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Abstract

Disentangled representation learning (DRL) aims to uncover semantically meaningful la-
tent factors from observed data, thereby improving both interpretability and generalization
of machine learning (ML) models. Despite remarkable progress, unsupervised DRL can-
not achieve complete disentanglement without inductive biases or supervision. To address
this challenge, existing approaches either rely on full supervision, which demands exten-
sive manual labeling, or weak supervision, which involves complex training strategies that
often result in unstable training. To address these limitations, we propose Filter-VAE, a
weakly supervised variational autoencoder (VAE) that introduces a filter-based adaptive
swapping strategy to learn stable and meaningful disentangled representations. Specifi-
cally, a relevance filter removes semantically meaningless latent factors, while an adap-
tive swapping filter exchanges those latent factors that have reached stability. With these
two filters, Filter-VAE adaptively swaps only stable and semantically aligned latent fac-
tors, leading to robust and meaningful representations. We evaluate Filter-VAE on three
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standard benchmarks and our created traffic sign dataset in two downstream tasks: disen-
tanglement and adversarial robustness. Experimental results demonstrate that Filter-VAE
achieves strong disentanglement performance with reduced supervision and delivers remark-
able robustness against diverse adversarial attacks and corruptions. The code is released at
https://github.com/ZY-Zong/Filter-VAE.git,

1 Introduction

Disentangled representation learning (DRL) aims to uncover semantically meaningful latent representations
that independently capture the underlying generative sources of variation in observed data. Such represen-
tations contain high-level concepts that are understandable to humans—for example, the shape and color
of different traffic signs. This offers several benefits, including improved interpretability, enhanced sample
efficiency in downstream tasks, and better generalization capability across domains. DRL has demonstrated
success in several domains such as image generation, natural language processing, and recommendation
systems (Wang et al.| [2024)).

Over the past few years, a wide range of DRL methods have been proposed, broadly categorized into three
groups: unsupervised, fully supervised, and weakly supervised approaches. Unsupervised methods such as
B-VAE (Higgins et al.l 2017) and FactorVAE (Kim & Mnih} [2018) aim to discover disentangled factors
without any labeled supervision. Despite the success of unsupervised DRL on synthetic datasets, [Locatello
et al.| (2019) have pointed out that unsupervised methods are not effective without inductive biases or
auxiliary information. To address this issue, some works have introduced fully-supervised DRLs, such as
Concept Bottleneck Models (Koh et al.l 2020) and ML-VAE (Bouchacourt et al., 2018]), which use explicit
annotations that are aligned with latent variables to guide the learning process toward meaningful latent
factors. However, existing methods are limited by the need for extensive supervision, which may be costly
and impractical in many real-world applications.

Weakly-supervised approaches offer a compromise by leveraging limited or indirect supervision, such as
partial labels, pairwise similarity, causal priors, and labeling functions (Feng et al., |2018; Locatello et al.,
2020a; Shen et al., [2022; [Tonolini et al., [2023)), combined with specifically designed training strategies. For
example, a very recent method, SW-VAE (Zhu et al., 2023)), utilizes annotations indicating the maximum
number of varying factors and introduces an optimized latent swapping strategy to improve disentanglement.
However, SW-VAE still faces two major limitations. First, it relies on a warm-up stage that swaps latent
factors without confirming whether semantically meaningful features have been learned. This can lead
to unstable training when the latent factors are not yet fully disentangled. Second, SW-VAE requires
annotations specifying multiple distinct generative factors for all pairwise samples, which still demands
substantial labeling effort. More recent weakly-supervised methods have shifted their focus toward other
downstream tasks such as binary classification (Tonolini et al.l [2023), image restoration (Zheng et al.| [2024)),
and 3D face modeling (Li et al.,|2024)), rather than disentanglement.

Motivated by the limitations of SW-VAE, we propose Filter-VAE, a weakly-supervised variational autoen-
coder that employs a filter-based adaptive swapping strategy to learn stable and meaningful disentangled
representations. However, developing Filter-VAE poses two key challenges: (i) not all latent dimensions
encode semantically meaningful features, and (ii) frequently swapping latent factors that are not yet fully
disentangled can result in unstable feature learning.

To address the first challenge, we propose a relevance filter that removes meaningless (noisy) latent factors
by applying a threshold to identify meaningful latent factors. To tackle the second challenge, we introduce
an adaptive swapping filter that identifies stable latent factors by computing the KL divergence between
pairs of latent variables and then adaptively swaps them based on this divergence. Compared to previous
works, the combination of these two filters can locate positions of semantically meaningful latent factors and
prevent the swapping of unstable latent features. Additionally, our method requires less prior knowledge,
needing only a single distinct generative factor for a small amount of the pairwise data. We evaluate
Filter-VAE on multiple benchmark datasets and a created traffic sign dataset in two downstream tasks:
disentanglement and adversarial robustness. Extensive experimental results demonstrate that our method
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outperforms both unsupervised and weakly-supervised baselines in the disentanglement task. Moreover, it
achieves superior adversarial robustness compared to existing defense baselines under various attacks and
corruptions. These findings underscore the effectiveness of the proposed method in learning robust and
stable latent representations from observed data.

In summary, our contributions are three-fold as follows:

e Novel disentanglement learning model. We propose Filter-VAE, a novel weakly supervised
VAE that incorporates two filters to achieve stable disentanglement using a small amount of labeled
pairwise data.

e Synthetic traffic sign dataset. We create a new synthetic traffic sign dataset to assess both the
disentanglement performance and adversarial robustness of our method.

e Superior performance in two downstream tasks. Evaluation results demonstrate that the
proposed Filter-VAE achieves better disentanglement performance than the baselines on multiple
datasets with less supervision. Moreover, it can significantly enhance the adversarial robustness of
ML predictions under 17 adversarial attacks and corruptions.

