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ABSTRACT

We show that large language models (LLMs) can be adapted to be generalizable
policies for embodied visual tasks. Our approach, called Large LAnguage model
Reinforcement Learning Policy (LLaRP), adapts a pre-trained frozen LLM to take
as input text instructions and visual egocentric observations and output actions
directly in the environment. Using reinforcement learning, we train LLaRP to
see and act solely through environmental interactions. We show that LLaRP is
robust to complex paraphrasings of task instructions and can generalize to new
tasks that require novel optimal behavior. In particular, on 1, 000 unseen tasks it
achieves 42% success rate, 1.7x the success rate of other common learned base-
lines or zero-shot applications of LLMs. Finally, to aid the community in studying
language conditioned, massively multi-task, embodied Al problems we release a
novel benchmark, Language Rearrangement, consisting of 150, 000 training and
1,000 testing tasks for language-conditioned rearrangement. Video examples of
LLaRP in Language Rearrangement and the code are at https://llm-rl.github.io.

1 INTRODUCTION

Large Language Models (LLMs), characterized as billion-parameter models trained on enormous
amounts of text data, have demonstrated unprecedented language understanding capabilities. Fur-
thermore, LLMs have demonstrated powerful capablhtles beyond core language understanding prob-

lems, such as dialog systems ( , ; , ), visual understanding prob-
lems ( s ; s ; s ; , ), reasoning ( s
; s ), code generation ( s ), embodied reasoning (
s ), and robot control ( s ). These capabilities often emerge in a zero-shot

fashion, without dedicated training data for each capability, indicating that LLLMs contain knowledge
general and broad enough to apply to numerous domains. Furthermore, these capabilities emerge
despite that the input and output spaces in these domains are oftentimes not naturally expressed in
language, e. g. images as inputs, and robot commands as outputs.

A key objective in Embodied Al is generalizable decision-making that can transfer to novel tasks, so
it is natural to ask if the generalization abilities of LLMs can be incorporated into embodied prob-
lems. Ex1st1ng advances in using LLMs for Embodied Al have relied on static expert datasets (
, ), which requires prohibitively large and expensive amounts of di-

Verse expert data. Conversely, Embodied Al simulators enable agents to learn from an environment
through direct interaction, exploration, and reward feedback ( ,

, ). However, the generalization capabilities of such agents to a large number of new
embodied tasks are not on par with the aforementioned domains.

LLMs have been shown to be applicable in online settings when the control domain is that of natural
language, e.g., Reinforcement Learning from Human Feedback (RLHF) for multi-turn dialog appli-
cations ( , ). In this work, we successfully show that LLMs can be adapted via
reinforcement learning as a vision-language policy for problems in embodied Al, using a method
we call Large LAnguage model Reinforcement learning Policy (LLaRP). We demonstrate advanced
capabilities on a diverse set of rearrangement tasks, where the input and output domains aren’t just
language (see Fig. 1) In particular, we demonstrate the following three contributions:
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Reinforcement Learning of an LLM-based Policy for Many Tasks Generalization Across Novel Tasks
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Figure 1: We demonstrate that by utilizing Reinforcement Learning together with a pre-trained
LLM and maximizing only sparse rewards, we can learn a policy that generalizes to novel language
rearrangement tasks. The method robustly generalizes over unseen objects and scenes, novel ways of
referring to objects, either by description or explanation of an activity; and even novel descriptions of
tasks, including variable number of rearrangements, spatial descriptions, and conditional statements.

First, we show that using a pre-trained and frozen LLM as a Vision-Language Model (VLM) policy
with learned input and output adapter layers results in a policy that exhibits strong generalization
capabilities. We train this policy using online RL and measure generalization along two axes:

* Paraphrastic Robustness (PR): the agent produces the same optimal behavior under linguistic
variations of an instruction where the “intention” of the instruction does not change. This includes
novel ways of describing the same behavior or novel ways of referring to a seen object.

* Behavior Generalization (BG): the agent solves tasks that require novel optimal behavior. This
means the desired behavior outcome is distinct from those seen during training. For example, act
on new types of or combinations of objects, new types of combined behaviors (e.g., finding “all”
of something) or new logical conditions (e.g., “if” statements).

LLaRP is thoroughly evaluated on over 1,000 unseen tasks spanning the above axes and attains
42% success rate, compared to 25% for an LSTM-based policy and 22% for zero-shot applications
of LLMs. Our approach outperforms all baselines both when it is instructed in novel ways as well
as when tasked to perform unseen behaviors. Further, we demonstrate that the LLaRP LLM-based
policy gives a non-trivial boost on another domain, Atari, compared to a Transformer baseline.

We demonstrate that, when the agent has access to the world knowledge encoded in an LLM, RL
exhibits various forms of fraining efficiencies. For one, LLM-based models exhibit better sample
efficiency than other common architectures in both basic PPO RL and continual learning settings
(training the model on downstream tasks beyond the training tasks). Further, we show that LLaRP
is more efficient with what supervision is needed than commonly used imitation learning.

Finally, in order to facilitate the above contributions and promote future work studying general-
ization in Embodied Al, we introduce the Language Rearrangement task which includes 150,000
distinct language instructions, each with automatically generated rewards. The large number of di-
verse tasks brings the system closer to real-world setups where agents should be able to do anything
and everything, and pushes the limits on performance. For generalization evaluation, we define
splits that stress test the system on PR- and BG-types of generalization.

2 RELATED WORK

Prior work has demonstrated large language models (LLMs) can be used as zero-shot policies for
interactive decision-making tasks, without task-specific training, in settings where the states and ac-
tion spaces are both text-based (Zeng et al., 2022; Shah et al., 2023; Huang et al., 2022; Liang et al.,
2023; Huang et al., 2023b; Wu et al., 2023a; Silver et al., 2023; Wang et al., 2023). Namely, Code
as Policies (Liang et al., 2023) relies on perception modules not available in our setting. Further-
more, LLMs can be adapted to text-based decision making by fine-tuning with a standard language
modeling objective (Chalvatzaki et al., 2023). In addition, it has been shown that LLMs can be used
to provide rewards or useful high-level goals for learning policies (Du et al., 2023; Hu & Sadigh,
2023; Wu et al., 2023b) in text-based or human-interaction settings.
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Figure 2: LLaRP architecture. The bottom of the figure shows the policy inputs including the task
instruction and the egocentric visual RGB frames from the current time step to the start of the
episode. These are encoded using the LLM embeddings or a vision encoder. The embeddings are
input to a pre-trained LLM. The hidden outputs are then projected to action and value predictions.
The entire system learns from online RL, where the action output module and observation encoder
MLP are the only trained components and all other components are frozen.

It has been shown that agents can learn tasks specified by natural language. ( );
); (2022); (2022); (2023);
( ); ( ); ( ); ( ) learn language conditioned
policies through imitation learning on a dataset of expert trajectory and language pairs. Namely,
Perceiver-actor ( ) requires offline data for imitation learning while LLaRP learns
from interaction through RL. ( ); ( ); ( ) augment the
paired dataset to increase the quantity and diversity of data for imitation learning. Open-vocabulary
mobile manipulation (OVMM, , ) demonstrated open-vocab rearrangement

capabilities in pick-and-place settings, while other works demonstrate open-vocab object manipu-
lation capabilities in navigation settings ( , ; s ; s ;

, )-

Works in Vision Language Models (VLMs) have combined pre-trained LLMs with visual reason-
ing ( R ). Works have imbued VLMs with 3D spatial information ( R ;

s R ), usually in a static setting without environment inter-
action. Like our work, PaLM—E ( s ) and RT-2 ( , ) extend VLMs
to interactive decision-making in visual embodied environments, but using high-quality expert data.

To our knowledge, no prior work demonstrates that LLMs can be used as vision-language policies
in online RL problems to improve generalization. Like our work, ( ) also adapts
an LLM with online RL, but it does so in environments with textual observations and text actions,
while we adapt LLMs for vision-language policies with online RL. Furthermore, we demonstrate
these capabilities over a diverse set of evaluations, both in terms of linguistic (paraphrastic gener-
alization) and target behavior (behavior generalization) variations. Our Language Rearrangement
extends beyond the scope of prior work using LLMs in embodied settings by requiring complex
manipulation, navigation, and exploration. The tasks contain 18x more instructions involving more
complex rearrangement concepts and object interactions than the benchmark ALFRED (
, ), one of the more common language-conditioned Embodied Al benchmarks.

3 METHOD

Our method, Large LAnguage model Reinforcement learning Policy (LLaRP), adapts pre-trained
LLMs to operate in embodied multi-modal decision-making settings. We show how to modify
existing LLMs for embodied settings and train a policy for embodied tasks, leading to an agent with
significantly improved generalization capabilities to new language instructions.
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Our problem can be formulated as a Partially-Observable Markov Decision Process (POMDP), de-
fined as a tuple (S, 0, A, P, R, py,7) for underlying state space S, observation space O, action
space A, transition distribution P, reward function R, initial state distribution py and discount fac-
tor . In our setting, O are egocentric high-dimensional visual observations, such as a robot’s RGB
camera which only observes part of the scene. We consider the extension of including a goal dis-
tribution G and the case where the reward is formulated as R (s, g) for s € S and g € G. We seek
to learn a goal-conditioned policy 7(a|o, g) mapping from observation o and goal g to an action a
that maximizes the sum of discounted rewards E;,~,,g~g 2, V" R(St, g). Furthermore, we seek to
learn a policy that generalizes and achieves high rewards for goal distributions G’ not seen during
training. Specifically, we consider goals specified as natural language instructions and want policies
to generalize to new distributions of natural language instructions.

