
Navigating and Addressing Data Problems for Foundation Models (DPFM) Workshop, ICLR 2024

ON THE SCALABILITY OF GNNS FOR MOLECULAR
GRAPHS

Maciej Sypetkowski1,∗, Frederik Wenkel1,2,∗, Farimah Poursafaei1,3, Nia Dickson4,
Karush Suri1, Philip Fradkin1,5, Dominique Beaini1,2
∗ Equal contribution, 1 Valence Labs, Montreal, 2 University of Montreal, Mila, Quebec,
3 McGill University, Mila, Quebec, 4 NVIDIA Corporation,
5 University of Toronto, Vector Institute
maciej.sypetkowski@recursionpharma.com, frederik@valencelabs.com

ABSTRACT

Scaling deep learning models has been at the heart of recent revolutions in language
modelling and image generation. Practitioners have observed a strong relationship
between model size, dataset size, and performance. However, structure-based
architectures such as Graph Neural Networks (GNNs) are yet to show the benefits
of scale mainly due to the lower efficiency of sparse operations, large data require-
ments, and lack of clarity about the effectiveness of various architectures. We
address this drawback by studying their scaling behavior. Specifically, we analyze
message-passing networks, graph Transformers, and hybrid architectures on the
largest public collection of 2D molecular graphs. For the first time, we observe that
GNNs benefit tremendously from the increasing scale of depth, width, number of
molecules, number of labels, and the diversity in the pretraining datasets, resulting
in a 30.25% improvement when scaling to 1 billion parameters and 28.98% im-
provement when increasing size of dataset to eightfold. We further demonstrate
strong finetuning scaling behavior on 38 tasks, outclassing previous large models.
We hope that our work paves the way for an era where foundational GNNs drive
pharmaceutical drug discovery.

1 INTRODUCTION

Recent successes in language modelling (OpenAI, 2023; Touvron et al., 2023) and image generation
(Ramesh et al., 2021; Rombach et al., 2022) are driven by the increasing amount of training data and
computational resources. Across different domains, practitioners have observed a direct relationship
between model parameter count and performance on novel tasks (Kaplan et al., 2020). In natural
language processing, large Transformer-based models have demonstrated impressive generalization
capabilities utilizing a causal autoregressive objective (Radford et al., 2019). In the meantime, image
generation has undergone incredible leaps with large models trained utilizing pixel level unsupervised
objectives.

While data power law scaling behavior has been tremendously beneficial in language and image
domains, its practical impact on molecular reasoning and drug discovery has remained limited. This
is a direct consequence of complex scientific tasks requiring reasoning regarding the underlying
structure of the data (Bubeck et al., 2023). In the past, molecular property prediction approaches have
made use of graph-based methods, as these allow us to reason about the structure and interaction of
different components of a molecule. Molecules are naturally represented as graphs, where the nodes
represent atoms and edges correspond to covalent bonds between the atoms.

Graph Neural Networks (GNNs) have emerged as a promising way of learning molecular representa-
tions (Liu et al., 2023a; Galkin et al., 2023). GNN architectures are equipped with the flexibility of
learning molecular structure while building general, powerful representations over graphs utilizing
backpropagation. These representations have been utilized in various paradigms such as reasoning
about drug properties (Stärk et al., 2022a), target binding interactions (Stärk et al., 2022b), retrosyn-
thesis of reagents (Liu et al., 2020), ligand-based docking (Corso et al., 2023) and in-silico experiment
design (Wang et al., 2023b).
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Figure 1: Summary of our GNN scaling hypotheses studied in the present work. The baseline
model is presented in dark grey, followed by different scaling hypotheses illustrated in lighter
colors. We analyze the scaling behavior of message-passing networks, graph Transformer and hybrid
architectures with respect to the increasing scale of width, depth, number of molecules, number of
labels, and diversity of datasets.

Despite the growing applicability of GNNs in molecular tasks, the lack of supervised data has
significantly hindered our ability to proportionally scale model sizes. It remains unclear whether
graph-based architectures hold the promise of scale, similar to the paradigms of language and
unsupervised image generation.

Learning molecular properties with GNNs presents its own set of unique challenges. First, multiple
different GNN architectures are being actively researched. These include convolution (Kipf &
Welling, 2017), message passing architectures (Beaini et al., 2021), graph Transformers (Ying et al.,
2021b) and hybrid architectures (Rampášek et al., 2022; Masters et al., 2022). These approaches
have shown recent progress, but their applicability to practical applications remains an open question
(Rong et al., 2020).

Second, the commonly used self-supervised training techniques do not transfer well when applied to
molecular graphs; e.g., retrieving masked bonds and atoms is not informative. This is primarily due
to large data requirements and the fact that graphs are limited in capturing domain-specific aspects
such as chemical interactions and biological compositions (Liu et al., 2022). Other methods such as
GPSE (Liu et al., 2023b) solely learn the graph structure, thus providing a better positional encoding
for another GNN.

Lastly, public datasets have insufficient high-quality data for effective GNN architecture training.
While recent attempts have been made to expand open-source datasets (Beaini et al., 2024), their
extensions towards multi-task settings remain an open question.

We aim to address these limitations and provide a concrete understanding of the required data and
architectures to build foundational models for molecular graphs. Specifically, we want to answer the
question: How do graph-based architectures scale in multi-task settings of large molecular graphs?

As summarized in Figure 1, we aim to answer the above question by studying the scaling behavior
of 2D molecular GNNs under different settings of width, depth, number of molecules, number of
labels, and the diversity in datasets. We analyze message-passing networks, graph Transformers, and
hybrid architectures on the largest public collection of 2D molecular graphs. All models are tested
in 2 different settings: (1) randomly split train and test sets for pretraining and (2) fine-tuning of
pretrained models on standard benchmarks.
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Our work aims to provide a proper understanding of how different GNN architectures scale for
molecular GNNs and how it affects their performance in various settings. Our main contributions are
as follows:

• We study the scaling behavior of 2D molecular GNNs under varied settings of depth, width,
number of molecules, number of labels, the diversity in dataset, and the architectural choice.

