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ABSTRACT

Multimodal fusion (MMF) is crucial for autonomous driving perception, com-
bining camera and LiDAR streams for reliable scene understanding. However,
its reliance on precise temporal synchronization introduces a vulnerability: ad-
versaries can exploit network-induced delays to subtly misalign sensor streams,
degrading MMF performance. To address this, we propose AION, a lightweight,
plug-in defense tailored for the autonomous driving scenario. AION integrates
continuity-aware contrastive learning to learn smooth multimodal representations
and a DTW-based detection mechanism to trace temporal alignment paths and
generate misalignment scores. AION demonstrates strong and consistent ro-
bustness against a wide range of temporal misalignment attacks on KITTI and
nuScenes, achieving high average AUROC for camera-only (0.9493) and LiDAR-
only (0.9495) attacks, while sustaining robust performance under joint cross-
modal attacks (0.9195 on most attacks) with low false-positive rates across fusion
backbones. Code will be publicly released upon acceptance (currently available
at https://anonymous.4open.science/r/AION-F10B).

1 INTRODUCTION

Autonomous vehicles rely on multimodal fusion (MMF) of complementary sensors such as cameras
and LiDAR to achieve robust perception (Zhang et al., 2023; Feng et al., 2020; Chen et al., 2017).
While cameras provide rich semantic texture and LiDAR delivers accurate geometric depth, their in-
tegration crucially depends on precise temporal synchronization. Misalignments in frames can cause
fusion models to miss objects or generate spurious detections, leading to significant safety hazards
in downstream planning and control (Kuhse et al., 2024). Recent studies have shown that temporal
desynchronization is not only a benign calibration issue but also a potential attack vector, which is
known as a temporal misalignment (TMA) attack (Shahriar et al., 2025). Network-induced delays or
timestamp manipulation can be exploited by adversaries to misalign sensor streams in time, thereby
degrading the performance of detection and tracking without altering sensor content (Finkenzeller
et al., 2025). For example, prior work demonstrated that even a single-frame LiDAR delay can
reduce average precision by more than 88% across multiple detection models (Shahriar et al., 2025).

Existing efforts to handle temporal inconsistency primarily focus on calibration and benign jitter
compensation, such as filtering or offline timestamp alignment (Taylor & Nieto, 2016; Zhao et al.,
2021). While effective for clock drift or noise, these methods assume cooperative settings and
do not detect deliberate, adversarial misalignments. On the defense side, most work has targeted
adversarial examples or sensor spoofing(Sato et al., 2025; Gao et al., 2021), rely on spatial, semantic,
or cross-modal inconsistencies through consistency checks, autoencoders, or hardware safeguards,
leaving the temporal dimension of fusion largely unaddressed. Man et al. (2023) enforces track–label
consistency but ignores timestamp validity; Li et al. (2020) detects context violations yet fails on
time-shifted data; and Xu et al. (2024) catches gross spoofing but overlooks subtle desynchronization
within tolerance windows. To date, all defense mechanisms assume benign timestamps, leaving
them vulnerable to network-level latency manipulation.

To address this gap, we propose AION, a lightweight defense patch that augments existing perception
models by explicitly monitoring cross-modal temporal consistency. AION learns shared multimodal
representations of camera and LiDAR inputs and applies dynamic time warping (DTW) to trace
their temporal alignment path (Berndt & Clifford, 1994). In AD, consecutive frames are temporally
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adjacent and semantically similar, but standard contrastive learning treats pairs strictly as positive or
negative. This rigid approach fails to capture subtle temporal misalignments. To address this, we in-
troduce continuity-aware contrastive learning (CACL), which encourages the model to learn smooth
temporal transitions. Specifically, we estimate the “negativity” of two negative sample pairs based
on their temporal distance—pairs closer in time are penalized less than distant pairs—allowing the
model to adaptively respect temporal continuity, enabling fine-grained multimodal representation.

Moreover, DTW is effective in analyzing temporal alignment because it does not assume uniform
timing—a practical constraint for AD. Hence, instead of comparing sequences strictly index-to-
index, DTW allows non-linear warping along the time axis, making it robust to delays, drifts, or
jitter in multimodal sensors—precisely the distortions exploited by TMA attacks. Deviations in this
alignment yield anomaly scores that indicate potential desynchronization or TMA attacks. In the ab-
sence of reliable network timestamps, AION leverages such semantic coherence between modalities
to detect deviations in the time series input across different modalities.