We utilize large language models (LLMs), which are large auto-regressive text prediction models.
Given text represented as a sequence of tokens [, the LLM is trained to predict each token in that
sequence conditioned on all prior tokens XM (I 41 | I1,...,lx). Since an embodied agent policy
needs to consume visual observations O and predict actions 4, both of which are not language
tokens, we strip away the input and output layers of the LLM. In particular, the LLM input layer
encodes the text tokens producing vector embeddings e, = E7T (I;) € R, while the output layer
classifies words.

After we strip away the input and output layers, we call the resulting network an LLM backbone
and denote it by 9""M(ey, ..., ex) € RP. This backbone consumes a sequence of D-dim. token
embeddings and produces a D-dim. token embedding.

3.1 LARGE LANGUAGE MODEL REINFORCEMENT LEARNING POLICY ARCHITECTURE

LLaRP, visualized in Figure 2, has two input types. First, it is conditioned on a goal g =
(I1,...,lg) € G expressed as language. This goal can be embedded using the language encoder
EQT into a sequence of D-dim. vectors. Second, it consumes visual observations o1, ..., 0; dur-
ing the policy rollout which are encoded using a separate learnable observation encoder module
E(‘; : O — RP. The observation encoder module consists of a vision encoder that produces a visual
embedding and an MLP network that projects the visual embedding to the language model token
embedding dimension. The encoded text and visual observations create a k + ¢ length sequence of
D-dimension embeddings, which are input to the LLM backbone /5™, as defined above.

To decode an action as output, we employ a learnable action output module D,, : RP s D(A)
that converts the output of the LLM backbone to a distribution over actions from A. With the
two additional adapter modules D,, and E(‘; we are able to adapt the LLM to take as input goal
specification and visual observations up to time ¢ in order to output action at time ¢:

T (aglor, . or,9) = Do (g™ (B (L), -, By (), By (01), -, B (00))-

The action output module is an MLP that predicts a distribution over environment actions. We
exclude the first & outputs from 1™ that correspond to the language task specification tokens. The
hidden outputs corresponding to observations at each time step are fed through the action modeling
MLP to produce the distribution over actions. The action output module also predicts the value
estimate used for the reinforcement learning update. More details about the visual encoder and
action output module are in Appendix C.1.

3.2 LARGE LANGUAGE MODEL REINFORCEMENT LEARNING POLICY TRAINING

We train LLaRP using only reinforcement learning ( , ). Specifically, we train
with DD-PPO ( , ), an adaptation of PPO ( , ) for multi-
GPU training. LLaRP collects experience interactively by rolling out its policy auto-regressively to
generate actions to take in the environment. For the PPO update, we sample minibatches from the
collected data and compute action log probabilities in parallel for the PPO update.

During training, we freeze the LLM backbone and the visual encoder. A frozen visual encoder helps

maintain visual features that can generalize to different environments ( , ). A
frozen LLM backbone helps maintain language reasoning capabilities, which can be lost during fine
tuning ( , ). For more details about the method, refer to Appendix C.1.
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Dataset Name

Instruction Example

‘ Description

Train Find an apple and put it away in the fridge. Instructions used to train the agent.

New Scenes Find an apple and put it away in the fridge gzgqeeltr:s;;gcigzr:\;vtllgeglegew scenes. All other
P Instruction . ) Swap the order that nouns appear in the in-
2 " In the fridge, stow an apple. . .
2 Rephrasing struction and substitute synonyms for verbs.
£
E Referri'ng Find the round red fruit and put it in the fridge | Refer to objects by their visual appearance.
=) Expressions . ‘
':: Spatial Find an apple and put it in the receptacle to | Refer to receptacles indirectly by their location
%  Relationships the right of the kitchen counter. relative to other receptacles.
= I am hungry for something sweet and healthy. | Describe a situation where a particular object
2, Context
] Put a snack for me on the table. fits the context.
£ Irrelevant There is a pear on the counter. Find an apple

Instructions that include irrelevant context.

Instruction Text | and put it away in the fridge.

Multiple Find an apple, pear, and banana and put them . . ..
Rearrangements | away in the fridge. Rearrange 3 objects (2 max during training).
g Novel Objects Find an orange and put it away in the fridge New entity / instruction pairs.
S Muliple Put all the apples in the fridge Find all of an object
'§ Objects B ’ ’
E Conditional If the fridge is open, find an apple and put it | Adjust behavior based on if the conditional
2 Instructions there. Otherwise put an apple on the table. statement is true.

Table 1: Evaluation datasets. The datasets with unseen instructions are divided into two categories:
paraphrastic robustness which tests if the agent can produce the same behavior under linguistic
variation and behavior generalization where the agent has to demonstrate a new type of behavior.
The red text highlights the concept in the instruction distinct from the training distribution that
emphasizes the dataset evaluation purpose. See Appendix B.5 for more details.

4 LANGUAGE REARRANGEMENT PROBLEM

To study generalization properties across a large number of language conditioned tasks we introduce
a novel problem called “Language Rearrangement”. Language Rearrangement strives to cover a
large number of tasks of home environment tasks, such as, “Bring a mug to the couch.”, “Store
all the fruit in the fridge.”, or “I am hungry, bring something from the kitchen to the table.”. This
problem space extends the Rearrangement task ( , ) by defining 150,000 training and
1,000 testing tasks, and providing a textual instruction for each one. The tasks require an agent to
generalize to a variety of unseen instruction concepts requiring multiple object interactions (picking,
placing, opening, closing), searching for objects and logical reasoning (e.g. “if”” statements).

4.1 TASK DEFINITION

In Language Rearrangement, an agent starts in an unseen house and is tasked to execute a com-
mon household activity, that reduces to moving objects from specified start positions to desired goal
positions. The agent is provided with a natural language instruction specifying the desired goal
state. We generate instructions at scale using instruction templates, instruction template rephras-
ings, scene-grounded entity enumeration, and a solver feasibility validation check. A sparse reward
is provided for successfully completing the entire task or a subtask. Completing the instructions
requires the agent to explore. For example, to “Put all the dishes in the sink if the sink is empty”
requires the agent to explore to find all the dishes in the house. While exploring, the agent needs
to detect when it sees a plate and then pick it up. The instructions vary in what information is re-
vealed to the agent (such as the starting positions of objects), how many objects to rearrange, and
logical concepts such as “for all”, “exists”, conditionals, swapping, and removals. See complete
task details in Appendix B. We compare Language Rearrangement to other benchmarks in detail in
Appendix B.7.

The agent has to perform the tasks entirely from onboard sensing capabilities and without any pre-
built maps, object 3D models, or other privileged information. A simulated Fetch robot (

, ) senses the world through a 256 x 256-pixel head-mounted RGB camera, robot joint
positions, an indicator of whether the robot is holding an object or not, and base egomotion giving
the relative position of the robot from the start of the episode. The agent interacts with the world
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via a mobile base, 7DoF arm, and suction grip attached to the arm. Language Rearrangement is
implemented in Habitat 2.0 ( , ). When the policy selects a valid low-level skill policy
that can be executed in the current state, the simulation is kinematically updated with the skill post
conditions.

We supplement all methods with low-level skills and focus on high-level decision-making. Lan-
guage Rearrangement poses the challenge of long-horizon tasks spanning tens of thousands of low-
level control. Even single-object mobile pick and place tasks are challenging for end-to-end meth-

ods ( ; , ). Yet hierarchical methods where a high-level policy
selects from ﬁxed skills is effective for rearrangement tasks ( , ). Therefore like other
rearrangement works ( , ), we train a high-level policy to select low-level policies.

There are 70 skills for the high-level policy to choose between at every step. These skills include
picking objects by name, placing on receptacles by name, navigating to receptacles, and opening and
closing receptacles by name. Example skills include pick(apple), place(sink), navigate(left counter),
and open(fridge). See Appendix B.3 for details.

4.2 GENERALIZATION TEST DATASETS

Language Rearrangement seeks to evaluate how well agents can complete language instructions
during evaluation that are different from those seen during training. To facilitate this, we generate
a dataset of 150k distinct training instructions covering basic rearrangement concepts, from single-
object interactions to finding and moving two objects. The train instructions include several phras-
ings of the same rearrangement concept and cover interacting with various objects and receptacles.
For evaluation, we construct an evaluation dataset that tests the generalization capabilities with re-
spect to different rearrangement concepts expressed with language (see Table | and Appendix B.5).
All evaluation datasets are in unseen houses.

Paraphrastic Robustness (PR): The ultimate goal of training models capable of solving tasks from
natural language instruction is to allow humans to easily provide instructions to embodied agents.
However, humans exhibit high variability in how they describe a task ( , ), SO
it is necessary that agents are robust to paraphrasing. Paraphrasic Robustness (PR) evaluates if the
agent can produce the same behavior under a linguistic variation. Such variations include new ways
of saying the instruction and referring to objects indirectly rather than by name. The underlying goal
of these instructions are contained in the training dataset.

Behavior Generalization (BG): The second category of datasets test Behavior Generalization (BG)
in which the agent has to demonstrate a new type of behavior specified by the language instructions
not present in the training dataset. This involves a new logical expression. For example, during
training the agent was told how many objects to find. But BG includes the Multiple Rearrangements
task, which requires an agent to find “all” of a particular object.

We believe these two axes of generalization have large coverage in terms of realistic semantic sit-
uations that a robot could encounter. PR and BG roughly align with generalization concepts in
psychology; PR is similar to what is referred to as “stimulus generalization” in psychology, while
BG can be thought of as a type of “response generalization” ( , ), though in the latter
we do not keep the linguistic instruction — the “stimulus” — fixed.

