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Abstract

We consider the problem of online learning in the presence of sudden distribution shifts, which
may be hard to detect and can lead to a slow but steady degradation in model performance. To
address this problem we propose a new Bayesian meta-algorithm that can both (i) make inferences
about subtle distribution shifts based on minimal sequential observations and (ii) accordingly adapt
a model in an online fashion. The approach uses beam search over multiple change point hypotheses
to perform inference on a hierarchical sequential latent variable modeling framework. Our proposed
approach is model-agnostic, applicable to both supervised and unsupervised learning, and yields
significant improvements over state-of-the-art Bayesian online learning approaches.

1. Introduction

Deployed machine learning systems are often faced with the problem of distribution shift, where the
new data that the model processes is systematically different from the data the system was trained
on. Furthermore, the shift can happen anytime after deployment, unbeknownst to the users, with
dramatic consequences for systems such as self-driving cars, robots, trading algorithms, among many
other examples.

Updating a deployed model on new, representative data can help mitigate these issues, as well as
improve on general performance in most cases. This task is commonly referred to as online learning.
A particular variant of online learning that focuses on adapting models to new or novel data (in either
features and/or outputs) over time is known as continual learning. Approaches developed on this
task typically focus on mitigating the degradation of performance over earlier data, often referred to
as catastrophic forgetting. For instance, variational continual learning (VCL) (Nguyen et al., 2017)
employs a Bayesian online learning framework to prevent forgetting by modeling the model’s prior
distribution for each new batch of data (referred to as a “task” in the continual learning literature) as
the posterior from the previous one.

VCL and other Bayesian solutions are typically robust to catastrophic forgetting; however,
they may suffer from an opposite problem that we are defining as catastrophic remembering. In
continually training a Bayesian model, the posterior distribution becomes progressively more and
more confident as more data is used to inform it. Given enough data, the model’s prior distribution
(i.e. previous posterior distribution) will be too confident to adequately adapt to new data affected by
a distributional shift (for brevity, we will refer to this shift as a novelty).

In this paper, we propose a more robust approach that copes with the problems of both catastrophic
forgetting and remembering. The idea is that the model not only requires a good mechanism to
aggregate data, but also is able to partially forget information that has become obsolete. To achieve
this, we still use the Bayesian online learning framework; however, before combining the previously
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learned posterior with new data evidence, we introduce an intermediate step. This step allows the
model to decide between two actions to take: reduce the previous posterior’s confidence to provide
more “room” for novel information, or remain in the same state (i.e. retain the unchanged, previous
posterior as the new prior). We propose a mechanism for enabling this decision using a “spike
and slab” novelty prior (described in Section 2.1). We further augment this decision process by
introducing variational beam search, a new inference scheme that allows the model to consider
multiple different hypothetical sequences of detected distributional shifts (or lack thereof).

We present experiments for Bayesian deep learning experiments using real datasets with artifi-
cially introduced shifts over time, as well as unsupervised experiments for analyzing semantic change
over time in language (Section C.3 in supplement). Our approach both leads to more semantic and
compact word embeddings, as well as significantly improves performance in the supervised tasks.

2. Methods

We consider a stream of data that arrives in batches ("tasks") Xt at discrete times t. For notational
simplicity we focus on the unsupervised case, where the task is to model p(Xt) using a model p(X¢jzt)
with parameters Z¢ that we would like to optimally tune to each new batch!.

We furthermore assume that while the X; are i.i.d. within batches, they are not i.i.d. across batches,
but rather come from a time-varying distribution pt(Xt) (or pt(Xt; Y¢) in the supervised cases) which
is subject to distribution shifts. We assume that these distribution shifts occur instantaneously (as
opposed to gradually) and at unknown times, i.e., a change may (or may not) occur with each batch t
and (if it occurs) will persist until the next change. The challenge is to optimally adapt the parameters
Zt to each new task while borrowing statistical strength from previous tasks.