2 Related Work

2.1 Unsupervised DRL

One representative type of unsupervised DRL is the Variational Auto-encoder (VAE) (Kingma & Welling),
2014), which encompasses an encoder and a decoder. The core idea is to model data distributions by
maximizing their variational inference in an unsupervised manner (Wang et all 2024). In the past few
years, many studies have proposed unsupervised VAE and its variants (Burgess et al., |2018; |Chen et al.
2018)), such as 8-VAE (Higgins et al., |2017)), FactorVAE (Kim & Mnih} |2018), and ControlVAE (Shao et al.,
2020bt 2022), to learn the disentangled representations from observed data without the requirement of labels.
These methods introduce the trade-off between reconstruction quality and disentanglement by adding a new
regularizer in the objective function, such as mutual information or total correlation (Chen et al., |2018).
While they have shown good performance in synthetic datasets, |Locatello et al. (2019)) pointed out that it
is theoretically impossible to fully disentangle latent factors using unsupervised learning without inductive
bias.

2.2 Fully-supervised DRL

Fully-supervised DRL approaches address the limitation of unsupervised methods by leveraging full supervi-
sion, where ground-truth generative factors or concept annotations are assumed available. Models like Label
Supervised VAE (Bouchacourt et al., [2018]), directly conditioned on labeled factors, achieving disentangle-
ment by aligning latent variables with supervised attributes. Concept Bottleneck Models (CBMs) (Koh
et al, 2020) and ProtoPNet (Chen et al.; |2019)), focused on interpretable classification by forcing the model
to base decisions on human-defined concepts. CausalVAE (Yang et al., |2021)) further leveraged supervision
signals to learn structural causal model as prior. While supervised DRL can achieve high disentanglement
quality, it relies heavily on labeled data, which is often costly or infeasible to obtain in real-world scenarios.

2.3 Weakly-supervised DRL

To avoid massive labeling requirements while still achieving disentanglement, researchers have explored
weakly-supervised VAEs that leverage partial or indirect supervision. Early approaches leverage limited
labels on input subsets (Locatello et al.| |2020b) or pairwise annotations (Locatello et al., 2020a)). Subse-
quent works extend this ides using different forms of supervision such as similarity measurements (Chen
& Batmanghelichl 2020), the number of different generative factors (Locatello et al., 2020a)), and the max-
imum number of different generative factors (Zhu et al., [2023). More recently, weakly-supervised VAEs
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have been adapted for other downstream tasks, including binary classification (Tonolini et all [2023)), im-
age restoration (Zheng et al., |2024)), and 3D face modeling (Li et al., |2024)), which lie outside the scope of
disentanglement itself.

A parallel line of work builds on the idea of latent swapping, which is first introduced by DNA-GAN (Xiao
et al 2018) in the supervised setting. This strategy has been adopted in both self-supervised and weakly-
supervised VAEs. For example, Swap-VAE (Liu et al., 2021]) proposed block-wise swapping in self-supervised
framework, DSD (Feng et al.| [2018) extended it with dual swapping under weakly supervision, and SW-
VAE (Zhu et all 2023)) further optimized it by progressively increasing the number of swapping factors.
However, these methods often perform swaps without verifying whether the swapped factors are semantically
meaningful, leading to unstable training if the latent factors are not yet fully disentangled. In this work,
we address these shortcomings by introducing an adaptive swapping strategy that delays swapping until
semantically meaningful latent factors have stabilized. Moreover, our method achieves disentanglement with
less supervision, requiring only 10% of pairwise inputs annotated with a single distinct generative factor.

3 Preliminaries

3.1 Problem Statement

The goal of this work is to learn semantically meaningful latent representations from observations with limited
supervised signals. The primary challenge lies in effectively disentangling independent latent factors that are
aligned with the ground truth generative factors. Given a batch of N observed image = {x1,®2,...,ZN},
DRL aims to find a mapping f(x) — 2z, where z € R? denotes the learned factors in a latent space with
the dimension size of d (Eastwood & Williams| 2018). Each latent factor is expected to represent one and
only one explanatory factor of x so that modifying one latent factor doesn’t affect the other factors of
variation. This guarantees each latent factor is independent of the others. However, since some factors are
not semantically meaningful, the number of explanatory factors v is always less than or equal to the number
of latent factors; namely, |v| < d.

3.2 Variational Autoencoder

Variational autoencoder (VAE) (Kingma & Welling}, [2014) is a popular unsupervised deep generative model.
It consists of two main components: (1) The encoder ¢, (z|x) maps input data « into a probabilistic distribu-
tion in the latent space, which is often assumed to be a Unit Gaussian. (2) The decoder pg(z|z) reconstructs
the input based on the representations sampled from the latent space. In general, researchers often optimize
the following evidence lower bound (ELBO):

Lyge = IE(1<,>(z|:1:) [Inga(w|z)] - DKL(Q¢(Z|1L')HP(Z)) (1)

To better learn disentangled representations, variants like 8-VAE (Higgins et al., 2017) are proposed, which
adds 8 (8 > 1) in front of the KL-divergence in the objective. However, a large and fixed 8 could lead to
poor reconstruction quality (Shao et al.l |2020a).

3.3 ControlVAE

To effectively trade off the reconstruction quality and disentanglement performance, ControlVAE (Shao
et al., [2020b) incorporates a controller from automatic control into the basic VAE model to dynamically
adjust the hyperparameter 5 during training. The objective of ControlVAE is given by

Leontrol(T,2) = Eq,(2|2) [log po(x|2)] — B(t) Dk (q4(2]x)[p(2)), (2)

where (t) is the output of a non-linear PI controller as follows:

plt) = 1+ exp(e(t))
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Figure 1: The overall framework of weakly-supervised Filter-VAE. A pair of images with one distinct gen-
erative factor is fed into the encoder g4 to generate latent factors. Then two filters are implemented to
guarantee stable swapping: (1) relevance filter F filters out irrelevant (meaningless) latent factors z~ for
only swapping relevant (meaningful) factors zT in the latent space; (2) Adaptive swapping filter F; sets an
upper bound for KL-divergence to prevent swapping undesired latent factors (25 ) and unstable latent factor
during training. It then swaps all stable and relevant latent factors (27, 23 ) except for the most different one
(23). The decoder reconstructs the input data based on both original (z,,2;) and swapped (2., ;) latent

factors.

where K, and K, are hyperparameters of the PI algorithm, and S, is an application-specific constant.
e(t) is the error between the designed KL-divergence and the real output.