5 EXPERIMENTS

5.1 BASELINES

We compare LLaRP to the following baselines. For all methods in Language Rearrangement, we
use the pre-trained VisualCortex model (VCI, , ) a ViT backbone designed for
egocentric visual tasks. We represent the visual observations using the ViT [CLS] token from VCI.
We freeze the VCI visual encoder module. All RL methods are trained with PPO. Further details
for all methods are in Appendix C.

* 7ZS-ChatGPT/ ZS-LLaMA: Input the instruction to the LLM and zero-shot (ZS) plan a sequence
of high-level actions. This policy is blind and plans based only on the language instruction. The
prompt lists all the constraints (e.g., only one object can be picked at a time), possible actions,
receptacles and objects, along with examples of successful behavior. We compare against an
instruction-tuned LLaMA-65B (ZS-LLaMA) ( , ) which generates a plan only
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Figure 3: Success Rates across all evaluation tasks, aggregated in groups per Table 1. Across all
unseen task groups, LLaRP generalizes better than the respective baselines, apart from multiple
rearrangement, in which all models perform poorly. For exact numbers, see Table 5.

once at the beginning. We also compare against ChatGPT (ZS-ChatGPT) that performs multi-step
reasoning to iteratively refine the plan based on proprioceptive feedback from the environment.
For details about the ZS baselines, prompt, and environment feedback see Appendix C.4.

* ZS-Flamingo: Multimodal (text + image) version of the ZS-LLaMA baseline. Uses IDEFICS,
an open source 80B parameter VLM model (Laurencon et al., 2023) based on Flamingo (Alayrac
et al.,, 2022). Given a prompt similar to ZS-LLaMA, the image observation and the textual in-
struction, ZS-Flamingo outputs a single plan for the agent to follow.

e LLaRP-Scratch: Same architecture as LLaMA-7B but with 2 billion parameters. The entire
transformer is trained from scratch and the pretrained visual encoder is frozen.

* LSTM-Flan/ LSTM-LLaMA: The instruction is encoded as a fixed-length vector that an LSTM
takes as input along with the observation encoding. The action is predicted from the LSTM hidden
state. LSTM-Flan uses Flan-T5 (Chung et al., 2022) to encode the instruction while LSTM-
LLaMA uses LLaMA and a Perciever Resampler network (Jacgle et al., 2021).

5.2 EMPIRICAL ANALYSIS

In this section, we analyze the empirical performance of LLaRP and the baselines on Language
Rearrangement. We show LLaRP has better zero-shot generalization capabilities than the baselines
on most of the unseen Language Rearrangement evaluation datasets. LLaRP also learns efficiently,
learning faster during training and comparing favorably to training with expert demonstrations.

LLaRP improves generalization across all generalization types. We report aggregate success
rates across all generalization datasets in Table 2. We report the mean and standard deviation across
3 random seeds for all RL-based methods. We see that LLaRP is almost 1.7x better than the next
best performing baseline, 42% vs. 25%. This trend is true for both Paraphrastic and Behavior
generalizations, which shows that the use of a LLM allows for a model that can better understand
natural language and execute novel tasks. Althought this is expected for paraphrastic robustnes as
LLMs are known for their language understanding capabilities, it is somewhat surprising to see that
the LLM helps even for novel behaviors, achieving 45% vs. 28% from LSTM-Flan.

Results across individual generalization test Method | Total ~ Pavaphrastic Behavior

sets are shown in Figure 3. LLaRP displays Robustness _ Generalization
. .. e LLaRP | 42 +2 38 +1 45 +3
superior generalization capabilities across all |} oo o @

: . 17 +4 16 +3 18 &5
settings. Most learned methods achieve near LSTM-Flan | 25 +1 23 +1 28 +1
100% success rates on the train split and almost LSZTé\’IgﬂL%/% 2;2 1 3 zil 2 0;3 0

: -Chat
100% when one varies the scene, but uses the ZSLlaMA | 12 10 1
same 1nstructions as 1n train. ZS-Flamingo 6 4 8

LLaRP performs 7% and 12% better when we
rephrase instructions or talk about novel objects
compared to the next best performing model.
However, the boost LLaRP gets from using a LLM is substantial for more complex novel tasks,
e. g. when we use a context, have a conditional statement, multiple chained rearrangements, etc.

Table 2: Combined zero-shot success rate. LLaRP
outperforms all baselines in all categories.
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Figure 4: Success rates (SR) for different stages of training (left and middle) or number of episodes /
demonstrations (right). (a) SR vs number of steps during learning. (b) SR vs number of steps during
continual learning on “Multiple Rearrangments” tasks. (c) LLaRP with RL vs LLaRP with IL with
the same number of episodes / demonstrations. See text for further discussion.

The second best performing model is LSTM-Flan, which like LLaRP uses a billion parameter lan-
guage model (Flan-T5). However, LSTM-Flan uses it to comprehend instructions through encoding
the instruction to a fixed size vector, rather than using the LLM as a decoder like LLaRP. LSTM-
Flan generalizes in some scenarios such as to new phrasings and objects, indicating that the LSTM
policy learned to interpret these aspects of the FLAN embedding. Whereas unlike LLaRP, LSTM-
Flan performs worse on Behavior Generalization than Paraphrasic Robustness, indicating that using
the LLM directly as a decoder is important for generalization to new behaviors. We also compare
to LSTM-LLaMA which uses the same LLaMA hidden state activations as LLaRP. However, it
performs generally worse, perhaps because LLaMA was not trained as an encoder model.

The zero-shot application of LLM, ZS-ChatGPT, requires no training and cannot receive images
as inputs. Nevertheless, it achieves better-than-random performance across many of the evaluation
splits, which demonstrates that the LLM contains relevant information for embodied tasks.

LLMs lead to faster learning convergence. As shown in Figure 4a, LLaRP is the most sample
efficient model, converging in around 50M-100M steps before LSTM-Flan, despite being a sub-
stantially larger model. Further, LLaRP-Scratch takes 10x more environment samples to converge
than LLaRP (50M versus 500M) despite both having the same architecture, showing that pre-trained
LLMs are a good fit for the problem space.

Note that only a few prior works have used transformers for online RL ( , ). In
Appendix D.1, we further explain the training architecture and settings that were critical to stably
train LLaRP and baseline transformer policy training with PPO.

LLMs leads to faster continual learning convergence. To
evaluate the continual learning efficiency, we continue learn-
ing the model on downstream tasks beyond the training tasks
and analyze the training convergence. Specifically, we take the
“Multiple Rearrangements” dataset, generate 10K episodes,
and train until convergence. The results, shown in Fig-
ure 4b, show that LLaRP is 3x more efficient than LSTM-Flan,
achieving near perfect performance in 500k vs 1.5M environ-
ment steps. Hence, LLMs can lead to faster learning of addi-
tional tasks.

[=)]
o
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BN | 1aRP-13b

A ul €]
[Vl o [

Success Rate (%)

N
o

35-
. oye . . A P Beh
LLaRP with RL performs better and utilizes supervision Eval Robust Gen'

more efficiently than IL. A common paradigm of endow- Figure 5: Average success rates
ing LLMs with novel capabilities is is Imitation Learning (IL) across our evaluation datasets for
with decision making data. More recently, works have en- LLaRP scaled from Llama-7b to
dowed LLMswith decision making capabilities in embodied Llama-13b.

settings ( , ; ).

k)

Hence, a natural question is to compare LLaRP trained with RL vs IL. IL uses demonstrations
generated by a fully trained LLaRP policy. For each data point, we use the same number of episodes
for RL as demonstrations for IL, both denoted by instruction count, and train until convergence.
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Locate a tool to fix a loose screw
in the sofa and bring it there.

o navigate(brown_table)
e navigate(dark_table)
© navigate(blue_table)
n pick(screwdriver)

e navigate(sofa)
n place(screwdriver, sofa)

Figure 6: Success trajectory in the Context dataset. Arrows indicate navigation to receptacles. Right
shows actions selected by LLaRP. Upper-left show egocentric observations for some steps.

In Figure 4c, we see that for any number of episodes (or demonstrations) RL outperforms IL, with
a larger margin in the low regime of data. This shows that in RL settings, an LLM-based LLaRP is
able to collect episodes that are useful for policy improvement. For RL we merely need a reward
definition, while in IL settings full demonstration trajectories are required, thus making RL less
costly than IL for each instruction count.

Larger LLMs lead to better results. In Figure 5, we show the effect of scaling the size of the LLM
in LLaRP. We compare using LLaMA-13B and LLaMA-7B in LLaRP. We find that LLaMA-13B
gives a 4% boost in total evaluation performance. This indicates that larger, more capable LLMs,
can translate to more capable embodied reasoning.

Qualitative Result. In Fig. 6, we show a success example of LLaRP on the Context dataset. The
agent explores for the first 3 actions. Then it finds the screwdriver implied by the phrase “fix a
loose screw” in the instruction. It then successfully brings that screwdriver to the couch. For more
qualitative examples in the other datasets, see Appendix E and videos at https://Ilm-rl.github.io.