Our contributions are as follows:

• We propose AION, a plug-in detection framework that couples multimodal representation
learning with DTW-based temporal alignment and consistency monitoring, providing an
efficient, downstream task-agnostic defense against TMA attacks.

• We introduce continuity-aware contrastive learning, which leverages temporal proximity
to assign graded negativity to sample pairs, enabling the model to learn smooth tempo-
ral transitions and detect fine-grained misalignments in multimodal sensor data. We also
demonstrate a novel use of DTW to estimate temporal misalignment, enabling real-time
detection of subtle temporal manipulations.

• We introduce seven temporal misalignment (TMA) attacks covering both benign faults and
adversarial patterns, and evaluate AION across multiple datasets and fusion backbones. It
achieves high detection and defense performance with AUROC 0.9493 for camera-only,
0.9495 for LiDAR-only, and 0.9195 on most cross-modal attacks, while maintaining low
false-positive rates, demonstrating robustness and generalizability. The implementation
code and trained models will be released to ensure reproducibility.

2 BACKGROUND AND THREAT MODEL

Dynamic Time Warping (DTW). DTW is a classical technique for measuring similarity between
two temporal sequences that may be out of phase or evolve at different speeds. Given sequences
X = (x1, . . . , xn) and Y = (y1, . . . , ym), DTW computes a cost matrix D(i, j) = d(xi, yj),
where d(·, ·) is a local distance (e.g., Cosine, Euclidean, etc.). An alignment path is defined as
P = {(i1, j1), . . . , (iL, jL)}, subject to boundary conditions (i1, j1) = (1, 1), (iL, jL) = (n,m),
monotonicity, and continuity. The quality of a path is measured by its cumulative alignment cost:

C(P) =
∑

(i,j)∈P

D(i, j),

and the optimal path is obtained as P⋆ = argminP C(P), which specifies how elements of X
and Y should be aligned in time, while the minimal cost provides a quantitative measure of align-
ment quality—rewarding well-aligned sequences and penalizing distortions. This makes DTW a
natural candidate for checking temporal alignment across multimodal signals that contain redundant
information from the same surroundings.

Temporal Synchronizer in AD We consider a multimodal perception pipeline for autonomous
driving (AD) that fuses heterogeneous sensor modalities, focusing on camera (SC) and LiDAR
(SL). At each discrete time step t, sensor S ∈ {SC , SL} produces a message

(
x
(i)
S , t

(i)
S

)
, where

x
(i)
S is the observation (image or point cloud) and t

(i)
S is the sensor-reported timestamp. In most

autonomous-driving (AD) systems, sensor data are exchanged via middleware based on the Data
Distribution Service (DDS). ROS 2, a widely used AD middleware, typically synchronizes cross-
modal messages with an approximate-time synchronizer 1 that matches timestamps within a toler-

1TimeSynchronizer and ApproximateTimeSynchronizer are commonly used message fil-
tering utilities in ROS2 that align multiple sensor message streams based on their timestamps. While
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ance ∆t. Concretely, each sensor modality S keeps a finite FIFO buffer QS = {mS,1, . . . ,mS,N} of
recent messages (ordered by timestamp). An approximate-time synchronizer pairs messages across
modalities based on timestamp proximity. For a new camera message (or LiDAR message), m(i)

C ,
the synchronizer selects the LiDAR message (or camera message) with the closest timestamp,

j⋆(i) = argmin
k

∣∣t(i)C − t
(k)
L

∣∣,
and forms a pair (m(i)

C ,m
(j⋆)
L ) if their reported time difference is within tolerance τ and that paired

data is then processed and fused by the perception model.

Multimodal Fusion-based Perception Each modality has its own encoder ES that extracts
feature-level representations: f

(i)
C = EC(x

(i)
C ) and f

(j⋆)
L = EL(x

(j⋆)
L ). The features are fused

using a multimodal operator F (·), where h(i) = F
(
f
(i)
C , f

(j⋆)
L

)
, and passed to a task-specific pre-

diction head g(·), yielding the final output y(i) = g(h(i)). Thus, in the benign case, temporally
aligned sensor data is paired, encoded, fused, and used to generate reliable perception outputs.

2.1 THREAT MODEL

This part discusses the threat model, outlining how an adversary can exploit timestamp manipulation
to disrupt sensor synchronization and compromise the perception pipeline (as outlined above).