Like other unsupervised VAE-based methods, ControlVAE still struggles to achieve perfect disentangle-
ment from complex data. To address this problem, we will extend ControlVAE to develop a novel weakly-
supervised model for disentangled representation learning.

4 Proposed Method

As mentioned above, current weakly-supervised DRL methods, such as SW-VAE , perform
latent factor swapping without accounting for the disentanglement status of the latent space, often resulting
in training instability. To solve the limitation, we propose a new weakly-supervised Filter-VAE in this work.
As shown in Figure 1, Filter-VAE consists of four main components: encoder, relevance filter, adaptive
swapping filter, and decoder, with two filters as cores. The main idea is that it first encodes the input
pairwise data into latent representations. The relevance filter then filters out meaningless latent factors.
After that, the adaptive swapping filter finds disentangled stable factors and implements swapping. Finally,
the swapped latent features are decoded to reconstruct the input data. We elaborate on each component in
the following section.

4.1 Encoder for latent representation learning

First, we adopt an encoder g4 to learn latent representations of pairwise input. Let (x,, x;) denote a
pair of samples with one distinct factor. As shown in Figure [I} the encoder g4 maps (., x5) into latent
variables (z,, zp), respectively. Latent variables are expressed as probabilistic Gaussian distributions, which
are approximated by a convolutional neural network. The encoded representations can be formulated as:

0o (zili) ~ N (pz,, diag(02))), (4)

where i € {a,b}. uz, and aﬁi represents the mean and variance of latent variable z;. Latent variables are
obtained with the reparameterization trick to allow tractable computation (Kingma & Welling; [2014)). z;
contains d latent factors {z1 ;,22,,. .., 2a,i}, where not all of them are semantically meaningful.
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4.2 Relevance filter

We then use the relevance filter to remove irrelevant latent factors, thereby overcoming the current methods’
limitation that often swap some meaningless latent factors during model training. To achieve this, we
propose to separate all latent factors into relevant and irrelevant parts. Inspired by empirical experiments in
prior work (Shao et al., [2020b), we can see that meaningful factors exhibit higher dim-wise KL divergence
than those meaningless ones. Based on this observation, we develop a filter F} with a threshold a to select
meaningful factors below:

zj‘, if Dgr(z) >«
Fi(o, z) = { z;, i Dgr(z)<a’ (5)

)
Here, suppose the KL divergence between the i-th latent factor of a pair of data samples exceeds the threshold
«. In this case, we consider this latent factor to encompass semantically meaningful concepts, such as shapes
and colors. These latent factors are relevant for expressing meaningful high-level features of the data and
are denoted with a 4+ symbol.

4.3 Adaptive swapping filter

After identifying relevant latent factors, the third step is to use the second filter to find stable latent factors
for implementing swapping. Since latent factors in early training iterations may not be disentangled well,
swapping these factors may result in training instability. To overcome this issue, we design the second filter
F, based on dim-wise KL-divergence between z, and z,™ as follows:

+ + + q¢,a(zz+) +
Dkr (Q¢,a(zi Maep(z; )) = [ 4p,0(2;)log dz;
49,67,
1 o} 070+ (ia — p1ip)?
_ _5 <1og z2,a _ Yia (M,2 2 ,b) + 1) ’ (6)
Oib Oib

where g4 4(2;7) and g, 5(2;") denote the posterior probability of the i-th latent factor learned by the encoder
qs- Both of them follow Gaussian distribution N (u;,0?) (Burgess et al., 2018). For simplification, we use
D(z}") to represent Dxr, (qg,a(2)||qp,s(2;)) in the following.

Next, we need to figure out which latent factor should be swapped based on Eq. equation[f] A straightforward
method is to swap all meaningful factors except for the one with the largest dim-wise KL-divergence, denoted
by j = argmax; D(z;r ). This seems effective because there exists only one distinct factor for each pairwise
input sample. However, in practice, we find that sometimes the largest D(z:l+ ) doesn’t represent the most
distinct factor between a pair of samples during model training if the latent distribution is not learned well,
especially in early training iterations. As a result, swapping could occur unexpectedly in the non-target
factors, leading to training instability. To resolve this problem, we further set an upper bound ~ for D(z;" )
to avoid unexpected swapping. Thus, we have the second filter F5 to determine which latent factor should
be swapped:

swap~ if max D(z;") > v

max D(z;") < v

and i = argmax;, D(2}}) (7)
max D(z) <~

and i # argmax;, D(z;")

Fa(v, Z:L) _ swap~ if

swapt if

where v is a threshold, swap™ means swapping will be implemented and swap~ means not. The first condition
indicates that we will not implement unexpected swapping when D(z:r ) is greater than . This can avoid
swapping entangled latent factors. For the second condition that D(z;r ) is lower than -, if the i-th latent
factor corresponds to the largest dim-wise KL divergence, we do not implement swapping since it is more
likely to be a distinct factor. If the first and second conditions do not hold, we will swap the latent factors.
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4.4 Decoder for reconstruction

After swapping latent factors, the final step is reconstructing the input data. We input both the original
latent factors z,, z, and swapped factors z,’, z;’ into the decoder pg to reconstruct input data &,, 2y,
&/, and &}, respectively. Both reconstructions should remain identical to their original inputs because the

swapping occurs between latent factors with the same semantic meaning. This motivates the design of a
reconstruction objective that encourages latent factors to align with the desired distributions.

4.5 Objective of DRL

The overall objective of DRL comprises two loss functions: the VAE loss and the reconstruction loss between
the original and reconstructed samples. Specifically, we combine the ControlVAE introduced in Sec. [3] with
the proposed swapping technique to learn disentangled representations. The loss of ControlVAE for pairwise
input samples can be written as

Epair = Econtrol(:ﬁaa za) + Lcontral (:%ln zb)- (8)

After swapping, we ensure that the reconstructed image is close to the original input. Thus, we have the
following reconstruction loss
o112 A7 112
Lswap = [®a — T4 ll2 + lme — &3 2. (9)

Combining the ControlVAE loss and reconstruction loss above, the overall objective is given by
»Coverall = »Cpair + W»Cswap» (10)

where w is a hyperparameter to balance the second term.

