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Abstract

This paper introduces FlowMap, an end-to-end differen-
tiable method that solves for precise camera poses, cam-
era intrinsics, and per-frame dense depth of a video se-
quence. Our method performs per-video gradient-descent
minimization of a simple least-squares objective that com-
pares the optical flow induced by depth, intrinsics, and
poses against correspondences obtained via off-the-shelf
optical flow and point tracking. Alongside the use of point
tracks to encourage long-term geometric consistency, we in-
troduce differentiable re-parameterizations of depth, intrin-
sics, and pose that are amenable to first-order optimization.
We empirically show that camera parameters and dense
depth recovered by our method enable photo-realistic novel
view synthesis on 360◦ trajectories using Gaussian Splat-
ting. Our method not only far outperforms prior gradient-
descent based bundle adjustment methods, but surpris-
ingly approaches the accuracy of COLMAP, the state-of-
the-art SfM method, on the downstream task of 360◦ novel
view synthesis—even though our method is purely gradient-
descent based, fully differentiable, and presents a complete
departure from conventional SfM.

1. Introduction

Reconstructing a 3D scene from video is one of the most
fundamental problems in vision and has been studied for
over five decades. Today, essentially all state-of-the-art ap-
proaches are built on top of Structure-from-Motion (SfM)
methods like COLMAP [55]. These approaches extract
sparse correspondences across frames, match them, discard
outliers, and then optimize the correspondences’ 3D posi-
tions alongside the camera parameters by minimizing re-
projection error [55].

This framework has delivered excellent results which un-
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derlie many present-day vision applications, and so it is
unsurprising that SfM systems have remained largely un-
changed in the age of deep learning, save for deep-learning-
based correspondence matching [16, 36, 53, 54].

However, conventional SfM has a major limitation: it is
not differentiable with respect to its free variables (camera
poses, camera intrinsics, and per-pixel depths). This means
that SfM acts as an isolated pre-processing step that can-
not be embedded into end-to-end deep learning pipelines.
A differentiable, self-supervised SfM method would enable
neural networks to be trained self-supervised on internet-
scale data for a broad class of multi-view geometry prob-
lems. This would pave the way for deep-learning based 3D
reconstruction and scene understanding.

In this paper, we present FlowMap, a differentiable
and surprisingly simple camera and geometry estimation
method whose outputs enable photorealistic novel view
synthesis. FlowMap directly minimizes the difference be-
tween optical flow that is induced by a camera moving
through a static 3D scene and pre-computed correspon-
dences in the form of off-the-shelf point tracks and opti-
cal flow. Since FlowMap is end-to-end differentiable, it
can naturally be embedded in any deep learning pipeline.
Its loss is minimized only via gradient descent, leading to
high-quality camera poses, camera intrinsics, and per-pixel
depth. Unlike conventional SfM, which outputs sparse 3D
points that are each constrained by several views, FlowMap
outputs dense per-frame depth estimates. This is a critical
advantage in downstream novel view synthesis and robotics
tasks. Unlike prior attempts at gradient-based optimization
of cameras and 3D geometry [2, 35, 70], we do not treat
depth, intrinsics, and camera poses as free variables. Rather,
we introduce differentiable feed-forward estimates of each
one: depth is parameterized via a neural network, pose is
parameterized as the solution to a least-squares problem in-
volving depth and flow, and camera intrinsics are param-
eterized using a differentiable selection based on optical
flow consistency. In other words, FlowMap solves SfM by
learning the depth network’s parameters; camera poses and
intrinsics are computed via analytical feed-forward mod-
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Figure 1. We present FlowMap, an end-to-end differentiable method that recovers poses, intrinsics, and depth maps of an input video.
FlowMap is supervised only with off-the-shelf optical flow and point track correspondences, and optimized per-scene with gradient descent.
Gaussian Splats obtained from FlowMap’s reconstructions regularly match those obtained from COLMAP in quality.

ules without free parameters of their own. We show that
this uniquely enables high-quality SfM via gradient descent
while making FlowMap compatible with standard deep-
learning pipelines. Unlike recent radiance-field bundle-
adjustment baselines [2, 35], FlowMap does not use differ-
entiable volume rendering, and so it is significantly faster to
run, generally reconstructing an object-centric 360◦ scan in
less than 10 minutes.