LLMs boost performance with tasks beyond Language
Rearrangement. We evaluate LLaRP across Atari 2600

games using the Arcade Learning Environment (Bellemare £ 2:57] == LerP
et al, 2013), configured following the recommendations z 2.01

of (Machado et al, 2018). We train LLaRP and LLaRP- &

Scratch as in Habitat, with the exception of using a fully- §1'5‘

trainable ResNet-18 visual encoder, as Atari is visually dis- 2 1.01

tinct from the training data used for VC-1. To take advan- é 0.5

tage of the diversity in available Atari environments, we train 2

LLaRP and LLaRP-scratch individually on each game of 55 0.0-

QM Median Mean

Atari games for 100M environment steps, and report human-
normalized scores (Mnih et al., 2013). Figure 7: LLaRP and LLaRP-

We find that LLaRP outperforms LLaRP-Scratch by a large Scratch performance over 55 Atari
margin, with LLaRP achieving a higher average score on 43 games (two seeds per game).

out of 55. When aggregated, LLaRP’s mean, median, and in-

terquartile mean (Agarwal et al., 2021) performance are between 3x and 4x higher than LLaRP-
Scratch (see Figure 7). Additional details about our Atari experiments can be found in Appendix C.6.

Further Experiments. Additional analyses in Appendix D show the impact of batch size and LLM
weights for RL with transformers, unfreezing LLM weights for LSTM-Flan, LLaRP efficiency, and
that our findings hold in a harder setting with no invalid actions and a termination action.

6 CONCLUSION

We introduce LLaRP, a scheme for employing pretrained LLMs on embodied tasks with reinforce-
ment learning. To aid in our research, we introduce a dataset of rearrangement tasks (consisting
of 150k training instructions and 10 challenging evaluation datasets). LLaRP outperforms non-
pretrained transformer- and LSTM-based models on both sample efficiency and generalization.
Limitations to be addressed in the future include the significantly larger size of LLMs than typi-
cal RL models. Training the action decoder module may also hinder the policy’s ability to leverage
the world knowledge from the LLM. Future work can explore how LLaRP can directly interact with
the environment via the language head of the LLM, without the need for an action decoder module.
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The code and video examples for the Language Rearrangement benchmark and LLaRP can be found
at https://llm-rl.github.io. The appendix is structured as follows:

A Author Contributions.

B Additional details about Language Rearrangement and dataset analysis.
C LLaRP and baseline details.
D

Additional experiments including:

D.1 Analyzing important aspects of training transformers with RL.

D.2 Additional experiments including full Language Rearrangement zero-shot generalization
numbers, comparing efficiency results, and the choice of unfreezing the Flan encoder in
LSTM-Flan.

D.3 Comparing performance in a harder version of Language Rearrangement where invalid ac-
tions terminate the episode and a stop action is required.
E Visualizations of success trajectories of LLaRP on the Language Rearrangement evaluation
datasets.

A CONTRIBUTIONS

Andrew Szot co-initiated the project, design both the benchmark and co-designed and implemented
the algorithmic solution, conducted all RL and IL experiments on Habitat and their analysis, and
co-wrote the paper.

Max Schwarzer ran experiments on Atari and co-wrote the paper.

Harsh Agrawal implemented, improved, and analyzed the zero-shot baselines, worked on dataset
and evaluation methodology, and co-wrote the paper,

Bogdan Mazoure help with debugging training setup and co-wrote the paper.

Rin Metcalf Susa investigated non-LLaMA LLMs and edited the paper.

Walter Talbott ran model probing analysis and contributed to discussions.

Natalie Mackraz worked on RL policy text input and provided feedback for the paper.

Devon Hjelm advised on experiment setup, helped shape up the overall story of the work, and
co-wrote the paper.

Alexander Toshev co-initiated the project, managed and advised throughout the project, co-
designed the algorithmic solution, and co-wrote the paper.

B LANGUAGE REARRANGEMENT DETAILS

B.1 PLANNING DOMAIN DEFINITION LANGUAGE (PDDL) DETAILS

Language Rearrangement is represented with a Planning Domain Definition Language (PDDL)
specification ( , ). Specifically, each episode is linked to a PDDL problem
specification. This specification consists of the following components:

» Entity types: Each entity in the scene is associated with an entity type. This entity type is used
to determine which predicates are applicable. The type system is hierarchical, and derived types
also apply to higher level types. We define core types such as pickable_object and receptacle. We
automatically derive types from the object dataset based on object high-level categories such as
fruit and object classes such as apple.

 Entities: For each object and receptacle in the scene, the PDDL associates it with a symbolic
entity. Each entity has an associated entity type. The entities are automatically populated for each
rearrangement episode based on the loaded objects and receptacles.

* Predicates: These are binary expressions that are evaluated based on the underlying simulator
state. For example, on_top(X : pickable_object, Y : receptacle) corresponds to if object X is on top
of receptacle Y.
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Between episodes, the only component that changes is the “Entities” category since each episode
will have different objects. The same entity types and predicates apply between episodes.

A predicate expression refers to a boolean expression stated in first order logic involving the PDDL
components. Predicate expressions involve the predicates, entities, entity types, logical connectives
(“and”, “or”, “not”) and quantifier symbols (“for all”, “exists”). For example, the predicate expres-
sion 3 x : is_type (x, “apple”), on_top(x, “table”) will be evaluated to true, when any apple is
placed on top of the table, and false otherwise. As described in the next section, we use predicate

expressions to describe success criteria for instructions.

B.2 INSTRUCTION GENERATION DETAILS

We create a scalable pipeline for generating a large number of satisfiable, plausible instructions from
a small number of instruction templates. Each instruction is associated with a predicate expression
defining the success criteria for that instruction. These components are described in detail below.

Instruction Template: This refers to a particular outcome in the environment and corresponding
ways of expressing this outcome in language where nouns are replaced with placeholder variables.
Specifically, an instruction template consists of:

* Template Goal Condition: This describes the desired outcome for the instruction template
represented as an ungrounded predicate expression (predicate expressions are described in Ap-
pendix B.1). It is ungrounded because there are placeholder variables for entities rather than ac-
tual entities in the scene to refer to multiple outcomes depending on what entities are substituted
into the placeholders. For example, for the ungrounded desired outcome of an object going on a
receptacle, the goal condition would be the predicate expression 3 x : is_type (x, “OBJECT”),
on_top(x, “RECEPTACLE” ), where OBJECT and RECEPTACLE are placeholders.

* Placeholder Constraints: The template goal condition used a set of placeholder variables. But
in the predicate expression 3 x : is_type (x, “OBJECT”), on_top(x, “RECEPTACLE”) we need
OBJECT to be a pickable entity type and RECEPTACLE to be a receptacle entity type. The
instruction template thus contains constraints on the entities that can be sampled for the template
goal condition.

* Instruction Language Templates: Each instruction template has a set of N ways of expressing
the template goal condition in ungrounded natural language. It is ungrounded because the lan-
guage will contain placeholder variables that will be later substituted for entities in the scene. For
example, “Move an ‘OBJECT" to the ‘RECEPTACLE” is a language template for the template
goal condition I x : is_type (x, “OBJECT”), on_top(x, “RECEPTACLE”). We set N to 11, mean-
ing each template goal has 11 different language templates, each expressing the same template
goal condition with different language.

We define a set of instruction templates for each of the datasets from Section 4.2. We show examples
of the language templates from these instruction templates for all the datasets in Table 7.

The next step of our pipeline uses these instruction templates to generate a dataset of rearrangement
episodes. When generating a particular dataset, we start by randomly sampling a template from that
dataset. We then substitute random entities into the template placeholders, taking into account the
placeholder constraints. We then randomly sample a scene that is compatible from the associated
scene set. A scene is compatible with an instruction if all the receptacles the instruction refers to
are present in the scene. We then populate the scene with objects. We constrain the object sampling
for the template. We include all template substituted entities and constraints in the object sampling
process. Thus an episode consists of:

* Scene: The empty scene specifying the house floor plan.

* Entity Locations: The transformations of all receptacles and objects.

* (Grounded) Goal Condition: A predicate expression describing the desired outcome without any
placeholder variables.

* (Grounded) Instruction Language: An instruction in natural language specifying the goal con-
dition without any placeholder variables.

Note that the robot starting transformation is not included in the above, and is instead randomly
generated at the start of every episode.
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Figure 8: Left: Visualization of the evaluation and training dataset instructions. We embed the
instruction using Flan. Only the instructions depicted in red are seen during training. Right: The
average number of language tokens per instruction in each dataset.

We then check that each generated episode is solvable. Random object placement and physics
simulation can result in objects falling and other instabilities. We check the episode is solvable by
an oracle planner. We run a STRIPS based planner Fikes & Nilsson (1971) that operates from the
PDDL problem instantiated by the episode. If the planner times out or the solution is longer than 32
high-level steps (a high-level corresponds to a single skill, defined in Appendix B.3), we consider
the episode unsolvable and remove it from the training set.

B.3 SKILL DETAILS

We train the policies in an abstracted, high-level action space. Each high-level action corresponds
to a particular skill invocation, for example, “ pick(apple)”’. We consider the following skills:

» Navigation: Parameterized by the name of the receptacle to navigate to. So long as the receptacle
is present in the scene, this skill is always valid

* Pick: Parameterized by the name of the object to pick. Only valid if the robot is close to the
object, not holding another object, and the object is not inside a closed receptacle.

* Place: Parameterized by the name of the receptacle to place the object on. Only valid if the robot
is close to the receptacle and is holding an object.

* Open: Parameterized by the name of the receptacle to open. Only valid if the receptacle is closed
and the robot is close to the receptacle.

* Close: Parameterized by the name of the receptacle to close. Only valid if the receptacle is open
and the robot is close to the receptacle.