Variational Continual Learning The basis of our approach is the insight that for sequential data,
one can use a Bayesian model’s posterior at time t 1 as a prior for the next task at time t. Since
typically the posterior is not available in closed-form, we must use approximate inference. It is
natural to use a variational posterior (¢ 1(z¢). This leads to a sequence of variational inference
tasks (Zhang et al., 2018) known as variational continual learning (VCL) (Nguyen et al., 2017):

Ge(zt) = argmax Eglogp(xijze)]  KL(A(zo)iide 1(zt)); (1)
q(zt)2Q
where Q is the family of potential approximate posterior distributions (i.e. normal distributions).
Eq. 1 is known as the evidence lower bound (ELBO) in variationa inference (Jordan et al., 1999;
Zhang et al., 2018); for every new task it is optimized until convergence. Note that in its original
formulation, the goal of VCL is to train a model that performs well cumulatively on all the learning
tasks previously encountered (Nguyen et al., 2017), as opposed to just the most recent task, as studied
in this paper.

Catastrophic Remembering While continual learning mainly addresses catastrophic forgetting,
where a model loses in performance on the tasks previously encountered, we address the opposite
effect: catastrophic remembering (French, 1999). Here, a model becomes overconfident with time
and loses its ability to adapt to distribution shifts. In Bayesian online learning, such catastrophic
remembering is caused by an overconfident posterior. To explain this effect, we note that a posterior’s
variance shrinks as it encounters more data. Assume that after a long sequence of updates, the

1. In supervised setups, we consider a conditional model p(yjz:; Xt) with features X; and targets Y.
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posterior (¢ 1(Z¢t) can be well-approximated by a point mass (zZ; Zg) centered around some
parameter Zg. In this case, any new data evidence p(X¢jzt) will have a diminishing effect on the
next posterior Q¢(z¢) as qe(ze) /' p(Xejze) (Z¢ Zo) Ot 1(2Zt), in other words, the strong prior
over-rules the new data even though the training data that lead to it may have become obsolete due
to a distribution shift. To prevent catastrophic remembering, we adapt Eq. 1 to the online learning
scenario, specifically assuming irregular and instantaneous distribution shifts.

2.1. Posterior Broadening Mechanisms

In order to combat catastrophic remembering, the posterior in Eq. 1 needs to be broadened before
it is combined with new data evidence. This broadening mechanism erases learned information to
free-up model capacity to adjust to the new data distribution.

Among several possible options, we consider relative broadening, which amounts to tempering
the prior by a fixed amount, resultinginp (z¢) / gt 1(z¢t) for0< 1. For a Gaussian ( with
diagonal variances ,2 in dimension z;, relative broadening removes an equal amount of information
in each dimension, Hj = % log2 e 2= ?)= % log(2 e 2) log . Since tempering broadens the

posterior non-locally, this scheme does not possess a continuous latent time series interpretation 2.

Conditional Broadening If novelties happened at a predictable and constant rate, we were done:
tuning the parameter to the expected rate of change (with a large  for a high change rate and

=1 for no expected change). However, in reality, novelties can be of varying strength, irregular,
and unobserved. We therefore propose to model the novelty at time t with a binary latent variable
St, with St = O for no change occurring, and St = 1 indicating a shift. For Sy = 1, we broaden the
posterior and use it as a prior. If no change occurs, we just use the previous posterior as the new prior
and proceed. This gives rise the the following conditional prior:

. z fors; =0
p (zjsy= ) forsc=0, @
qt 1(Zt) for St = 1

We defined the tempered approximate posterior at time t  1as ¢, 4(z¢) = %. (Note

that g has a closed-form expression for a Gaussian (.) The conditional broadening approach leads
to the following online inference scheme:

0t(ztjSt) = argmax L(QjSt);
q(ztjst)2Q 3)
L(ajst) == Egllogp(xtjze)]  KL(4(zdso)iip (zijst)):
This involves a joint variational distribution (z¢jSt) over the latents z¢ and change variable S¢. We

place a Bernoulli prior p(St) on the change variables. As described below, we jointly infer Z; and the
change variables S; from data.