Through extensive ablation studies, we show that each
of FlowMap’s design choices is necessary. On popular,
real-world novel view synthesis datasets (Tanks & Tem-
ples, Mip-NeRF 360, CO3D, and LLFF), we demonstrate
that FlowMap enables photo-realistic novel view synthesis
up to full 360◦ trajectories using Gaussian Splatting [29].
Gaussian Splats obtained from FlowMap reconstructions
far outperform the state-of-the-art gradient-based bundle-
adjustment method, NoPe-NeRF [2], and those obtained us-
ing the SLAM algorithm DROID-SLAM [64], even though
both baselines require ground-truth intrinsics. Gaussian
Splats obtained from FlowMap are similar to those obtained
from COLMAP [55], even though FlowMap only leverages
gradient descent, is fully differentiable, and represents a
complete departure from conventional SfM techniques.

2. Related Work

Conventional Structure-from-Motion (SfM) and SLAM.
Modern SfM methods perform offline optimization using
a multi-stage process of descriptor extraction, correspon-
dence estimation, and subsequent incremental bundle ad-
justment. In bundle adjustment, corresponding 2D pix-
els are coalesced into single 3D points, and estimated
camera parameters are optimized alongside these points’
3D positions to minimize 3D-to-2D reprojection error.
COLMAP [55] is the de-facto standard for accurate, offline
camera parameter estimation. Meanwhile, simultaneous lo-

calization and mapping (SLAM) usually refers to real-time,
online methods. These generally assume that the camera’s
intrinsic parameters are known. Similar to SfM, SLAM usu-
ally relies on minimizing reprojection error [6, 46, 47, 52],
but some methods investigate direct minimization of a pho-
tometric error [19, 20]. While deep learning has not funda-
mentally transformed SfM and SLAM, it has been lever-
aged for correspondence prediction [12, 39, 44, 49], ei-
ther via graph neural networks [53] or via particle track-
ing [17, 25, 80].

FlowMap is a departure from conventional SfM and
SLAM techniques. While we rely on correspondence from
optical flow and particle tracking, we do not coalesce sets
of 2D correspondences into single 3D points. Instead, we
use per-frame depth estimates as our geometry representa-
tion. Additionally, rather than relying on conventional cor-
respondence matching and RANSAC filtering, we leverage
neural point tracking [27] and optical flow estimators [63] to
establish correspondence, jointly enabling dense geometry
reconstruction without a seperate multi-view stereo stage.
Finally, FlowMap is end-to-end differentiable and intro-
duces feed-forward estimators of depth, poses, and intrin-
sics, making it compatible with other learned methods.

Deep-Learning Based SfM. Prior work has attempted to
embed the full SLAM pipeline into a deep learning frame-
work [3, 13, 14, 37, 61, 62, 66, 69, 81], usually by training
black-box neural networks to directly output camera poses.
However, these methods are mostly constrained to short
videos of 5 to 10 frames and are not competitive with con-
ventional SLAM and SfM for real-world 3D reconstruction.
Bowen et al. [4] elegantly leverage optical flow supervision
for self-supervised monocular depth prediction. More re-
cently, DROID-SLAM [64] has yielded high-quality cam-
era poses and depth. However, it requires known intrin-
sics, is trained fully supervised with ground-truth camera
poses, and fails to approach COLMAP on in-the-wild per-



