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Abstract
Neural networks typically generalize well when
fitting the data perfectly, even though they are
heavily overparameterized. Many factors have
been pointed out as the reason for this phe-
nomenon, including an implicit bias of stochastic
gradient descent (SGD) and a possible simplicity
bias arising from the neural network architecture.
The goal of this paper is to disentangle the factors
that influence generalization stemming from op-
timization and architectural choices by studying
random and SGD-optimized networks that achieve
zero training error. We experimentally show, in
the low sample regime, that overparameterization
in terms of increasing width is beneficial for gen-
eralization, and this benefit is due to the bias of
SGD and not due to an architectural bias. In con-
trast, for increasing depth, overparameterization
is detrimental for generalization, but random and
SGD-optimized networks behave similarly, so this
can be attributed to an architectural bias.

1. Introduction
The generalization of neural networks challenges common
wisdom in classical statistical learning theory (Vapnik &
Chervonenkis, 1971): the number of parameters in today’s
neural networks is much larger than necessary to fit the
data (Zhang et al., 2017), and further increasing network
size, i.e., more overparameterization, yields better general-
ization (Hestness et al., 2017; Allen-Zhu et al., 2019). The
underlying mechanisms of generalization despite overpa-
rameterization remain, to a large extent, an open question.

While the contribution of certain aspects has been examined
in the past (e.g., batch size (Keskar et al., 2017a) and learn-
ing rate (Li et al., 2019)), isolating the effect of gradient-
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based optimization is more challenging due to its integral
role in today’s well-performing networks. The implicit bias
of Stochastic Gradient Descent (SGD) is thus often thought
to be the main reason behind generalization (Arora et al.,
2019; Shah et al., 2020). A recent thought-provoking study
by Chiang et al. (2023) suggests the idea of the volume hy-
pothesis for generalization: well-generalizing basins of the
loss occupy a significantly larger volume in the weight space
of neural networks than basins that do not generalize well.
They argue that the generalization performance of neural
networks is primarily a bias of the architecture and that the
implicit bias of SGD is only a secondary effect. To this end,
they randomly sample networks that achieve zero training
error (which they term Guess and Check (G&C)) and argue
that the generalization performance of these networks is
qualitatively similar to networks found by SGD.

In this work, we revisit the approach of Chiang et al. (2023)
and study it in detail to disentangle the effects of implicit
bias of SGD from a potential bias of the choice of architec-
ture. As we have to compare to randomly sampled neural
networks, our analysis is restricted to binary classification
tasks in the low sample regime. Specifically, we analyze
the behavior of the LeNet (LeCun et al., 1998), Multi-Layer
Perceptron (MLP), and ResNet (He et al., 2016) architec-
tures.

In summary, we make the following contributions:

• We show that some findings of Chiang et al. (2023)
are based on a sub-optimal initialization of SGD, which
makes SGD artificially worse. Moreover, we argue that
their normalized loss cannot be used to compare networks
of different architectures. We suggest an alternative nor-
malization and analysis scheme that allows us to study
the effects of increasing overparameterization (in terms
of width and depth).

• We show that increasing overparameterization in terms
of width improves the generalization of SGD, while for
randomly sampled networks, it remains mostly unaffected.
This indicates a clear implicit bias of SGD.

• On the contrary, increasing overparameterization in terms
of depth is detrimental to generalization both for SGD
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and G&C. As they behave similarly, the negative impact
of increased depth can be mainly attributed to a bias in
the architecture.

Note that we do not claim that increasing depth is always
detrimental to generalization, but rather that improvements
regarding depth are due to architectural bias and not due
to SGD. In contrast, increasing width, even for randomly
sampled networks, does not harm generalization, and the
implicit bias of SGD leads to networks with higher margins,
signi�cantly improving generalization.

2. Related Work

Understanding the generalization properties of deep neural
networks is a long-standing research topic that has been
tackled from different angles (Cybenko, 1989; Hornik, 1991;
Wolpert, 1995; Bartlett & Mendelson, 2002; Hoffer et al.,
2017; Jakubovitz et al., 2019).