We summarize the proposed Filter-VAE in Algorithm [I} Lines 5-12 aim to extract meaningful latent factors
from the latent representations. In lines 17-21, we swap the identical latent factors between a pair of samples
with one distinct factor.

5 Experiments

We first evaluate the disentanglement performance of Filter-VAE on three benchmark datasets and one
traffic sign dataset that we created. Then we verify its robustness against adversarial attacks in traffic
sign detection. Lastly, we explore the impact of important hyperparameters and components on model
performance. The detailed model configurations and hyperparameter settings are presented in Appendix [A]

5.1 Datasets
5.1.1 Benchmark datasets

We first evaluate the disentanglement performance of our method using three benchmark datasets:
dSprites (Matthey et al., 2017)), 3dShapes (Burgess & Kim, 2018)), and 3dChairs (Aubry et al., 2014]).
Each benchmark contains different ground-truth factor labels and corresponding numbers of factors:

1. dSprites (Matthey et al.,|2017)) contains 737, 280 binary 64 x 64 images of 2D shapes generated by 6
ground truth factors (number of factors): color (1), shape (3), scale (6), orientation (40), x-position
(32), y-position (32).

2. 3dShapes (Burgess & Kim, [2018)) contains 480,000 RGB 64 x 64 x 3 images with 6 ground truth
factors (number of factors): floor hue (10), wall hue (10), object hue (10), scale (8), shape (4),
orientation (15).

3. 3dChairs (Aubry et al., [2014) contains 86,366 synthesized RGB 64 x 64 x 3 images with 3 ground
factors (number of factors): style (1,393), horizontal orientation (31), vertical orientation (2).
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Algorithm 1: The Filter-VAE Algorithm

Input: Pairwise data samples {(xq,@p)i, i = 1,2,... N}, latent dimension d, threshold « for KL,
threshold ~ for adaptive swapping, iterations T'

Output: ¢r, O

Initialize ¢, 6,

fort=1toT do

Sample a pair of images (x, xp)

Za, Zb dg, (ﬂSa), 4e, (wb)

for i =1 to ddo

Dir(z) + 5(Drr(zia) + Drr(zip))

if Dir(z;) > « then

‘ Obtain relevant factors z;", z;F,

else
‘ Get meaningless factors z; ,, 2,

end

end
for i =1 to |z"| do
| D(z) + Drr(ds0.a(2)lag,6(2))

end

Zl, Z) < Za, 2

fori=1 to |z"| do
if max D(z;") < v and i # argmax D(z;") then

‘ Swap zﬁl and zfg

end

end

iav ib < Do, (za)vpat (Zb)

& &), < po, (z1).po, (2})

Update ¢y, 0; through gradient decent of L yerai

end

5.1.2 TrafficSign dataset

We create a traffic sign dataset for further assessing the disentanglement and robustness of the proposed
Filter-VAE. Adversarial attacks and defenses in traffic sign recognition (TSR) have been widely investigated,
as they are critical to autonomous driving. However, current benchmark datasets like German Traffic Sign
Recognition Benchmark (GTSRB) (Stallkamp et al., 2011) and TsinghuaTencent 100K (TT100K) (Zhu
et al.l [2016)) lack factor labels like traffic sign shape, thus they cannot be directly applied to disentangled
representation learning. Inspired by Sim2Real (Kadian et al. [2020), we build our traffic sign dataset in a
simulation environment by controlling different latent factors, such as shape, color, and orientation. Note
that we adopt different colors for each traffic sign to facilitate disentangled representation learning. It is also
a contribution to our work that leverages simulated data for real-world prediction.

As shown in Figure it contains 8 different traffic sign models with 5 different shapes: stop (octagon), warn-
ing (triangle), speed limit (tall rectangle), oneway (long rectangle), deer crossing (rhombus), handicapped
crossing (rhombus), left curve (rhombus), workers ahead (rhombus). Each sign’s texture has 10 different
colors. Each traffic sign model was rendered on a blue-white checkerboard with a plain background. We
orient each model around its bottom in the 2D plane with [—0.2,0.2] radians and the step size of 0.004.
The camera takes an image at a fixed viewpoint. The resulting dataset contains 8 x 10 x 100 = 8,000 RGB
128 x 128 images. This dataset will be publicly available upon publication of the paper.

5.1.3 Data Preparation
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a) Eight traffic signs in our dataset.

Figure 2: Our synthetic traffic sign dataset.

(octagon, trlangle tall rectangle, long rectangle, rhombus).

m simulator.

(b) Generated images.

(a) Textures of eight traffic signs cover five different shapes

(b) Rendered images in the PyBullet (Greff

Table 1: Performance of different methods on the TrafficSign dataset using DCI (Disentanglement), SAP,
and MIG, averaged over 5 random seeds. Bold: the best method. Underline: the second best method.

Dataset TrafficSign
Metrics DCIt SAPT MIG?T
Unsupervised methods
B-VAEL 0.239 0.042 0.177
B-VAEp 0.079  0.005 0.116
FactorVAE 0.343 0.036 0.276
B-TCVAE 0.261 0.048 0.310
ControlVAE 0.460 0.133 0.442
Weakly-supervised methods
Ada-GVAE 0.394 0.049 0.398
Ada-ML-VAE 0.397 0.051  0.387
SW-VAE 0.422  0.102 0.394
Filter-VAE (Ours) | 0.482 0.205 0.581
In our experiment, we label only a small amount of
data for weakly-supervised disentanglement learn-
ing. Specifically, we label 10% of the sample pairs
(x4, p), where each pair shares identical generative
factors except for one distinct factor, as illustrated
in Figure [3] This selective labeling facilitates effec-
tiye lat-er.lt factor sw.a]-pping during model training :_[0 1,42] |[0 0, 42] | 0,1, 98] |
with minimal supervision. oo e e e e — 1
Figure 3: Data samples with three factor labels

5.2 Evaluation on Disentanglement

We evaluate the disentanglement performance of
Filter-VAE on four datasets mentioned above, in-
cluding 3 benchmarks and the TrafficSign dataset.

