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Abstract
In recent years, in-silico molecular design has re-
ceived much attention from the machine learning
community. When designing a new compound
for pharmaceutical applications, there are usually
multiple properties of such molecules that need
to be optimised: binding energy to the target, syn-
thesizability, toxicity, EC50, and so on. While
previous approaches have employed a scalariza-
tion scheme to turn the multi-objective problem
into a preference-conditioned single objective, it
has been established that this kind of reduction
may produce solutions that tend to slide towards
the extreme points of the objective space when
presented with a problem that exhibits a concave
Pareto front. In this work we experiment with
an alternative formulation of goal-conditioned
molecular generation to obtain a more control-
lable conditional model that can uniformly ex-
plore solutions along the entire Pareto front.

1. Introduction
Modern Multi-Objective optimisation (MOO) is comprised
of a large number of paradigms (Keeney et al., 1993; Mi-
ettinen, 2012) intended to solve the problem of trading off
between different objectives; a setting particularly relevant
to molecular design (Jin et al., 2020; Jain et al., 2022b).
One particular paradigm that integrates well with recent
discrete deep-learning based MOO is scalarization (Ehrgott,
2005; Pardalos et al., 2017), which transforms the problem
of discovering the Pareto front of a problem into a family
of problems, each defined by a set of coefficients over the
objectives. One notable issue with such approaches is that
the solution they give tends to depend on the shape of the
Pareto front in objective space (Emmerich & Deutz, 2018).
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To tackle this problem, we propose to train models which
explicitly target specific regions in objective space. Tak-
ing inspiration from goal-conditional reinforcement learn-
ing (Schaul et al., 2015), we condition GFlowNet (Bengio
et al., 2021a;b) models on a description of such goal regions.
Through the choice of distribution over these goals, we en-
able users of these models to have more fine-grained control
over trade-offs. We also find that assuming proper coverage
of the goal distribution, goal-conditioned models discover
a more complete and higher entropy approximation of the
Pareto front for various shapes.

2. Background & Related Work
The Multi-Objective optimisation problem can be broadly
described as the desire to maximize a set of K objectives
over X , R(x) ∈ RK . In typical MOO problems, there is no
single optimal solution x such that Rk(x) > Rk(x

′)∀ k, x′.
Instead, the solution set is generally composed of Pareto
optimal points, which are points x that are not dominated
by any other point, i.e. ∄x′ s.t. Rk(x) ≥ Rk(x

′)∀ k. In
other words, a point is Pareto optimal if it cannot be locally
improved. The projection in objective space of the set of
Pareto optimal points forms the so-called Pareto front.

As graph-based models improve (Rampášek et al., 2022) and
more molecular data become available (Wu et al., 2018),
molecular design has become an active field of research
within the deep learning community (Brown et al., 2019;
Huang et al., 2021), and core to this research is the fact that
molecular design is a fundamentally multi-objective search
problem (Papadopoulos & Linke, 2006; Brown et al., 2006).
The advent of such tools has led to various important work
at the intersection of these two fields (Zhou et al., 2019;
Ståhl et al., 2019; Jin et al., 2020; Jain et al., 2022b).

The Generative Flow Network (GFlowNet, GFN) frame-
work is a recently introduced method to train energy-based
generative models (i.e. models that learn pθ(x) ∝ R(x);
Bengio et al., 2021a). They have now been success-
fully applied to a variety of settings such as biological se-
quences (Jain et al., 2022a), causal discovery (Deleu et al.,
2022; Atanackovic et al., 2023), discrete latent variable mod-
eling (Hu et al., 2023), and computational graph schedul-
ing (Zhang et al., 2023). The framework itself has also
received theoretical attention (Bengio et al., 2021b), for
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Figure 1. The diagram on the left depicts the state space of a GFlowNet molecule generator which learns a forward policy that sequentially
builds diverse molecules. a) The sampling distribution learned by such a model on a two-objective problem (seh, qed). Each dot represents
a molecule’s image in the objective space. The focus region (see Section 3.1) is depicted as a light blue cone, and the colors represent
the density of the distribution. The model learns to produce molecules that mostly belong within the focus region. b) By training a
goal-conditioned GFlowNet and sampling from several focus regions (here showing 4 distinct regions), we can cover a wider section of
the objective space and increase the diversity of proposed candidates.

example, highlighting its connections to variational meth-
ods (Zhang et al., 2022; Malkin et al., 2022b), and several
objectives to train GFNs have been proposed (Malkin et al.,
2022a; Madan et al., 2022; Pan et al., 2023) including ex-
tensions to continuous domains (Lahlou et al., 2023).