The skill is only executed if it is valid in the current state. The action space consists of all possible
skill parameterizations given all possible objects, giving 70 total skills meaning 70 actions for the
policy to select from. Note that some of these skills may be applied to objects that are not present
in the current scene, in which case selecting that skill would be an invalid action. Furthermore, the
actions are fixed at every step, and thus a majority of the actions will be invalid at a given step. We
treat invalid actions as no-ops, but we compare to where the robot is not allowed to take invalid
actions in Appendix D.3. If the action is valid, we execute it and instantaneously transform the
simulator state based on the effect of the skill. For example, if the skill “pick(apple)” is selected and
the robot is near the apple, not holding anything, and the apple is not in a receptacle, then the apple
will teleport to the robot’s gripper.

B.4 ADDITIONAL TASK DETAILS

Language Rearrangement is simulated in Habitat 2.0 (Szot et al., 2021). The task is simulated with
kinematic dynamics. As described in Appendix B.3, after the agent selects a valid skill, the simu-
lator state is instantaneously transformed to the skill post-condition. Only valid skills are executed.
Invalid skills that result in collisions, impossible interactions (such as the agent grabbing an object
out of reach) are counted as invalid actions.
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Hyperparameter | LLaRP  LLaRP-Scratch LSTM-Flan LSTM-LLaMA

LR 3e 2 R R 3e 2
Optimizer | AdamW AdamW Adam Adam
Number of Mini Batches 6 6 4 4
Environments Per GPU 18 18 18 18
Entropy Coefficient 0.01 0.01 0.01 0.01
Value Loss Coefficient 0.5 0.5 0.5 0.5
Number of Rollout Steps 32 32 32 32
Number of PPO Epochs 1 1 2 2
Batch Size Per Update 768 768 1152 1152

Table 3: Hyperparameters for all RL methods.

The episode is considered successful if the goal condition evaluates to true. The episode is a failure
if the agent doesn’t achieve success in under 32 high-level policy steps. We consider requiring the
agent to call a separate stop action in Appendix D.3. We use the objects from the YCB ( ,

) and ReplicaCAD ( , ) object datasets. The object categories used are: “ball,
clamp, hammer, screwdriver, padlock, scissors, block, drill, spatula, knife, spoon, plate, sponge,
cleanser, plum, pear, peach, apple, lemon, can, box, banana, strawberry, lego, rubriks cube, book,
bowl, cup, fork”. We hold out “mug, orange, lid, toy airplane, wrench” for the Novel Objects
evaluation split.

The Language Rearrangement reward function consists of a sparse reward for completing the task,
subgoal rewards for completing individual parts of the task, and a slack penalty for completing the
task faster. The reward at step ¢ is:

7y = 10+ Tguccess + 9 - ]]-subgoal — 0.1 1ipyalia — 0.01

Where 1g,ccess indicates if the PDDL goal expression is evaluated as true, meaning the episode was
successfully solved. Linaig indicates if the agent called an invalid action at the current step. Lsupgoal
indicates if the agent achieved any subgoal necessary to achieve the overall goal. For example, for
the instruction “Find an apple and put it away in the fridge”, the agent needs to first pick up the
apple and potentially open the fridge. When running the STRIPS planner in the episode validation
process described in Appendix B.2, we compute the optimal action sequence and extract subgoals
from this action sequence. We then reward the agent for reaching any of these high-level subgoals.
Note we cannot directly imitate the optimal action sequence because it is computed with oracle state
information and is an “impossibly good” expert ( , ).

B.5 ADDITIONAL DATASET DETAILS

Further details on the Paraphrasic Robustness datasets:

* Instruction Rephrasing: The same underlying instruction goals, but stated in a different way. For
example, a rephrasing of the training instruction. The order that nouns appear in the instruction is
permuted and synonyms for verbs are substituted.

» Referring Expressions: Refer to objects by their visual appearance rather than directly as their
entity name. For example, an “apple” is referred to by its visual appearance as a “round red fruit”.
During training, objects are only referred to by a single name. The referring expression was never
seen during training.

» Spatial Relationships: This refers to receptacles indirectly by their location relative to other
receptacles. All receptacles are positioned against the walls, so there is no spatial ambiguity
depending on the agent viewpoint. There are no spatial concepts in the training data.

» Context: Describe a situation where a particular object fits the context.

* Irrelevant Instruction Text: Instructions that include irrelevant context.

Further details on the Behavior Generalization datasets:

* Multiple Rearrangements: Generalize to rearranging 3 objects when the agent only rearranges
2 objects during training.
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Figure 9: Left: Learning curves for all baselines in the main Language Rearrangement task from
Figure 3. Note that we train all methods for 200M steps except for LLaRP-Scratch, as we observed
that it had not converged and was still making learning progress at that point. Right: Learning curves
for the scaling results from Figure 5.

* Novel Objects: New entity, instruction pairs. We holdout particular objects from single object
pick and place instructions during training. This split evaluates on the single object pick and place
instructions with this holdout object.

* Multiple Objects : Different rearrangement concepts. The agent has never seen the concept of
“for all” in the training dataset. This requires the agent to rearrange a variable number of objects
depending on how many entities are in the scene. The agent may need to rearrange 1 to 2 objects in
the scene since the number of each object is randomized during scene generation. Therefore, the
agent must search to detect that all the objects belonging to the specified type have been moved.

» Conditional Instructions : Adjust behavior based on if the conditional statement is true. In
Language Rearrangement we consider changing the behavior based on if the fridge is open or
closed. We split this dataset into the fridge being open half of the time. The agent has to find and
move one of two objects depending on if the fridge is closed or not. For the object that doesn’t
need to be moved, the agent must also not displace this object.

B.6 DATASET ANALYSIS

In this section, we study how the evaluation datasets differ from the training dataset and each other
in more detail. We note the high-level differences below:

» Each dataset consists of different instruction templates (instruction templates are described in
Appendix B.2). Different instruction templates mean the underlying goal conditions and language
instructions will be different.

* All non-train datasets are on unseen scenes. These unseen scenes are from the evaluation split from
ReplicaCAD ( , ). The location of the kitchen and furniture differs from training.

* Objects are placed in new locations. In every episode, objects start in a new position. Thus we
always evaluate on unseen object positions, even for the train split.

We qualitatively analyze the differences between datasets by visualizing language embeddings of
the instructions between the different instructions in Figure 8a. Specifically, we take 100 random
instructions from each dataset and embed them using the Flan-T5-XL model ( , ).
These embeddings are then visualized as a T-SNE plot. The training instructions, visualized as red
points, only have minimal overlap with the evaluation instructions.

Additionally, we display the average number of tokens per instruction (see Figure 8b). From here
we can see that our evaluation splits have variability at the token-count level, which in the largest
case (for conditional instruction datasets) have approximately double the length of prompts than the
median task.
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Diving into this analysis further, in Figure 14, we display the per-word frequencies in the instruc-
tions. As expected, we see a long-tailed distribution across the board, favoring receptacles and
relative indicators for nouns (e.g. counter, table, left) and instructions for verbs (e.g. move, place,
and swap). It also is no surprise that when looking at all words in the combined plot, articles are the
most common. Overall, this shows the diverse language across our instructions, and aids in verifying
that our instruction generation is acting as expected.

B.7 COMPARING LANGUAGE REARRANGEMENT TO OTHER BENCHMARKS

In Appendix B.7, we compare Language Rearrangement to related embodied Al and interactive in-
struction following benchmarks. The primary difference from Language Rearrangement and other
benchmarks, is that Language Rearrangement has more instructions (almost 19x more than the clos-
est work ALFRED ( )), generated by more instruction templates (8x more than
CALVIN ( ). Also unique about Language Rearrangement is that it has dense re-
wards for the language specified tasks (the dense reward is described in Appendix B.4). All other
tasks with language instructions only define sparse success-based rewards. Since Language Rear-
rangement is implemented with Habitat 2.0 ( R ), it also inherits the same fast simula-
tion speeds.

While Language Rearrangement supports low-level skill execution since it is built on Habitat 2.0
which supports dynamic physics, we do not evaluate with dynamically simulated low-level skills
and instead kinematically update the simulator state to the skill post condition. This is similar to

the high-level interaction space in ALFRED ( , ). Other tasks focus on low-level

control, and thus simulate the full robot control, but are constrained to the more limited setting of a

robot arm fixed on a tabletop table top ( s ; s ; , ;
, )-

Benchmark ‘ # Instructions # Instruction Observation Type ~ Reward Type Generalization Type Sim Speed #Scenes  # Objects

(Tasks) Templates steps/second
Language Unseen Instructions [10
Rearrangement 151,000 282 Visual Dense Reward datasets from Tab. 1], 1400 105 82
(Ours) Unseen Scenes
ALFRED( 8,055 7 Visual Sparse Success Random Split NA 120 84
CALVI(N 400 35 Visual Sparse Success Unseen Instructions NA 1 1
ARNO[ED ) 32 8 Visual Sparse Success Random Split 200-400 20 40
CLIPort (Ravens)
10 . Unseen Objects [colors,
( ¥ (+Procedural) 10 Visual Sparse Success shapes, types] NA 1 56
(2021)
BabyAl Unseen Instructions
( ) Procedural Procedural Text Sparse Success  [compositions, objects, 3000 NA 4
( ’ ) synonyms, dialects]
Habitat
Rearrangement NA NA Visual Dense Reward Unseen Scenes 1400 105 20
)
Behav(lorlk ) NA NA Visual Sparse Success NA 60 50 5215
TDW .
( ) NA NA Visual Sparse Success Unseen Scenes 15 5-168 112
PmCTH?R ) NA NA Visual Dense Reward Unseen Scenes 90-180 10k 118

Table 4: Comparing Language Rearrangement to similar benchmarks. “NA” under the simulator
speed indicates the benchmark is used for offline learning and not for RL where simulation speed
is a concern. “NA” under instructions indicates the task does not provide language instructions
and instead features a task specification such as a target object name to navigate to or rearrange.
“NA” under generalization type means the task does not evaluate trained policies in unseen task
variations, and instead focuses on within train task distribution performance. t BabyAl uses an
instruction language grammar instead of instruction templates. This grammar has 4 clauses, 10
attributes (locations and colors), and 4 nouns.