2.2. Bayesian Reasoning over Distribution Shifts

Structured Variational Inference According to our assumptions, the novelties occur at discrete
times and are unobserved. Therefore, both z¢ and St have to be inferred from data. We first define the

2. This means that it is impossible to specify a conditional distribution p(ztjz; 1) that corresponds to relative broadening.
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marginal likelihood over data given the change variable St tobe p (X¢jSt) = R P(Xtjze)p (zijst)dzt,
which is often intractable. This intractability leaves the exact posterior over St, p (StjXt) not
available as well (by Bayes rule). However, we can follow a structured variational inference
approach (Wainwright and Jordan, 2008; Hoffman and Blei, 2015; Zhang et al., 2018), defining a
joint variational distribution q(z¢; St) = q(St)q(ZtjSt).

By definition, the conditional distributions ((Z¢jSt) are solutions to the optimization problem in
Eq. 3. Absorbing the optimized conditional ELBO in Eq. 3, q(S¢) has a closed-form solution:

q (st) =Bern(sy;m); m= (L(gjste=1) L (qjst=0)+ o); )

where is the sigmoid function and ¢ =log p(st = 1) logp(st = 0) are the log-odds of the prior
p(st). This specifies the posterior over S;. We provide the derivation details, the resemblance to the
exact inference, and the interpretation as a likelihood ratio test in the Supplement.

Finally, we obtain the marginal distribution over latent variables q(z¢) at time t as a binary
mixture with mixture weights q(st =0) = mandq(s¢=1)=1 m:

Ge(ze) = ma(zgse =0)+ (1 m)q(zejse = 1): (5)

Exponential Branching We note that while we had originally started with a Gaussian variational
posterior ¢ 1(Z¢) at the previous time, our inference scheme resulted in g¢(z¢) being a mixture of
two Gaussians: the inference scheme branches over two alternative hypotheses. When we iterate,
we encounter an exponential branching of possibilities, or hypotheses over possible sequences of
regime shifts. To still be able to carry out the filtering scheme efficiently, we need a truncation
scheme, e.g., approximate the bimodal marginal distribution by a unimodal one. The next section
will discuss several methods to achieve this goal.

2.3. Online Inference and Variational Beam Search

While the previous subsections have focused on a single update, we now investigate the possibility of
doing multiple updates in a row. This amounts to working out a truncation scheme to restrict the
variational posterior to be a unimodal Gaussian (Variational Greedy Search (VGS)) or, a mixture of
fixed size (Variational Beam Search (VBS)) at every time step.

The simplest VGS trains the model in an online fashion by iterating over time steps t. For each t,
it explores all possible branches and then truncates the branches. In general, VGS first optimizes
the conditional ELBO (Eq. 3) for both s = 0 and St = 1 (which corresponds to branches). With
the optimized conditional ELBO, it computes the binary mixture weights using Eq. 4. Finally VGS
projects g¢(z¢) (Eq. 5) on the more probable component. Detailed steps are in the Supplement.

Note that VGS updates z; at every time step t, resulting in continuously changing variational
parameters ¢ and ¢. The fact that ¢ and { change even between two detected change points
makes the output of the algorithm poorly interpretable. One can get a better fit if one outputs the
variational parameters and ¢ atthe end of a segment of constant z¢, just before a detected change
point St = 1. We call this a “shy” variant of VGS. More details are in supplement.

VGS and its shy variant make greedy decisions on St, in the sense that they ignore the subsequent
tasks. A greedy search is prone to missing change points in data sets with a low signal/noise ratio
per time step because it cannot accumulate evidence for a change point over a series of time steps.

3. See also Fig. 4 of the Supplementary Material.
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The most obvious improvement over greedy search that has the ability to accumulate evidence for
a change point is beam search. Rather than deciding greedily whether a change occurred or not at
each time step, beam search considers both cases in parallel, and it delays the decision as to which
one is more likely. Empirically, we nd that the naive beam search procedure does not reveal its
full potential. As commonly encountered in beam search, histories over change points are largely
shared among all members of the beam. We thus developed a simple beam diversi cation scheme
to encourage diverse beams. We found this beam diversi cation scheme to work robustly across a
variety of experiments. More details about diversi ed VBS are described in the supplement.

3. Experiments

Overview The objective of our experiments is to show that compared to other methods, variational
beam search (VBS) (1) better reacts to novelties in supervised setups, while (2) revealing interpretable
and temporally sparse latent structure in unsupervised setups. To this end, we experiment on arti cial
data (Section 3.1), study Bayesian deep learning approaches on sequences of transformed CIFAR
and SVHN images (3.2), and study the dynamics of word embeddings on historical text corpora
(Section C.3 in supplement). Additional details are in the Supplement.