In the context of molecular design, GFlowNets have sev-
eral important properties that make them an interesting
method for this task. Notably, they are naturally well-
suited for discrete compositional object generation, and
their multi-modal modeling capabilities allow them to in-
duce greater state space diversity in the solutions they find
than previous methods. A recent GFN-based approach to
multi-objective molecular design, which we call preference-
conditioning (Jain et al., 2022b), amounts to scalarizing the
objective function by using a set of weights (or preferences)
w:

Rw(x) =
∑
k

wkrk ,
∑
k

wk = 1 , wk ≥ 0 (1)

and then passing this preference vector w as input to the
model. By sampling various w’s from a distribution such as
Dirichlet’s during training, one can obtain a model that can
be conditioned to emphasize some preferred dimensions of
the reward function. Jain et al. (2022b) also find that such a
method finds diverse candidates in both state and objective
spaces.

3. Methods
3.1. Goal-conditioned GFlowNets

Building on the method of Jain et al. (2022b), our approach
also formulates the problem as a conditional generative task
but now imposes a hard constraint on the model: the goal
is to generate samples for which the image in objective
space falls into the specified goal region. While many dif-
ferent goal-design strategies could be employed, we take

inspiration from Lin et al. (2019) and state that a sample x
meets the specified goal g if the cosine similarity between
its reward vector r and the goal direction dg is above the
threshold cg: g := {r ∈ RK :

r·dg

||r||·||dg|| ≥ cg}. We call
such a goal a focus region, which represents a particular
choice of trade-off in the objective space (see Figure 1). The
method can be considered a form of goal-conditional rein-
forcement learning (Schaul et al., 2015), where the reward
function Rg depends on the current goal g. In our case we
have:

Rg(x) =

{∑
k rk, if r ∈ g

0, otherwise
(2)

To alleviate the effects of the now increased sparsity of the
reward function Rg, we use a replay buffer which proved
to stabilise the learning dynamics of our models (see Ap-
pendix C.1). Notably, by explicitly formulating a goal,
we can measure the goal-reaching accuracy of our model,
which refers to the proportion of samples that successfully
landed in their prescribed region. This measurement enables
us to employ hindsight experience replay (Andrychowicz
et al., 2017), which lets the model learn from the sampled
trajectories that didn’t meet their goal. Finally, to further
increase the goal-reaching accuracy we sharpen the reward
function’s profile to help the model generate samples closer
to the center of the focus region (see Appendix C.2).

3.2. Learned Goal Distribution

Preference conditioning uses soft constraints to steer the
model in some regions of the objective space. While hard
constraints provide a more explicit way of incorporating the
user’s intentions in the model (Amodei et al., 2016; Roy
et al., 2021), they come with the unique challenge that not
every goal may be feasible. In such cases, the model will
only observe samples with a reward of 0 and thus return
molecules of little interest drawn uniformly across the state
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space. These “bad samples” are not harmful in themselves
and can easily be filtered out. Still, their prominence will af-
fect the sampling efficiency of goal-conditioned approaches
compared to their soft-constrained counterpart. Moreover,
the number of infeasible regions will likely multiply as the
number of objectives grows, further aggravating this dispar-
ity. To cope with this challenge, we propose to use a simple
tabular goal-sampler (Tab-GS) which maintains a belief
about whether any particular goal direction dg is feasible.
Once learned, we can start drawing new goals from it with
a much lower likelihood on the goals that are believed to be
infeasible, thus restoring most of the lost sample efficiency.
We give more details on this approach in Appendix C.3 and
use it in our experiments in Section 4.3.