Figure 2. A FlowMap Forward Pass. Given RGB frames (red), optical flow (blue) and point tracks (green), FlowMap computes dense
depth D, camera poses P, and intrinsics K in each forward pass. We obtain depth via a CNN (Sec. 4) and implement differentiable,
feed-forward solvers for intrinsics and poses (Sec. 4, Fig.4). Colored dots indicate which block receives which inputs. FlowMap’s only
free parameters are the weights of a depth NN and a small correspondence confidence MLP. These parameters are optimized for each video
separately by minimizing a camera-induced flow loss (Fig. 3) via gradient descent, though fully feed-forward operation is possible.

formance and robustness. Concurrent work to FlowMap
explores an end-to-end differentiable, point-tracking-based
SfM framework [67]. Unlike FlowMap, this method is
fully supervised with camera poses, point clouds, and in-
trinsics; requires large-scale, multi-stage training; solves
only for sparse depth; and is built around the philosophy
of making each part of the conventional SfM pipeline dif-
ferentiable. Another concurrent method [5] produces im-
pressive neural SfM results by alternating between mapping
and relocalization, though an initial depth estimate for one
frame is required to bootstrap this process. Our method is a
complete departure from the conventional SfM pipeline—it
does not require a training set of known intrinsics, ground-
truth poses, or 3D points, and it provides quality gradients
for dense depth, poses, and intrinsics. Critically, FlowMap
is among the first gradient-descent based methods to ap-
proach the performance of conventional SfM on the novel
view synthesis task. Zhang et al. [79] and Kopf ef al. [32]
demonstrate gradient-descent based optimization of cam-
era parameters with a similar flow-based reprojection su-
pervision, with a focus on dynamic scenes. However, these
methods optimize camera parameters as free variables and
depend on pre-trained monocular depth estimators. In con-
strast, our feed-forward parameterization uniquely enables
gradients for large-scale training and we demonstrate that
our gradients can be used to train a depth estimator.

Novel View Synthesis via Differentiable Rendering.
Advances in differentiable rendering have enabled photo-
realistic novel view synthesis and fine-grained geometry re-
construction using camera poses and intrinsics obtained via
SfM [34, 43, 45, 48, 56, 57]. 3D Gaussian Splatting [29]
goes further, directly leveraging the 3D points provided
by SfM as an initialization. It follows previous methods
like [15], which used 3D geometry from depth to supervise
neural radiance field (NeRF) reconstructions. We show that
when initializing Gaussian Splatting with poses, intrinsics,
and 3D points from FlowMap, we generally perform on par
with conventional SfM and sometimes even outperform it.

Camera Pose Optimization via Differentiable Ren-
dering. A recent line of work in bundle-adjusting radiance
fields [2, 9, 10, 21, 22, 26, 28, 35, 71–73, 76, 78] attempts to
jointly optimize unknown camera poses and radiance fields.

Several of these methods [24, 26, 75] additionally solve
for camera intrinsic parameters. However, these methods
only succeed when given forward-facing scenes or roughly
correct pose initializations. More recent work incorpo-
rates optical flow and monocular depth priors [2, 38, 41]
but requires known intrinsics and only works robustly on
forward-facing scenes. Concurrent work [22] accelerates
optimization compared to earlier NeRF-based approaches.
Unlike ours, this approach requires known intrinsics and
a pre-trained monocular depth estimator, and minimizes
a volume-rendering-based photometric loss instead of the
proposed correspondence-based approach. Further concur-
rent work proposes real-time SLAM via gradient descent
on 3D Gaussians [40], but requires known intrinsics and
does not show robustness on a variety of real-world scenes.
In contrast, our method is robust and easily succeeds on
object-centric scenes where the camera trajectory covers
a full 360◦ of rotation, yielding photo-realistic novel view
synthesis when combined with Gaussian Splatting.

