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Abstract

Generating new molecules is fundamental to advancing critical applications such
as drug discovery and material synthesis. Flows can generate molecules effectively
by inverting the encoding process, however, existing flow models either require
artifactual dequantization or specific node/edge orderings, lack desiderata such as
permutation invariance, or induce discrepancy between encoding and decoding
steps that necessitates post hoc validity correction. We circumvent these issues
with novel continuous normalizing E(3)-equivariant flows, based on a system of
node ODEs coupled as a graph PDE, that repeatedly reconcile locally toward
globally aligned densities. Our models can be cast as message passing temporal
networks, and result in superlative performance on the tasks of density estimation
and molecular generation. In particular, our generated samples achieve state of the
art on both the standard QM9 and ZINC250K benchmarks.

1 Introduction

Figure 1: A toy illustration of ModFlow in action
with a two-node graph. The two local flows - z1
and z2 - co-evolve toward a more complex joint
density, both driven by the same differential f .

Generative models have rapidly become ubiquitous in
machine learning with advances from image synthesis
(Ramesh et al., 2022) to protein design (Ingraham et al.,
2019). Molecular generation (Stokes et al., 2020) has
also received significant attention owing to its promise
for discovering new drugs and materials. Searching for
valid molecules in prohibitively large discrete spaces is,
however, challenging: estimates for drug-like structures
range between 1023 and 1060 but only a tiny fraction -
on the order of 108 - has been synthesized (Polishchuk
et al., 2013; Merz et al., 2020). Thus, learning repre-
sentations that exploit appropriate molecular inductive
biases (e.g., spatial correlations) becomes crucial.

Earlier models focused on generating sequences based
on the SMILES notation (Weininger, 1988) used in
Chemistry to describe the molecular structures as
strings. However, they were supplanted by genera-
tive models that capture valuable spatial information
such as bond strengths and dihedral angles, e.g., by
embedding molecular graphs via some graph neural
network (GNNs) (Scarselli et al., 2009; Garg et al., 2020). Such models primarily include variants
of Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Normalizing
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Flows (Dinh et al., 2014, 2016). Besides known issues with their training, GANs (Goodfellow et al.,
2014; Maziarka et al., 2020) suffer from the well-documented problem of mode collapse, thereby
generating molecules that lack diversity. VAEs (Kingma and Welling, 2013; Lim et al., 2018; Jin
et al., 2018), on the other hand, are susceptible to a distributional shift between the training data and
the generated samples. Moreover, optimizing for likelihood via a surrogate lower bound is likely
insufficient to capture the complex dependencies inherent in the molecules.

Flows are especially appealing since, in principle, they enable estimating (and sampling from)
complex data distributions using a sequence of invertible transformations on samples from a more
tractable continuous distribution. Molecules are discrete, so many flow models (Madhawa et al.,
2019; Honda et al., 2019; Shi et al., 2020) add noise during encoding and later apply a dequantization
procedure. However, dequantization begets distortion and issues related to convergence (Luo et al.,
2021). Moroever, many methods segregate the generation of atoms from bonds, so the decoded
structure is often not a valid molecule and requires post hoc correction to ensure validity (Zang
and Wang, 2020), effecting a discrepancy between the encoding and the decoded distributions.
Permutation dependence is another undesirable artifact of these methods. Some alternatives have
been explored to avoid dequantization, e.g., (Lippe and Gavves, 2021) encodes molecules in a
continuous latent space via variational inference and jointly optimizes a flow model for generation.
Discrete graph flows (Luo et al., 2021) also circumvent the many pitfalls of dequantization by
resorting to discrete latent variables, and performing validity checks during the generative process.
However, discrete flows follow an autoregressive procedure that requires a specific ordering of nodes
and edges during training. In general, one shot methods can generate much faster than discrete flows.

We offer a different flow-based perspective tailored to molecules. Specifically, we suggest coupled
continuous normalizing E(3)-equivariant flows that bestow generative capabilities from neural partial
differential equation (PDE) models on graphs. Graph PDEs have been known to enable designing
new embedding methods such as variants of GNNs (Chamberlain et al., 2021), extending GNNs
to continuous layers as Neural ODEs (Poli et al., 2019), and accommodating spatial information
(Iakovlev et al., 2020). We instead seek to bring to the fore their efficacy and elegance as tools to
help generate complex objects, such as molecules, viewed as outcomes resulting from an interplay of
co-adapting latent trajectories (i.e., underlying dynamics). Concretely, a flow is associated with each
node of the graph, and these flows are conjoined as a joint ODE system conditioned on neighboring
nodes. While these flows originate independently as samples from simple distributions, they adjust
progressively toward more complex joint distributions as they repeatedly interact with the neighboring
flows. We view molecules as samples generated from the globally aligned distributions obtained after
many such local feedback iterations. We call the proposed method Modular Flows (ModFlows) to
underscore that each node can be regarded as a module that coordinates with other modules. Table 1
summarizes the capabilities of ModFlow compared to some previous generative works.

Contributions. We propose to learn continuous-time, flow based generative models, grounded on
graph PDEs, for generating molecules without resorting to any validity correction. In particular,

• we propose ModFlow, a novel generative model based on coupled continuous normalizing
E(3)-equivariant flows. ModFlow encapsulates essential inductive bias using PDEs, and
defines multiple flows that interact locally toward a globally consistent joint density;

Table 1: A comparison of generative modeling approaches for molecules.

Method One-shot Modular Invertible Continuous-time

JT-VAE ✓ ✓ ✗ ✗ Jin et al. (2018)
MRNN ✗ ✗ ✗ ✗ Popova et al. (2019)
GraphAF ✗ ✗ ✓ ✗ Shi et al. (2020)
GraphDF ✗ ✗ ✓ ✗ Luo et al. (2021)
MoFlow ✓ ✗ ✓ ✗ Zang and Wang (2020)
GraphNVP ✓ ✗ ✓ ✗ Madhawa et al. (2019)

ModFlow ✓ ✓ ✓ ✓ this work
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Figure 2: A demonstration of the modular flow generation. The initial Gaussian distributions N (0, I) evolve
into complex densities z(T ) under f and are subsequently translated into probabilities and labels.