3.3. Evaluation Metrics

While there exists many multi-objective scoring functions
to choose from, any single metric only partially captures
the desirable properties of the learned generative distribu-
tion (Audet et al., 2021). In this work, we focus on sampling
high-performing molecules across the entire Pareto front
in a controllable manner at test time. With that in mind,
we propose combining three metrics to evaluate our so-
lution. The first one, the Inverted Generational Distance
(IGD) (Coello & Cortés, 2005), uses a set of reference
points P (the true Pareto front) and takes the average of
the distance to the closest generated sample for each of
these points: IGD(S, P ) := 1

|P |
∑

p∈P mins∈S ||s − p||22
where S = {si}Ni=1 is the image in objective space of a
set of N generated molecules si. When the true Pareto
front is unknown, we use a discretization of the extreme
faces of the objective space hypercube as reference points.
IGD thus captures the width and depth at which our Pareto
front approximation reaches out in the objective space. The
second metric, which we call the Pareto-Clusters Entropy
(PC-ent), measures how uniformly distributed the samples
are along the true Pareto front. To accomplish this, we
use the same reference points P as for IGD, and cluster
together in the subset Sj all of the samples si located closer
to the reference point pj than any other reference point. PC-
ent computes the entropy of the histogram of each counts
|Sj |, reaching its maximum value of − log 1

|P | when all
the samples are uniformly distributed relative to the true
Pareto front: PC-ent(S, P ) := −

∑
j

|Sj |
|P | log

|Sj |
|P | . Finally,

to report on the controllability of the compared methods,
we measure the Pearson correlation coefficient (PCC) be-
tween the conditional vector c (goal or preference) and
the resulting reward vector s, averaged across objectives k:
Avg-PCC(S,C) := 1

K

∑K
k=1 PCC(s·,k, c·,k).

4. Results
4.1. Evaluation Tasks

We primarily experiment on a two-objective task, the well-
known drug-likeness heuristic QED (Bickerton et al., 2012),
which is already between 0 and 1, and the sEH bind-
ing energy prediction of a pre-trained publicly available
model (Bengio et al., 2021a); we divide the output of this
model by 8 to ensure it will likely fall between 0 and 1
(some training data goes past values of 8). For 3 and 4
objective tasks, we use a standard heuristic of synthetic
accessibility (Ertl & Schuffenhauer, 2009) and a penalty
for compounds exceeding a molecular weight of 300. See
Appendix A for all task and training details.

4.2. Comparisons in Difficult Objective Landscapes

To simulate the effect of complexifying the objective land-
scape while keeping every other parameter of the evalua-
tion fixed, we incorporate unreachable regions, depicted
in dark in Figures 2 & 3, by simply setting to null the re-
ward function of any molecule whose image in the objective
space would fall into these dark regions. We can see that
the preference-conditioned approach can effectively solve
problems exhibiting a convex pareto-front (Figure 2 & 3,
columns 1-2). However, it is far less effective on problems
exhibiting more complex objective landscapes. When faced
with a concave Pareto front, the algorithm favours solu-
tions towards the extreme ends (Figure 2 & 3, columns 3-7).
In contrast, by explicitly forcing the algorithm to sample
from each trade-off direction in the objective space, our goal-
conditioned method learns a sampling distribution that spans
the entire space diagonally, no matter how complex we make
the objective landscape. Table 1 reports the performance of
both methods on these objective landscapes in terms of IGD,
Avg-PCC and PC-ent (mean± sem, over 3 seeds). We see in
Table 1 that according to IGD, preference-conditioning and
goal-conditioning perform similarly in terms of pushing the
empirical Pareto front forward. While the two learned distri-
butions are in many cases very different (Figure 2, columns
3-7), the preference-conditioning method still manages to
produce a few samples in the middle areas of the Pareto
front, which satisfies IGD as it only looks for the single
closest sample to each reference point. However, the two
algorithms differ drastically in terms of controllability of the
distribution (color-coded in Figure 2) and uniformity of the
distribution along the Pareto front (color-coded in Figure 3),
which are highlighted by the Avg-PCC and PC-ent criteria
in Table 1.

4.3. Comparisons for Increasing Number of Objectives

Using the same metrics, we also evaluate the performance
of both methods when the number of objectives increases.
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Figure 2. Comparisons between a preference-conditioned GFN (top row) and a goal-conditioned GFN (bottom row) on a set of increasingly
complex modifications of a two-objective (seh, qed) fragment-based molecule generation task (Jain et al., 2022b). The BRG colors
represent the angle between the vector [1, 0] and either the preference-vector w (top) or the goal direction dg (bottom), respectively. For
example, in the case of preference-conditioning, a green dot means that such samples were produced with a strong preference for the
qed-objective, while in the goal-conditioning case, a green dot means that the model intended to produce a sample alongside the qed-axis.
We see that goal-conditioning allows to span the entire objective space even in very challenging landscapes (columns 3-7) and in a more
controllable way.