([shape, color, orientation]). Samples within each pair
only vary in one factor, highlighted with different col-
ors. The dashed box represents a pair of samples.

We compare it with 5 unsupervised baselines: 3-VAEy (Higgins et all [2017), 3-VAEp (Burgess et al),
2018), FactorVAE (Kim & Mnih} 2018), S-TCVAE (Chen et al., [2018)), ControlVAE (Shao et al. 2020b),
and 3 weakly-supervised methods: Ada-GVAE, Ada-ML-VAE (Locatello et al.} 2020b), SW-VAE (Zhu et al.,

2023).

For disentanglement performance evaluation, we use commonly used metrics, DCI-Disentanglement
[wood & Williams), 2018)), Separated Attribute Predictability (SAP) (Kumar et all [2018)), and Mutual Infor-
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Table 2: Performance of different methods on three benchmarks using DCI (Disentanglement), SAP, and

MIG, averaged over 5 random seeds. Bold: the best method. Underline: the second best method.

Dataset 3dChairs 3dShapes dSprites

Metrics DCIT SAPtT MIGT | DCIt SAPtT MIGT | DCIT  SAPT MIGT
Unsupervised methods
B-VAE 0.174 0.011 0.080 | 0.733 0.086 0.322 | 0.205 0.042 0.134
B-VAEp 0.117 0.010 0.063 | 0439 0.052 0.349 | 0.389 0.081  0.360
FactorVAE 0.121  0.011 0.057 | 0.685 0.066 0.249 | 0.199 0.036 0.123
B-TCVAE 0.181 0.016 0.084 | 0.893 0.107 0.481 0.399 0.076  0.255
ControlVAE 0.162 0.090 0.138 | 0.815 0.143 0.513 | 0.531 0.067 0.494
Weakly-supervised methods
Ada-GVAE 0.090 0.007 0.040 | 0.542 0.049 0.519 | 0.410 0.067 0.344
Ada-ML-VAE 0.094 0.006 0.039 | 0496 0.040 0.465 | 0.438 0.070 0.376
SW-VAE 0.170 0.073 0.092 | 0.772 0.068 0.328 | 0.560 0.090 0.472
Filter-VAE (Ours) | 0.230 0.133 0.175 | 0.836 0.171 0.523 | 0.514 0.104 0.455
Filter-VAE ControlVAE

x

<

shape orient scale

shape orient color

Figure 4: Traverse visualization of top 2 methods on dSprites and TrafficSign datasets. Each row represents
one latent feature. dSprites: traverse in range of [—3,3] with step= 2/3. Filter-VAE and ControlVAE
successfully disentangle all five factors; however, the orientation range of Filter-VAE is small. TrafficSign:
traverse in range of [—2,2] with step= 4/9. Filter-VAE can effectively disentangle color and orientation,
whereas ControlVAE does not perform well.

mation Gap (MIG) (Chen et al[2018). DCI-Disentanglement measures the weighted average entropy of the
probability of each latent factor to predict each generative factor. SAP attributes a prediction score to each
pair of latent and generative factors, and measures the average difference between the two highest scores for
all generative factors. MIG computes the average difference between the top two latent variables with the
highest mutual information over all latent factors.

We present the comparison of disentanglement for different methods in Table [I| and Table It can be
observed that the proposed Filter-VAE outperforms baselines using 3dChairs and TrafficSign datasets in all
three metrics. Additionally, our method consistently ranks among the top 2 in three metrics in 3dShapes
experiments. The improvement is attributed to our method’s ability to learn stable and relevant latent
factors. For the simple dSprites dataset, the proposed method is slightly worse than ControlVAE and
SW-VAE. The main reason is that it does not perform well in disentangling the orientation factor, which
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is illustrated in the following Figure Overall, we can conclude that the proposed Filter-VAE exhibits
superior performance over baselines in three of these four datasets, except for the simplest one.

Additionally, we illustrate the qualitative results for our Filter-VAE and the second-best baseline in Figure
For TrafficSign, we can see that the proposed Filter-VAE can better disentangle two latent factors, shape
and orientation. For dSprites, it can be observed that both our method and ControlVAE can successfully
discover all five latent factors. However, the orientation (in the 4th row) disentangled by Filter-VAE has
small ranges, leading to low MIG in Table 2] This is caused by (1) low explicitness of latent representations
and (2) overlap between shape and orient features in the dSprites dataset.

Table 3: Classification accuracy over 17 attacks/corruptions on the TrafficSign dataset. Bold: The best
method.

Classification Accuracy 1

attacks/corruptions -
KEMLP(AdvTrain) KEMLP(DOA) FSR(Resnet18) +2ﬂ;§r'(\é)ies)

Impulse Noise (s=5) 0.6056 0.6225 0.7595 0.6153
Gaussian Noise (s=5) 0.4906 0.6206 0.7310 0.7689
Shot Noise (s=5) 0.5381 0.6252 0.7755 0.8119
Defocus Blur (s=5) 0.2525 0.2894 0.6000 0.9123
Glass Blur (s=5) 0.5531 0.5719 0.5815 0.7866
Motion Blur (s=5) 0.6131 0.6256 0.6020 0.8449
Zoom Blur (s=5) 0.4956 0.6288 0.4195 0.5006
Brightness (s=8) 0.6175 0.6119 0.1890 0.4478
Snow (s=5) 0.6100 0.5813 0.6050 0.7044
Frost (s=5) 0.3475 0.4600 0.4345 0.5630
Fog (s=5) 0.1500 0.2394 0.1350 0.3963
Contrast (s=5) 0.3544 0.5763 0.1385 0.1885
Elastic (s=5) 0.6063 0.6119 0.5975 0.7145
Pixelate (s=7) 0.4400 0.6213 0.6205 0.8595
JPEG (s=5) 0.6031 0.6225 0.6240 0.8798
Sticker (5 x 5) 0.0467 0.5100 0.1245 0.5700
Lo (e =8/255) 0.6056 0.1381 0.3960 0.8069

5.3 Evaluation on Adversarial Robustness

Next, we compare the performance of our method against adversarial attacks with two baselines:
KEMLP (Gurel et al., 2021)) and FSR (Kim et al.} |2023)).