• we encode permutation, translation, rotation, and reflection equivariance with E(3) equivari-
ant GNNs adapted to molecular generation, and can leverage 3D geometric information;

• ModFlow is end-to-end trainable, non-autoregressive, and obviates the need for any external
validity checks or correction;

• empirically, ModFlow achieves state-of-the-art performance on both the standard QM9 (Ra-
makrishnan et al., 2014) and ZINC250K (Irwin et al., 2012) benchmarks.

2 Related works

Generative models. Earlier attempts for molecule generation (Kusner et al., 2017; Dai et al., 2018)
aimed at representing molecules as SMILES strings (Weininger, 1988) and developed sequence
generation models. One of the challenges of these approaches is to learn complicated grammar rules
that can generate syntactically valid sequences of molecules. Recently, representing molecules as
graphs has inspired new deep generative model for molecular generation (Segler et al., 2018; Samanta
et al., 2018; Neil et al., 2018) ranging from VAEs (Jin et al., 2018; Kajino, 2019) to flows (Madhawa
et al., 2019; Luo et al., 2021; Shi et al., 2020). The core idea is to learn to encode molecular graphs
into a latent space, and subsequently decode samples from the latent space to generate new molecules
(Atwood and Towsley, 2016; Xhonneux et al., 2020; You et al., 2018).

Graph partial differential equations. Graph PDEs is an emerging area that studies PDEs on
structured data encoded as graphs. For instance, one can define a PDE on graphs to track the evolution
of signals defined over the graph nodes under some dynamics. Graph PDEs have enabled, among
others, design of new graph neural networks; see, e.g., works such as GRAND (Chamberlain et al.,
2021), GNODE (Poli et al., 2019), NeuralPDE (Iakovlev et al., 2020), Neural operator (Li et al.,
2020) and PDE-GCN (Eliasof et al., 2021). Different from all these works, we focus on using PDEs
for generative modeling of molecules (graph-structured objects). Interestingly, ModFlow proposed
in this work may be viewed as a new equivariant temporal graph network.

Validity oracles. A key challenge of molecular generative models is to be able to generate valid
molecules, according to various criteria for molecular validity or feasibility. It is a common practice
to use external chemical software as rejection oracles to reduce or exclude invalid molecules, or do
validity checks as part of autoregressive generation. (Luo et al., 2021; Shi et al., 2020; Popova et al.,
2019). An important open question has been whether generative models can learn to achieve high
generative validity intrinsically, i.e., without being aided by oracles or performing additional checks.
ModFlow represents a major step forward toward that goal.
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3 Modular Flows

We focus on unsupervised learning of an underlying graph density p(G) using a dataset of observed
molecular graphs D = {Gn}Nn=1. We learn a generative flow model pθ(G) specified by flow
parameters θ, and use it to sample novel high-probability molecules.

3.1 Molecular Representation

Graph representation. We represent each molecular graph G = (V,E) of size M as a tuple of
vertices V = (v1, . . . , vM ) and edges E ⊂ V × V . Each vertex takes a value from an alphabet
on atoms: v ∈ A = {C, H, N, O, P, S, . . .}; while each edge e ∈ B = {1, 2, 3} abstracts some bond
type (i.e., single, double, or triple). We assume that, conditioned on the edges, the graph likelihood
factorizes as a product of categorical distributions over vertices given their latent representations:

p(G) := p(V |E, {z}) =
M∏
i=1

Cat(vi|σ(zi)) , (1)

where zi = (ziC, ziH, . . .) ∈ R|A| is a set of atom scores for node i such that zik ∈ R pertains to type
k ∈ A, and σ is the softmax function

σ(zi)k =
exp(zik)∑
k′ exp(zik′)

, (2)

which turns the real-valued scores zi into normalized probabilities. ModFlow also supports 3D
molecular graphs that contain atomic coordinates and angles as additional information.

Tree representations. We can obtain an alternative representation for molecules: we can decompose
each molecule into a tree-like structure, by contracting certain vertices into a single node (denoted as
a cluster) such that the molecular graph becomes acyclic. Following Jin et al. (2018), we restrict these
clusters to ring substructures present in the molecular data, in addition to the atom alphabet. Thus,
we obtain an extended alphabet Atree = A ∪ {C1, C2, . . .}, where each cluster label Cr corresponds
to some ring substructure in the label vocabulary χ. We then reduce the vocabulary to the 30 most
commonly occurring substructures of Atree. For further details, see Appendix A.2.

3.2 Differential modular flows

Normalizing flows (Kobyzev et al., 2021) provide a general recipe for constructing flexible probability
distributions, used in density estimation (Cramer et al., 2021; Huang et al., 2018) and generative
modeling (Zhen et al., 2020; Zang and Wang, 2020). We propose to model the atom scores zi(t) as a
Continuous-time Normalizing Flow (CNF) (Grathwohl et al., 2018) over time t ∈ R+. We assume
the initial scores at time t = 0 follow an uninformative Gaussian base distribution zi(0) ∼ N (0, I)
for each node i. Node scores evolve in parallel over time according to the differential equation

żi(t) :=
∂zi(t)

∂t
= fθ

(
t, zi(t), zNi

(t),xi,xNi

)
, i ∈ {1, . . . ,M} , (3)

where Ni = {j : (i, j) ∈ E} is the set of neighbors of node i and zNi
(t) = {zj(t) : j ∈ Ni} the

scores of the neighbors at time t; xi and xNi
denote, respectively, the positional (2D/3D) information

of i and its neighbours; and θ denotes the parameters of the flow function f to be learned. Stacking
together all node differentials, we obtain a modular system of coupled ODEs:

ż(t) =

 ż1(t)
...