Learning Priors over Optimization of NeRF and
Poses. Our method is inspired by recent methods which
learn priors over pose estimation and 3D radiance fields [8,
23, 33, 58]. However, these approaches require known cam-
era intrinsics, are constrained to scenes with simple motion,
and do not approach the accuracy of conventional SfM. Like
our method, FlowCam [58] uses a pose-induced flow loss
and a least-squares solver for camera pose. However, our
method has several key differences: we estimate camera
intrinsics, enabling optimization on any raw video; we re-
place 3D rendering with a simple depth estimator, which
reduces training costs and allows us to reuse pre-trained
depth estimators; and we introduce point tracks for supervi-
sion to improve global consistency and reduce drift. Unlike
FlowMap, FlowCam did not approach conventional SfM’s
accuracy on real sequences. We demonstrate that optimiz-
ing the pose-induced flow objective on a single scene, akin
to a test-time optimization, yields pose and geometry esti-
mates which, for the first time, approach COLMAP on full
360◦ sequences.



Figure 3. Camera-Induced Flow Loss. To use a known corre-
spondence uij to compute a loss L, we unproject ui using the
corresponding depth map Di and camera intrinsics Ki, transform
the resulting point xi via the relative pose Pij , reproject the trans-
formed point to yield ûij , and finally compute L = ∥ûij − uij∥.

3. Supervision via Induced Scene Flow
Given a video sequence, our goal is to supervise per-frame
estimates of depth, intrinsics, and pose using known corre-
spondences. Our method hinges upon the fact that a cam-
era moving through a static scene induces optical flow in
image space. Such optical flow can be computed differen-
tiably from any two images’ estimated depths, intrinsics,
and relative pose to yield a set of implied pixel-wise corre-
spondences. These correspondences can then by compared
to their known counterparts to yield supervision on the un-
derlying estimates.

Consider a 2D pixel at coordinate ui ∈ R2 in frame i
of the video sequence. Using frame i’s estimated depth
Di and intrinsics Ki, we can compute the pixel’s 3D lo-
cation xi ∈ R3. Then, using the estimated relative pose
Pij between frames i and j, we can transform this location
into frame j’s camera space. Finally, we can project the re-
sulting point Pijxi onto frame j’s image plane to yield an
implied correspondence ûij . This correspondence can be
compared to the known correspondence uij to yield a loss
L, as illustrated in Fig. 3.

L = ∥ûij − uij∥ (1)

Supervision via Dense Optical Flow and Sparse Point
Tracks. Our known correspondences are derived from two
sources: dense optical flow between adjacent frames and
sparse point tracks which span longer windows. Frame-
to-frame optical flow ensures that depth is densely super-
vised, while point tracks minimize drift over time. We
compute correspondences from optical flow Fij via uij =
ui + Fij [ui]. Meanwhile, given a query point ui, an off-
the-shelf point tracker directly provides a correspondence
uij for any frame j where one exists.

Baseline: Pose, Depth and Intrinsics as Free Vari-
ables. Assuming one uses standard gradient descent op-
timization, one must decide how to parameterize the esti-
mated depths, intrinsics, and poses. The simplest choice is
to parameterize them as free variables, i.e., to define learn-
able per-camera intrinsics and extrinsics alongside per-pixel
depths. However, this approach empirically fails to con-
verge to good poses and geometry, as shown in Sec. 7.

Figure 4. We solve for the relative poses between consecutive
frames using their depth maps, camera intrinsics, and optical flow.
To do so, we first unproject their depth maps, then solve for the
pose that best aligns the resulting point clouds.

4. Parameterizing Depth, Pose, and Intrinsics

In this section, we present FlowMap’s feed-forward re-
parameterization of depth, pose, and camera intrinsics,
which uniquely enables high-quality results when using
gradient descent. Later, in Sec. 7, we ablate these param-
eterizations to demonstrate that they lead to dramatic im-
provements in accuracy.