Overparameterization and generalization. Traditional
learning theory with complexity measures, e.g., the VC di-
mension (Vapnik & Chervonenkis, 1971), suggests that for
generalization, models should not be able to �t any possi-
ble training data (Shalev-Shwartz & Ben-David, 2014). In
particular, heavily over-parametrized models should over�t
the data (Hastie et al., 2001). However, even though net-
works are large enough to �t the data perfectly (Haeffele &
Vidal, 2017; Nguyen & Hein, 2018), we essentially observe
the opposite (Belkin et al., 2018; Neal et al., 2019; Bartlett
et al., 2020). Speci�cally, Zhang et al. (2017) showed that
a CNN architecture can obtain perfect train accuracy both
on random and non-random labels on the CIFAR10 dataset,
proving that the models are expressive enough to memorize
while still being able to generalize. Additionally, Arpit et al.
(2017) illustrated that the networks do not just memorize
the data but learn simple patterns �rst, and Neal et al. (2019)
reported that both bias and variance can decrease as the
number of parameters grows.

Implicit bias from the optimizer. The success of modern
deep learning is often attributed to the implicit bias of the
optimizers (Neyshabur et al., 2015): Soudry et al. (2018)
showed that SGD on linearly separable data converges to the
maximum-margin linear classi�er, and Arora et al. (2019)
hypothesized that the implicit regularization of gradient-
based optimizers goes beyond what can be expressed by
standard regularizers. Galanti & Poggio (2022) investigated
the effects of small batch size on the network's rank. Liu
et al. (2020) related the gradient signal and noise to general-
ization, Advani et al. (2020) highlighted that learning with
gradient descent effectively takes place in a subspace of the
weights, and Lee et al. (2020) observed simpli�ed learn-
ing dynamics for wider networks. Andriushchenko et al.
(2023b) showed that large step-size SGD leads to low-rank

features.

Loss landscape perspectives.Several works connect gen-
eralization properties to the geometry of the loss land-
scape, often involving sharpness quantities (Dziugaite &
Roy, 2017; Keskar et al., 2017b; Jiang* et al., 2020; Foret
et al., 2021). The relevance of this relation, however, is
unclear (Andriushchenko et al., 2023a). This connection
between �atness and well-performing models is also present
in the Bayesian literature (Izmailov et al., 2018; Wilson &
Izmailov, 2020).

The volume hypothesis.Pérez et al. (2019) observed a
bias towards simple functions in deep networks, irrespective
of optimization. Huang et al. (2020) hypothesized that the
volume of bad minima in weight space might be smaller
than that of well-generalizing minima. Mingard et al. (2021)
further argued that, in simpli�ed terms, SGD behaves like a
Bayesian sampler and that the inductive bias in deep learn-
ing does not primarily stem from the optimizer. However,
their approximation requires in�nite width and thus does
not apply to practical networks. Geiping et al. (2022) ques-
tioned the relevance of stochasticity in SGD by illustrating
that gradient descent with explicit regularization can per-
form comparably. Chiang et al. (2023) argued that the im-
plicit bias of SGD is only a secondary effect, and the main
contribution to generalization comes from the architecture.

3. Setup

Our main goal in this work is to disentangle the architectural
bias – the bias inherent in the function class obtained by
randomly sampling the network parameters – from the bias
of SGD regarding generalization in the overparameterized
setting. Our setup is similar to Chiang et al. (2023). How-
ever, we deviate in our evaluation, arguing below that their
conclusions are potentially inaccurate due to issues in their
application of SGD and the quantities they considered. To
achieve our objective, we utilize a random sampling pro-
cedure, termed G&C in Chiang et al. (2023), as well as
SGD to attain neural networks that achieve zero training
error. However, due to the exponentially increasing compu-
tational cost of G&C, we limit our study to binary classi�ca-
tion tasks from MNIST (LeCun et al., 1998) and CIFAR10
(Krizhevsky et al., 2009) in the low sample regime.