żM (t)

 =

 fθ
(
t, z1(t), zN1

(t),xi,xNi

)
...

fθ
(
t, zM (t), zNM

(t),xi,xNi

)
 (4)

z(T ) = z(0) +

∫ T

0

ż(t)dt . (5)

This coupled system of ODEs may be viewed as a graph PDE (Iakovlev et al., 2020; Chamberlain
et al., 2021), where the evolution of each node depends only on its neighbors.
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The joint flow induces a corresponding change in the individual densities in terms of divergence of f
(Chen et al., 2018),

d log pt(zi(t))

dt
= − tr

(
∂fθ
(
t, zi(t), zNi

(t),xi,xNi

)
∂zi

)
, (6)

starting from the base distribution p0(zi(0)) = N (zi(0)|0, I). The trace picks only the diagonal
elements of the Jacobian ∂f

∂z , which interprets the input from neighbors, zNi
, as a ‘control’ for each

node zi at each instant t. An ODE solver is used for such systems, and the gradients are computed
via the adjoint sensitivity method (Kolmogorov et al., 1962). This approach incurs a low memory
cost, and explicitly controls the numerical error. Notably, moving towards modular flows translates
sparsity also to the adjoints.

Proposition 1: Modular adjoints are sparser than regular adjoints. They can be computed as

dλi

dt
= −λ(t)⊤

∂f
(
t, zi(t), zNi

(t),xi,xNi

)
∂z

= −
∑

j∈Ni∪{i}

λj(t)
⊤ ∂f

(
t, zi(t), zNi

(t),xi,xNi

)
∂zj

,

(7)

where the partial derivatives ∂f
∂z = [ ∂fi∂zj

]ij are sparse (see Appendix A.1 for the derivation).

3.3 Equivariant local differential

Our goal is to have a differential function f that is a PDE operator used in Equation 4, and that
satisfies the natural equivariances and invariances of the molecules. Specifically, this function must
be (i) translation equivariant: translating the input results in an equivalent translation of the output;
(ii) rotational (and reflection) equivariant: rotating the input results in an equivalent rotation of the
output; and (iii) permutation equivariant: permuting the input results in the same permutation of the
output. Therefore, we chose to use E(3)-Equivariant GNN (EGNN) (Satorras et al., 2021), which is
translation, rotation and reflection equivariant (E(n)), and permutation equivariant with respect to
an input set of points (see Appendix A.3 for details). EGNN takes as input the node embeddings
as well as the geometric information (polar coordinates (2D) and spherical polar coordinates (3D)).
Interestingly, ModFlow can be viewed as a message passing temporal graph network (Rossi et al.,
2020; Souza et al., 2022) as shown next.

Proposition 2: Modular Flows can be cast as message passing Temporal Graph Networks (TGNs).
The operations are listed in Table 2, where ModFlow is subjected to a single layer of EGNN. (See
Appendix A.4 for more details).

Table 2: ModFlow as a temporal graph network (TGN). Adopting notation for TGNs from Rossi
et al. (2020) vi is a node-wise event on i; eij denotes an (asymmetric) interaction between i and j; si
is the memory of node i; and t and t− denote time with t− being the time of last interaction before
t, e.g., si(t−) is the memory of i just before time t; and msg and agg are learnable functions (e.g.,
MLP) to compute, respectively, the individual and the aggregate messages. For ModFlow, we use rij
to denote the spatial distance xi − xj , and aij to denote the attributes of the edge between i and j.
The functions ϕe, ϕx, and ϕh are as defined in (Satorras et al., 2021).

Method TGN layer ModFlow

Edge m′
ij(t) = msg (si (t

−) , sj (t
−) ,∆t, eij(t)) mij(t) = ϕe

(
zi(t), zj(t), ∥rij(t)∥2 , aij

)
m′

i(t) = agg
(
{m′

ij (t) |j ∈ Ni}
)

mi(t) =
∑

j∈N (i) mij

m̂ij(t) = rij(t) · ϕx (mij(t))
m̂i(t) = C

∑
j∈N (i) m̂ij(t)

Memory state si(t) = mem (m′
i(t), si (t

−)) xi(t+ 1) = xi(t) + m̂i(t)

Node z′i(t) =
∑

j∈Ni
h (si(t), sj(t), eij(t),vi(t),vj(t)) zi(t+ 1) = ϕh (zi(t),mi(t))
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3.4 Training objective

Normalizing flows are predominantly trained to minimize KL[pdata||pθ], i.e., the KL-divergence
between the unknown data distribution pdata and the flow-generated distribution pθ. This objective is
equivalent to maximizing Epdata

[log pθ] (Papamakarios et al., 2021). However, note that the discrete
graphs G and the continuous atom scores z(t) reside in different spaces. Thus, in order to apply
flows, a mapping between the observation space and the flow space is needed. Earlier approaches use
dequantisation to turn a graph G into a distribution of latent states, and argmax to deterministically
map latent states to graphs (Zang and Wang, 2020).

z(0) z(T ) σ(z(T )) G

flow

f

f−1 softmax argmax

Figure 3: Plate diagram showing both the inference and generative components of ModFlow.