Attacker Objective. We assume an adversary who does not tamper with raw sensor observations
xS or the model parameters. Instead, the attacker manipulates the reported timestamps to force
misaligned sensor pairs into the fusion stage. Concretely, for each message the adversary injects a
perturbation δ

(i)
t such that the system receives t̃(i)S = t

(i)
S + δ

(i)
S . The synchronizer then selects pairs

according to manipulated timestamps,

j̃⋆(i) = argmin
k

∣∣t̃(i)C − t̃
(k)
L

∣∣,
resulting in fused features h̃(i) = F

(
EC(x

(i)
C ), EL(x

(j̃⋆)
L )

)
. Even though the reported misalignment

|t̃(i)C − t̃
(j̃⋆)
L | is within tolerance τ , the true temporal difference ∆

(i,j)
true = t

(i)
C − t

(j)
L may be large,

producing semantically inconsistent feature pairs. These corrupted representations h̃(i) propagate
through the fusion module, ultimately degrading predictions ỹ(i) without requiring the attacker to
alter raw sensor data or model parameters.

Attacker capability. We focus on the threat model where there is a compromised instance of in-
vehicle ECU or the ROS2 middleware situated upstream of the fusion node. From this position, the
attacker can read and write messages on the middleware bus and therefore inject messages m(i)

S =

(x
(i)
S , t̃

(i)
S ), while leaving the payload x

(i)
S untouched. This capability is practically plausible because

many ROS2 deployments are not configured with authentication-by-default (Deng et al., 2022), and
ECUs frequently run third-party or legacy software that enlarges the attack surface (Checkoway
et al., 2011; Foster et al., 2015; Miller & Valasek, 2015; Yeasmin & Haque, 2021; Ghosal et al.,
2022); a single compromised node, therefore, suffices to propagate forged timestamps to the fusion
process. From an attacker’s perspective, the objective is to corrupt the timestamps in a way that
forces the approximate-time synchronizer to emit pairs for which true temporal separation |∆(i,j)

true | =∣∣t(i)C − t
(j)
L

∣∣ is large enough to break semantic correspondence and degrade downstream perception.

Defense Objectives. A practical defense against temporal misalignment attacks must satisfy three
key properties: i) it should accurately detect when sensor streams are out of sync, ii) generalize
across different architectures and sensor modalities, and iii) introduce minimal overhead so that real-
time perception pipelines remain unaffected. Meeting these requirements is essential for ensuring
that AD systems remain both robust and deployable in practice.

TimeSynchronizer performs strict timestamp matching, ApproximateTimeSynchronizer allows
messages with slight temporal differences—within a specified tolerance window—to be synchronized.

3
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Figure 1: Overview of the proposed defense AION against any TMA attack.

3 TEMPORAL MISALIGNMENT DEFENSE: AION

To defend against such temporal misalignment attacks, we propose a countermeasure technique
named AION, that can detect if any of the sensor data streams are misaligned. We design AION
as an independent detection patch that can work on top of any MMF-based application, either in
parallel or sequentially, agnostic of the downstream task.

3.1 AION OVERVIEW

As shown in Fig. 1, AION primarily consists of a single shared multimodal representation encoder
(MRE) that maps any unimodal feature representation, regardless of its source or modality, to a
shared representation space. Furthermore, AION has two phases of implementation: i) development
and ii) deployment phase.

Development Phase. In the development phase, AION trains an MRE model using contrastive learn-
ing with positive and negative pairs based on their related temporal alignment. MRE learns how to
represent temporally aligned (positive) feature pairs from different modalities to similar represen-
tations and temporally misaligned (negative) pairs to different representations. Once the MRE is
trained, AION utilizes that trained MRE in the deployment phase to detect TMA attacks.

Deployment Phase. During the deployment phase, AION utilizes the trained MRE to create shared
representations of historical inputs from each modality and keeps a stack of these representations
for a small window. At the same time, AION also calculates and keeps track of a 2D similarity
matrix with pairwise inter-modality similarity scores between different representation pairs. The
diagonal elements in the similarity matrix indicate pairs that are temporally aligned and others that
are temporally misaligned to different extents as they deviate from the diagonal. On each such
similarity matrix, AION runs a dynamic time warping (DTW) algorithm to find the optimal path of
temporal alignment and the reward of such alignment, which is the summation of all their similarity
scores. Under a benign scenario, the optimal path with the highest reward would be the diagonal
one, and the reward would be higher. However, under a temporal misalignment attack, the optimal
path would deviate from the diagonal and follow the attacker’s misaligned pattern. In that case,
the optimal reward would be lower, which essentially indicates the existence of an adversary. We
elaborate on the details of each component of AION in the following subsections.