C METHOD DETAILS

In this section, we describe the architectures, training procedure of LLaRP, and baselines in more
detail. Unless specified otherwise, every method is trained using a full node of 8 A100-80GB GPUs
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Aggregated Per Dataset Breakdown
Total Behavior  Paraphrastic | Train  Sceme  Instruct ~ Novel ~ Multiple  Referring Context Irrelevant Multiple Spatial Conditional
Generalization  Robustness Rephrasing  Objects  Rearrange  Expressions Text  Objects Instructs

LLaRP 242 4543 3841 941 96+ 9242 95 +4 47 +5 22 M2 32:2 01 811 39:3
LLaRP-Scratch 17 £4 18+5 1643 N9 909 59:1 S8+ 15 £6 341 413 13 £4 [ 1+

LSTM-Flan 2541 2841 2341 Bi1  95+s 8542 83+3 19 +4 641 1543 5+2 0o 44 10 £6

LSTM-LLaMA 241 00 3:2 3le2 1542 1213 1+ 01 142 041 01 00 2x4 [
Z8-ChatGPT 2 23 21 57 52 58 61 24 24 10 1 2 0 5
ZS-LLaMA 12 14 10 54 41 34 50 6 3 5 6 0 0 0
ZS-Flamingo 6 8 4 2% 14 18 24 8 0 0 2 2 0 0
LLaRP-FT 1 0 1 30 13 5 0 0 0 0 0 0 0 0

LLaRP-7b 4242 4543 3841 941 9644 9242 95 +4 47 :5 242 3442 32+2 01 81 3943
LLaRP-13b 46 48 44 98 100 95 98 51 31 41 37 0 15 45

LLaRP (HL) 42+ 4513 381 91 96+4 922 95 +4 47 =5 26+2 Mi2 242 01 81 3943

LSTM-Flan (HL) 25+ 2841 2341 9841 954w 8542 83 +3 19 +4 641 1543 52 0o 44 1046
LLaRP (Harder) 28 27 28 56 61 62 56 31 23 32 2% 0 1 20
LSTM-Flan (Harder) 12 14 11 57 52 50 43 11 3 0 2 0 0 0

Table 5: Zero-shot results on Language Rearrangement for all baselines and settings. This includes
the numbers from the bar plots in Figure 3, Figure 5 and Figure 12a. All numbers except for non-RL
methods, LLaRP-FT, LLaRP-13b, and the harder task setting are mean and standard deviation over
3 random seeds.

and 96 Intel(R) Xeon(R) CPUs @ 2.20GHz. The base models are able to fit on a single GPU and
we use data parallelism. Each GPU runs 1 policy and a set of NV environment workers. During the
PPO rollout phase, the policy acts in parallel in all N environments. Each GPU then computes the
PPO update and synchronizes gradients. We use DD-PPO ( , ) to handle straggler
environment workers and speed up synchronization between GPUs.

Hyperparameters for all reinforcement learning based methods are summarized in Table 3. Next, we
detail specific method architecture choices.

C.1 LLARP DETAILS

In general, the visual encoder can produce M embeddings per observation o,, which consists of a
high-dimensional visual component (the robot’s RGB camera) and a low-dimensional state com-
ponent (the robot joint angles). The visual component is projected to a set of M — 1 tokens. For
example, using a ViT ( , ) for E;)/ produces an embedding per image patch
which are projected to M — 1 embeddings using a Perceiver Resampler ( ) network.
The state components are concatenated and projected with an MLP to produce another embedding,
giving M total embeddings. Since there are now M tokens per observation oy, to produce a distri-
bution over actions, we skip the first k tokens corresponding to instruction tokens, and sub-sample
every M™ hidden output to extract just one action per time step.

However, in this work we just use the visual RGB observation and set M = 1. All methods use the
frozen VC1 visual encoder whose weights are represented in bfloat16. We then take the [CLS] token
of the VC1 encoder for the image observation. We then input this embedding to a linear projection
layer that produces an embedding the same dimension as the LLM text tokens. For the action output
module, we use a 2-layer MLP with ReLLU activations, LayerNorm, and a hidden dimension size of
512.

By default, we use the base LLaMA-7B V1 ( s ) for the LLM in LLaRP. We con-
vert the LLaMA weights to bfloat16. The observation encoder and action output modules represent
their weights in float32. The context window in Language Rearrangement is the maximum episode
horizon of 32 steps. We compute the attention mask during training so the transformer only attends
to inputs from the current episode. Despite running such a large policy with RL, we find that total
training throughput is 700-800 steps-per-second on a full compute node of 8 GPUs. This timing
includes policy inference for data collection, policy updates, and environment stepping including
rendering and physics. The biggest bottleneck during training is policy inference.

C.2 LLARP-SCRATCH DETAILS

For the transformer network, we use the same architecture and details as LLaMA. We restrict the
transformer network size to around 2 billion parameters. As with LLaRP, we represent the trans-
former decoder network with bfloat16 data type. We update all parameters. Since the policy is
smaller than regular LLaRP, the training throughput is even faster at 800-900 steps-per-second on a
full compute node, despite updating all 2 billion policy parameters.
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C.3 LSTM-FLAN/LLAMA DETAILS

For LSTM-Flan, we only use the Flan-T5-XL encoder, and remove the decoder. The encoder is used
to summarize the instruction. Specifically, we take the hidden activation of the final token as the
instruction representation. We fine tune the weights of the Flan encoder which we show is necessary
for good training performance in Appendix D.2. We represent the Flan weights in bfloat16. We
represent the image as the [CLS] token from VC1 and process this embedding with a linear layer
before concatenating it with the language representation and inputting it to the LSTM.

For LSTM-LLaMA, we use LLaMA-7B. The LLaMA weights are frozen and in bfloat16 format.
For the instruction, we summarize the hidden outputs in a single instruction representation using a
Perciever network.

C.4 ZERO-SHOT BASELINE DETAILS

ZS-LLaMA uses a LLaMA-65B V1 ( R ) model that was instruction tuned on
ORCA style data ( , ). Since, LLaMA-65B is a language-only
model, this baseline is blind — it plans actlons based only on the language instruction. To help the
baseline reason about the available objects and actions, the prompt lists all receptacles and objects
along with examples of successful behavior. For our multimodal baseline ZS-Flamingo, we use an
open-source vision-and-language model IDEFICS ( , ) which is a reproduction
of the closed-source Flamingo ( R ) model. IDEFICS uses LLaMA-65B V1 as
its language model backbone. Its vision encoder is a vision transformer (ViT-H/14) trained using
OpenCLIP ( , ) on the LAION-2B English subset of LAION-5B (
, ) dataset. For both ZS-LLaMA and ZS-Flamingo, we use the following prompt:

You are a home robot assistant that can take actions in the house.
Remember the following guidelines:

1. Your possible actions are: pick(object), place_on_recep (receptacle),
navigate (receptacle), open_fridge(), close_fridge(),
open_cabinet (cabinet), STOP.

2. Possible objects are: ball, clamp, hammer, screwdriver, padlock,
scissors, block, drill, spatula, knife, spoon, plate, sponse,
cleanser, plum, pear, peach, apple, lemon, can, box, banana,
strawberry, lego, rubrik’s cube, book, bowl, cup, mug, orange, lid,
toy airplane, wrench.

You can only pick one object at a time.

If you place an object you must have previously picked it.

You must always place the object that you have picked.

To open a fridge, you have to navigate to the fridge.

To pick an object from the cabinet, you need to open it first.

place_on_recep() is not wvalid for cabinets like ’cabinet drawer 7’ or
"cabinet drawer 6’.

There are no more than 5 objects.

10. When exploring, select randomly from possible receptacles: [cabinet

drawer 7, cabinet drawer 6, fridge, chair, black table, brown table,
TV stand, sink, right counter, left counter]

11. When you are done output STOP.

12. If the instruction doesn’t specify where the object is located, you

should explore by navigating to a previously unvisited receptacle.

13. If the instruction asks to pick up more than one object, you should

attempt multiple pick and place. Look for each object by visiting
all the receptacles to find the objects mentioned in the instruction.

14. Don’t get stuck in a loop by picking from and placing receptacle on

the same receptacle.

O J oy U W

Ne]

To help you understand, here’s are twos example:
# User: Instruction: Move the screwdriver from the left counter to the
sofa.

# Assistant: navigate (left counter), pick(screwdriver), navigate(sofa),
place_on_recep(sofa), STOP.
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# User: Instruction: Find an apple and put it on the brown table.

# Assistant: navigate (fridge), open_fridge(), pick(apple),
navigate (brown table), place_on_recep (brown table), STOP.

The ZS-ChatGPT baseline can perform multi-step reasoning to generate a plan. Unlike ZS-LLaMA,
it is not limited to generating the whole plan in a single step. Instead, it can continuously refine the
plan based on environment feedback. We use GPT-3.5-Turbo which is trained for chat applications
for these experiments. The environment provides feedback in natural language consisting of agent’s
location (e.g. You are now at black table), failed action (e.g. Couldn’t execute pick("apple”). Object
wasn’t found), and asks for the new plan. We update the prompt to also contain examples that require
multiple steps of reasoning. The prompt is as follows:

#System: You are a home robot assistant that can take actions in the

house. Remember the following guidelines:

1. Your possible actions are: pick(object), place_on_recep (receptacle),

navigate (receptacle), open_fridge(), close_fridge(),
open_cabinet (cabinet), STOP.