In the experiments, our method is evaluated to classify traffic signs under 17 adversarial attacks that contain:
(1) Common corruptions (Hendrycks & Dietterich, 2019)): It contains 15 types of corruptions caused
by noise, blur, weather, and digital. We follow the same severity settings s as KEMLP. (2) £, PGD
attack (Madry et al) 2018)): we set e = 8/255 with 40 iterations to construct perturbations that are
unnoticeable to humans while still causing incorrect predictions. (3) Sticker attack: This attack attaches
a sticker to traffic signs. We use the same adversarial sticker patch generated by (Eykholt et al.l [2018) with
the size of 5 x 5. An exhaustive search is conducted to find the best attack location. Additionally, we use
classification accuracy to assess model performance.

The classification is carried out using a Sum-Product Network (SPN) (Poon & Domingos, [2011)), a probabilis-
tic graphical model structured as a rooted acyclic directed graph (DAG). Compared to standard classification
models, such as multilayer perceptrons (MLPs), SPNs offer probabilistic interpretations, enabling reasoning
over dependencies among latent factors with a small sacrifice to accuracy. For completeness, we also report
classification results using MLPs and linear classifiers in the Appendix [C]

Table |3 illustrates the accuracy comparison of different methods. It can be observed that the proposed
Filter-VAE remarkably outperforms baselines in most attack scenarios. This is because our method adopts
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Table 4: Ablation study of two filters on the TrafficSign dataset. Bold: the best method.

I3 Iz DCIT SAPT MIG 1
x x 04532 0.1307  0.4203
v
X

X 0.4587  0.1551  0.4873
v 0.4697  0.1895  0.5514
Ours with both | 0.4873 0.2013 0.5831

generative high-level factors instead of low-level features to detect traffic signs, improving its robustness
against adversarial examples. However, it exhibits limited robustness to strong attacks such as contrast and
brightness, as these attacks significantly degrade image quality and interfere with high-level factors such
as shape and color. Moreover, we leverage a tractable SPN to provide logical reasoning for predictions.
Please refer to the graphical structure in Appendix [B] In summary, disentangled latent factors generated by
Filter-VAE are robust to most adversarial attacks.

We also investigate the adversarial robustness of Filter-VAE on real-world traffic sign images in Appendix[F]
The results indicate the potential of the proposed method for real-world traffic sign applications.

5.4 Ablation Studies

Lastly, we explore the impact of two key components, hyperparameters and input labels on model perfor-
mance. We first study the influence of two filters: the relevance filter F; and the adaptive swapping filter F5.
Then we investigate the effect of three hyperparameters: w in the objective function and two threshold values
«, v of two filters. Lastly, we conduct experiments with imperfect supervisions to evaluate the sensitivity to
input labels.

5.4.1 Effect of two filters in the smooth swapping.

Table [4] shows the experimental results with or without using two filters in the smooth swapping. We can
observe that the disentanglement performance will drop if one or two filters are removed. These empirical
results suggest the importance of two filters to achieve stable swapping.

5.4.2 Effect of Hyperparameters

Effect of w in objective. Figure[in Appendix [D]shows the impact of w on disentanglement performance.
We increase w from 0 to 1 to balance the swapped reconstructions loss and the original VAE objective. It
can be observed that w = 0.4 exhibits the best result. In addition, there are no significant changes for
three metrics with w > 0, which indicates Filter-VAE is not sensitive with w > 0. Since 0.4 gives the best
performance, we set w = 0.4 for our experiments.

Effect of o in Filter 1. We also study the effect of o that separates meaningful latent factors in the
latent space. Setting o = 0 implies all latent factors are considered irrelevant, thereby disabling the swap-
ping mechanism. As shown in Figure [7] of Appendix using « larger than 0 improves disentanglement
performance, highlighting the effectiveness of the swapping strategy. Additionally, small a values can better
identify relevant latent factors in the early training iterations. This is attributed to the magnitude gap
between relevant and irrelevant latent factors. We set a = 0.2 in our experiments.

Effect of v in Filter 2. Lastly, we investigate the effect of v by varying its value from 0 to 1. As illustrated
in Figure[§lof Appendix [D] Filter-VAE achieves the highest disentanglement performance at v = 0.4. Setting
v = 0 disables swapping, while v = 1 allows unconstrained swapping. Both extreme conditions result in
suboptimal performance. Based on these observations, we choose v = 0.4 in our experiments.

5.4.3 Performance under imperfect supervision

We further assess Filter-VAE under imperfect supervision to examine its sensitivity to the selection of labeled
pairwise data. Here, imperfect supervision refers to cases where a pair of inputs may differ in more than
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Table 5: Performance of Filter-VAE on the TrafficSign dataset with one and random distinct generative
factors.

Metrics DCIT SAPT MIGYT
Filter-VAE with one distinct factor 0.487 0.201 0.583
Filter-VAE with random distinct factors | 0.476 0.185  0.557

one generative factor. As shown in Table [f] the performance of Filter-VAE remains stable even when we
generate image pairs with random number of distinct factors, indicating that our method is not sensitive
to imperfect supervision. We attribute this robustness to the adaptive swapping filter F5: when multiple
latent factors differ, F» flexibly treats them as either the first or the second condition in Equation [7] thereby
preventing any distinct latent factors from being incorrectly swapped.

6 Conclusion

In this paper, we proposed Filter-VAE, a weakly supervised variational autoencoder that employs a filter-
based adaptive swapping technique to learn disentangled representations using limited supervision. Specifi-
cally, we designed two filters, a relevance filter and an adaptive swapping filter, to identify meaningful latent
factors and prevent undesirable swapping of unstable, entangled factors. Filter-VAE can achieve effective
disentanglement using only a small subset of pairwise data that contains a single distinct generative factor.
Extensive experiments on four datasets demonstrated the superiority of Filter-VAE over existing baselines
in both disentanglement and adversarial robustness tasks.