MODELS CIFAR-10 SVHN

VBS (K=6) (PROPOSED 697 07 838 04
VBS (K=3) (PROPOSED 691 0.8 894 05
VGS (PROPOSED 682 08 889 05
VCL [NGUYEN ET AL., 2017] 667 0:8 887 05
LP [SMOLA ET AL ., 2003] 626 1.0 828 09
INDEPENDENTTASK 637 05 855 07

Table 1:Average Test Acc. Figure 1:VBS on Toy Data

3.1. Toy Experiments

To test VBS in a very simple setup, we simulated noisy data points centered around a piecewise-
constant step function with two steps (Fig. 1). The task is to infer the mean (black line) of a
time-varying data distribution (black samples). We evaluated VBS with beam sizes 1 and 2 in terms
of their ability to correctly identify the latent jumps in hindsight. Both algorithms start with similar
performance initially. However, VBS with beam size 1 (“greedy”, orange) fails to recognize the
two-fold jump correctly. In contrast, beam size 2 operates with two hypotheses over function levels.
Around step 20, the initially unlikely hypothesis with two jumps becomes the dominant one.

3.2. Supervised Experiments

Next, we considered a supervised learning setup, in which an algorithm is exposed to a sequence
classi cation tasks, consisting of batches of CIFAR-10 and SVHN images. To introduce novelties,
every few tasks we transform all images globally by combining rotations, shifts, and scaling transfor-
mations. To make the approach compatible with our framework, we used a Bayesian convolutional
neural network and applied variational beam search to the network's weights. We focused on the
latest task performance and evaluated the classi cation accuracy on a test set subject to the same
transformations.



VARIATIONAL BEAM SEARCH

Figure 2: Test performance of our proposed VBS and VGS algorithms compared to various baselines (see
main text) on transformed CIFAR-10 (left) and SVHN (right). The top panel shows example
transformations of both data.

Datasets We used two standard datasets for image classi cation: CIFAR-10 (Krizhevsky et al.,
2009) and SVHN (Netzer et al., 2011), adopting the original training and test set splits. We further
split the training set into batches for online learning, each batch consisting of a third of the full data.
Each transformation (either rotation, translation, or scaling) is generated from a xed, prede ned
distribution (see Supplement C.2). Changes are introduced every three tasks, where the total number
of tasks was 100. Fig 2 (top panel) shows typical resulting transformations.

Baselines. In our supervised experiments, we compared VBS against established Bayesian online
learning baselines and an independent batch learning baseline. In addition to Variational Continual
Learning (VCL, see Section 2), we also compared against Laplace Propagation (LP) (Smola et al.,
2003). We refer to (Nguyen et al., 2017) for technical descriptions of LP. Finally, we also adopt a
trivial baseline: learning independent classi ers on each task. Here, we adopt a non-Bayesian neural
network with the same architecture. See Supplement for more details.

Architectures and Protocol. All Bayesian methods use the same neural network architecture. We
used a truncated version of the VGG convolutional neural network (Supplementary Material C.2)
on both datasets and con rmed that our architecture achieved similar performance on CIFAR10
compared to the results reported by Zenke et al. (2017) and Lopez-Paz and Ranzato (2017) in a
similar setting. We stress that lower accuracies are obtained in our online learning setting due to the
distribution shifts. We initialize each algorithm by training the model on the full, untransformed
dataset. We set the relative broadening 2 =3 for all supervised experiments. During every new
task, all algorithms are trained until convergence (see Supplement for details).

Results The bottom panel of Fig. 2 shows our main results on CIFAR-10 (left) and SVHN (right).
To account for varying task dif culties, we show the percentage of the relative error reduction relative
to our main baseline, VCL.

VBS with a large beam size ¢t = 6 performs best, followed by VBS witd = 3. Variational
greedy search (VGS), which corresponds to a beamksizel , performed comparably with and
slightly better than VCL. The reason is that, empirically, the greedy version of our algorithm only
detected a small fraction of distribution shifts. This makes its performance sometimes similar to
VCL. This stresses the importance of beam search: for l&genultiple changes were detected.