2. Possible objects are: ball, clamp, hammer, screwdriver, padlock,
scissors, block, drill, spatula, knife, spoon, plate, sponse,
cleanser, plum, pear, peach, apple, lemon, can, box, banana,
strawberry, lego, rubrik’s cube, book, bowl, cup, mug, orange, 1lid,
toy airplane, wrench.

You can only pick one object at a time.

If you place an object you must have previously picked it.

You must always place the object that you have picked.

To open a fridge, you have to navigate to the fridge.

To pick an object from the cabinet, you need to open it first.

place_on_recep() is not wvalid for cabinets like ’cabinet drawer 7’ or
"cabinet drawer 6’.

There are no more than 5 objects.

10. When exploring, select randomly from possible receptacles: [cabinet

drawer 7, cabinet drawer 6, fridge, chair, black table, brown table,
TV stand, sink, right counter, left counter]

11. When you are done output STOP.

12. If the instruction doesn’t specify where the object is located, you

should explore by navigating to a previously unvisited receptacle.

13. If the instruction asks to pick up more than one object, you should

attempt multiple pick and place. Look for each object by visiting
all the receptacles to find the objects mentioned in the instruction.

14. Don’t get stuck in a loop by picking from and placing receptacle on

the same receptacle.

O J oy U1 b W

Ne]

To help you understand, here’s are twos example:
#User: Move the screwdriver from the left counter to the sofa.
#Assistant:
plan = [
navigate ("left counter"),
pick ("screwdriver"),
navigate ("sofa"),
place_on_recep("sofa"),
STOP

#User: Find an apple and a banana and put it on the left counter
#Assistant:
plan = [
navigate ("cabinet drawer 7"), # exploring an unvisited receptacle
open_cabinet ("cabinet drawer 7"), # opening the cabinet drawer 6 for
the first time.
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pick ("apple"),
navigate ("left counter"),
place_on_recep("left counter"),
STOP

]

AURANRY

#User: You are now at cabinet drawer. Couldn’t execute pick ("apple").
Object wasn’t found. Randomly select an unexplored receptacle in
[cabinet drawer 7, cabinet drawer 6, fridge, chair, black table,
brown table, TV stand, sink, right counter, left counter]

#Assistant:

plan = [

navigate ("fridge"), # exploring an unvisited receptacle
open_fridge (),
pick ("apple"),
navigate ("left counter"),
place_on_recep("left counter"),
STOP
]

AN

#User: You are now at fridge. Couldn’t execute pick("apple"). Object
wasn’t found. Randomly select an unexplored receptacle in [cabinet
drawer 7, cabinet drawer 6, fridge, chair, black table, brown table,
TV stand, sink, right counter, left counter]
#Assistant:
plan = [
navigate ("brown table"), # exploring an unvisited receptacle
pick ("apple"),
navigate ("left counter"),
place_on_recep("left counter"),
STOP
]
#User: Found an apple.
#Assistant:
plan = [
navigate ("cabinet drawer 7"),
open_cabinet ("cabinet drawer 7")
pick ("banana"),
navigate ("left counter"),
place_on_recep("left counter"),
STOP

]

AW

#User: You are now at cabinet drawer 7. Couldn’t execute pick ("banana").
Object wasn’t found. Randomly select an unexplored receptacle in
[cabinet drawer 7, cabinet drawer 6, fridge, chair, black table,
brown table, TV stand, sink, right counter, left counter]
#Assistant:
plan = [
navigate ("chair"),
pick ("banana"),
navigate ("left counter"),
place_on_recep("left counter"),
STOP

]

AURNRY

#User: Found the banana. Thanks!

wnn
4
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C.5 MODIFICATIONS TO SCALE AND TRAIN LLAMA

For the LLaMA models larger than 7B parameters or with trainable parameters (unfrozen), training
no longer fits on a single GPU. To train these LLaRP variants, we use model parallelism. Specifi-
cally, we distribute the model weights between 4 GPUs and scale training to 4 nodes (8 GPUs each)
to match the batch size.

C.6 MODIFICATIONS FOR ATARI

When training LLaRP on Atari games, we found that it was vital to allow the visual encoder to be
fully trainable. Initial experiments with a frozen VC-1 visual encoder demonstrated some limited
learning, but were unable to reliably solve Pong within 100M steps, our threshold for success. Even
with this change, we observed frequent instabilities in our early experiments. Generally speaking,
instabilities propagated from value learning to the actor over the course of 1-2 gradient steps. We
were able to fix this by using a Huber loss for value learning, as well as by applying gradient norm
clipping (with max gradient norm 0.5). We also apply reward clipping ( , ) to stabilize
our predicted values.

We also found that training at relatively large batch sizes — compared to language rearrangement —
was beneficial. By default we used a per-device batch size of 64, with context length 32, leading to
a total of 16,384 states being seen at once when training across 8 GPUs.
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(a) Batch size analysis. (b) Encoder freezing.

Figure 10: Left: Success rate of policies on the Train evaluation dataset. Right: Impact of freezing
vs unfreezing the FLAN encoder in LSTM-Flan.

D FURTHER RESULTS
In this section, we show further results and analysis on LLaRP and baselines.

D.1 TRANSFORMER POLICY EXPERIMENTS

A primary challenge of LLaRP was implementing PPO training for transformer-based policies. By
a “transformer-based policy”, we mean a policy architecture that uses a transformer to attend to
previous observations. Transformers in online RL algorithms, such as PPO, are rare. RNN-based
policies are more typically used for problems where the history is important ( ). In
this section, we include empirical analysis into important components for stable transformer-based
policy training.

Prior work has demonstrated transformers working for offline RL ( s ;

), but such works rely on supervised losses from static datasets. Other works explore usmg
the transformer-based policy to collect data ( , ) but use a similar offline-RL training
process. ( ) use transformers for online-RL, but shows that additional trans-
former architecture changes are necessary for stabilizing RL training. We note that these changes
are incompatible with LLM architectures, precluding the use of LLMs in their framework. We are
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Aggregated Per Dataset Breakdown
Total  Behavior  Paraphrastic | Train New Scenes Instruction Novel — Multiple  Referring  Context Irrelevant Multiple Spatial ~Conditional
Generalization  Robustness Rephrasing Objects Rearrange Expressions Text Objects Instructs

LLaRP 0.32 035 030 0.82 0.79 073 0.82 032 021 0.28 0.23 0.01 0.05 027
LSTM-Flan | 0.20 021 0.19 0.82 0.79 0.76 0.69 0.1 0.06 0.09 0.04 0.00 0.00 0.06
LLaRP-Scratch | 0.17 0.19 0.16 0.84 0.79 058 0.60 0.15 001 0.01 0.17 0.00 0.02 0.01
7S-ChatGPT | 0.19 021 0.18 052 045 0.50 053 024 020 0.08 0.09 0.01 0.00 0.04
ZS-LLaMA | 0.12 0.12 0.12 050 036 028 044 0.05 0.03 022 0.05 0.00 0.00 0.00
ZS-Flamingo | 0.05 0.07 0.03 022 0.13 0.16 021 007 0.00 0.00 0.00 0.00 0.00 0.00
LSTM-LLaMA | 0.01 0.00 001 029 0.12 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 6: Numerical results for Language Rearrangement efficiency from Figure 11. Numbers are
for 1 random seed.

able to train transformer-based policies with PPO, despite not using any of the modifications from

( ). Other works combine various transformer architectures with long-horizon

RL tasks ( s ; , ; s ; s ;

s ). Unlike these works, we use billion parameter transformer models in tasks with
high-dimensional visual observations.

Effect of Batch Size on Stability: In Figure 10a, we illustrate the importance of a large batch size
for transformer-based policy training. We compare learning curves of a LSTM and transformer-
based policy on 100 training episodes from the overall training dataset. Both policies are fixed to
be 40M parameters and neither policy has any pre-trained LLM. The policy only takes as input
the RGB visual observations and a learned embedding of the current instruction. We only analyze
training performance, thus this learned embedding is sufficient for distinguishing the instructions
during training. As seen from Figure 10a, the transformer runs are more unstable at lower batch
sizes, with more jagged learning curves indicating drops in performance. The RNN-based policy
at the same batch size does not suffer from this issue and has smooth learning for every batch size
setting. Note that smaller batch sizes converge faster because they update the policy more for a fixed
number of environment interactions. The transformer-based policy is also less sample efficient than
the RNN-based policy for every batch size setting. We note this efficiency finding is reversed when
comparing LLaRP to RNN-based approaches in Language Rearrangement.

Effect of Pretrained LLM Weights: We found that using pre-trained and frozen LLM weights are
important for stable and fast convergence. In Figure 9a, training LLaRP-Scratch required 5S00M
samples to converge and exhibited unstable training demonstrated by the dips in training perfor-
mance. LLaRP, using the same architecture, but frozen LLM weights, learned in under 100M steps
and did not have the same dips in performance during training.

D.2 ADDITIONAL LANGUAGE REARRANGEMENT EXPERIMENTS AND ANALYSES

Full Generalization Numbers: In Table 5 we show the numerical results for all numbers from the
paper. These include the main zero-shot generalization results from Figure 3, the scaling results
from Figure 5 and the task setting results from Figure 12a.