• We show that our largest 1 billion parameter models continue to scale with constant gains
in molecular property prediction. To the best of our knowledge, this is the first work to
demonstrate the continuous scaling behavior of molecular GNNs.

• We show that supervised pretraining over molecular graphs provides a rich fingerprint
embedding, useful for MLP probing, and more expressive scaling model and datasets.

• We provide an in-depth analysis of scaling trends across different probing and finetuning
strategies. Specifically, we observe that model width and number of labels are the most
important factors driving finetuning performance.

• We show that, by simply scaling to 1B parameters, our largest model outperforms other
pretrained models, while consistently achieving parity with the state-of-the-art (SOTA) of
specialized models across a wide variety of competitive downstream tasks.

More details on related work and preliminaries related to GNNs can be found in Appendix A and B.

2 METHODOLOGY

Our study aims to answer the question: How do molecular GNNs scale? We begin by studying
GNNs in the multi-task supervised pretraining setup. Since our analysis consists of multiple tasks
on a large scale, we utilize the Graphium library (Beaini et al., 2024). Due to the absence of
a unified consensus on the best architecture for molecular GNNs, we focus our efforts on three
specific models. We select MPNN++ (Masters et al., 2022) which improves quantum prediction
over the MPNN (Gilmer et al., 2017), Graph Transformers (Müller et al., 2023), and Hybrid GPS++
(Masters et al., 2022) along with the use of positional encodings. Finally, we evaluate our models
on a range of public benchmarks with 38 datasets from Huang et al. (2021), Polaris (Anonymous,
2024) and MoleculeNet (Wu et al., 2018). We evaluate our models in both finetuning and probing
(fingerprinting) settings.

We begin by providing a detailed description of the datasets and benchmarks. We then elaborate
on the choice of architectures. Finally, we discuss finetuning and probing strategies along with the
results of our analysis.

2.1 DATASETS

We study the scaling behavior of GNNs on the LargeMix dataset mixture (Beaini et al., 2024). These
datasets cover different types of molecules exhibiting variable properties. Thus, the training is done
in a multi-task setting consisting of thousands of labels. This is a challenging approach towards
learning representations with GNNs, especially as some labels are very imbalanced and sparse.

The LargeMix dataset mixture consists of 5 million molecules grouped into 5 different tasks at
different graph levels, with each task having multiple labels. The diversity of this mixture of data
makes this dataset suitable for pretraining large GNNs. Below is a description of the individual tasks
contained within the LargeMix.

• L1000 VCAP and L1000 MCF7 are two datasets of 16k and 20k molecules, respectively,
with 998 graph-level classification labels corresponding to transcriptomics changes in the
cell when exposed to drugs.

• PCBA 1328 is a dataset of 1.6M molecules with 1,328 binary classification labels. Each
label corresponds to the activity tags of the molecules in a bioassay reported on PubChem.

• PCQM4M G25 and PCQM4M N4 are two datasets of 3.8M molecules with 25 graph-level
labels and 4 node-level labels. Labels are obtained using Density Functional Theory (DFT)
simulations, a highly accurate quantum simulation method (Saal et al., 2013).
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2.2 FINETUNING AND PROBING BENCHMARKS

A major benefit of foundational models is that they allow to easily generalize to unseen downstream
tasks through approaches like finetuning or (linear) probing. In this work we want to also study the
effect of scaling of the pretrained models on the performance on downstream tasks. For downstream
task evaluation we use open-source therapeutic benchmarks. For a fair and comprehensive evaluation,
all models are first pretrained using a common supervised learning strategy and then finetuned (or
probed) for molecular property prediction. The benchmarks used for evaluating are listed below.

TDC. Therapeutics Data Commons (Huang et al., 2021) is one of the common benchmarks for drug
discovery. Our study focuses on 22 ADMET (Absorption, Distribution, Metabolism, Excretion and
Toxicity) tasks. While TDC serves as the bedrock for open-source drug discovery evaluation, we note
that it suffers from data collection and processing biases across dissimilar molecules (Walters, 2023).

Polaris. This is a recent collection of benchmarks addressing concerns over previous datasets.
Developed by an industry consortium of various biotech and pharmaceutical organizations, it provides
access to high-quality molecular samples across various tasks. Our analysis considers 12 of the top
tasks from either ADME (Absorption, Distribution, Metabolism, and Excretion) or DTI (Drug-Target
Interaction) group for molecular property prediction (Anonymous, 2024).

MoleculeNet. This is a benchmark dataset for molecular machine learning that is built upon public
datasets (Wu et al., 2018). It consists of various datasets covering different levels of molecular prop-
erties spanning from properties at the molecular level to broader impacts on the human body. There
are different categories of properties including quantum mechanics, physical chemistry, biophysics,
and physiology. We investigate 4 datasets that are commonly used in similar studies (such as Liu
et al. (2021); Xu et al. (2021b); Liu et al. (2023b)): BACE (that assesses the binding outcomes of a
group of inhibitors targeting β-secretase 1), BBBP (Blood-Brain Barrier Penetration (Martins et al.,
2012) assesses if a molecule can penetrate the central nervous system), Clintox (toxicity of molecular
compounds (Gayvert et al., 2016)), and Sider (Side Effect Resource (Kuhn et al., 2016) containing
information about adverse drug reactions in a database of marketed drugs).

2.3 ARCHITECTURES

We broadly study three types of architectures; (1) message-passing networks, (2) graph Transformers,
and (3) hybrid models. In the case of message-passing networks, we focus on the MPNN++ model as
it provides a suitable testbed for evaluating molecular graphs while maintaining performance across
various tasks. Our graph Transformer and hybrid models make use of GPS++ model, which is known
for its scalable nature on quantum property predictions. In addition to GNN models, we make use of
Positional and Structural Encodings (PSEs) to improve the expressivity of MPNNs and introduce a
soft bias into the Transformer. We discuss architectures and their design aspects below.