Table 1 shows the absolute performances of all considered methods, averaged across all of the
100 tasks for the two datasets. Our proposed methods improved signi cantly over the best-performing
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baseline VCL byl:1 percentage points on SVHN and Byercentage points on CIFAR-10. The
effect of beam search is also evident, with larger beam sizes consistently performing better.
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Appendix A. Structured Variational Inference

According to the main paper, we consider the generative npdgl; z:; st) = p(si)p (ztjst)p(Xtjzt)
at time stef. Upon observing the datq, bothz; ands; are inferred. However, exact inference is
not available due to the intractability of the marginal likelihgndx:js;). To tackle this, we utilize
structured variational inference for both the latent variabjeend the Bernoulli change variable
st. Towards this end, we de ne the joint variational distributiq(a; s;) = q(st)d(z:jst). Then the
updating procedure fay(s;) andq(zjs;) is obtained by maximizing the ELBO(q):

G (zt;st) = argmaxL(a);
a(zt;st)2Q
L(a) := Eqllogp (Xt;zt;st)  logq(ze; se)l:

Given the generative models, we can further expag) to simplify the optimization:

L(9) = Eqsyqzjsoyllogp(st) +1og p (zijst) +log p(xtjzt) loga(st) loga(zijst)]
Eqisollogp(st)  loga(st) + Eqzjsylogp (ziist) +log p(xijzt)  loga(zijst)]]

= Eqsollogp(st) loga(st) + Eqzjs)llogp(Xijze)]  KL(a(zijso)iip (ztjst))]
Eqisollogp(st)  loga(st) + L(qjst)] (6)

where the second step pushes inside the expectation with resjgéztj®), the third step re-orders
the terms, and the nal step utilizes the de nition of conditional ELBO (Eq. 3 in the main paper).



VARIATIONAL BEAM SEARCH

It therefore implies a two-step optimization to maximlzg): rst maximize the conditional
ELBO L (qgjs;) to nd the optimalqg (z:js; = 1) andg(zijs; = 0), respectively, then compute the
Bernoulli distributiong (st) by maximizingL (q) in which the conditional ELBOE (g;jst) are xed.

While g (z¢js;) typically needs to be inferred by black box variational inference (Ranganath
et al., 2014; Kingma and Welling, 2013; Zhang et al., 2018), the optin{al) has a closed-form
solution and bears resemblance to the exact inference counterpart (Eqg. 7 in the main paper). To
see this, we assunmg(qjs;) are present and(s;) is parameterized byn 2 R (for the Bernoulli
distribution). Rewriting Eq. 6 gives

L(a) = m(logp(s; =1) logm + L(cjst = 1))
+(1  m)(logp(s; =0) log(1 m)+ L(qjst=0))
which is concave due to the second derivative is negative. Thus taking the derivative and setting it to

zero leads to the optimal solution of

m
1

log T——=logp(s: =1) logp(s:=0)+ L(ajsi=1)) L (ajsi=0));

m= (L(ajst=1)) L (ajst=0)+ o);
which attains the closed-form solution as stated in Eq. 4 in the main paper.

R
Exact Inference To see the similarities to the exact inference, regalk:js;) =  p(Xjzt)p (z¢jst)dz;.
The exact posterior ovex is again a Bernoullp (sjx;) = Bern( s;; m) with parameter
R _ !
p (xtjst=1)p(st =1) Eg?2 og rPXUz)G 4(z0)dze
p (xtjst = 0) p(st = 0) P(Xtjzt) & 1(zt)dzt

m=

(M

where is the sigmoid function andy = log p(s; =1) logp(s; = 0) are the log-odds of the prior
p(st)-

Eqg. 7 has a simple interpretation as a likelihood ratio test: a change is more or less likely
depending on whether or not the observatiopare better explained under the assumption of the
broadened prior distributioy ,(zt), in other words, a partial reset of previously learned information.

Then we demonstrate the resemblance between the exact inference and the approximate inference
for s;. Notice the conditional ELBO in Eq. 3 is a lower bound to the logarithm of the marginal
likelihood logp (xtjst), we can use the former as a proxy of the latter in Eq. 7, resulting in the
update in Eq. 4. In other words, the tighter the conditional ELB®@¢p (X:jst), d(St) is more
precise.