3.1. Neural Network Architecture

Following the setup of Chiang et al. (2023), we focus on ver-
sions of the LeNet architecture (LeCun et al., 1998) in all of
our experiments. Additionally, we con�rm our main results
with an MLP and a small ResNet (He et al., 2016). Details
on the architectures can be found in Appendix B.1. For the
LeNet, the ReLU activation function,a(z) = max f z;0g, is
applied after each layer (except for the pooling layers). The
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resulting functionf : Rd ! RK induced by this network
can be written as,

f (W1; : : : ; WL ; x) = WL � a � WL � 1 � : : : � a � W1x;

with input dimensiond andK classes. Note that the output
vector off contains the logits of the classes.

When using the ReLU activation function, the functionf is
one-homogeneous in the weightsWl of each layer and in
the inputx. That is, for each > 0,

f (W1; ...; W l ; ...; WL ; x) = f (W1; ...; Wl ; ...; WL ; x):

For compactness, we use the notationf (W; x), whereW =
(W1; : : : ; WL ).

We use thef� 1; 1g label encoding for binary classi�cation
and denote the two components off asf 1 andf � 1. Let
Strain = ( x i ; yi )n

i =1 be the training set, wherex i 2 Rd, and
yi 2 f� 1; 1g. The one-homogeneity of the ReLU network
implies that if a network realizes zero-training error, that is

yi (f 1(W; x i ) � f � 1(W; x i )) � 0; i = 1 ; : : : ; n;

and one uses cross-entropy loss (which reduces to logistic
loss in the binary case),

l (y; f (W; x)) = log
�

1 + e� y i ( f 1 (W;x i ) � f � 1 (W;x i ))
�

;

then simply upscaling the weights of any layer to in�n-
ity yields zero loss. Since upscaling the weights does not
change the classi�er, the training loss itself is not a suit-
able criterion for distinguishing two ReLU networks that
achieve zero training error. Therefore, as the goal of this
paper is to study the overparameterized regime, where the
network is large enough to achieve zero training error, one
needs a suitable normalization, which is discussed in the
next paragraph.

3.2. Geometric Margin as a Criterion to Compare
Networks Achieving Zero Training Error

As discussed above, the (cross-entropy) loss itself is not a
suitable criterion to distinguish networks that achieve zero
training error. A proper criterion should eliminate the degree
of freedom for upscaling weights (Farhang et al., 2022). Let

g(W; x) := f 1(W; x) � f � 1(W; x);

and denote withL(g(W )) its Lipschitz constant for the
`2-distance with respect to the inputx. Then, the criterion

� (x) ,
g(W; x)

L (g(W ))
; (1)

eliminates the scaling degree of freedom in the weights as
the Lipschitz constantL (g(W )) has the same homogeneity

asg(W; x) with respect to the weights. Furthermore, as
shown below,j� (x)j provides a lower bound on the distance
to the decision boundary. Letz be on the decision boundary,
that isg(W; z) = 0 . Then,

jg(W; x)j = jg(W; x) � g(W; z)j � L (g(W )) kx � zk2 ;

thusj� (x)j is a lower bound on thè2-distance ofx to the
decision boundary ofg. However, it is dif�cult to determine
the Lipschitz constant of a neural network.

As a ReLU-network is piecewise linear as a function ofx, it
holds

L(g(W )) = max
x 2 Rd

kr x g(W; x)k2 :

We determine a lower bound onL(g(W )) by taking the
maximum over the union of train and test data, i.e.,

~� (x) =
g(W; x)

maxz2S train[S test kr x g(W; z)k2
: (2)

We then plug~� (x) into the loss instead ofg(W; x) and term
it Lipschitz normalized loss. We note that by replacing the
true Lipschitz constant with a lower bound, we cannot argue
anymore thatj ~� (x)j is a lower bound of the distance to the
decision boundary. However, this data-based estimate is a
tighter estimate ofL (g(W )) than a direct upper bound that
uses the1-Lipschitzness of the ReLU activation,