MPNN++. This is a variation of the neural message passing architecture with edge and global
features (Gilmer et al., 2017; Battaglia et al., 2018; Bronstein et al., 2021). Choosing the MPNN++
allows us to maximize architecture expressivity while minimizing the risk of overfitting on larger
datasets (Masters et al., 2022). Each MPNN block makes use of sequential Dropout (Srivastava
et al., 2014), MLP and LayerNorm (Ba et al., 2016) modules followed by a skip connection (He
et al., 2016; Srivastava et al., 2015) across node and edge features:

Ēl,Xl = Dropout(MLP([Xl|El]))

Xl = LayerNorm(Dropout(Xl)) +Xl

El+1 = Ēl + El

GPS++. This is a hybrid model leveraging the MPNN++ inductive bias while providing the flexibility
of self-attention-based modules (Ying et al., 2021a) to allow for a rich feature extraction scheme
across nodes and edges, and was empirically proven very successful (Masters et al., 2022). Here, the
standard self-attention weights are biased by a structural prior B from the input graph. Mathematically,
the GPS++ module carries out the following computation:
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Xl+1, El+1 = MPNN++(Xl, El)

Zl = BiasedAttn(Xl+1,B)
Xl+1 = MLP(Xl+1 + Zl)

Transformer. This is an architecture identical to the GPS++, but without the MPNN++ module nor
the concatenation. Instead, it relies solely on the PSEs for structural bias.

PSEs. These are important design choices when training GNN architectures (Rampášek et al., 2022;
Liu et al., 2023b), as they allow each node to understand its position and surroundings within a graph.
This is essential for any graph Transformer, but it was also shown to improve the expressivity of
molecular GNNs. Specifically, we use three PSE schemes. First, we use random-walk diagonals
(Dwivedi et al., 2021) to allow one to decouple structural and positional representations. Learned
positional encodings are used to tackle isomorphic nodes. Second, we use Laplacian eigenvectors
(Beaini et al., 2021) as these form an expressive way to encode node geometries and positions.
Laplacian eigenvectors provide strong theoretical guarantees with respect to the expressivity of the
Weisfeiler-Lehman test, a useful insight when evaluating GNNs at scale. Last, we use the Laplacian
eigenvalues (Kreuzer et al., 2021) as a suitable PSE scheme to fully leverage the Laplacian spectrum.
Additionally, they provide global structural information about the graph.

2.4 FINETUNING AND PROBING

Following pretraining, we finetune our pretrained models on a range of unseen downstream tasks.
While there exist no clear guidelines for finetuning GNNs, this aspect is extensively explored in
this work. Notably, our evaluation considers two strategies (finetuning and probing), which both
significantly benefit from increased scale of the pretrained model.

Finetuning. Since our training setup consists of multiple tasks and our architectures incorporate
multiple task heads, we need to identify a finetuning module after which the remaining pretraining
architecture is removed and replaced by a newly initialized MLP: the finetuning head. As all
downstream tasks discussed above reside on the graph level, our main choice is the graph output
network, the MLP that processes features after being aggregated from the node to the graph level, and
further feeds into the task heads for graph-level tasks. Intuitively, this layer’s output representations
have benefited most from pretraining on diverse data and tasks, as it feeds directly into the various
task heads. We further investigate the effect of choosing layers of the tasks heads as finetuning
module to potentially leverage synergies between specific pretraining and downstream tasks. As all
downstream tasks are on the graph level, we trim the architecture by removing parts related to node
level tasks and unused task heads.

Probing and Fingerprinting. Similar to finetuning, we employ probing using an MLP as a suitable
strategy for obtaining general representations on downstream tasks. For probing, the base model
is kept frozen and only the new layers are trained. This allows the training procedure to focus the
gradient on newly added parameters, resulting in task-specific head layers. In the case of large model
sizes, running features through the frozen base model is expensive with respect to memory and
compute. We tackle this bottleneck by caching hidden representations on disk and reusing them
during probing. Since the gradient does not impact parameters of the base model, fingerprints remain
unchanged yielding an optimized strategy for downstream tasks capable of parallelization across
multiple inexpensive devices. In this work, similar to the finetuning setup, we extract fingerprints
from the task head MLPs of graph level tasks, and from the graph output network, the MLP that
directly feeds in to the task heads.

3 HOW DO MOLECULAR GNNS SCALE?

In this section, we evaluate the scaling behaviour of our models according to various parameters
summarized in Figure 1, namely the architectural choice, width, depth, number of molecules, labels
and different datasets.
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Figure 2: (a) Effect of scaling different design choices (columns) to test performance (rows). The
standardized mean is calculated as mean of standardized scores for every task in a dataset group, i.e.,
a mean and standard deviation per task were calculated based on all our models in this study (signs
of tasks with lower is better metrics were flipped). (b) top: Finetuning and probing performance
of pretrained MPNN++ models of different width on the Polaris benchmark. Darker green shades
denote better metric values. Larger models tend to perform better on unseen tasks. Spearman
correlation values closer to 1 indicate that predictive performance correlates with larger model sizes.
(b) bottom: Comparison of our GPS++ probing (that leverages multiple fingerprints) and the 1B
Ensemble probing (that leverages fingerprints from MPNN++, Transformer and GPS++) to various
baselines across TDC benchmark collection using an aggregated metric.

3.1 SCALING TRENDS FOR PRETRAINING

In this section, we evaluate the scaling behaviour of our models according to various parameters
summarized in Figure 1, namely the architecte, width, depth, number of molecules, labels and
different datasets. We use datasets from LargeMix described in Section 2.1.

Overview. Figure 2a presents the variation of architectural choices between MPNN++, Trans-
former and GPS++, with training curves in Appendix E, and full finetuning (and probing) results
in Appendix F. Notably, all models scale favourably with the increasing scale of width (number of
parameters per neuron), depth (number of GNN layers) and number of molecules (dataset size).

Width scaling. As seen in the first column of Figure 2a, increasing the width has a significant impact
on model performance across all tasks. Further, we trained larger models for fewer epochs as the loss
converged faster and more likely to exhibit overfitting on the PCQM4M * tasks.