Appendix B. Details on Online Learning and Variational Beam Search

Variational Greedy Search For eacht, VGS updates &uncatedvariational distribution via the
following three steps:

1. Compute the conditional prigr (z¢js;) (Eqg. 2) based om; 1 and optimize the conditional
ELBO (Eq. 3) for boths; = 0 ands; = 1. This results in the optimized variational distributions
d(zijst = 0) andq(zijst = 1).

2. Compute the binary mixture weights and(1 m) using Eq. 4, resulting ity (z;) = mq(zjst =
0+ m)a(zijst = 1) (Eq.5).
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Figure 3: Sparse inference via greedy search (left) and variational beam search (right), see also
Section B.

Figure 4: Conditional probability table of variational beam search

3. Truncateg (zt) to a uni-modal distribution to avoid branching. This can be achieved by projecting
¢ (z¢) on the more probable component.

The Itering algorithm mentioned above iteratively updates the variational distributionzpver
each time it observes new data In the version of variational greedy search discussed above, the
approach decides immediately, i.e., before observing subsequent data points, whether a change in
has occurred (by projecting on one mixture component in the truncation step) or not. This approach
is illustrated in the blue part of Fig. 3 (a). Here, the dark blue line shows the tted meawer time
stepst, with 1 error bars in light blue. The fact that and ; change even between two detected
change points makes the output of the algorithm poorly interpretable.

“Shy” Variational Greedy Search One obtains a better tif one outputs the variational parameters

+ and  at the end of a segment of constapt More precisely, when the algorithm detects a
change poing; = 1, it outputs the variational parameters 1 and ; 1 from just before the detected
change point. These parameters de ne a variational distribution that has been tted, in an iterative
way, to all data points since the preceding detected change point. We call this the “shy” variant of
the variational greedy search algorithm, because this variant quietly iterates over the data and only
outputs a new twhen itis as certain about it as it will ever be. The red lines and regions in Fig. 3 (a)
illustrate means and standard deviations outputted by the “shy” variant of variational greedy search.

Variational Beam Search As we see in the main paper, the above two algorithm variants (“greedy”
and “shy”) discussed so far are greedy in the detection of change points, prone to missing change
points in noisy data sets. An obvious improvement that can delay decisions to accumulate evidence

10
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is beam search. This algorithm is illustrated schematically in Fig. 3 (b). The algorithm keeps track
of a xed numberK > 1 of possible histories, i.e., sequences of change points. For each history, it
iteratively updates a Gaussian variational distribution as in the greedy variants. At each time step
each history splits up into two for the two case2 f 0; 1g, thus doubling the number of histories of
which the algorithm has to keep track of. To keep the computational requirements bounded, beam
search thus discards half of the histories based on an exploration-exploitation trade-off.

As follows, we present a more detailed explanation of the variational beam search procedure
outlined in Section 2.2 of the main paper. Our beam search procedure de nes an effective way to
search for potential hypotheses with regards to sequences of inferred change points. The procedure is
completely de ned by detailing three sequential steps, that when executed, take a set of hypotheses
found at time step 1 and transform them into the resulting set of likely hypotheses for timetstep
that have appropriately accounted for the new data seermae red arrows in Figure 4 illustrate
these three steps for beam search with a beam sikeofl .

In Figure 4, each of the three steps maps a table of considered histories to a new table. Each
table de nes a mixture of Gaussian distributions where each mixture component corresponds to
a different history and is represented by different a row in the table. We start on the left with the
(truncated) variational distributiolp 1(z; 1) from the previous time step, which is a mixture over
K =4 Gaussian distributions. Each mixture component (row in the table) is labeled by a 0-1 vector
s«t = (so;s1; St 1) of the change variable values according to that history. Each mixture
componenst.; further has a mixture weigh(s<; ) 2 [0; 1], a mean, and a standard deviation.

We then obtain a prior for time steapby transporting each mixture componentgpfi(z; 1)
forward in time via the broadening functional (“Step 1” in the above gure). The grige;) (second
table in the gure) is a mixture 02K Gaussian distributions because each previous history splits
into two new ones for the two potential case2 f 0; 1g. The label for each mixture component
(table row) is a new vectdis«; ; St) Or S<t +1 , appending; to the tail ofs; .