We instead reduce the learning problem to maximizing Ep̂data(z(T ))[log pθ(z(T ))], where we turn the
observed set of graphs {Gn} into a set of scores {zn} using

zn(Gn; ϵ) = (1− ϵ) onehot(Gn) +
ϵ

|A∫ |
1M(n)1⊤|A∫ | ,

where onehot(Gn) is a matrix of size M(n)× |A∫ | (i.e., rows equal to the number of nodes in Gn

and columns equal to the number of possible node labels) such that Gn(i, k) = 1 if vi = ak ∈ A∫ ,
that is if the vertex i is labeled with atom k, and 0 otherwise; 1q is a vector with q entries each
set to 1; A∫ ∈ {A,Atree}; and ϵ ∈ [0, 1] is added to model the noise in estimating the posterior
p(z(T )|G) due to short-circuiting the inference process from G to z(T ) skipping the intermediate
dependencies, thereby inducing an unconditional distribution p̂data that is slightly different from the
true data distribution pdata. The plate diagram in Figure 3 summarizes the overall procedure.

Effectively, we exploit the (non-reversible) composition of the argmax and softmax operations to
transition from the continuous flow space to the discrete graph space, but skip this composition
altogether in the reverse direction. Importantly, this short-circuiting allows ModFlow to keep the
forward and backward flows between z(0) and z(T ) completely aligned (i.e., reversible) unlike
previous approaches. We maximize the following objective over N training graphs:

argmax
θ
L = Ep̂data(z) log pθ(z) (8)

≈ 1

N

N∑
n=1

log pT
(
z(T ) = zn

)
(9)

=
1

N

N∑
n=1

M(n)∑
i=1

log p0(zi(0))−
M(n)∑
i=1

∫ T

0

tr
∂fθ(t, zi(t), zNi

(t),xi,xNi
)

∂zi(t)
dt

 , (10)

which factorizes over the size M(n) of the n’th training molecule. The encoding probability follows
from Equation 6, where z(0) can be traced by traversing the flow f backward in time starting from
zn at time t = T until t = 0. In practice we solve ODE integrals using a numerical solver such as
Runge-Kutta. We thus delegate this task to a general solver of the form ODESolve(z, fθ, T ), where
map fθ is applied for T steps starting with z. An optimizer optim is also required for updating θ.

3.5 Molecular generation

Given a molecular structure, we can generate novel molecules by sampling an initial state z(0) ∼
N (0, I), and running the modular flow forward in time for T steps and obtain z(T ). This procedure
maps a tractable base distribution p0 to a more complex distribution pT . We follow argmax to pick
the most probable label assignment for each node (Zang and Wang, 2020). We outline the procedures
for training and generation in Algorithm 1 and Algorithm 2 respectively.
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Algorithm 1 Training ModFlow

Require: Dataset D, iterations niter, batch size
B, number of batches nB

1: Initialise parameters θ of ModFlow (EGNN)
2: for k = 1, . . . , niter do
3: for b = 1, . . . , nB do
4: Sample Db = {G1, . . . , GB} from D
5: Define zb(T ) := {zr(T ) : Gr ∈ Db}
6: Set zb(T ) to zb(Gb; ϵ)

7: Lb =
1

B

∑
Gr∈Db

log pθ(zr(T )), using

zb(0) = ODESolve(zb(T ), f−1
θ , T )

8: end for
9: θ ←− optim( 1

nB

∑nB

b=1 Lb; θ)
10: end for

Algorithm 2 Generating with ModFlow

1: Sample z(0) ∼ N (0, I)
2: z(T ) = ODESolve(z(0), fθ, T )
3: Assign labels by argmax(σ(z(T )))

4 Experiments

We first demonstrate the ability of Modular Flows (ModFlow) to learn highly discontinuous synthetic
patterns on 2D grids. We also evaluated ModFlow models trained, variously, on (i) 2D coordinates, (ii)
3D coordinates, (iii) 2D coordinates + tree representation, and (iv) 3D coordinates + tree representation
on the tasks of molecular generation and optimization. Our results show that ModFlow compares
favorably to other prominent flow and non-flow based molecular generative models, including
GraphDF (Luo et al., 2021), GraphNVP (Madhawa et al., 2019), MRNN(Popova et al., 2019), and
GraphAF (Shi et al., 2020). Notably, ModFlow achieves state-of-the-art results without validity
checks or post hoc correction. We also provide results of our ablation studies to underscore the
relevance of geometric features and equivariance toward this superlative empirical performance.

4.1 Density Estimation

Figure 4: ModFlow can accurately learn to reproduce complex,
discontinuous graph patterns.

We generated our synthetic data in
the following way. We considered
two variants of a chessboard pattern,
namely, (i) 4 × 4 grid where every
node takes a binary value, 0 or 1, and
neighboring nodes have different val-
ues; and (ii) 16×16 grid where nodes
in each block of 4×4 all take the same
value (0 or 1), different from the ad-
jacent blocks. We also experimented
with a 20 × 20 grid describing alter-
nating stripes of 0s and 1s.

Figure 4 shows that ModFlow can
learn neural differential functions fθ
that reproduce the patterns almost per-
fectly, indicating sufficient capacity to model complex patterns. That is, ModFlow is able to transform
the initial Gaussian distribution into different multi-modal and discontinuous distributions.

4.2 Molecule Generation

Data. We trained and evaluated all the models on ZINC250k (Irwin et al., 2012) and QM9 (Ra-
makrishnan et al., 2014) datasets. The ZINC250k set contains 250,000 drug-like molecules, each
consisting of up to 38 atoms. The QM9 set contains 134,000 stable small organic molecules with
atoms from the set {C, H, O, N, F}. The molecules are processed to be in the kekulized form with
hydrogens removed by the RDkit software (Landrum et al., 2013).
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Table 3: Random generation on QM9 (top) and ZINC250K (bottom) without post hoc validity
corrections. Results with ∗ are taken from Luo et al. (2021). Higher values are better for all columns.