Figure 3. Comparisons of the same sampling distributions depicted in Figure 2. Now the colors indicate how densely populated a particular
area of the objective space is (brighter is more populated). We can see that by explicitly targeting different trade-off regions in objective
space, our goal-conditioning approach (bottom row) produces far more evenly distributed samples along the Pareto front than with
preference-conditioning (top row).

Table 1. Comparisons according to IGD, Avg-PCC and PC-ent between preference-conditioned and goal-conditioned GFNs on a set of
increasingly difficult objective landscapes, metrics reported on 3 seeds (mean ± sem).

algorithm unrestrained restrained-convex concave concave-sharp multi-concave 4-dots 16-dots

IGD (↓)
pref-cond 0.087± 0.001 0.316± 0.002 0.272± 0.001 0.180± 0.002 0.152± 0.006 0.130± 0.011 0.109± 0.009

goal-cond 0.095± 0.002 0.310± 0.001 0.266± 0.001 0.197± 0.002 0.173± 0.004 0.134± 0.002 0.115± 0.004

Avg-PCC (↑)
pref-cond 0.905± 0.001 0.673± 0.009 0.830± 0.002 0.855± 0.004 0.700± 0.009 0.768± 0.038 0.770± 0.011

goal-cond 0.967± 0.002 0.953± 0.001 0.926± 0.002 0.915± 0.001 0.946± 0.004 0.928± 0.002 0.948± 0.001

PC-ent (↑)
pref-cond 2.170± 0.004 1.913± 0.019 1.563± 0.009 1.629± 0.002 1.867± 0.015 1.521± 0.022 1.610± 0.019

goal-cond 2.472± 0.006 2.242± 0.013 1.997± 0.002 1.918± 0.001 2.380± 0.020 2.270± 0.025 2.262± 0.014
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As described in Section 3.2, to maintain the sample effi-
ciency of our goal-conditioned approach we sample the goal
directions dg from a learned tabular goal-sampler (Tab-GS)
rather than uniformly across the objective space (Uniform-
GS). We can see in Table 2 (and Appendix C.3) that with
this adaptation, our goal-conditioned approach maintains
its advantages in terms of controllability and uniformity
of the learned distribution as the number of objectives in-
creases, proving to be an effective method for probing large,
high-dimensional objective spaces for diverse solutions.

Table 2. Comparisons according to IGD, Avg-PCC and PC-ent
between preference- and goal-conditioned GFNs faced with in-
creasing objectives (3 seeds, mean ± sem).

algorithm 2 objectives 3 objectives 4 objectives

IGD (↓)
pref-cond 0.088± 0.001 0.218± 0.003 0.370± 0.000

goal-cond 0.094± 0.004 0.199± 0.002 0.303± 0.001

Avg-PCC (↑)
pref-cond 0.904± 0.002 0.775± 0.004 0.612± 0.002

goal-cond 0.961± 0.001 0.909± 0.001 0.893± 0.002

PC-ent (↑)
pref-cond 2.166± 0.007 3.775± 0.016 4.734± 0.004

goal-cond 2.471± 0.001 4.571± 0.008 6.320± 0.009

5. Future Work
In this work, we proposed goal-conditioned GFlowNets for
multi-objective molecular design. We showed that they are
an effective solution to give practitioners more control over
their generative models, allowing them to obtain a large set
of more widely and more uniformly distributed molecules
across the objective space. An important limitation of the
proposed approach was the reduced sample efficiency of
the method due to the existence of a priori unknown infea-
sible goals. We proposed a tabular approach to gradually
discredit these fruitless goal regions as we explore the ob-
jective space. However, this set of parameters, one for every
goal direction, grows exponentially with the number of ob-
jectives K, eventually leading to statistical and memory
limitations. As future steps, we plan to experiment with
a GFlowNet-based Goal Sampler (GFN-GS) which would
learn to sample feasible goal directions dimension by di-
mension, thus benefiting from parameter sharing and the
improved statistical efficiency of its hierarchical structure.