L (g(W )) �
LY

l =1

kWl k2;2 ;

wherekWl k2;2 denotes the spectral norm of the weight
matrix. In fact, the normalization of Chiang et al. (2023) by
the product of Frobenius norms,

 (x) =
g(W; x)

Q L
l =1 kWl kF

; (3)

is even a coarser upper bound. To show that, let� i (W ) be
the singular values ofW, thenkW kF =

p P
i � 2

i (W ) �
maxi � i (W ) = kW k2;2. Note that this gap grows with the
rank ofW. In their analysis, (x) is plugged into the loss,
which we termweight normalized loss. While their nor-
malized loss is �ne when comparing neural networks of the
samearchitecture, it is problematic when comparingdiffer-
entarchitectures with different ranks ofW, e.g., networks
of different widths. In Section 4.2, we show that this ambi-
guity in the de�nition of the normalized loss can change the
interpretation of the results of Chiang et al. (2023). While
we believe theLipschitz normalized lossis a more accu-
rate estimate, we base our main observations on quantities
independent of this normalization to avoid the resulting
ambiguities. If not speci�ed differently in the paper, “nor-
malized loss” always denotes our Lipschitz normalized loss.
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Figure 1.Generalization of SGD (optimized) versus G&C (randomly sampled) in dependency of the prior on the weightsP(W ):
We “train” 2000LeNet models to100%train accuracy for16 training samples from classes0 and7 of MNIST. Test accuracies for G&C
are similar across initializations, and the normalized loss (see Section 3) is similar across the uniform distributions.Column 1: For
U[� 1; 1] initialization, as used by Chiang et al. (2023), the normalized losses and the test accuracies of SGD and G&C are similar, except
for the convergence of SGD towards more low-margin solutions. The claim in Chiang et al. (2023) that the average test accuracy of
G&C resembles SGD, conditional on the normalized loss bin (black dots), is an artifact of the suboptimal convergence of SGD caused by
this initialization.Columns 2-4: For other initializations, SGD (�rst row) improves considerably both in terms of loss and accuracy. In
contrast, G&C remains unaffected, as it is independent of the scale of the weights in each layer. Results for different numbers of samples
and other classes from MNIST and CIFAR10 are in Appendix C.

3.3. Training of SGD and Guess and Check (G&C)

We deliberately avoid commonly used techniques for im-
proving generalization, such as augmentation, weight decay,
and sophisticated learning rate schedulers (Ruder, 2016). In-
stead, we train SGD using cross-entropy loss for60epochs
and a batch size of2, with a �xed learning rate. We run
SGD from random initialization (see Section 4.1) and only
keep networks that achieve zero training error. Due to the
strong overparameterization and our small number of train-
ing samples, zero training error is attained for almost every
initialization.

The main analysis tool of this work is randomly sampling
networks from a prior on the weights and only accepting
networks that achieve zero training error. This is called
Guess and Check algorithm (G&C) in Chiang et al. (2023),
and we keep this name for simplicity. We discuss the effects
of different priors in Section 4.1.

The advantage of random sampling networks from a prior
P(w) is that we can directly estimate the probability of
achieving zero training error for a given training setStrain =
(x i ; yi )n

i =1 . Given that the prior distribution has compact
support, e.g., the uniform distribution, this is proportional
to the “volume” in the weight space of perfectly �tting
solutions. LetM Strain be the number of sampled networks
needed to getN networks that have zero training error, then

we can estimate this probability as

PW � P (W ) (Train Error(W ) = 0 j Strain) �
N

M Strain

:

This probability indicates how dif�cult it is to �t the data
perfectly. A random functionf : Rd ! f� 1; 1g yields
probability Pf (Train Error(W ) = 0 j Strain) = 1

2n for n
training samples. This baseline is indicated with a black
dotted line when we plot the probability to �nd a perfectly
�tting network vs the training set size in Figures 3 and 4.
Note that random networks can be biased towards constant
predictions and thus be worse than a random function for a
small number of training samples.

