribution has compact jzing networks than G&C. It is, however, unclear to which
support, e.g., the uniform distribution, this is proportional extent the inductive bias of the function class, which is im-
to the “volume” in the weight space of perfectly tting plemented by the neural network architecture, contributes
solutions. LetMs,,, be the number of sampled networks tg petter generalization. By increasing the overparameteri-
needed to gell networks that have zero training error, then zation of the networks and comparing the average test error

4
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over networks that have achieved zero training error, w&aiming Uniform) and the Kaiming Gaussian initialization.
can disentangle the effects of the architecture and the opfror each algorithm, we “trained®000models to achieve
mization. Speci cally, we overparametrized the networks100%train accuracy on a xed subset of 16 samples from
by increasing width or depth. Then, when SGD and G&Cclasse® and7 from the MNIST dataset (similar results
behave similarly, the change can be purely attributed to théor different numbers of training samples and other classes
architecture. In contrast, when they behave differently, thédrom MNIST and CIFAR10 can be found in Appendix C).

optimization process has a clear additional bias. As argued in Section 3.1, one observes that G&C is not

As all networks found by G&C have zero training error, their affected by the scale of the uniform initialization, whereas
average test error serves as an estimator for the expectéue outcome of SGD depends heavily on it. For the Uniform
generalization ability of random networks that achieve zerd 1;1]used in Chiang et al. (2023), the average test accu-
training error, which is racy is indeed almost the same for SGD and G&B.§%
. vs. 82.8%). However, with proper initializations, the results
E[Test Erro(W) j Train Erro(W) = 0]: of SGD improve drastically to 96.3%. Additionally, the plot

We use average test accuracy as the main quantity to corlemonstrates that it is essentially impossible to compare
pare SGD and G&C, as it remains unaffected by potentiaPGD and G&C conditional on loss bins, as they achieve sig-
issues related to weight normalization. In the remainder ofti cantly different normalized losses. We stress that these
this section, we explore in Section 4.1 the effect of initial- ndings are independent of which normalized loss is used.
ization of the network (different priors for the weights) and In Figure 11, we show the same comparison as Figure 1, but
the behavior when increasing the width and depth of thaVith the weight normalized loss of Chiang et al. (2023).

network (Section 4.2 and Section 4.3, respectively). In addition to Figure 7, which illustrates the problems with
_ suboptimal initialization, Figure 12 in the appendix shows
4.1. Dependency of SGD and G&C on the PrioP (W) the trajectory of SGD with good initialization (Kaiming

Networks randomly sampled froR\(W) correspond to the upifqrm)_ as one varie_s the number of training epochs. The
initialization used in SGD and are the ones checked for zerdiStribution of normalized losses of SGD after one epoch
training error in G&C. We note that G&C is independent of (-€-» N0t fully optimized networks) is comparable to that
the scale of the weights of each layer as the ReLU-networIQ]c G&_C and SGD with s_L!boptlmaI |n|t|a_1I|zat|on. Howev_e "
is one-homogeneous in every layer, and thus, it only change%ven in this case, conditional on the bln_ of the normalized
the scale of the logits but not the classi cation. This is dif-10SS: the average test accuracy of SGD is better than G&C.
ferent for SGD, where it is well-known that the scale of eachTherefore, for the remainder of the paper, we use Kaiming
layer's initialization signi cantly affects the training dynam- initialization for SGD to get properly optimized networks.
ics. This is why, in practice, the Kaiming initialization, also However, we sample each layer from a uniform distribution
known as He initialization (He et al., 2015), is often used, inso that our results of G&C are directly comparable to the
which the weights of each layer are sampled from a uniformpnes of Chiang et al. (2023), and since Kaiming Gaussian
or Gaussian distribution and then normalized. did not result in major differences both for SGD and G&C.