Figure 4. Depiction of a GFlowNet Goal Sampler (GFN-GS) grad-
ually building goal directions dg as a sequence of K steps.
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Ståhl, N., Falkman, G., Karlsson, A., Mathiason, G., and
Bostrom, J. Deep reinforcement learning for multipa-
rameter optimization in de novo drug design. Journal of

6

https://books.google.ca/books?id=GPE6ZAqGrnoC
https://books.google.ca/books?id=GPE6ZAqGrnoC


chemical information and modeling, 59(7):3166–3176,
2019.

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Ge-
niesse, C., Pappu, A. S., Leswing, K., and Pande, V.
Moleculenet: a benchmark for molecular machine learn-
ing. Chemical science, 9(2):513–530, 2018.

Yun, S., Jeong, M., Kim, R., Kang, J., and Kim, H. J. Graph
transformer networks. Advances in neural information
processing systems, 32, 2019.

Zhang, D., Chen, R. T., Malkin, N., and Bengio, Y. Uni-
fying generative models with gflownets. arXiv preprint
arXiv:2209.02606, 2022.

Zhang, D. W., Rainone, C., Peschl, M., and Bondesan,
R. Robust scheduling with gflownets. arXiv preprint
arXiv:2302.05446, 2023.

Zhou, Z., Kearnes, S., Li, L., Zare, R. N., and Riley, P. Op-
timization of molecules via deep reinforcement learning.
Scientific reports, 9(1):1–10, 2019.

7



A. Task and Training Details
We use the GFlowNet framework (Bengio et al., 2021a;b) to train discrete distribution samplers over the space of molecules
that can be assembled from a set of pre-defined molecular fragments (Kumar et al., 2012). A state is represented as a graph
in which each node represents a fragment from the fragment library and where each edge has two attributes representing the
attachment point of each connected fragment to its neighbor. The state representation is augmented with a fully-connected
virtual node, whose features are an embedding of the conditioning information computed from the conditioning vector that
represents the preferences w and/or the goal direction dg. To produce the state-conditional distribution over actions, the
model processes the state using a graph transformer architecture (Yun et al., 2019) for a predefined number of message-
passing steps (number of layers). Our GFlowNet sampler thus starts from the initial state s0 representing an empty graph.
It iteratively constructs a molecule by either adding a node or an edge to the current state st until it eventually selects the
‘STOP’ action.

To maintain some amount of exploration throughout training, at each construction step t, the model samples a random action
with probability ϵ and otherwise samples from its forward transition distribution. The model is trained using the trajectory
balance criterion (Malkin et al., 2022a) and thus is parameterised by a forward action distribution PF and an estimation of the
partition function Z :=

∑
x R(x). Forbidden actions are masked out from the forward transition distribution (for example,

the action of adding an edge to the empty state). We use a uniform distribution for the backward policy PB . To prevent the
sampling distribution from changing too abruptly, we collect new trajectories from a sampling model PF ( · |θsampling) which
uses a soft update with hyperparameter τ to track the learned GFN at update k: θ(k)sampling ← τ · θ(k−1)

sampling + (1− τ) · θ(k). This
is akin to the target Q-functions and target policies used in actor-critic frameworks (Mnih et al., 2015; Fujimoto et al., 2018).

The hyperparameters used for training both methods are listed in Table 3.

Table 3. Hyperparameters used in our conditional-GFN training pipeline

Hyperparameters
Values

Goal-conditioned GFN Preference-conditioned GFN
Batch size 64 64
GFN temperature parameter β 60 60
Number of training steps 40,000 40,000
Number of GNN layers 2 2
GNN node embedding size 256 256
Learning rate for GFN’s PF 10−4 10−4

Learning rate for GFN’s Z-estimator 10−3 10−3

Sampling moving average τ 0.95 0.95
Random action probability ϵ 0.01 0.01
Focus region cosine similarity threshold cg 0.98 -
Limit reward coefficient mg 0.20 -
Replay buffer length 100,000 -
Number of replay buffer trajectory warmups 1,000 -
Hindsight ratio 0.30 -