4. Experiments

In the case of overparameterization, SGD typically con-
verges to a solution with zero training error. It is also a
common belief that SGD is biased towards networks that
generalize better. Thus, we clearly expect, even in a low
sample regime, that SGD �nds, on average, better general-
izing networks than G&C. It is, however, unclear to which
extent the inductive bias of the function class, which is im-
plemented by the neural network architecture, contributes
to better generalization. By increasing the overparameteri-
zation of the networks and comparing the average test error
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over networks that have achieved zero training error, we
can disentangle the effects of the architecture and the opti-
mization. Speci�cally, we overparametrized the networks
by increasing width or depth. Then, when SGD and G&C
behave similarly, the change can be purely attributed to the
architecture. In contrast, when they behave differently, the
optimization process has a clear additional bias.

As all networks found by G&C have zero training error, their
average test error serves as an estimator for the expected
generalization ability of random networks that achieve zero
training error, which is

E[Test Error(W ) j Train Error(W ) = 0] :

We use average test accuracy as the main quantity to com-
pare SGD and G&C, as it remains unaffected by potential
issues related to weight normalization. In the remainder of
this section, we explore in Section 4.1 the effect of initial-
ization of the network (different priors for the weights) and
the behavior when increasing the width and depth of the
network (Section 4.2 and Section 4.3, respectively).

4.1. Dependency of SGD and G&C on the PriorP(W )

Networks randomly sampled fromP(W ) correspond to the
initialization used in SGD and are the ones checked for zero
training error in G&C. We note that G&C is independent of
the scale of the weights of each layer as the ReLU-network
is one-homogeneous in every layer, and thus, it only changes
the scale of the logits but not the classi�cation. This is dif-
ferent for SGD, where it is well-known that the scale of each
layer's initialization signi�cantly affects the training dynam-
ics. This is why, in practice, the Kaiming initialization, also
known as He initialization (He et al., 2015), is often used, in
which the weights of each layer are sampled from a uniform
or Gaussian distribution and then normalized.

Chiang et al. (2023) �nd that conditioned on a speci�c bin
of the weight normalized loss, G&C and SGD have similar
test errors. From this, they conclude that the main effect of
generalization in the overparameterized setting is not due
to a bias of SGD but is inherent in the network architecture.
However, they do not apply the standard Kaiming initializa-
tion but sample each weight uniformly at random in[� 1; 1].
This leads to large logits and low loss once zero training
error is achieved, resulting in small gradients. Consequently,
SGD essentially stops the optimization early in the training
process, as illustrated in Figure 7 in the appendix, leaving
the margin to the decision boundary small. Thus, they effec-
tively compare a suboptimal early-stopped SGD-optimized
network with a randomly sampled network, which leads to
their impression that G&C and SGD behave similarly.

In Figure 1, we plot the test accuracy vs (Lipschitz) normal-
ized loss for SGD and G&C using three different uniform
initializations (their Uniform[� 1; 1], Uniform [� 0:2; 0:2],

Kaiming Uniform) and the Kaiming Gaussian initialization.
For each algorithm, we “trained”2000models to achieve
100%train accuracy on a �xed subset of 16 samples from
classes0 and7 from the MNIST dataset (similar results
for different numbers of training samples and other classes
from MNIST and CIFAR10 can be found in Appendix C).

As argued in Section 3.1, one observes that G&C is not
affected by the scale of the uniform initialization, whereas
the outcome of SGD depends heavily on it. For the Uniform
[� 1; 1] used in Chiang et al. (2023), the average test accu-
racy is indeed almost the same for SGD and G&C (83:6%
vs. 82.8%). However, with proper initializations, the results
of SGD improve drastically to 96.3%. Additionally, the plot
demonstrates that it is essentially impossible to compare
SGD and G&C conditional on loss bins, as they achieve sig-
ni�cantly different normalized losses. We stress that these
�ndings are independent of which normalized loss is used.
In Figure 11, we show the same comparison as Figure 1, but
with the weight normalized loss of Chiang et al. (2023).