7 Limitation

While our proposed method achieves strong performance in both disentanglement and adversarial robustness,
it relies on a heuristic assumption that high dim-wise KL divergence corresponds to semantically relevant
latent factors. However, this assumption is inspired by prior work (Shao et al.,|2020b)) and currently lacks a
theoretical foundation. As part of future work, we plan to develop a formal justification to better support
this design choice.
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A Model Configurations and Hyperparameter Settings

A.1 Filter-VAE

In this experiment, our Filter-VAE uses the same encoder and decoder as ControlVAE (Shao et al., 2020b).
The model configurations and hyperparameter settings are presented in Table [f] We adopt the Adam
optimizer with $; = 0.90, 82 = 0.99 and a learning rate of 10~%. In addition, following the same settings
of ControlVAE, we choose the desired KL-divergence as 19, 18, 10 for dSprites, 3D Chairs, and 3dShapes
datasets. For TrafficSign dataset, the desired KL value is set to 11. The dimension of the latent space zg4im
is set to 10 for all experiments.

For «, v, and w, we tuned these parameters in the TrafficSign dataset and applied values to other datasets.
« is selected based on the observation that meaningful representation z;r has higher dim-wise KL values
than others. 7 is determined by the highest Dy, (gs.a(2;)||gs.5(2;7)) among 2" in the training process. w
is the weight to adjust the swap reconstruction loss. Based on the ablation study in Section we choose
w=0.4, «=0.2, y=0.4 in all experiments.

A.2 SPN

SPN is trained with three Gaussian and one categorical distributions representing class labels with clustering
algorithms (Gens & Pedro, 2013; [Yang et al., [2022). The result SPN is a valid (complete and decomposable)
T-layer rooted DAG with 240 nodes (13 sum nodes, 77 product nodes, and 150 leaves) and 239 edges. In the
trained SPN, we found that splitting color and shape contributes more to the classification because it gives
8 and 9 branches respectively, while orientation only gives 2 branches. It is reasonable because the traffic
sign class is mainly determined by its color and shape.

Table 6: Model architectures of Filter-VAE

Encoder ‘ Decoder

Input: ¢ x 64 x 64 image ‘ Input: € R*=-4m

4 x 4 conv, stride 2, pad 1. 32 ReLU. ‘ FC 256. 256 ReLU.

4 x 4 conv, stride 2, pad 1. 32 ReLU. ‘ 4 x 4 transconv. 256 ReLU.

4 x 4 conv, stride 2, pad 1. 64 ReLU. ‘ 4 x 4 transconv, stride 2, pad 1. 64 ReLU.
4 x 4 conv, stride 2, pad 1. 64 ReLU. ‘ 4 x 4 transconv, stride 2, pad 1. 64 ReLU.
4 x 4 conv, stride 1, pad 1. 256 ReLU. ‘ 4 x 4 transconv, stride 2, pad 1. 32 ReLU.
FC 256. ‘ 4 x 4 transconv, stride 2, pad 1. 32 ReLU.
FC z_dim x 2. ‘ Output: ¢ x 64 x 64

B SPN Visualization

Following the idea of the prior work (Yang et al.| [2022), we draw a knowledge graph to showcase the logical
inference process of SPN for classification in Figure[5| As an instance of an adversary scenario, if the texture
of "workers__ahead" is covered with stickers, SPN can still distinguish it from other signs through its color
and shape.

C Evaluation with Different Classifier

We conduct traffic sign classification using three different backbone models as the classifier: a single-layer
linear classifier, a multilayer perception (MLP), and a sum-product network (SPN). Each model is provided
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Figure 5: Knowledge graph of the TrafficSign dataset. The red arrow means independent features between
data samples. The blue arrow represents the logical feature decision process.

with ground-truth traffic sign labels along with 3 relevant latent factor values corresponding to shape,
orientation, and color.

The results are shown in Table [] Both the MLP and SPN outperform the linear classifier, as they can
capture complex interactions among latent factors. Although the SPN achieves slightly lower accuracy
than the MLP, it provides tractable decision-making and allows explicit reasoning about how each latent
factor contributes to the final prediction. These findings suggest that robustness primarily stems from the
disentangled representations rather than the specific choice of classifier.

D Effect of Important Parameters

In this section, we illustrate the impact of three hyperparameters w, «, and 7 on disentanglement performance
using the TrafficSign dataset.

D.1 Effect of w in the objective function.

w is the weight to balance pairwise ControlVAE loss and swapping reconstruction loss in Equation [I0]
To investigate its effect, we increase w from 0 to 1. As shown in Figure [0} Filter-VAE achieves the best
performance in three matrices when w = 0.4.

D.2 Effect of « in relevant latent filter.

« is the threshold value to filter out irrelevant latent codes in the relevant latent filter F;. As shown in
Figure [7] we investigate the effect of a in the range from 0 to 1. When a = 0, all latent dimensions are
treated as irrelevant, and no latent code is swapped. Setting a > 0 yields improved results, indicating that
swapping enhances disentanglement performance. The best performance is achieved at a = 0.2. Because
meaningless latent codes typically have smaller magnitudes than meaningful ones, a small « value allows the
filter to identify relevant latent codes more effectively. In our experiments, we set o = 0.2.
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Table 7: Classification accuracy over 17 attacks/corruptions on TrafficSign dataset with different classifica-
tion backbones. Bold: the best method.

attacks /corruptions Classification Accuracy T
Filter-VAE + Linear Filter-VAE + MLP | Filter-VAE + SPN

Impulse Noise (s=5) 0.5051 0.6429 0.6153
Gaussian Noise (s=5) 0.6599 0.8310 0.7689
Shot Noise (s=5) 0.6791 0.8606 0.8119
Defocus Blur (s=5) 0.7399 0.9294 0.9123
Glass Blur (s=5) 0.6709 0.8314 0.7866
Motion Blur (s=5) 0.7003 0.8829 0.8449
Zoom Blur (s=5) 0.4375 0.5153 0.5006
Brightness (s=8) 0.3778 0.4573 0.4478
Snow (s=5) 0.5950 0.7748 0.7044
Frost (s=5) 0.4579 0.6145 0.5630
Fog (s=5) 0.3405 0.4109 0.3963
Contrast (s=5) 0.1250 0.1955 0.1885
Elastic (s=5) 0.6183 0.7655 0.7145
Pixelate (s=7) 0.7115 0.9008 0.8595
JPEG (s=5) 0.7119 0.9046 0.8798
Sticker (5 x 5) 0.3650 0.5400 0.5700
Loo (e =8/255) 0.6250 0.8175 0.8069

D.3 Effect of v in adaptive swapping filter.

v is the upper bound used to determine the stability of latent codes in the adaptive swapping filter Fy. Its
effect is evaluated by varying from 0 to 1, as shown in Figure[§] Filter-VAE achieves the best disentanglement
performance when v = 0.4. When « = 0, all latent codes are considered unstable, and no swapping is
performed. Conversely, when v = 1, all relevant codes are unconstrained by the upper bound, which means
the training stability is ignored. We can see that both extreme conditions lead to degraded performance.
Based on these observations, we set v = 0.4 in our experiments.
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Figure 6: Effect of w on disentanglement performance using TrafficSign dataset. We can see that our method
is not sensitive with w > 0.