Method Validity % Uniqueness % Novelty % Reconstruction %

GVAE 60.2 9.3 80.9 96.0
GraphNVP∗ 83.1 99.2 58.2 100
GRF∗ 84.5 66 58.6 100
GraphAF∗ 67 94.2 88.8 100
GraphDF∗ 82.7 97.6 98.1 100
MoFlow∗ 89.0 98.5 96.4 100

ModFlow (2D-EGNN) 96.2± 1.7 99.5 100 100
ModFlow (3D-EGNN) 98.3± 0.7 99.1 100 100
ModFlow (JT-2D-EGNN) 97.9± 1.2 99.2 100 100
ModFlow (JT-3D-EGNN) 99.1± 0.8 99.3 100 100

Method Validity % Uniqueness % Novelty % Reconstruction %

MRNN 65 99.89 100 n/a
GVAE 7.2 9 100 53.7
GCPN∗ 20 99.97 100 n/a
GraphNVP∗ 42.6 94.8 100 100
GRF∗ 73.4 53.7 100 100
GraphAF∗ 68 99.1 100 100
GraphDF∗ 89 99.2 100 100
MoFlow∗ 50.3 99.9 100 100

ModFlow (2D-EGNN) 94.8± 1.0 99.4 100 100
ModFlow (3D-EGNN) 95.4± 1.2 99.7 100 100
ModFlow (JT-2D-EGNN) 97.4± 1.4 99.1 100 100
ModFlow (JT-3D-EGNN) 98.1± 0.9 99.3 100 100

Setup. We adopt common quality metrics to evaluate molecular generation. Validity is the fraction
of molecules that satisfy the respective chemical valency of each atom. Uniqueness refers to the
fraction of generated molecules that is unique (i.e, not a duplicate of some other generated molecule).
Novelty is the fraction of generated molecules that is not present in the training data. Reconstruction
is the fraction of molecules that can be reconstructed from their encoding. Here, we strictly limit
ourselves to comparing all methods on their validity scores without resorting to external correction.
We trained each model with 5 random weight initializations, and generated 50,000 molecular graphs
for evaluation. We report the mean and the standard deviation scores across these multiple runs.

Implementation. The models were implemented in PyTorch (Paszke et al., 2019). The EGNN
method used only a single layer with an embedding dimension of 32. We trained with the Adam
optimizer (Kingma and Ba, 2014) for 50-100 epochs (until the training loss became stable), with
batch size 1000 and learning rate 0.001. ModFlow is significantly faster compared to autoregressive
models such as GraphAF and GraphDF. For more details, see Appendix A.5.

Results. Table 3 reports the performance on QM9 (top) and ZINC250K (bottom) respectively.
ModFlow achieves state-of-the-art results across all metrics. Notably, its reconstruction rate is 100%
(similar to other flow models); in addition, however, the novelty (100%) and uniqueness scores
(≈99%) are also very high. Moreover, ModFlow surpassed the other methods on validity (95%-99%).

In Appendix A.6, we document additional evaluations with respect to the MOSES metrics that access
the overall quality of generated molecules, property-targeted molecular optimization (A.7) , as well
as the distributions of chemical properties. All these results substantiate the promise of ModFlow as
an effective tool for molecular generation.

4.3 Ablation Studies

We also performed ablation experiments to gain further insights about ModFlow, as we describe next.
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(a) QM9 Dataset (b) ZINC250K Dataset

Figure 5: Samples of molecules generated by ModFlow. More examples are shown in Appendix A.8.

E(3)-equivariant versus not equivariant. Molecules exhibit translational and rotational symme-
tries, so we conducted an ablation study to quantify the effect of incorporating these symmetries in our
model. We compare the results obtained using an EGNN with a non-equivariant graph convolutional
network (GCN). For our purpose, we used a 3-layer GCN with layer sizes 64-32-32. The validity
scores in Table 4 provide strong evidence in favor of modeling the symmetries explicitly in the
proposed Modular Flows.

Table 4: Random generation performance on ZINC250K and QM9 dataset with E(3)-EGNN vs GCN.

Dataset Method Validity % Uniqueness % Novelty %

ZINC250K ModFlow (3D-EGNN) 95.4± 1.2 99.7 100
ModFlow (GCN) 90.3± 1.9 99.7 100

QM9 ModFlow (3D-EGNN) 98.3± 0.7 99.1 100
ModFlow (GCN) 93.3± 0.5 98.8 100

2D versus 3D. Finally, we study whether including information about the 3D coordinates improves
the model. Note that the EGNN-coupled differential function obtains either the 2D or 3D positions
as polar coordinates, where the 3D positions have an extra degree of freedom. Table 5 shows that
transitioning from 2D to 3D improves the mean validity score.

Table 5: Random generation on ZINC250K and QM9 dataset with 2D versus 3D features.

Dataset Method Validity % Uniqueness % Novelty %

ZINC250K ModFlow (3D-EGNN) 95.4± 1.2 99.7 100
ModFlow (2D-EGNN) 94.8± 1.0 99.4 100

QM9 ModFlow (3D-EGNN) 98.3± 0.7 99.1 100
ModFlow (2D-EGNN) 96.2± 1.7 99.5 100

5 Conclusion

We proposed ModFlow, a new generative flow model where multiple flows interact locally according
to a coupled ODE, resulting in accurate modeling of graph densities and high quality molecular
generation without any validity checks or correction.

Interesting avenues open up, including the design of (a) more nuanced mappings between discrete
and continuous spaces, and (b) extensions of modular flows to (semi-)supervised settings.
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A Appendix

A.1 Derivation of modular adjoint

We present a standard adjoint gradient derivation (Bradley, 2019), and show that the adjoint of a graph neighbor-
hood differential is sparse.

For completeness, we define an ODE system

ż(t) = f(z, t,θ) (11)

z(t) = z0 +

∫ t

0

f(z, t,θ)dτ, (12)

where z ∈ RD is a state vector, ż ∈ RD is the state time differential defined by the vector field function f and
parameterised by θ. The starting state is z0, and t, τ ∈ R+ are time variables. Our goal is to solve a constrained
problem

min
θ

G(θ) =

∫ T

0

g(z, t,θ)dt (13)

s.t. ż− f(z, t,θ) = 0, ∀t ∈ [0, T ] (14)
z(0)− z0 = 0, (15)

where G is the total loss that consists of instant loss functionals g. We desire to compute the gradients of the
system ∇θG.