Depth Network. If each pixel’s depth were optimized
freely, two identical or very similar image patches could
map to entirely different depths. We instead parameterize
depth as a neural network that maps an RGB frame to the
corresponding per-pixel depth. This ensures that similar
patches have similar depths, allowing FlowMap to integrate
geometry cues across frames: if a patch receives a depth
gradient from one frame, the weights of the depth network
are updated, and hence the depths of all similar video frame
patches are also updated. As a result, FlowMap can pro-
vide high-quality depths even for patches which are poorly
constrained due to errors in the input flows and point tracks,
imperceptibly small motion, or degenerate (rotation-only)
motion.

Pose as a Function of Depth, Intrinsics and Optical
Flow. Suppose that for two consecutive frames, optical
flow, per-pixel depths, and camera intrinsics are known.
In this case, the relative pose between these frames can be
computed differentiably in closed form. Following the ap-
proach proposed in FlowCam [58], we solve for the relative
pose that best aligns each consecutive pair of un-projected
depth maps. We then compose the resulting relative poses
to produce absolute poses in a common coordinate system.

More formally, we cast depth map alignment as an or-
thogonal Procrustes problem, allowing us to draw upon this
problem’s differentiable, closed-form solution [11]. We
begin by unprojecting the depth maps Di and Dj using
their respective intrinsics Ki and Kj to generate two point
clouds Xi and Xj . Next, because the Procrustes formu-
lation requires correspondence between points, we use the
known optical flow between frames i and j to match points
in Xi and Xj . This yields X↔

i and X↔
j , two filtered point

clouds for which a one-to-one correspondence exists. The



Estimates Intrinsics Requires Known Intrinsics
Ground Truth FlowMap COLMAP (MVS) DROID-SLAM NoPE-NeRF

Figure 5. View Synthesis. FlowMap’s camera parameters and geometry produce similar 3D Gaussian Splatting results to COLMAP.

Procrustes formulation seeks the rigid transformation that
minimizes the total distance between the matched points:

Pij =
P∈SE(3)

∥W1/2(X↔
j − PX↔

i )∥22 (2)

The diagonal matrix W contains correspondence weights

that can down-weight correspondences that are faulty due
to occlusion or imprecise flow. This weighted least-squares
problem can be solved in closed form via a single singular
value decomposition [11, 58] which is both cheap and fully
differentiable. We further follow FlowCam [58] and predict



MipNeRF 360 (3 scenes) LLFF (7 scenes)

Method PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE

FlowMap 29.84 0.916 0.073 19.8 0.00055 27.23 0.849 0.079 7.5 0.00209
COLMAP 29.95 0.928 0.074 4.8 N/A 25.73 0.851 0.098 1.1 N/A
COLMAP (MVS) 31.03 0.938 0.060 42.5 N/A 27.99 0.867 0.072 13.4 N/A
DROID-SLAM* 29.83 0.913 0.066 0.6 0.00017 26.21 0.818 0.094 0.3 0.00074
NoPE-NeRF* 13.60 0.377 0.750 1913.1 0.04429 17.35 0.490 0.591 1804.0 0.03920

Tanks & Temples (14 scenes) CO3D (2 scenes)

Method PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE PSNR ↑ SSIM ↑ LPIPS ↓ Time (min.) ↓ ATE

FlowMap 27.00 0.854 0.101 22.3 0.00124 31.11 0.896 0.064 22.1 0.01589
COLMAP 26.74 0.848 0.130 5.5 N/A 25.17 0.750 0.190 12.6 N/A
COLMAP (MVS) 27.43 0.863 0.097 51.4 N/A 25.35 0.762 0.175 52.0 N/A
DROID-SLAM* 25.70 0.824 0.133 0.8 0.00122 25.97 0.790 0.139 0.8 0.01728
NoPE-NeRF* 13.38 0.449 0.706 2432.9 0.03709 14.97 0.400 0.770 2604.9 0.03648