In addition to Figure 7, which illustrates the problems with
suboptimal initialization, Figure 12 in the appendix shows
the trajectory of SGD with good initialization (Kaiming
uniform) as one varies the number of training epochs. The
distribution of normalized losses of SGD after one epoch
(i.e., not fully optimized networks) is comparable to that
of G&C and SGD with suboptimal initialization. However,
even in this case, conditional on the bin of the normalized
loss, the average test accuracy of SGD is better than G&C.

Therefore, for the remainder of the paper, we use Kaiming
initialization for SGD to get properly optimized networks.
However, we sample each layer from a uniform distribution
so that our results of G&C are directly comparable to the
ones of Chiang et al. (2023), and since Kaiming Gaussian
did not result in major differences both for SGD and G&C.

The consistent convergence of properly initialized SGD to-
wards functions that generalize better than G&C within the
pool of networks �tting the training data shows that such
well-generalizing functions occupy a small volume in the set
of networks with zero training error. We explicitly test this
by initializing SGD with networks found by G&C, that is,
randomly sampled networks using Kaiming uniform, which
�t the data perfectly. The test accuracy of the converged
SGD versus the test accuracy of the initialization of SGD
found by G&C is shown in Figure 13a in the appendix.
In almost all cases, SGD improves compared to the G&C-
initialization, which again demonstrates the positive bias
of SGD regarding generalization in the heavily overparam-
eterized regime. In addition, the normalized loss and test
accuracy values for these optimized networks, depicted in
Figure 13b, exhibit no signi�cant difference from those as-
sociated with SGD with the standard Kaiming initialization
in Figure 1. This suggests that initializing a network with a
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Figure 2.Analysis of overparameterization when increasing the width.Test accuracy vs weight normalized loss(3) of Chiang et al.
(2023) and our Lipschitz normalized loss(2) of SGD andG&C for classes0 & 7 of MNIST and 16 training samples across 2000 LeNet
models.Row 4: Widening the networks enhances geometric margin (lower normalized loss) and average test accuracy for SGD, while
for G&C (Row 2), the margin improves only slightly, and average test accuracy remains the same. This suggests that the improvement
is mainly due to the bias of SGD and not due to an architectural bias (see Figure 3).Rows 1 and 3:Chiang et al. (2023) compare
networks conditional on the (weight) normalized loss bin (illustrated by black boxes), which led them to conclude that G&C improves
with increasing width. With our Lipschitz normalized loss, one would arrive at the opposite conclusion, which shows the problem of
normalization. Results for different numbers of samples and other classes from MNIST and CIFAR10 are in Appendix D.

solution that already perfectly �ts the data does not give any
advantage to the convergence of SGD.

To summarize, in this section, we examined the in�uence of
the prior on SGD and G&C. We found that the performance
of SGD heavily depends on proper initialization, while G&C
is unaffected by the scale of the weights. This contrasts Chi-
ang et al. (2023), who reported similar behavior of SGD and
G&C, using suboptimal initialization. Since proper initial-
ization signi�cantly improves SGD results while keeping
G&C performance unaffected, we conclude that there exists
a positive bias of SGD for generalization in overparameter-
ized regimes.

4.2. Overparameterization in Terms of Increasing
Width

Following Chiang et al. (2023), we examine the in�uence of
increasing the width of the network. To this end, we shrink
all layers proportionally to the original LeNet architecture,
e.g., width2=6 keeps 2 out of the 6 convolutions in the �rst
layer andoor( 2=6 � 16) = 5 out of 16 convolutions in the
second layer. Width1=6� means a reduction of1=6 for the
convolution layers and1=24 for the fully connected layers
(details in Tables 1 and 2 in the appendix). We note that all
the networks of smaller widths, even the smallest one, are
overparameterized in the sense that the network can �t any
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