We optimise the constrained problem by solving the Lagrangian

L(θ,λ,µ) = G(θ) +

∫ T

0

λ(t)⊤(ż− f(z, t,θ))dt+ µ⊤(z(0)− z0) (16)

=

∫ T

0

[
g(z, t,θ) + λ(t)⊤(ż− f(z, t,θ))

]
dt+ µ⊤(z(0)− z0) . (17)

The constraints are satisfied by the ODE definition. Hence, ∇θL = ∇θG, and we can set values θ and µ
freely. We use a shorthand notation ∂a

∂b
= ab, and omit parameters from the functions for notational simplicity.

Applying the chain rule, we note that the gradient becomes

∇θL = ∇θG =

∫ T

0

[
gzzθ + gθ + λ⊤żθ − λ⊤fzzθ − λ⊤fθ

]
dt , (18)

where the µ term drops out since it does not depend on parameters θ. We apply integration by parts to swap the
differentials in term λ⊤żθ , resulting in∫ T

0

λ⊤żθdt = λ⊤zθ|t=T − λ⊤zθ|t=0 −
∫ T

0

λ̇⊤zθdt . (19)

Substituting this into previous equation and rearranging the terms results in

∇θL =

∫ T

0

(gz − λ⊤fz − λ̇⊤)zθ︸ ︷︷ ︸
0, if λ̇⊤=gz−λ⊤fz

dt+

∫ T

0

(gθ − λ⊤fθ)dt+ λ⊤zθ|t=T︸ ︷︷ ︸
0, if λ(T )=0

−λ⊤zθ|t=0︸ ︷︷ ︸
0

. (20)

The last term is removed since z(0) not depend on θ as a constant, and thus zθ(0) = 0. The difficult term in the
equation is zθ . We remove it by choosing

λ̇⊤ = gz − λ⊤fz. (21)

Finally, we choose λ(T ) = 0 which also removes the second-to-last term. The choices lead to a final term

∇θG = ∇θL =

∫ T

0

(gθ − λ⊤fθ)dt (22)

s.t. λ̇⊤ = gz − λ⊤fz (23)
λ(T ) = 0. (24)

In the derivation the adjoint λ(t) = ∂L
∂z(t)

∈ RD represents the change of loss with respect to instant states,
and is another ODE system that runs backwards from λ(T ) = 0 until λ(0). The final gradient ∇θL counts all
adjoints within [0, T ] multiplied by the ‘immediate’ partial derivatives fθ . The final gradient also takes into
account the instant loss parameter derivatives. For simple MSE curve fitting, the instant loss has no parameters.

13



The adjoint depends on the instant loss state derivatives gz. These are often only available for observations yj at
observed timepoints tj . This can be represented by having a convenient loss

g(z, t,θ) = δ(t = tj)g̃(z,yj , t,θ), (25)

and now the term gz induces discontinuous jumps at observations. This does not pose problems in practice,
since we can integrate the ODE in continuous segments between the observation instants.

The sparsity of the adjoint evolution is evident from Equation 23, where the λ̇i is an inner product between λ
and one column of ∂f

∂z
, which is invariant to non-neighbors. This gives the result

dλi

dt
= −λ(t)⊤

∂f
(
t, zi(t), zNi(t),xi,xNi

)
∂z

= −
∑

j∈Ni∪{i}

λj(t)
⊤ ∂f

(
t, zi(t), zNi(t),xi,xNi

)
∂zj

. (26)

A.2 Tree Decomposition

For tree decomposition of the molecules, we followed closely the procedure described in Jin et al. (2018). The
rings as well as the nodes corresponding to each ring substructure were extracted using RDKit’s functions,
GetRingInfo and GetSymmSSSR. We restricted our vocabulary to the unique ring substructures in the molecules.
The vocabulary of clusters follows a skewed distribution over the frequency of appearance within the dataset.
In particular, only a subset (∼ 30) of ring substructures (labels) appear with high frequency in molecules
within the vocabulary. Therefore, we simplify the vocabulary by only representing the 30 commonly occurring
substructures of Atree. In Figure 6, we show some examples of these ring substructures for the two datasets.

(a) QM9 Dataset (b) ZINC250K Dataset

Figure 6: Examples of frequently occurring ring substructures

A.3 Equivariant Graph Neural Networks

Equivariant Graph Neural Networks (EGNN) (Satorras et al., 2021) are E(3)-equivariant with respect to an
input set of points. The E(3) equivariance accounts for translation, rotation, and reflection symmetries, and can
be extended to E(n) group equivariance. The inherent dynamics governing the EGNN can be described, for
each layer l, as follows. Here, hl

i and xl
i pertain, respectively, to the embedding for the node i and that for its

coordinates; and aij abstracts the information about the edge between nodes i and j.

mij = ϕe

(
hl
i,h

l
j ,
∥∥∥xl

i − xl
j

∥∥∥2

, aij

)
xl+1
i = xl

i + C
∑
j ̸=i

(
xl
i − xl

j

)
ϕx (mij)

mi =
∑
j ̸=i

mij

hl+1
i = ϕh

(
hl
i,mi

)
Initially, messages mij are computed between the neighboring nodes via ϕe. Subsequently, the coordinates of
each node i are updated via a weighted sum of relative position vectors {(xi − xj) : j ̸= i} with the aid of
ϕx. Finally, the node embeddings are updated based on the aggregated messages mi via ϕh. The aggregated
message can be computed based on only the neighbors of a node by simply replacing the sum over j ̸= i with a
sum over j ∈ Ni in these equations.
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A.4 Connection to Temporal Graph Networks

Temporal Graph Networks (Rossi et al., 2020; Souza et al., 2022) are state-of-the-art neural models for embedding
dynamic graphs. A prominent class of these models consists of a combination of (recurrent) memory modules
and graph-based operators, and rely on message passing for updating the embeddings based on node-wise or
edge-wise events.