Table 1. Camera parameter and geometry intializations from FlowMap produce 3D Gaussian reconstruction results that far outperform prior
gradient-based baselines and are generally on par with those produced by COLMAP. Methods marked with an asterisk require ground-truth
intrinsics. We report ATE with respect to COLMAP’s pose estimates for reference, since no ground-truth trajectories exist for common
view synthesis datasets. We exclude scenes where COLMAP or FlowMap fail entirely; each fails on 4 scenes. See the supplementary
document for more details.

these weights by concatenating corresponding per-pixel fea-
tures and feeding them into a small MLP. This MLP’s pa-
rameters are the only other free variables of our model. For
an overview of the depth map alignment process, see Fig. 4.

Camera Focal Length as a Function of Depth and
Optical Flow. We solve for camera intrinsics by consider-
ing a set of reasonable candidates Kk, then softly selecting
among them. For each candidate, we use our pose solver
Eq. 2 to compute a corresponding set of poses, then use
the camera-induced flow loss Eq. 1 to compute the loss Lk

implied by Kk and these poses. Finally, we compute the re-
sulting intrinsics K via a softmin-weighted sum of the can-
didates:

K =
∑
k

wkKk wk =
exp(−Lk)∑
l exp(−Ll)

(3)

To make this approach computationally efficient, we make
several simplifying assumptions. First, we assume that the
intrinsics can be represented via a single K that is shared
across frames. Second, we assume that K can be modeled
via a single focal length with a principal point fixed at the
image center. Finally, we only compute the soft selection
losses on the first two frames of the sequence.

Depth as the Only Free Variable in SfM. FlowMap of-
fers a surprising insight: Given correspondence, SfM can be
formulated as solving for per-frame depth maps. FlowMap
yields poses and intrinsics in a parameter-free, differ-
entiable forward pass when given correspondences and
depths. This means that better initializations of FlowMap’s
depth estimator (e.g., from pre-training) will yield more ac-
curate camera parameters (see Fig. 8).

5. Implementation and Optimization Details
FlowMap is optimized on each specific scene, achiev-
ing convergence between 500 and 5,000 steps using the
Adam [30] optimizer. Though per-scene optimization is
key to achieving high accuracy, we find that exploiting
FlowMap’s feed-forward nature for pre-training yields an
initialization that leads to improved convergence and accu-
racy, as shown in Fig. 8. During pre-training, in order to
minimize the time spent computing correspondences, we
do not use point tracks and use GMFlow [74] to compute
optical flow instead of RAFT.

Focal Length Regression. While our soft selection ap-
proach robustly yields near-correct focal lengths, its perfor-
mance is slightly worse compared to well-initialized direct
regression. We therefore switch to focal length regression
after 1,000 steps, using our softly selected focal length as
initialization.

6. Results
We benchmark FlowMap via the downstream task of 3D
Gaussian reconstruction [29]. This allows us to measure
the quality of the camera parameters and geometry (depth
maps) it outputs without having access to ground-truth
scene geometry and camera parameters.

Baselines. We benchmark FlowMap against several
baselines. First, we evaluate against COLMAP [55],
the state-of-the-art structure-from-motion (SfM) method.
Given a collection of images, COLMAP outputs per-image
camera poses and intrinsics alongside a sparse 3D point
cloud of the underlying scene. 3D Gaussian Splatting,
which was designed around COLMAP’s SfM outputs, is
initialized using this point cloud. Second, we evaluate



Figure 6. Ablations. We ablate the proposed feed-forward re-parameterizations of depth, pose, and intrinsics across all datasets. We
find that these reparameterizations are not only critical for high-quality downstream 3D Gaussian Splatting, but also lead to dramatically
accelerated convergence, where FlowMap generally converges to high quality poses within a fraction of the optimization steps required
for the ablated variants. We further find that point tracks lead to a significant boost over optical flow alone (right). See the supplemental
document for more ablations.