Chiang et al. (2023) nd that conditioned on a speci ¢ bin The consistent convergence of properly initialized SGD to-
of the weight normalized loss, G&C and SGD have similarwards functions that generalize better than G&C within the
test errors. From this, they conclude that the main effect opool of networks tting the training data shows that such
generalization in the overparameterized setting is not dugell-generalizing functions occupy a small volume in the set
to a bias of SGD but is inherent in the network architecturegf networks with zero training error. We explicitly test this
However, they do not apply the standard Kaiming initializa-by initializing SGD with networks found by G&C, that is,
tion but sample each weight uniformly at randonf irl; 1].  randomly sampled networks using Kaiming uniform, which
This leads to large logits and low loss once zero trainingt the data perfectly. The test accuracy of the converged
error is achieved, resulting in small gradients. Consequenth§GD versus the test accuracy of the initialization of SGD
SGD essentially stops the optimization early in the trainingfound by G&C is shown in Figure 13a in the appendix.
process, as illustrated in Figure 7 in the appendix, leavingn almost all cases, SGD improves compared to the G&C-
the margin to the decision boundary small. Thus, they effecnitialization, which again demonstrates the positive bias
tively compare a suboptimal early-stopped SGD-optimizetbf SGD regarding generalization in the heavily overparam-
network with a randomly sampled network, which leads toeterized regime. In addition, the normalized loss and test
their impression that G&C and SGD behave similarly.  accuracy values for these optimized networks, depicted in

In Figure 1, we plot the test accuracy vs (Lipschitz) normal-Figure 13b, exhibit no signi cant difference from those as-

ized loss for SGD and G&C using three different uniform sociated with SGD with the standard Kaiming initialization
initializations (their Uniform{ 1; 1], Uniform[ 0:2;0:2], in Figure 1. This suggests that initializing a network with a
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Width 1=s 1= 275 4=5

Test accuracy vs
weight norm. loss

G&C
Test accuracy vs

Lipschitz norm. loss

SGD
Test accuracy vs
weight norm. loss

Test accuracy vs
Lipschitz norm. loss

Train loss (normalized) Train loss (normalized) Train loss (normalized) Train loss (normalized)

Figure 2.Analysis of overparameterization when increasing the widthTest accuracy vs weight normalized I¢8% of Chiang et al.

(2023) and our Lipschitz normalized log) of SGD andG&C for classe® & 7 of MNIST and 16 training samples across 2000 LeNet
models.Row 4: Widening the networks enhances geometric margin (lower normalized loss) and average test accuracy for SGD, while
for G&C (Row 2), the margin improves only slightly, and average test accuracy remains the same. This suggests that the improvement
is mainly due to the bias of SGD and not due to an architectural bias (see FiglRe8¥. 1 and 3: Chiang et al. (2023) compare
networks conditional on the (weight) normalized loss bin (illustrated by black boxes), which led them to conclude that G&C improves
with increasing width. With our Lipschitz normalized loss, one would arrive at the opposite conclusion, which shows the problem of
normalization. Results for different numbers of samples and other classes from MNIST and CIFAR10 are in Appendix D.

solution that already perfectly ts the data does not give any4.2. Overparameterization in Terms of Increasing
advantage to the convergence of SGD. Width

To summarize, in this section, we examined the in uence ofFollowing Chiang et al. (2023), we examine the in uence of
the prior on SGD and G&C. We found that the performanceincreasing the width of the network. To this end, we shrink
of SGD heavily depends on proper initialization, while G&C all layers proportionally to the original LeNet architecture,
is unaffected by the scale of the weights. This contrasts Che.g., width=s keeps 2 out of the 6 convolutions in the rst
ang et al. (2023), who reported similar behavior of SGD andayer andoor( s 16) = 5 out of 16 convolutions in the
G&C, using suboptimal initialization. Since proper initial- second layer. Width=s means a reduction dfs for the
ization signi cantly improves SGD results while keeping convolution layers ané4 for the fully connected layers
G&C performance unaffected, we conclude that there existgdetails in Tables 1 and 2 in the appendix). We note that all
a positive bias of SGD for generalization in overparameterthe networks of smaller widths, even the smallest one, are
ized regimes. overparameterized in the sense that the network can t any