3.2 TECHNICAL DETAILS OF AION

To learn a unified representation for multimodal inputs, we use a shared MRE, Emm that projects
modality-specific features fC and fL from different modalities into a common latent space, such
that r(i)C = Emm(f

(i)
C ) and r

(j)
L = Emm(f

(j)
L ). The objective is to ensure that the shared repre-

sentations of semantically corresponding—i.e., temporally aligned—inputs are close in the latent
space, meaning r

(ti)
C = r

(ti)
L if i = j, and dissimilar otherwise. As the majority of MMF–based per-

ception models for AD primarily focus on fusing camera and LiDAR data, we center our technical
discussion of AION on these two modalities.

4
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The development phase specifically involves the training of the MRE model and running the detec-
tion on benign data to set the threshold. To ensure effective learning, we utilize contrastive learning
with three types of data pairs for the model training.

3.2.1 DIFFERENT REPRESENTATION PAIRS.

To ensure that MRE effectively learns representations while respecting the subtle semantic changes
in temporally adjacent frames, we categorize representation pairs into three types based on their
degree of temporal (mis)alignment.
Definition 1 (Positive Pairs) A pair of features (r

(i)
C , r

(j)
L ) is called a positive pair, denoted

(r
(i)
C , r

(j)
L ) ∈ Tp, if they originate from the same temporal event, i.e., i = j.

Definition 2 (Near-Negative Pairs) A pair (r
(i)
C , r

(j)
L ) is called a near-negative pair, denoted

(r
(i)
C , r

(j)
L ) ∈ Tnn, if they come from different but temporally adjacent events, i.e., i ̸= j but i ≈ j.

Such pairs share partially overlapping semantic content due to their temporal proximity.

Definition 3 (Far-Negative Pairs) A pair (r
(i)
C , r

(j)
L ) is called a far-negative pair, denoted

(r
(i)
C , r

(j)
L ) ∈ Tfn, if they originate from temporally distant events with no semantic overlap, i.e.,

|i− j| ≫ 0.

3.2.2 CONTINUITY-AWARE CONTRASTIVE LEARNING-BASED TRAINING

The primary goal of the shared encoder Emm is to ensure that the representations of positive pairs
are highly similar—i.e., have minimal distance—while representations of negative pairs remain well
separated in the latent space. To achieve this, we adopt a contrastive learning objective, based on
relaxed contrastive (ReCo) as proposed in (Lin et al., 2023), to train Emm, where each training batch
consists of a set of discrete sample indices Ibatch = {n1, n2, . . . , nb}, where the batch size is b and
each nk corresponds to a unique sample in the batch.

Thus, the representation sequences rC = {r(n1)
C , r

(n2)
C , . . . , r

(nb)
C } and rL =

{r(n1)
L , r

(n2)
L , . . . , r

(nb)
L } from two different modalities are calculated on the sampled inputs

from the training set. These indices are chosen in a manner that ensures the batch contains both
near-negative and far-negative pairs. Based on the rC and rL, we compute a similarity matrix
S ∈ Rb×b, where each entry Sij denotes the cosine similarity between the camera representation
r
(i)
C and the LiDAR representation r

(j)
L , defined as:

Sij =
r
(i)
C · r(j)L

∥r(i)C ∥ ∥r(j)L ∥
(1)

For positive pairs, we define the positive loss as: Lpos =
∑b

i=1 (Sii − 1)
2
, which loss encourages

the cosine similarity between the shared representations of temporally aligned inputs to be as close
as possible to 1. Negative pairs consist of temporally misaligned inputs, and ideally, their repre-
sentations should exhibit minimal cosine similarity. To enforce this, we define the negative loss as:
Lneg =

∑b
i,j=1
i̸=j

(max(0, Sij))
2 · λij . This loss penalizes any similarity between the negative pairs

at different scales, which is the key enabler of CACL. The penalty is modulated by the weight λij ,
which reflects the expected degree of dissimilarity based on temporal distance.

To generalize this weighting scheme, we define λij as a smooth function of temporal distance:

λij = tanh
(

|i−j|
τ

)
, where, τ is a temperature-like scaling factor that controls sensitivity to

temporal separation. This formulation (as shown in Fig 5 in Appendix ??) offers a continuous
and differentiable measure of misalignment, encouraging the model to learn nuanced distinctions
across the temporal spectrum. The overall objective combines the positive and negative pair losses,
Ltotal = Lpos + Lneg. This loss ensures high cosine similarity for aligned (positive) pairs, while
pushing apart misaligned (negative) pairs. The extent of separation for negative pairs is controlled
by the penalty weight λij , allowing for flexibility based on temporal misalignment.