“Step 2” in the above gure takes the dataand ts a variational distributiomy (z;) that is also
a mixture of2K Gaussian distributions. To learn the variational distribution, we (i) numerically t
each mixture componenz;js« ; St) individually, using the corresponding mixture component of
p (z:) as the prior; (ii) evaluate (or estimate) the conditional ELBO of each tted mixture component,
conditioned on(s« ; St); (iii) compute the approximate posterior probability(s;) of each mixture
component, in the presence of the conditional ELBOs; and (iv) obtain the mixture weight equal to
the posterior probability oves<; ; st), best approximated by(s<: )q (st).

“Step 3” in the above gure truncates the variational distribution by discar#lingf the 2K
mixture components. The truncation scheme can be either the “vanilla” beam search or diversi ed
beam search outlined in the main paper. The truncated variational distrilgpyfiph is again a
mixture of onlyK Gaussian distributions, and it can thus be used for subsequent update steps, i.e.,
fromttot +1.

Beam Search Diversi cation To encourage diverse beams, we constructed the following simple
scheme: LeK be the number of hypotheses in a beam. While transitioning fromttimé to t,
every hypothesis splits into two scenarios, one Witk 0 and one withs; = 1, resulting in2K
hypotheses. If two resulting hypotheses only differ in their most rezevelue, we say that they
come from the same "family.” Each member among2ikehypotheses is ranked according to its
ELBO value (Eg. 3). In a rst step, we discard the bottdr8 of the2K hypotheses, leavingr3K
hypotheses. (We always take integer multiple8 @r K ). To truncate the beam size frofa3K
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Table 2: Convolution Neural Network Architecture

LAYER FILTER SIZE FILTERS STRIDE ACTIVATION DROPOUT
CONVOLUTIONAL 3 3 32 1 ReELU
CONVOLUTIONAL 3 3 32 1 RELU

MAXPOOLING 2 2 2 0.2
CONVOLUTIONAL 3 3 64 1 ReELU
CONVOLUTIONAL 3 3 64 1 ReELU

MAXPOOLING 2 2 2 0.2
FuLLy CONNECTED 10 SOFTMAX

Table 3: Hyperparameters of Bayesian Deep Learning Models for CIFAR-10

MODEL LEARNING RATE BATCH SIZE NUMBER OF EPOCHS 0
LP 0.001 64 150 N/A  N/A
VCL 0.0005 64 150 N/A  N/A
VBS 0.0005 64 150 2/3 0

down toK , we rank the remaining hypotheses according to their ELBO and pick th¢ topes
while alsoensuring that we pick a member from every remaining family. The diversi cation scheme
ensures that underperforming families can survive, leading to a more diverse set of hypotheses.

Appendix C. Experiment Details and Results

C.1. Toy Data Experiments

Data Generating Process To generate Figure 1 in the main paper, we used a step-wise function as
ground truth, where the step size was 1 and two step positions were chosen randomly. We sampled 30
equally-spaced points with time spacing 1. To get noisy observations, Gaussian noise with standard
deviation 0.5 was added to the points.

Model Parameters In this simple one-dimensional model, we used absolute broadening with a
Gaussian transition kernkll (z;;z) = N(z; z% D t)whereD =1:0and t=1. Theinference

is thus tractable becaupéz;js;) is conditional conjugate tp(x:jz;;s;) (and both are Gaussian
distributed). We set the prior log-oddg to log ggiég , Wherep(s; = 1) = 0 :1. We used beam

size 1 and beam size 2 to do the inference, respectively. We reported the results with beam size 2,
which also involved the resulting hypothesis for beam size 1 (greedy search) as the one with lower

probability.

C.2. Bayesian Deep Learning Experiments

Transformations We used Albumentations (Buslaev et al., 2020) to implement the transformations
as covariate shifts. As stated in the main paper, the transformation involved rotation, scaling, and
translation. Each transformation factor followed a xed distribution: rotation degree conformed
to N (0; 10%); scaling limit conformed tN (0; 0:32); and the magnitude of vertical and horizontal
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Table 4: Hyerparameters of Bayesian Deep Learning Models for SVHN.