against COLMAP multi-view stereo (MVS), which en-
hances COLMAP’s output with a much denser 3D point
cloud. When initialized using this denser point cloud, 3D
Gaussian Splatting produces slightly better results. How-
ever, note that COLMAP MVS is rarely used in practice be-
cause it can be prohibitively time-consuming to run. Third,
we evaluate against DROID-SLAM, a neural SLAM system
trained on a synthetic dataset of posed video trajectories.
Finally, we evaluate against NoPE-NeRF, an method that
jointly optimizes a neural radiance field and unknown cam-
era poses. Note that unlike FlowMap and COLMAP, both
DROID-SLAM and NoPE-NeRF require camera intrinsics
as input.

Datasets. We analyze FlowMap on four standard novel
view synthesis datasets: MipNeRF-360 [1], Tanks & Tem-
ples [31], LLFF [42], and CO3D [51]. Because FlowMap
runs on video sequences, we restrict these datasets to just
the video-like sequences they provide.

Methodology. We run FlowMap and the baselines us-
ing images that have been rescaled to a resolution of about
700,000 pixels. We then optimize 3D Gaussian scenes for
all methods except NoPE-NeRF, since it provides its own
NeRF renderings. We use 90% of the available views for
training and 10% for testing. During 3D Gaussian fitting,
we follow the common [60] practice of fine-tuning the ini-
tial camera poses and intrinsics. Such refinement is benefi-
cial because the camera poses produced by SfM algorithms
like COLMAP are generally not pixel-perfect [35, 50]. We
use the 3D points provided by COLMAP, DROID-SLAM,
and FlowMap as input to 3D Gaussian Splatting. For
FlowMap, we combine the output depth maps, poses, and
intrinsics to yield one point per depth map pixel.

6.1. Novel View Synthesis Results

Tab. 1 reports rendering quality metrics (PSNR, SSIM, and
LPIPS) on the held-out test views, and Fig. 5 shows qualita-
tive results. Qualitatively, FlowMap facilitates high-quality
3D reconstructions with sharp details. Quantitatively,

FlowMap performs slightly better than COLMAP SfM and
significantly outperforms DROID-SLAM and NoPE-NeRF.
Only COLMAP MVS slightly exceeds FlowMap in terms
of reconstruction quality. As noted previously, COLMAP
MVS is rarely used for 3D Gaussian Splatting, since it is
very time-consuming to run on high-resolution images.

6.2. Camera Parameter Estimation Results

Since the datasets we use do not provide ground-truth
camera parameters, they cannot be used to directly eval-
uate camera parameter estimates. Instead, Tab. 1 reports
the average trajectory error (ATE) of FlowMap, DROID-
SLAM, and NoPe-NeRF with respect to COLMAP. Since
COLMAP’s poses are not perfect [50], this comparison is
not to be understood as a benchmark, but rather as an indica-
tion of how close these methods’ outputs are to COLMAP’s
state-of-the-art estimates. We find that DROID-SLAM and
FlowMap both recover poses that are close to COLMAP’s,
while NoPE-NeRF’s estimated poses are far off. When
computing ATEs, we normalize all trajectories such that
tr(XXT ) = 1, where X is an n-by-3 matrix of camera
positions.

Fig. 9 plots trajectories recovered by FlowMap against
those recovered by COLMAP, showing that they are often
nearly identical. Fig. 7 shows point clouds derived from
FlowMap’s estimated depth maps and camera parameters,
illustrating that FlowMap recovers well-aligned scene ge-
ometry.

7. Ablations and Analysis
We perform ablations to answer the following questions:

• Question 1: Are FlowMap’s reparameterizations of depth,
pose, and intrinsics necessary, or do free variables perform
equally well?

• Question 2: Are point tracks critical to FlowMap’s perfor-
mance?



Figure 7. Point Clouds Reconstructed by FlowMap. Unprojecting FlowMap depths using FlowMap’s intrinsics and poses yields dense
and consistent point clouds.