Depth scaling. Similar to width, depth of GNN models plays an important role in the dataset fit
during test time. Deeper models with larger layers capture intricate aspects of the data resulting in
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Figure 3: Comparison of our 1B Ensemble probing approach (that combines fingerprints from
the MPNN++, Transformer and hybrid GPS++ model) to the SOTA across TDC, Polaris, and
MoleculeNet benchmarks. For TDC, a group of 8 different models establishes SOTA across the 22
tasks. Ensemble probing establishes new SOTA on 12/22 TDC tasks and on all but two tasks among
Polaris and MoleculeNet.

12.5% improvement in test error. However, performance plateaus at around 8-16 layers for quantum
datasets, while could be mitigated by larger datasets. For PCBA 1328, the performance continues to
increase.

Molecule scaling. Unsurprisingly, the number of molecules in the training set correlates strongly
with the performance of all models. Contrary to width and depth, molecule scaling is consistent
across all models and test sets, with GPS++ models and Transformer benefiting more than MPNN++
on quantum tasks. For instance, increasing the dataset size by eight-fold (12.5% to 100%) yields a
significant 33.33% improvement in model performance in the case of the hybrid GPS++ model.

Detailed scaling law analysis. We provide more detailed analysis of the observed scaling trends
in terms of Equations 1 and 2 in Appendix G, observing scaling laws similar to those in other
domains (Kaplan et al., 2020).

3.2 SCALING TRENDS ON DOWNSTREAM TASKS

We now evaluate scaling of models when finetuning and probing on downstream tasks. As detailed in
Appendix 2.4, all weights are tuned in the case of finetuning, while the pretrained model is frozen
when fingerprinting followed by probing. Due to the large number of downstream tasks spread across
38 tasks, we limit our evaluation to probing for most experiments, except for MPNN++ where we
also finetune the model.

In order to summarize scaling trends, we compute the Spearman’s rank correlation coefficient
(Schober et al., 2018) between model performance on a given metric and the scale of model/data
used. The correlation is given by a value in the range [−1, 1] , with a value of 1 indicating perfect
scaling (i.e., a larger model or dataset yields better downstream task performance), −1 indicating
imperfect scaling (i.e., a smaller model or dataset would be preferred) and 0 indicating no correlation.
We note that this evaluation scheme, although statistical, aims to answer the question What kind of
design decisions are necessary to build a foundational model for molecular representations?

MPNN++ vs Transformer. For probing on downstream tasks, we study the effect of architecture
choices of width, depth, and number of molecules. We find that Transformers benefit from increased
width on downstream tasks compared to GPS++ and MPNN++. Surprisingly, despite the number
of molecules having a stronger impact on all model’s performance, it only slightly impacts the
downstream performance of all models, with a small benefit for MPNN++. Finally, Transformer is
the only model with a small positive trend for depth scaling, while GPS++ and MPNN++ show close
to no trend.

Width scaling. We evaluate width scaling on Polaris and TDC datasets in Figures 2b (top) and
7 (Appendix F.1). We observe linear scaling trends for MPNN++ on all Polaris datasets, with an
average Spearman correlation of 0.91 for probing and 0.85 for finetuning. On TDC, a similar trends
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are observed (on average 0.69 for probing and 0.72 for finetuning) with a strong correlation of >0.75
for 15/22 datasets during probing and 17/22 during finetuning. These results strongly indicate the
benefits of larger pretrained GNNs for downstream tasks, a result consistent with prior findings in
scaling of large models (Kaplan et al., 2020). Similarly, Transformer and GPS++ show strong positive
scaling trends with model width.

Depth scaling. We evaluate depth scaling of MPNN++, GPS++ and Transformer models on the
Polaris and TDC benchmarks in Figures 8 and 9 (Appendix F.2). For probing on Polaris, we observe
weak positive trends, with average scaling Spearman correlations of 0.47, 0.55, and 0.50, respectively.
We see weaker average correlations on TDC, slightly negative for MPNNN++ and GPS++ and best
for Transformer with 0.27. However, finetuning MPNN++ achieves a respectable correlation of
0.33. While some datasets strongly benefit from deeper networks, others strongly deteriorate with no
clear pattern observable for TDC. We conjecture that the degradation is related to oversmoothing as
described in Appendix C. Certain molecular properties can be well predicted only from small local
substructures, hence eliminating the need for long-range interactions that deeper networks enable.

Molecule scaling. In this setting, we randomly sub-sample a number of molecules in the training
set by 12.5%, 25% and 50% to study their effect on downstream tasks. Surprisingly, probing and
finetuning performance does not correlate strongly with the amount of molecules in the training
set, as reported in Figures 10 and 11 (Appendix F.3). For MPNN++, we observe average Spearman
correlations of 0.28 and 0.32 when probing and finetuning on TDC, respectively. Contrarily to their
stronger trends on the pretraining tasks, Transformer and GPS++ have lower correlations during
probing of 0.13 and 0.15. In the case of Polaris, only average correlation of Transformers stands out
at 0.73, however reaching worse peak performance per task compared to the less correlated MPNN++
and GPS++. The globally weak positive trends come from the variation across the downstream tasks,
with many strong correlations and a few strong negative correlations.

Label scaling. We now study the effect of target labels by randomly sub-sampling the number of
labels of each dataset in the training set by 12.5%, 25% and 50%. In Figures 12 and 13 (Appendix F.4),
we observe a Spearman correlation of 0.57 on Polaris and 0.54 on TDC between the ratio of training
labels and the performance, with only a few negative correlations. In the finetuning regime, this
number lowers to 0.37 on TDC. This makes label scaling the second-best strategy for improving the
model’s downstream performance.

We further conducted a study to determine the importance of the pretraining data in two ways. Firstly,
we repeat pretraining of the models without specific pretraining datasets (dataset ablation). Secondly,
we probe models specifically from certain task head MLPs compared to the base GNN models
(task-head ablations).

Dataset ablation. Observing the dataset ablations in Figure 14 and 15 (Appendix F.5), we see
that PCBA 1328 is the most important pretraining dataset for downstream task performance while
L1000 * actually hurts the performance on certain tasks. It will therefore prove beneficial to pretrain
without the L1000 * datasets as we will see later.