Conditioning-vector sampling distribution dg ∼
{

Uniform-GS (Sec 4.2)
Tab-GS (Sec 4.3)

w ∼ Dirichlet(1)
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B. Failure Modes and Filtering
While using goal regions as hard constraints offers a more precise tool for controllable generation, it faces the additional
challenge that not all goals may be feasible (or that reaching some goals may be much easier to learn than others). When a
model is conditioned with an infeasible goal, all the samples that it will observe will have a reward R(x) = 0. The proper
behavior, in that case, is to sample any possible molecule with equal weight, thus sampling uniformly across the entire
molecular state space. Such molecules generally won’t be of any interest and can be discarded. Thus, in our experiments,
we filter out such out-of-focus samples (molecules falling outside the focus region) and evaluate the candidates that were
inside their prescribed focus region. Figure 5 shows the conditional distributions learned by a single model trained on the
2-objective task. The picture on the last row, second column showcases such an occurrence of difficult focus region which
results in many samples simply belonging to the uniform distribution over the state space.

Figure 5. Learned conditional-distributions for different focus regions passed as input to the same model. Each dot marks the image of a
generated molecule in the objective space. The colors indicate how densely populated a particular area of the objective space is (brighter
is denser). The focus regions (goal regions) are depicted in light blue. The distribution on the last row, second column, showcases a focus
region which seems difficult to reach and may not contain as large a population of molecules in the state space. In such cases, the model
cannot learn to consistently produce samples from that goal region when conditioned on this goal direction dg and will instead produce
several samples very similar to the sampling distribution of an untrained model (uniform across the state space).
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C. Ablations
C.1. Replay Buffer

While both the un-conditional and the preference-conditioned GFN models are learning stably even in a purely on-policy
setting, we found that the goal-conditioned models were more prone to instabilities and mode-collapse when employed purely
on-policy (see Figure 6). This could be because imposing these hard constraints on the generative behavior of the model
drastically changes the reward landscape from one set of goals to another. While larger batches could potentially alleviate
this problem, sampling uniformly from a replay buffer of the last trajectories proved effective, as observed in many works
stemming from Mnih et al. (2015). As described in Section 3.1, we also use hindsight experience replay (Andrychowicz
et al., 2017). Specifically, for every batch of data, we randomly select a subset of trajectories (hindsight-ratio * batch-size),
among which we re-label both the goal direction dg and the corresponding reward for the examples that didn’t reach their
goal.

Figure 6. Learning curves for goal-conditioned models either trained purely on-policy (in blue) or using a replay buffer of past trajectories
(in orange) on the 2-objective (seh, qed) task.
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C.2. Limit Reward Coefficient

While the GFN model is given the goal direction dg as input, the width of the goal region, which depends on the cosine-
similarity threshold cg is fixed, and the model adapts to producing samples within the region over time by trial-and-error.
One can trade off the level of controllability of the goal-conditioned model with the difficulty of reaching those goals
by increasing or reducing cg. Another way to increase the controllability and goal-reaching accuracy without drastically
affecting the difficulty of reaching such goals is to make the model preferentially generate samples near the center of the
focus region, thus reducing the risk of producing an out-of-focus sample due to epistemic uncertainty. To do so, we modify
Equation 2 and add a reward-coefficient αg , which further modulates the magnitude of the scalar reward based on how close
to the center of the focus region the sample was generated. While many shaping functions could be devised, we choose the
following form:

Rg(x) =

{
αg

∑
k rk, if r ∈ g

0, otherwise
, αg =

(
r · dg

||r|| · ||dg||

) log mg
log cg

(3)

In words, the reward coefficient αg is equal to the cosine similarity between the reward vector r and the goal direction dg
exponentiated in such a way that αg = mg at the limit of the focus region. So for example, setting mg = 0.2 means that the
reward is maximal at the center of the focus region, is at 20% of that magnitude at the limit of the focus region, and follows
a sharp sigmoid-like profile in between. Figure 7 showcases the reward coefficient as a function of the angle between r and
dg for different values of mg and the corresponding distributions learned by the model. We can see that a smaller value of
mg encourages the model to produce samples in a more focused way towards the center of the goal region. Importantly, with
a large enough value of mg , this design preserves the notion of a well-defined goal region (positive reward inside the region
and zero reward outside) and thus also preserves our ability to reason about goal-reaching accuracy, a beneficial concept for
monitoring the model, filtering out-of-focus samples, etc.