• Question 3: Does self-supervised pre-training of the
depth estimation and correspondence weight neural net-
works improve performance?

Parameterizations of Depth, Pose, and Camera In-
trinsics (Q1) We compare the reparameterizations de-
scribed in Sec. 4 to direct, free-variable optimization of
pose, depth, and intrinsics. Fig. 6 shows qualitative re-
sults and quantitative results averaged across 33 scenes. We
find that free-variable variants of FlowMap produce sig-
nificantly worse reconstruction results and converge much
more slowly, confirming that FlowMap’s reparameteriza-
tions are crucial.

It is worth noting that often, explicitly optimizing a fo-
cal length produces high-quality results, as indicated by the
relatively high performance of the “Expl. Focal Length” ab-
lation. In fact, given a good initialization, direct focal length
regression produces slightly better results than the proposed
focal length reparameterization alone on about 80 percent
of scenes. However, on about 20 percent of scenes, this ap-
proach falls into a local minimum and reconstruction fails
catastrophically. This justifies the approach FlowMap uses,
where the first 1,000 optimization steps use a reparameter-
ized focal length, which is then used to initialize an explicit
focal length used for another 1,000 optimization steps.

We further highlight that FlowMap’s reparameterizations
are necessary to estimate poses and intrinsics in a single
forward pass, which is crucial for the generalizable (pre-
training) setting explored in Q3.

Point Tracking (Q2) While optical flow is only com-
puted between adjacent frames, point track estimators can
accurately track points across many frames. In Fig. 6, we
show that FlowMap’s novel view synthesis performance
drops moderately when point tracks are disabled.

Pre-training Depth and Correspondence Networks
(Q3) Since FlowMap is differentiable and provides gradi-
ents for any depth-estimating neural network, it is compati-
ble with both randomly initialized neural networks and pre-
trained priors. Learned priors can come from optimization
on many scenes, from existing depth estimation models, or
from a combination of the two. In practice, starting with
a pre-trained prior leads to significantly faster convergence,
as illustrated in Fig. 8. Note that pre-training and general-
ization are uniquely enabled by the proposed feed-forward
reparameterizations of depth, focal length, and poses.

Scratch Network
Step: 1000 2000 100 2000

Pre-trained Network

Figure 8. Effects of pretraining. While a randomly initialized
FlowMap network often provides accurate poses after optimiza-
tion, pre-training leads to faster convergence and slightly improved
poses. Here we plot depth estimates at specific optimization steps
(top) as well as pose accuracy with respect to COLMAP during
optimization (bottom). Randomly initialized FlowMap networks
often require more than 20,000 steps to match the accuracy of a
pre-trained initialization at 2,000 steps.

Figure 9. Qualitative Pose Estimation Comparison. FlowMap
(solid red) recovers camera poses that are very close to those of
COLMAP (dotted black).

8. Conclusion.

We have introduced FlowMap, a simple, robust, and scal-
able first-order method for estimating camera parameters
from video. Our model outperforms existing gradient-
descent based methods for estimating camera parameters.
FlowMap’s depth and camera parameters enable subsequent
reconstruction via Gaussian Splatting of comparable quality
to COLMAP. FlowMap is written in PyTorch and achieves
runtimes of 3 minutes for short sequences and 20 min-
utes for long sequences, and we anticipate that concerted
engineering efforts could accelerate FlowMap by an or-
der of magnitude. Perhaps most excitingly, FlowMap is
fully differentiable with respect to per-frame depth esti-
mates. FlowMap can thus serve as a building block for
a new generation of self-supervised monocular depth es-
timators, deep-learning-based multi-view-geometry meth-
ods, and methods for generalizable novel view synthe-
sis [7, 18, 59, 65, 68, 77], unlocking training on internet-



scale datasets of unposed videos.
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voxels: Learning persistent 3d feature embeddings. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2019. 3

[57] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
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