Task-head ablations. We further tested the effect of probing from different layers of the task heads
rather than the graph output network. Results are shown in Table 16 (Appendix F.6). While overall,
the graph output network leads to best performance and correlation, the representation after the first
layer of the PCBA 1328 task head performs strikingly well for some tasks, possibly due to synergies
from pretraining on a bio assay dataset. This suggests probing approaches using combinations of
fingerprints could further improve results. On the other hand, the layers from the PCQM4M G25
dataset perform poorly, which is intuitive as this pretraining task is dissimilar to the downstream task.

3.3 COMPARISON TO OTHER MODELS

We now present two further optimized probing approaches that enhance performance on the various
downstream tasks considered above, while additionally considering the MoleculeNet benchmark (Wu
et al., 2018) here. For each benchmark, we compare to SOTA performance as of March 15, 2024 and
to the MolE model (Méndez-Lucio et al., 2022) if results are available. MolE is a particularly relevant
baseline as, similar to our approach, it can be applied to many downstream tasks without major
modifications, while SOTA across the benchmarks is naturally established by different approaches
depending on the specific task.
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Multi-fingerprint probing. Our previous task-head ablation study suggested that different fin-
gerprints may be optimal for probing depending on the downstream task. As a result we further
experimented with probing on combinations of multiple fingerprints extracted at different layers of
the pretrained model. Additionally, based on our observation in the dataset ablation, we pretrained
new models without the L1000 * pretraining tasks. This lead to performance improvements across all
scales. In Figure 2b (bottom), we report an aggregated metric across the TDC benchmark collection
(average standardized score1) for our GPS++ model. We observe a strictly positive scaling trend with
the 1B parameter model clearly outperforming TDC Baseline (the normalized score across the best
models per task reported in Huang et al. (2021)) and the MolE foundational model (Méndez-Lucio
et al., 2022), a gold standard for molecular property prediction.

Ensemble probing. We also found that downstream task performance can be further enhanced by
ensembling fingerprints from multiple pretrained models. Our ensemble probing approach extracts
fingerprints from 1B MPNN++, Transformer and GPS++ models, followed by an MLP. Figure 3
compares this model across the TDC, Polaris and MoleculeNet benchmark collections to the current
SOTA and MolE. Ensemble probing yields the strongest downstream task results, outperforming
MolE in 19/22 TDC tasks and establishing SOTA performance on 12/22 TDC tasks. This makes our
ensemble probing approach the model with the most SOTA entries in the TDC leaderboard followed
by MapLight+GNN (Notwell & Wood, 2023) that established SOTA on 5 TDC tasks and 7 other
methods that are SOTA for at least one TDC task.2 Finally, when comparing the ensemble probing to
previous best methods on the Polaris and MoleculeNet benchmarks, we observe that our model is
significantly better (often by large margins). We primarily attribute the large-scale success to width
scaling up to 1B parameters, suggesting us to scale even further.

We also report the aggregated score of the 1B ensemble probing in Figure 2b (bottom), which almost
reaches the aggregated SOTA performance, which is remarkable recalling again that this score is a
derived from the best scoring method per task of the benchmark collection, while we use a single
method for all tasks.

4 CONCLUSION

In this paper, we studied the scalability of GNNs including message-passing networks, graph Trans-
formers and hybrid architectures on the largest public collection of 2D molecules for molecular
property prediction. We showed major performance gains from the growing amount of parameters,
data and compute, both on the original test set and downstream tasks. Importantly, our models benefit
tremendously from the increasing scale of width, number of molecules and number of labels. More
importantly, we demonstrate a consistent performance improvement on downstream tasks with the
our largest models consistently producing results on par with SOTA. We hope that our work paves
the way for the development of foundational GNNs that accelerate pharmaceutical advancements and
drug discovery.

4.1 FUTURE WORK

While our study demonstrates the benefits of increasing number of parameters far greater than prior
work, there are still orders of magnitude before we reach a general-purpose foundational model of
molecules. Our analysis is restricted to the effect of number of parameters and molecules during
pretraining and finetuning stages. Future work would aim to uncover additional aspects of GNN
training such as the increasing complexity of aggregation functions and their effect on scaling
properties.

1The standardized score of a model M for a specific task T is derived as follows. Let sT (m) denote
the score of a model m for task T and let ST := {sT (m) : m ∈ MT }, where MT denotes the set of
all methods that have been applied to task T . The aggregated score is defined as s aggT (M) := sgn(sT ) ·
(sT (M)− mean(ST )) /std (ST ), where sgn(sT ) is the polarity of the metric, i.e., positive if “higher is better”
and negative if “lower is better”.

2We report scores from the TDC leaderboards extracted on March 15, 2024. SOTA on TDC is established by a
group of 8 different models, namely Chemprop-RDKit (Yang et al., 2019), MapLight, MapLight+GNN (Notwell
& Wood, 2023), BaseBoosting (Huang12 et al.), CFA (Quazi et al., 2023), SimGCN, ZairaChem (Oselusi et al.,
2024) and ContextPred (Zhou et al., 2020).
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A RELATED WORK

Foundation Models for Molecules. Recent work has relied on foundation models as a generalist
class of models for sequential modelling (Yuan, 2023; Liu et al., 2023a) as well as knowledge retrieval
(Galkin et al., 2023). Within molecular drug discovery, recent works rely on structured models of
ligands (Moret et al., 2020). Luo et al. (2022) and Moret et al. (2023) study a general model for
protein synthesis. Rao et al. (2020) construct a self-attention driven architecture for contact prediction.
Madani et al. (2023) learn to generate a family of functional proteins. Nijkamp et al. (2023) present a
class of protein-pretrained language models. Similarly, Méndez-Lucio et al. (2022) study binding
interactions between different assays at the molecule-molecule interaction level.

While many models focus on the design of molecules, a recent class of methods has also focused
on properties of molecules (Beaini et al., 2024). Cui et al. (2023) and Luo et al. (2023) study a
general architecture for predicting similar properties across different molecules such as solubility and
viscosity that in a way generalizes across molecular domains with a limited set of samples. Unsal
et al. (2022) learn to predict functional properties of proteins by exploiting learned structure. Our
study explores similar molecular tasks for property prediction.