Specifically, adopting the notation from Rossi et al. (2020), an interaction eij(t) between any two nodes i and j
at time t triggers an edge-wise event leading to the following steps. First, a message m′

ij(t) is computed based
on the memory si

(
t−

)
and sj

(
t−

)
of the two nodes just before time t via a learnable function msg (such as

multilayer perceptron). For each node i, the messages thus accrued over a small period due to interactions of
with neighbors j are combined (via agg) into an aggregate message m′

i(t). This message, in turn, is used to
update the memory of i to si(t) via mem (implemented e.g., as a recurrent neural network). Finally, the node
embedding of i is revised based on its memory si(t), interaction eij(t) and memory sj(t) of each neighbor
j ∈ Ni, as well as any additional node-wise events vi(t) involving i or any node in Ni.

Table 6: ModFlow as a temporal graph network (TGN). Adopting notation for TGNs from Rossi
et al. (2020) vi is a node-wise event on i; eij denotes an (asymmetric) interaction between i and j; si
is the memory of node i; and t and t− denote time with t− being the time of last interaction before
t, e.g., si(t−) is the memory of i just before time t; and msg and agg are learnable functions (e.g.,
MLP) to compute, respectively, the individual and the aggregate messages. For ModFlow, we use rij
to denote the spatial distance xi − xj , and aij to denote the attributes of the edge between i and j.
The functions ϕe, ϕx, and ϕh are as defined in Satorras et al. (2021), and summarized in A.3.

Method TGN layer ModFlow

Edge m′
ij(t) = msg (si (t

−) , sj (t
−) ,∆t, eij(t)) mij(t) = ϕe

(
zi(t), zj(t), ∥rij(t)∥2 , aij

)
m′

i(t) = agg
(
{m′

ij (t) |j ∈ Ni}
)

mi(t) =
∑

j∈N (i) mij

m̂ij(t) = rij(t) · ϕx (mij(t))
m̂i(t) = C

∑
j∈N (i) m̂ij(t)

Memory state si(t) = mem (m′
i(t), si (t

−)) xi(t+ 1) = xi(t) + m̂i(t)

Node z′i(t) =
∑

j∈Ni
h (si(t), sj(t), eij(t),vi(t),vj(t)) zi(t+ 1) = ϕh (zi(t),mi(t))

It turns out (see Table 6) that ModFlow can be viewed as an equivariant message passing temporal graph network.
Interestingly, the coordinate embedding xi plays the role of the memory si.

A.5 Implementation Details

We implemented the proposed models in PyTorch (Paszke et al., 2019).1 We used a single layer for EGNN with
embedding dimension 32 and aggregated information for each node from only its immediate neighbors. For
geometric (spatial) information, we worked with the polar coordinates (2D) or the spherical polar coordinates
(3D). We solved the ODE system with the Dormand–Prince adaptive step size scheme (i.e., the dopri5 solver).
The number of function evaluations lay roughly between 70 and 100. The models were trained for 50-100
epochs with the Adam (Kingma and Ba, 2014) optimizer.

Time comparisons. We found the training time of ModFlow to be slightly worse than one-shot discrete
flow models that characterize the whole system using a single flow (recall that, in contrast, ModFlow associates
an ODE with each node). However, ModFlow is faster to train than the auto-regressive methods.

Note that computation is a crucial aspect of generative modeling for application domains with a huge search
space, as is true for the molecules. We report the computational effort (excluding the time for preprocessing) for
generating 10000 molecules averaged across 5 independent runs in Table 7. Notably, largely by virtue of being
one-shot, ModFlow is able to generate significantly faster than the auto-regressive models such as GraphAF
and GraphDF. ModFlow also owes this speedup, in part, to obviate the need for multiple decoding (unlike, e.g.,
JT-VAE) as well as any validity checks.

1We make the code available at https://github.com/yogeshverma1998/
Modular-Flows-Neurips-2022.
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Table 7: Generation time (in seconds/molecule) on QM9 and ZINC250K.

Method ZINC250K QM9

GraphEBM 1.12 ± 0.34 0.53 ± 0.16
GVAE 0.86 ± 0.12 0.46 ± 0.07
GraphAF 0.93 ± 0.14 0.56 ± 0.12
GraphDF 3.12 ± 0.56 1.92 ± 0.42
MoFlow 0.71 ± 0.14 0.31 ± 0.04

ModFlow (2D-EGNN) 0.46 ± 0.09 0.16 ± 0.04
ModFlow (3D-EGNN) 0.55 ± 0.13 0.24 ± 0.06
ModFlow (JT-2D-EGNN) 0.53 ± 0.07 0.21 ± 0.07
ModFlow (JT-3D-EGNN) 0.62 ± 0.11 0.28 ± 0.09

A.6 Additional Evaluation Metrics

We invoked additional metrics, namely the MOSES metrics (Polykovskiy et al., 2020), to compare the different
models in terms of their ability to generate molecules. These metrics, described below, access the overall quality
of the generated molecules.

• FCD: Fréchet Chemnet Distance (FCD) (Preuer et al., 2018) is a general purpose metric that measures
diversity of the generated molecules, as well as the extent of their chemical and biological property
alignment with a reference set of real molecules. Specifically, the last layer activations of ChemNet
are used for this purpose. Lower is better.

• Frag: Fragment similarity (Frag), measures the cosine distance between the fragment frequencies of
the generated molecules and a set of reference molecules. Higher is better.

• SNN: Nearest Neighbor Similarity (SNN) quantifies how close the generated molecules are to the true
molecule manifold. Specifically, it computes the average similarity of a generated molecule to the
nearest molecule from the reference set. Higher is better.