Figure 7. Effect of the hyperparameter mg on the profile of the reward coefficient αg and the learned sampling distribution (top row).
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C.3. Tabular Goal-Sampler

To cope with the problem of infeasible goal regions described in Section 3.2, we explore the idea of sampling the goal
directions dg from a learned goal distribution rather than sampling all directions uniformly. The idea is that, as the model
learns about which goal directions point towards infeasible regions of the objective space, we can attribute a much lower
sampling likelihood to these regions in order to focus on more fruitful goals.

We implement a first version of this idea as a tabular goal-sampler (Tab-GS). We first build a dataset of goal directions
DG. This could be done in many different ways such as sampling a large number of positive vectors at the surface of
the unit hypersphere in objective space. In our case, we discretise the extreme faces of the unit hypercube and normalize
them. At training time, for each direction vector dg ∈ DG, we keep a count of the number of samples which have landed
closest to it (closer than any other direction d′g) and follow this very simple scheme: from the beginning up to 25% of the
training iterations, we sample batches of goal directions {dg}Ni=1 uniformly over DG. Then starting at 25% of the training
iterations, while we keep updating each direction’s count, we sample batches of goal directions according to the following
(unnormalized) likelihoods:

f(dg) =


1 if dg has never been sampled
1 if there has been a sample r closest to dg than any other goal direction in DG

0.1 otherwise
(4)

Finally, at 75% of the training, we stop updating the goal direction counts to allow the model to fine-tune itself to a now
stationary goal-distribution Tab-GS(f ). At test time we also sample from that same stationary distribution.

Figure 8 shows the effect of our learned tabular goal-sampler (Tab-GS) on the model’s performance and learning dynamics.
While the 2-objective problem does not contain a lot of infeasible goal directions, resulting in very similar behaviors for
both methods, we can see that in the case of 3 and 4 objectives, the model experiences an important immediate improvement
in goal-reaching accuracy at 25% of training when we start sampling dg’s according to our learned goal-sampler and that
this improved focus helps the model further improves on these more fruitful goal directions, resulting in an increase IGD
and PC-ent scores.

Figure 8. Learning curves for our goal-conditioned model trained by sampling goal directions dg either uniformly on the positive quadrant
of a K-dimensional hypersphere (Uniform-GS) in blue or according to our learned tabular goal-sampler (Tab-GS) in purple on a) 2
objectives, b) 3 objectives and c) 4 objectives. Vertical dotted lines indicate 25% and 75% of training when we start sampling goal
directions according to Equation 4 and when we stop updating the learned goal-sampler, respectively.
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D. Additional Results
In this section, we present additional plots for experiments on 2, 3 and 4 objectives (Figures 9, 10 & 11).

Figure 9. Comparison between a) preference-conditioned and b) goal-conditioned models trained on the 2-objective problem (seh, qed).
Each panel is an assemblage of K × K plots where K is the number of objectives. On the diagonal, each plot focuses on a single
objective. They each show a histogram (dark) of the samples’ scores r·,k for that objective, overlayed with a scatter plot (orange) in
which each point is a distinct sample i with coordinates (x, y) = (ri,k, ci,k), where ri,k is the reward attributed to sample i for objective
k and ci,k is the corresponding value of the conditioning vector that was used to generate that sample. The histogram thus showcases
the distribution and span of our set of samples for a given dimension in objective space while the scatter plot allows us to visualise the
correlation between the conditioning vectors and the resulting rewards for that dimension. Above the diagonal, each plot shows the
density of the learned distribution on the plane corresponding to a pair of objectives. Brighter colors indicate that a region is more densely
populated. Below the diagonal, each plot shows the controllability of the learned distribution where BRG colors represent the angle
between the vector [1, 0] and a) the preference-vector w or b) the goal direction dg (this is the same as in Figure 2). Overall, we can see
that on the density plot and on the histograms that the goal-conditioned approach produces a more uniformly distributed set of samples
while the orange scatter plot and the BRG-colored plots show that they also provide a finer control over the generated samples.

Figure 10. Idem to Figure 10 but with 3 objectives: seh, qed, sa.
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Figure 11. Idem to Figure 9 but with 4 objectives: seh, qed, sa, mw.
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