Architecture Design. Recent methods in graph architecture design focus on attending to structural
information across nodes (Müller et al., 2023). Of specific interest are graph Transformer networks
which extract node as well as edge information by composing sequential attention modules over
graph readouts (Yun et al., 2019). In parallel, graph attention networks model attention weights across
edges of a graph (Veličković et al., 2017).

While attention mechanisms have demonstrated modern progress, traditional architectures such as
neural message passing (Gilmer et al., 2017) and 3D infomax (Stärk et al., 2022a) hold the promise of
simplicity and expressivity in modelling molecular graphs. On one hand, message passing provides a
rich and expressive framework for constructing representations. On the other hand, the provable lower
bound of infomax results in strong convergence guarantees. Godwin et al. (2021) study regularization
based on noisy nodes for the task of molecular property prediction. Provision of noise imputation
in node-level features leads to simple and expressive method for tackling sparse molecular graphs.
Graph bootstrapping (Thakoor et al., 2021) allows prior architectures to scale up to larger and complex
graphs for representation learning. Our exploration of different architectures is aligned with the
aforesaid works in literature, and with recent trends towards Transformers in related machine learning
fields.

Scaling Laws. Recent work in model scaling has demonstrated that performant models follow a
power law relationship between their parameter sizes and performance on new data samples (Kaplan
et al., 2020). Additionally, this relationship holds during the finetuning stage (Hernandez et al.,
2021), thus indicating a strong reliance on model parameters. Bahri et al. (2021) explain this power
law fit by observing learning as moving on a smooth data manifold. Frantar et al. (2023) study
the power law fit for sparsely connected models capable of downstream generalization. Notably,
sparsely connected foundation models reach a computational bottleneck as a result of different
sparsity structures impacting hardware usage. Aghajanyan et al. (2023) study the power law fit
for mixed modality generative models, indicating that the scaling behavior is modality agnostic
across various datasets. The result hints at the generality of scaling across different domains and
applications.

Caballero et al. (2022) extend the study of scaling laws towards different training regimes (such
as finetuning, downstream transfer and inference) as well as different problem domains (vision,
language, audio, diffusion, generative modelling, contrastive learning and reinforcement learning).
The resulting functional form results in extrapolations which are empirically accurate. Diaz & Madaio
(2023) present a tangential result demonstrating that dataset entities may not necessarily scale with
the growing amount of parameters and computational requirements, likely due to models leaving out
essential data samples. Cherti et al. (2023) study the reproducibility of scaling laws for contrastive
learning scenarios at the intersection of language and vision.

While recent work on the scaling behavior of graph networks and other structural inductive biases
remains absent, a few notable works aim at studying the behavior of scaling graph sizes. Grindrod
(2022) evaluates the power law fit of growing graph sizes utilizing random walk sampling and
exploration. Similarly, Pražnikar (2021) studies the scaling behavior of macromolecule proteins
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with respect to their mean node degree. Our exploration of scaling behaviors in graph networks is
motivated by the aforesaid directions.

B PRELIMINARIES

B.1 GRAPH NEURAL NETWORKS

Our problem setting consists of graphs of the form G = (V, E) where V denotes the set of nodes and
E denotes the set of edges. Each node i ∈ V indicates the atom and each edge (u, v) ∈ E denotes
a chemical bond between two atoms u, v. Total number of atoms in the molecule are N = |V|
while total number of edges are M = |E|. Node features in layer l are denoted by xl

i ∈ Rd and are
concatenated into an N × d representation matrix Xl = [xl

1;x
l
2; ...x

l
N ]⊤. Edge features eluv ∈ Rd

are concatenated into the edge feature matrix El = [eluv : (u, v) ∈ E ]⊤.

B.2 SCALING LAWS

We denote the parameters of a model as θ with the total number of trainable parameters being |θ|.
We consider a training dataset D consisting of labeled data samples (G, y) ∈ D. Here, G indicates
the input graph and y ∈ RN denotes the categorical or continuous label. Total size of the dataset is
denoted as |D|. Given the study of large foundational models, we note that |θ| is large in size and
θ lies on a high dimensional manifold such that θ ∈ RB where B >> |D|. Recent work has shown
that increasing the size of dataset |D| or the number of trainable parameters |θ| has a direct power
law relationship on the loss function Lθ(|D|) (Kaplan et al., 2020). Mathematically, we have the
following,

Lθ(|D|) ∝ (|θC |/|θ|)α (1)
Equation 1 denotes the power-law relationship between the number of trainable parameters and the
loss obtained when utilizing the parameters θ. Further, θC denotes the critical parameters and α ∈ R
is a scalar constant. Intuitively, as the number of parameters approaches a critical value, with every
gradient step, the test loss decreases at power-law with a constant rate. A similar relationship holds
for the size of datasets. Mathematically, we have the following,

Lθ(|D|) ∝ (|DC |/|D|)β (2)
Equation 2 describes the power-law relationship between the size of dataset and loss obtained when
training the model on D. Here, |DC | denotes the critical size of the dataset and β ∈ R is a scalar
constant.

B.3 PERFORMANCE METRICS

We provide detailed explanations for the metrics used for evaluating the performance of different
tasks throughout this work.

• Pearson. The Pearson correlation coefficient measures the strength and direction of the
linear relationship between two datasets. It ranges from −1 to +1, where 0 indicates no
correlation, −1 indicates a perfect negative linear relationship, and +1 indicates a perfect
positive linear relationship.

• Spearman. The Spearman correlation coefficient is a nonparametric measure of the mono-
tonic relationship between two datasets. Similar to other correlation coefficients, Spearman’s
correlation varies between −1 and +1, with 0 indicating no monotonic relationship. Corre-
lations of −1 or +1 imply a perfect monotonic relationship between the two datasets.

• AUROC. The ROC curve demonstrates the trade-off between the true-positive rate and
the false-positive rate at different thresholds. The area under the ROC curve (AUROC)
expresses how good a model is regardless of the chosen threshold.