E Latent Traversals Visualization

We illustrate the latent traversals of our method and the baselines in Figures. [9 and The base-
line methods like Ada-GVAE, Ada-ML-VAE, and B-VAEp fail to trade off the reconstruction error and
disentanglement, which results in blurry reconstructed images.
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Figure 7: Effect of o on disentanglement performance using TrafficSign dataset.
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Figure 8: Effect of v on disentanglement performance using TrafficSign dataset.

E.1 TrafficSign

Filter-VAE can effectively disentangle color and orientation. Other baselines, except for S-TCVAE, cannot
learn these two factors well. For instance, ControlVAE entangles all features together in the 2nd row.
Though S-TCVAE can also learn both color and orientation, it suffers from poor reconstruction in the
dSprites dataset. In addition, separating color from shape remains challenging for all methods when data
contains complex texture information.

E.2 3dShapes

Filter-VAE can effectively disentangle all factors except for object__hue (the 3-rd row), which is entangled with
slight shape changes. Though S-TCVAE achieves a good disentanglement result in 3dShapes as indicated
in Table [2] it sacrifices reconstruction quality to get better disentanglement, especially in Figure [T1]

E.3 dSprites

Filter-VAE achieves better disentanglement performance than most baselines, except that the orientation
is slightly worse compared to ControlVAE. However, ControlVAE does not perform well in disentangling
orientation on the TrafficSign dataset. Moreover, it can only disentangle shape and wall__hue in the 3dShapes
dataset.

F Real-world Experiments

The effectiveness of the proposed method on real-world data is crucial for practical deployment. However, a
significant limitation lies in the absence of real-world traffic sign benchmarks with controlled latent factors.
To address this issue, we leverage In-Context Learning (ICL) with the state-of-the-art vision-language model
Gemini Nano Banana to construct a dataset of 1,960 real-world traffic sign images. Specifically, we use
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Figure 9: Latent traversals on the TrafficSign dataset. Each row represents one latent factor. Traverse in the
range of [—2, 2] with step = 1. Filter-VAE and 8-TCVAE can disentangle color and orientation successfully.
However, the reconstruction quality of S-TCVAE is worse than Filter-VAE.

publicly available traffic sign images as ICL examples and design prompts to generate images across eight
traffic sign categories under 35 distinct real-world driving scenarios. Each scenario includes seven randomized
rotations and eight color variations, resulting in a total of 35 x 7 x 8 = 1,960 images. The latent factors
(color, orientation) are explicitly controlled via prompt engineering. Notably, due to Gemini’s limitation in
executing precise rotation degrees from prompt specifications, each traffic sign is randomly rotated seven
times to approximate orientation diversity. Details of the dataset and the generation pipeline are provided
in the supplementary material.

We present classification results in Table [§] Filter-VAE achieves either the best or second-best performance
under most attacks and corruptions, with exceptions of Frost and Gaussian Noise. Nonetheless, its perfor-
mance under these two corruptions remains competitive, exhibiting only minor drops of 0.0750 and 0.0276
respectively, compared to the best results. These findings demonstrate the strong potential of our approach
for real-world traffic sign applications.
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Figure 10: Latent traversals on the 3dShapes dataset. Each row represents one latent factor. Traverse in
the range of [—1, 1] with step = 1/2. Filter-VAE can successfully disentangle all features except for a slight
shape change in object_hue.
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Figure 11: Latent traversals on the dSprites dataset. Each row represents one latent factor. Traverse in
the range of [—3,3] with step = 3/2. We can observe that Filter-VAE and ControlVAE can successfully
disentangle five latent factors, while the other baselines cannot.
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Table 8: Classification accuracy over 17 attacks/corruptions on the real-world traffic sign dataset. Bold:
The best method. Underline: The second best method.

. Classification Accuracy 1
attacks/corruptions Filter-VAE
KEMLP(AdvTrain) KEMLP(DOA) FSR(Resnetl8) + SPN (Ours)

Impulse Noise (s=5) 0.9245 0.8020 0.8102 0.8704

Gaussian Noise (s=5) 0.9245 0.8265 0.9490 0.9214

Shot Noise (s=5) 0.9245 0.8265 0.9347 0.9281

Defocus Blur (s=5) 0.9143 0.8184 0.8878 0.9352

Glass Blur (s=5) 0.8939 0.8020 0.8939 0.9306

Motion Blur (s=5) 0.8816 0.7918 0.8286 0.9332

Zoom Blur (s=5) 0.8224 0.7735 0.8388 0.8643

Brightness (s=8) 0.2163 0.1755 0.2204 0.2189

Snow (s=5) 0.5082 0.5755 0.3776 0.5724

Frost (s=5) 0.4551 0.4959 0.4776 0.4209

Fog (s=5) 0.3265 0.3000 0.1776 0.3133

Contrast (s=5) 0.2714 0.2816 0.2122 0.2862

Elastic (s=5) 0.8959 0.7980 0.8857 0.9112

Pixelate (s=7) 0.9122 0.8163 0.9020 0.9357

JPEG (s=5) 0.9245 0.8224 0.9327 0.9378

Sticker (5 x 5) 0.6694 0.9082 0.2633 0.8952

Lo (e =8/255) 0.9265 0.6122 0.9265 0.9071
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