1.0

N LLaRP B 7S-ChatGPT
08 LLaRP-Scratch mm 7S-LLaMA
mm LSTM-Flan ZS-Flamingo

B LSTM-LLaMA

Efficiency
°
o

1
=

0.2

Train Adg Para Behav
Eval Robust Gen

Figure 11: Language Rearrangement efficiency. Numbers are for 1 random seed. Higher numbers
indicate more efficient solutions. Numbers are rescaled in [0, 1] where 0 is the least efficient and 1
is the most efficient.

Efficiency Results: In Figure 11, we compare the efficiency of all methods in the Language Rear-
rangement zero-shot evaluation. We measure efficiency by the number of steps agents take to solve

the tasks. Specifically we compute the efficiency of episode 7 as 1 — max’f;[eps where n; is the number
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Figure 12: Left: The zero-shot evaluation performance on Language Rearrangement where invalid
actions result in immediate failure and the stop action is required. Right: Training curves under this
harder setting. We enforce these termination conditions during training as well, resulting in slower
training. Results in the harder task are just for 1 seed since training is slower.

of steps needed to complete episode i. n; is assigned max_steps if the episode was unsuccessful. We
report the average efficiency over all episodes in the evaluation datasets. LLaRP is more efficient
than baselines, and is over 1.5x as efficient as the best performing baseline.

Importance of Unfreezing LLM Weights in LSTM-Flan: In Figure 10b we analyze the effect
of freezing or unfreezing the Flan-T5 encoder weights during training. Unlike for LLaRP, keeping
the LLM weights frozen results in the policy only learning the easy instructions even after 200M
steps of training. We found fine-tuning the language encoder to be effective at learning the harder
instructions and converging much faster to the maximum training performance.

LLaRP Full Finetuning (LLaRP-FT): In Table 5, we compare the effect of not freezing the LLM
in LLaRP and fine tuning it during training (LLaRP-FT). Like with training LLaRP-13b, we use
model parallelism and scale training to 4 nodes (8 GPUs each). However, as seen in Figure 9b,
training performance is poor. We were only able to train for 15M steps due to the slow training
speeds. A larger batch size and longer training could result in LLaRP-FT working better.

D.3 HARDER TASK VARIANT

We consider a harder variant of Language Rearrangement where invalid actions immediately end the
episode and the agent must call a termination action at the end of the episode. Calling the termination
action before the task is successfully completed results in a failed episode. We train LLaRP and the
best performing baseline, LSTM-Flan, in this setting. We train on the same training datasets and
evaluate on the same holdout datasets as in the main Language Rearrangement experiments.

We find training policies to be more difficult in this setting. As seen from the learning curves in
Figure 12b, even after 700M steps of training, policies are not yet converged and still cannot solve
the hardest instructions. In Figure 12a, we analyze the zero-shot performance on the Language
Rearrangement evaluation datasets. Both LLaRP and LSTM-Flan suffer a drop in performance on
this harder task. LLaRP still greatly outperforms LSTM-Flan in this harder setting.

E QUALITATIVE RESULTS
In Figure 13, we visualize success examples for LLaRP. See the figure caption for a breakdown of
each of the success examples.

Below we also describe common failure modes of LLaRP on the datasets where LLaRP has less
than 90% success rate.

» Context: For the instructions involving “playing a sport” and “clean a spill”, the agent never picks
up the desired object and instead aimlessly navigates between receptacles.
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» Referring Expressions: Like in context, the agent randomly moves around for some of the instruc-
tion types like “’yellow round fruit” (lemon) and purple fruit” (plum).

* Irrelevant Instruction Text: The agent will sometimes move a wrong object never described in the
instruction or distractor text.

* Multiple Rearrangements: The agent moves 2 of the 3 objects.

* Multiple Objects: The agent often fails to pick the 2nd object when it exists in the scene.

* Conditional Instructions: The agent fails to check if the fridge is open before doing the rearrange-
ment.
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Move a box from the sofa to the
right of the left counter

- o navigate(sofa)
E pick(box)
9 navigate(sink)

n place(box, sink)

Swap the wrench and peach
from the sink and brown table

o navigate(sink)

E pick(wrench)

e navigate(brown_table)

n place(wrench, brown_table)
B pick(peach)

G navigate(sink)

place(peach, sink)

Deposit all the apples on the blue
table

2. o navigate(sink)

e navigate(sofa)

# Locate a tool to fix a loose screw
in the sofa and bring it there.

o navigate(brown_table)
e navigate(dark_table)

9 navigate(blue_table)

I pick(screwdriver) O navigate(blue_table)

© navigate(sofa) B place(apple, blue_table)

e navigate(sink)

o navigate(right_counter)
B pickapple)

9 navigate(blue_table)

H place(screwdriver, sofa)

m place(apple, blue_table)

(c) Context success example. (d) Multiple Rearrangements success example.

If the fridge is open, move a
spoon to the sink, otherwise
move a pear to the sink

o navigate(sofa)

o navigate(dark_table)

Take a yellow curved fruit and
place it on the blue table

° navigate(sink)

e navigate(dark_table)
e navigate(blue_table)

A pick(pear)
e navigate(sink)

ﬂ place(pear, sink)

e navigate(brown_table)
o navigate(right_counter)
E pick(banana)

e navigate(blue_table)

place(banana, blue_table)

(e) Referring Expressions success example. (f) Conditional Instructions success example.

Figure 13: Successful LLaRP trajectories in some of the Language Rearrangement evaluation
datasets. Fig. 13a: the agent infers the sink is the receptacle to the right of the left counter. Fig. 13b:
the agent has to interact with the wrench not seen before during training. It correctly picks the
wrench despite not seeing this object in the context of this instruction during training. Fig. 13c: the
agent infers a screwdriver is needed to satisfy the context of “a loose screw”. It explores until it finds
the screwdriver and then brings it to the couch. Fig. 13d: The agent explores until it finds an apple
at which point it places it on the receptacle. The agent continues to explore to find if there are other
apples, finds one on the right counter, and then rearranges it to the blue table. Fig. 13e: The agent
explores until it sees a banana which it infers is a “yellow curved fruit”. The agent then moves the
banana to the blue table. Fig. 13f: The fridge is closed, so the agent is correct to move the pear to
the sink. However, the agent didn’t explicitly check to see if the fridge is open. This likely prevents
LLaRP from achieving higher success on the Conditional Instructions dataset.
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Train

Instruction
Rephrasing

Referring
Expressions

Multiple
Objects

Conditional
Instructions

Spatial
Relationships

Context

Multiple
Rearrangements

Irrelevant
Instruction Text

Move a ‘target-object.name‘ from the ‘source_receptacle_name‘ to the ‘tar-
get_receptacle_name*

Move a ‘target_object_name* to the ‘target_receptacle_name*

Move the ‘target_object_name* off the ‘target_receptacle_name*.

Place a ‘objectl‘ and a ‘object2‘ on the ‘targ_recep".

Can you swap the ‘object]‘ and the ‘object2‘ in the ‘receptaclel ‘ and ‘receptacle2‘?

I accidently left the fridge open, can you close it?

Can you open the fridge for me?

Go to ‘target_receptacle_name’.

Find a ‘target_object_name*.

On the ‘source_receptacle_name’ there is a ‘target_object_-name‘, move it to the ‘tar-
get_receptacle_name*

On the ‘target_receptacle_name* I need you to put a ‘target_object_name*

Set out a ‘plate‘ for one person on the ‘target_receptacle_name"‘.

The ‘target_receptacle_name* should be devoid of any ‘target_object_name®.

On the ‘targ_recep‘, I need a ‘objectl‘ and a ‘object2°.

I misplaced the ‘objectl‘ on the ‘receptaclel ‘ and the ‘object2‘ on the ‘receptacle2‘. Can
you swap their positions?

When putting away groceries, I forgot to shut the fridge. Can you help?

Bring a green fruit to the ‘target_receptacle_name*

Bring a yellow round fruit to the ‘target_receptacle_name*.
Bring a yellow curved fruit to the ‘target_receptacle_name*
Bring a round red fruit to the ‘target_receptacle_name*

Put all the ‘object_name’ on the ‘targ_recep®.
Put all the ‘object_-name* from the ‘receptaclel on the ‘receptacle2’.

If the fridge is open move a ‘target_object_namel ‘ to the ‘target_receptacle_name°, other-
wise move a ‘target_object_.name2° to the ‘target_receptacle_name".
If the fridge is open move a ‘target_object_namel ‘ to the ‘target_receptacle_name°, other-
wise move a ‘target_object_name?2° to the ‘target_receptacle_name".

Move a ‘target_object_-name* from the ‘source_receptacle_name‘ to the left of the right
counter.

Move a ‘target_object_-name* from the ‘source_receptacle_name* to the right of the left
counter.

Move a ‘target_object_-name* from the ‘source_receptacle_name* to the right of the TV
stand.

I want to play a sport, bring something to play with to the ‘target_receptacle_name*.

A screw is loose in the ‘target_receptacle_name*, bring something to fix it.

I need to cut a piece of paper at the ‘target_receptacle_name‘, can you bring something to
help?

I spilt something and need to clean it. Can you bring something to the ‘tar-
get_receptacle_name* to help?

Bring me something to pour hot coffee into at the ‘target_receptacle_name*

Move the ‘objl‘ to the ‘targ_recepl, the ‘obj2° to the ‘targ_recep2‘, and the ‘obj3* to the
‘targ_recep3‘.

There’s an apple on the sofa, but on the ‘target receptacle_name‘ I need you to put a
‘target_object_name*

Table 7: Sampling of the instruction templates for each of the task datasets. Note that for each
template we include multiple phrasings. Names in backtics indicate template placeholders. Our
pipeline described in Appendix B.2 automatically grounds these placeholders with feasible entity

names.
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