• AUPRC. This metric is useful particularly when dealing with imbalanced datasets and it
summarizes the area under the precision-recall curve at various thresholds.

• MAE. Absolute error is the magnitude of the difference between a prediction and the
true value of an observation. Mean Absolute Error (MAE) calculates the average of these
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absolute errors for a group of predictions and observations, providing a measure of the
overall error magnitude for the group.

C TRADE-OFF BETWEEN OVER-SMOOTHING AND DEPTH

We note that GNN architectures exhibit over-smoothing phenomenon, which implies that latent
representations of a network become similar and coarser as the network grows in size. Prior evidence
suggests that over-smoothing occurs linearly with the increasing depth of GNN networks (Hamilton,
2020; Xu et al., 2019). We observed similar behaviors for MPNN architectures during pretraining
where the performance for node-level tasks degrades significantly with very deep networks. However,
it is difficult to determine without any doubt that over-smoothing is the culprit.

On another hand, over-smoothing is believed to be aleviated by graph Transformers. Recent works
argue that Transformers present favorable properties which make them robust towards over-smoothing,
such as the provision of embeddings and the inductive bias of attention (Dovonon et al., 2024).
However, we still observe a degradation of performance with depth of our Transformer models, in
contradiction with this hypothesis. Its theoretical understanding and empirical analysis remains an
open question for future work.

D ADDITIONAL RELATED WORK

D.1 FOUNDATIONAL MODELS FOR MOLECULES

Here, we present additional advancements in foundational models making use of molecular graphs.
Recent works have argued that the use of high-capacity models will be a significant boon to scientific
discovery tasks (Wang et al., 2023a). Of specific interest are tasks in the quantum and molecular
discovery paradigms (Zhang et al., 2023) which demand domain-specific expertise such as knowledge
of structure, provision of additional inductive biases and large data requirements. Towards this
hypothesis, Fifty et al. (2023) present an in-context learning framework for molecular property
prediction without explicitly using a meta learning procedure. This leads to a general algorithm
capable of discovering high-level structures from a pretraining sample set. Guo et al. (2021) propose a
similar framework making use of few-shot learning techniques resulting in a sample-efficient learning
procedure. Xu et al. (2023) present an alternative approach by modelling the full graphical structure
of molecules across different property prediction tasks. Although effective, modelling the entire
graph results in a computationally intensive learning procedure. Finally, Cao et al. (2023) scale up
learning to larger graph sizes by segmenting graph neighborhoods on the fly. An ad-hoc partitioning
procedure is employed and interleaved with the learning phase in order to accelerate learning on
larger and dense graphical clusters.

D.2 EXPRESSIVITY OF GNNS

Prior work highlights that GNN architectures are limited in their expressivity to distinguish between
graphs of similar node arrangements but different geometrical structures (Xu et al., 2019). Various
works indicate this as a consequence of aggregation functions and other design factors involved in
GNN training (Hamilton, 2020). On the other hand, recent work argues that only specific architectures
are found robust to over-smoothing when building latent representations (Dovonon et al., 2024).
For instance, graph Transformers exhibit over-smoothing robustness as they utilize strong inductive
biases such as attention. Xu et al. (2021a) connect the limited expressivity of GNNs with their ability
to extrapolate on simpler tasks. Contrary to multi-layer networks, GNNs struggle to extrapolate on
simpler tasks but show promise for improvement. Morris et al. (2019) aim to tackle over-smoothing
by building higher-order GNN architectures capable of capturing intricate node characteristics in
their deeper layers. Finally, Ying et al. (2018) present the differentiable pooling module capable of
pooling neighboring node features which aid in reducing noise across layer representations.

18



Navigating and Addressing Data Problems for Foundation Models (DPFM) Workshop, ICLR 2024

E TRAINING CURVES OF PRETRAINING MODELS
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1Figure 4: Model performance on the test set throughout training for MPNN++, Transformer, and
GPS++ architectures with width scaling. Different colors represent models with varying number of
parameters.
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GPS++ architectures with depth scaling. Different colors represent models with varying number of
network layers.
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1Figure 6: Model performance on the test set throughout training for MPNN++, Transformer, and
GPS++ architectures with molecule scaling. Different colors represent models with varying fraction
of molecules used for training.