MODEL LEARNING RATE BATCH SIZE NUMBER OF EPOCHS 0

LP 0.001 64 150 N/A  N/A
VCL 0.00025 64 150 N/A  N/A
VBS 0.00025 64 150 2/3 0

translation limit conformed tBetg1; 10), and the sampled magnitude is then rendered positive or
negative with equal probability. The nal scaling and translation factor should be the corresponding
sampled limit plus 1, respectively.

Neural Network Architecture  We used the same convolutional neural network architecture for
both datasets, which can be found in Table 2. We implemented the Bayesian models using TensorFlow
Probability and the non-Bayesian counterpart (namely Laplace Propagation) using TensorFlow Keras.
Every bias term in all the models were treated deterministically and were not affected by any
regularization.

Tempered Conditional ELBO In the presence of massive observations and a large neural network,
posterior distributions of change variables usually have very low entropy because of the very large
magnitude of the difference between conditional ELBOs as in Eq. 4. Therefore change variables
become over con dent about the switch-state decisions. The situation gets even more severe in beam
search settings where almost all probability mass is centered around the top hypothesis while the other
hypotheses get little probability and thereby will not take effect in predictions. A possible solution is

to temper the conditional ELBO (or the marginal likelihood) and introduce more uncertainty into
the change variables. To this end, we divide the conditional ELBO by the number of observations.
While the tempering strategy has the model no longer work in strict Bayesian paradigm, it renders
every hypothesis effective in beam search setting.

Hyperparameters, Initialization, and Model Training The hyperparameters used across all of

the models for the different datasets are listed in Tables 3 and 4. Regarding the model-speci c
parameters, we seg to 0 for both datasets and searcheith the valued 5=6; 2=3; 1=2; 1=4g on a
validation set. We used the rst 5000 images in the original test set as the validation set, and the
others as the test set. We found that 2 =3 performs relatively well for both data sets. Optimization
parameters, including learning rate, batch size, and number of epochs, were selected to have the best
validation performance of the classi er on one independent task. To estimate the change gggable
variational parameter, we approximated the conditional ELBOs 3 by averaging 10000 Monte Carlo
samples.

As outlined in the main paper, we initialized each algorithm by training the model on the full,
untransformed dataset. The model weights used a standard Gaussian distribution as the prior for this
meta-initialization step.

When optimizing with variational inference, we initializgkz;) to be a point mass around zero
for stability. When performing non-Bayesian optimization, we initialized the weights using Glorot
Uniform initializer (Glorot and Bengio, 2010). All bias terms were initialized to be zero.

We performed both the Bayesian and non-Bayesian optimization using ADAM (Kingma and
Ba, 2014). For additional parameters of the ADAM optimizer, we set 0:9and , = 0:999for

13



VARIATIONAL BEAM SEARCH

Figure 5: Dynamic Word Embeddings on Google books, Congressional records, and UN debates, trained
with VBS (proposed, blue) vs. VCL (grey). In contrast to VCL, VBS reveals sparse, time-localized
semantic changes (see main text).

Figure 6: Document dating error as a function of model sparsity, measured in average parameter
updates per year.

both data sets. For the deep Bayesian models speci cally, which include VCL and VBS, we used

stochastic black box variational inference (Ranganath et al., 2014; Kingma and Welling, 2013; Zhang

et al., 2018). We also used the Flipout estimator (Wen et al., 2018) to reduce variance in the gradient
estimator.

Predictive Distributions We evaluated the predictive posterior distribution of the test set by the
following approximation:

P(ydxi;D1t) g Wi P(Y tiXt; Zg
k=1 s=1

whereK is the beam sizayy is the normalized weight of thé" hypothesis after truncation, and
S is the number of Monte Carlo samples from the variational posterior distribgtfa). In our
experiments we foun8 = 10 to be suf cient. We takearg may, p(ytjxt; D1:t) to be the predicted
class.

VGS and VCL seK =1 for the single hypothesis in the above formula. LP further only used
the MAP estimatiorz; to predict the test sep(yjXt; D1:t)  P(YtJXt; Z¢)-
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