• IntDiv: As the name suggests, Internal Diversity (IntDiv) accounts for diversity by computing the
average pairwise similarity of the generated molecules. Higher is better.

For our purpose, we evaluated these metrics with QM9 and ZINC250K as the reference sets. As shown in Table 8
and Table 9, ModFlow achieves better performance results across all metrics. Notably, ModFlow registers lower
FCD and higher IntDiv scores compared to other methods, suggesting that ModFlow is able to generate diverse
set of molecules similar to those present in the real datasets.

Table 8: Evaluation of performance on MOSES metrics on generative models on QM9 dataset. FCD
is lower the better, Frag, SNN, and IntDiv higher the better.

Method FCD (↓) Frag (↑) SNN (↑) IntDiv (↑)
GVAE 0.513 0.821 0.582 0.822
GraphEBM 0.551 0.831 0.547 0.831
GraphAF 0.732 0.863 0.565 0.823
GraphDF 0.683 0.892 0.562 0.839
MoFlow 0.496 0.840 0.502 0.852

ModFlow (2D-EGNN) 0.432 0.928 0.608 0.875
ModFlow (3D-EGNN) 0.478 0.934 0.613 0.885
ModFlow (JT-2D-EGNN) 0.421 0.921 0.595 0.867
ModFlow (JT-3D-EGNN) 0.401 0.939 0.624 0.889
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Table 9: Evaluation of performance on MOSES metrics on generative models on ZINC250K dataset.
FCD is lower the better, Frag, SNN, and IntDiv higher the better.

Method FCD (↓) Frag (↑) SNN (↑) IntDiv (↑)
JTVAE 0.512 0.890 0.5477 0.855
GVAE 0.571 0.871 0.532 0.852
GraphEBM 0.613 0.843 0.487 0.821
GraphAF 0.524 0.803 0.465 0.855
GraphDF 0.658 0.869 0.515 0.829
MoFlow 0.597 0.851 0.452 0.832

ModFlow (2D-EGNN) 0.495 0.891 0.570 0.863
ModFlow (3D-EGNN) 0.512 0.905 0.584 0.869
ModFlow (JT-2D-EGNN) 0.501 0.915 0.563 0.857
ModFlow (JT-3D-EGNN) 0.523 0.929 0.594 0.879

We also evaluated the generated structures via distributions of their important properties. Specifically, we
obtained kernel density estimates of these distributions to aid in visualization. We consider the following
standard properties.

• Weight: sum of the individual atomic weights of a molecule. The weight provides insight into the bias
of the generated molecules toward lighter or heavier molecules.

• LogP: ratio of concentration in octanol-phase to the aqueous phase, also known as the octanol-water
partition coefficient. It is computed via the Crippen (Wildman and Crippen, 1999) estimation.

• Synthetic Accessibility (SA): an estimate for the synthesizability of a given molecule. It is calculated
based on contributions of the molecule fragments Ertl and Schuffenhauer (2009).

• Quantitative Estimation of Drug-likeness (QED): describes the likeliness of a molecule as a viable
candidate for a drug. It ranges between [0,1] and captures the abstract notion of aesthetics in medicinal
chemistry (Bickerton et al., 2012).

Figure 7 and Figure 8 show that barring some dispersion in QED and logP (especially on Zinc250K), the property
distributions of the molecules generated by ModFlow generally match the corresponding distributions on the
reference datasets quite closely. These results demonstrate the effectiveness of ModFlow in generating molecules
that have properties similar to the molecules in the reference set.
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Figure 7: (QM9) Distributions of the chemical properties.

Figure 8: (ZINC250K) Distributions of the chemical properties.
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A.7 Property-targeted Molecular Optimization

The task of molecular optimization is to search for molecules that have better chemical properties. We choose
the standard quantitative estimate of drug-likeness (QED) as our target chemical property. QED measures the
potential of a molecule to be characterized as a drug. We used a pre-trained ModFlow model f to encode
molecules M into their embeddings Z = f(M), and applied linear regression to obtain QED scores Y from
these embeddings. We then interpolate in the latent space of each molecule along the direction of increasing
QED via several gradient ascent steps, i.e., updates of the form Z ′ = Z +λ ∗ dY

dZ , where λ denotes the length of
the search step. The final embedding thus obtained is decoded as a new molecule via the reverse mapping f−1.

Figure 9: Example of chemical property optimization on the ZINC250K dataset. Given the left-most molecule,
we interpolate in latent space along the direction which maximizes its QED property.

Figure 10: Example of chemical property optimization on the QM9 dataset. Given the left-most molecule, we
interpolate in latent space along the direction which maximizes its QED property.

Table 10: Performance in terms of the best QED scores (baselines are taken from Luo et al. (2021)).

Method 1st 2nd 3rd

ZINC (dataset) 0.948 0.948 0.948

JTVAE 0.925 0.911 0.910
GCPN 0.948 0.947 0.945
MRNN 0.844 0.799 0.736
GraphAF 0.948 0.948 0.947
GraphDF 0.948 0.948 0.948
MoFlow 0.948 0.948 0.948

ModFlow (2D-EGNN) 0.948 0.941 0.937
ModFlow (3D-EGNN) 0.948 0.937 0.931
ModFlow (JT-2D-EGNN) 0.947 0.941 0.939
ModFlow (JT-3D-EGNN) 0.948 0.948 0.945

Figure 9 and Figure 10 show examples of the molecules decoded from the learned latent space using this
procedure, starting with molecules having a low QED score. Note that the number of valid molecules decoded
back varies on the query molecule. We report the discovered novel molecules sorted by their QED scores in
Table 10. Clearly, ModFlow is able to find novel molecules with high QED scores.
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A.8 Additional examples of molecules generated by ModFlow .
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