F ADDITIONAL RESULTS ON DOWNSTREAM TASKS

F.1 WIDTH SCALING
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Figure 7: Comparison of probing and finetuning for MPNN++ (left), Transformer (center), and
hybrid GPS++ (right) across different model sizes on the TDC benchmark. Darker green shades
denote higher/desirable metric values. Average Spearman correlations for MPNN++, Transformer
and GPS++ models show improving scaling behavior with increasing number of parameters across
the TDC benchmark. The average Spearman correlation between width and performance for probing
is 0.69, 0.82 and 0.73, respectively, and 0.72 when finetuning MPNN++, effectively showing that
model size plays an important role in predictive performance.
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F.2 DEPTH SCALING
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Figure 8: Comparison of probing and finetuning for different model depths on the Polaris benchmark
with MPNN++ (left), Transformer (center), and hybrid GPS++ (right). Darker green shades denote
higher/desirable metric values. Average Spearman correlation between depth and performance is
0.47, 0.55, and 0.50, respectively. Probing shows positive scaling trend with increasing depth across
the Polaris benchmark.
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Figure 9: Comparison of probing and finetuning for MPNN++ (left), Transformer (center), and
GPS++ (right) models across different model depths on the TDC benchmark. Darker green shades
denote higher/desirable metric values. Average Spearman correlation between depth and performance
is -0.11, 0.27 and -0.03, respectively, and 0.33 for finetuned MPNN++. While performance mostly
increases with depths up to 8, larger depths often show signs of saturation.
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Figure 10: Scaling behavior of probed 100M parameter models across different dataset molecule
fractions on the Polaris benchmark with MPNN++ (left), Transformer (center), and hybrid GPS++
(right). Darker green shades denote higher/desirable metric values. Average Spearman correlation
between molecule fraction and probing performance is 0.30, 0.73, and 0.40, respectively. Models
show consistent improvement in performance with the increasing size of datasets.
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Figure 11: Comparison of probing and finetuning for MPNN++ (left), Transformer (center) and
GPS++ (right) models across different dataset sizes on the TDC benchmark. Darker green shades
denote higher/desirable metric values. Average Spearman correlation between molecule fraction and
probing performance is 0.28, 0.13 and 0.15, respectively, and 0.32 for finetuned MPNN++. Finetuned
models scale better when compared to probed models. However, increasing the size of finetuning
datasets leads to minor improvements beyond the 50% dataset size fraction.
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Figure 12: Performance of MPNN++ probed models across different label fractions in the Polaris
benchmark. Darker green shades denote higher/desirable metric values. Average Spearman correla-
tion between label fraction and performance is 0.57.
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Figure 13: Comparison of MPNN++ probing and finetuning across different label fractions on the
TDC benchmark. Darker green shades denote higher/desirable metric values. Average Spearman
correlation between label fraction and performance is 0.54 for probed MPNN++ and 0.37 for finetuned
MPNN++. Finetuned models scale better when compared to probed models. Increasing label fractions
do not deteriorate model performance.
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F.5 DATASET ABLATION
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Figure 14: Comparison of probed 100M parameter MPNN++ models on the Polaris benchmark tasks
(in columns) after pretrained without certain pretraining datasets (in rows). Darker green shades
denote higher/desirable metric values. We observe that removing PCBA 1328 significantly hurts
downstream performance across almost all tasks, while removing the L1000 leads to noticeable
improvements on most tasks.
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Figure 15: Performance of probed 100M parameter MPNN++ models on TDC benchmark tasks
(in columns) after pretrained without certain datasets (in rows). Darker green shades denote
higher/desirable metric values. We observe that removing PCBA 1328 significantly hurts downstream
performance across almost all tasks, while removing the L1000 leads to noticeable improvements on
most tasks.
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F.6 TASK-HEAD ABLATION
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Figure 16: Performance of probed 100M parameter MPNN++ models on TDC benchmark (left) and
Polaris benchmark (right), with the tasks in columns, when probing from different task heads (in
rows). Darker green shades denote higher/desirable metric values, and bold/underline indicates the
best value in a given column. We observe that the graph output nn (e.g. the hidden representation
that is fed to all task-heads) is overall the best choice for probing. We hypothesize this is because
it captures and compresses the combined information from the various pretraining tasks. The
PCBA 1328 task-head is also a good choice due to its proximity to the considered downstream tasks.
The PCQM4M G25 task-head is the least useful as the tasks are fundamentally different from the
downstream tasks.

F.7 THE TDC BENCHMARK – DATA LEAKAGE

Considering that the pretraining dataset is supervised, it is important to consider data-leakage as a
source of experimental error. This is especially the case for the PCBA 1328 dataset.

PCBA 1328 contains only classification assays with more than 6000 molecules each, which automat-
ically disqualifies most of TDC and all of Polaris. The TDC datasets remaining after this constraint
are the 3 CYP* Veith datasets, and the AMES dataset.

The AMES dataset is not present in PubChem, excluding it from the list of potential leaks.

Regarding the 3 CYP* Veith datasets, they represent inibition assays against recombinant enzymes
(Veith et al., 2009). The three assays from TDC, and two others from the paper, are all present
and aggregated under assayID-1851. Therefore, whenever a molecule is active against any of the
enzyme, the value is 1, otherwise it is 0. Therefore, there is a minor leak, although the datasets are
not identical. Further, no evidence of leak was observed in terms of abnormally high performance of
the model on these assays, which is expected considering that the model is learning more than 3000
labels simultaneously.

G SCALING LAW DETAILS

We explore the power law fit which governs the scaling behavior of our GNNs using Equations 1 and 2
to compute the power law constants and identify data and parameter requirements. For metrics with
higher desirable values (such as AUROC or R2), fractions inside the exponents are reversed.

Table 1 presents values of alpha (Equation 1) based on model parameters and tasks considered in
our downstream task experiments on the Polaris benchmark (Figure 2b top). We choose |θc| = 1B
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and fix our final training error values corresponding to this model’s performance. On average, we
see α ≈ 0.081 for probing and α ≈ 0.098 for finetuning. These relationships hold across 6 orders
of magnitude in |θ| indicating that finetuning behavior scales logarithmically with the number of
trainable parameters. It is also worth noting that (Kaplan et al., 2020) obtain similar α ≈ 0.076
indicating that our power law fit lies within the same parameter budget.

Table 2 compares values of beta for pretraining our models as presented in Figure 2a. We choose
|Dc| = 5M to be 100 % of molecular data. As observed, β ≈ 0.110 for MPNN++, β ≈ 0.106
for Transformer and β ≈ 0.106 for GPS++ for the overall test error. This holds for datasets up
to 5M molecules. Notably, all β > 0 indicate that, given a computational budget, larger GNNs
scale favorably. We again note that Kaplan et al. (2020) have similar power law fits of β ≈ 0.095
albeit with a 1013 token corpus. This allows us to draw two conclusions. Firstly, GNNs continue to
demonstrate optimal scaling with limited datasets. Secondly, our 5M molecules (10M node features)
dataset is sufficient to demonstrate scaling behavior equivalent to a 1013 token language corpus, up to
the 1B parameters regime.

Method T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Probing 0.055 0.053 0.041 0.034 0.049 0.053 0.083 0.147 0.064 0.078 0.112 0.206
Finetuning 0.055 0.300 0.057 0.028 0.039 0.047 0.053 0.212 0.037 0.115 0.062 0.179

Table 1: Power law constants for different downstream tasks from Polaris benchmark when varying
the number of parameters (Figure 2b top).

Model Loss L1000 (AVPR) PCBA 1328 (AVPR) PCQM4M G25 (R2) PCQM4M N4 (R2)

MPNN++ 0.110 0.047 0.061 0.011 0.002
Transformer 0.106 0.047 0.067 0.012 0.001
GPS++ 0.106 0.047 0.067 0.012 0.001

Table 2: Power law constants for pretraining different architectures when varying dataset sizes
(Figure 2a).
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