3.3 ATTACK DETECTION

The detection of TMA attacks, though AION consists of two main tasks.

5
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Table 1: Seven Temporal Misalignment Attack Strategies
Attack Type Delay δS Description
Constant Freeze δj = j (within window) Frame freezing, dropped frames
Random Replacement Random from [i−m, i] Random replacements, corrupted frames
Jitter Stochastic δt = µ+ εt, εt ∼ U(−∆,+∆) Probabilistic jitter, network jitter
Reversal Reordering δj = 2j (within window) Order reversal, out-of-order packets
Burst Intermittent δj = j (within burst) Intermittent freezes, bursty congestion
Drift Cumulative δj = ⌊r × j⌋ Gradual desync, clock skew
Scheduler Algorithm δj = f(q, dmax) (round-robin/priority) CPU scheduler (round-robin/priority)

3.3.1 HISTORICAL REPRESENTATION QUEUE AND SIMILARITY MATRIX

AION keeps queues of historical representations for each modality for the latest w sensor data. If
we assume the indices of that queue as Idetect = {n1, n2, . . . , nw}. For a presented window size
w, AION keeps track of the sequential representation rC = {r(n1)

C , r
(n2)
C , . . . , r

(nw)
C } and rL =

{r(n1)
L , r

(n2)
L , . . . , r

(nw)
L }. Similar to the training phase, as mentioned in equation 1, AION creates

the similarity matrix S ∈ Rw×w. With the arrival of every new message, AION updates rC , rL, and
S, and runs the DTW-based detection as described in the following part.

3.3.2 DYNAMIC TIME WARPING-BASED DETECTION

To quantify the extent of temporal misalignment within the rC and rL, AION employs DTW to
compute both the optimal temporal alignment path and the corresponding alignment reward. We
implemented DTW to identify the optimal warping path P that maximizes the accumulated similar-
ity, which we define as reward, over a similarity matrix. Algorithm 1, outlines this procedure, which
takes S as input and returns the optimal path P and total reward ϕ associated with that path. In an
ideal scenario, where all sensors remain temporally aligned, the optimal warping path follows the
diagonal: P∗ = {(1, 1), (2, 2), . . . , (w,w)}, as diagonal elements Sii have the highest similarity
scores. Under the optimal alignment path, the optimal accumulated reward, ϕ∗ =

∑w
i=1 Sii = w,

since the embedding function Emm is trained to maximize similarity for aligned pairs. Thus, any
deviation from that diagonal path P∗ or the optimal reward ϕ∗ can be considered anomalous.

Justification on Detection. The fundamental assumption behind this approach is that DTW max-
imizes cumulative alignment reward by optimally aligning sequences. Given a well-trained Emm,
the cost function Sij satisfies:

Sij = 1 iff i = j
In a benign case, where data samples are perfectly aligned, ϕben is maximized, and aben is mini-
mized, since all elements on the optimal path mostly satisfy i = j, therefore:

ϕben =
∑

(i,j)∈Pben

Sij ≈
W∑
i=1

Sii thus, aben ≈ 0

However, in the presence of malicious misalignment, the warping path necessarily includes terms
where i ̸= j, leading to Sij << 1 for some (i, j). Since DTW maximizes the total reward, the
deviation from P∗ implies a decrease in ϕmal and an increase in amal is minimized, such that:

ϕmal =
∑

(i,j)∈Pmal

Sij <

W∑
i=1

Sii thus, amal >> 0

This establishes the fundamental assumption that as misalignment increases, so does anomaly score,
reinforcing the validity of DTW in the anomaly detection process. Empirical validation in Sec-
tion 3.3 further supports this claim.

4 EXPERIMENTAL SETTINGS

To evaluate the effectiveness of AION in detecting TMA attacks, we conduct a detection analysis
under various attack scenarios. We synthetically generate different degrees of temporal misalign-
ment by perturbing the input sequences in the test data as described in Table 1. For two different
models trained on two different datasets, we evaluate AION’s ability to distinguish between normal
and misaligned sequences under diverse TMA attacks.

6
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4.1 DATASETS

We evaluate AION on two standard multimodal AD datasets:

KITTI Tracking Dataset. The KITTI benchmark (Geiger et al., 2012), collected in Karlsruhe,
Germany, covers city, residential, and highway scenes. It provides a forward-facing RGB camera
and a Velodyne LiDAR, with 3D bounding boxes and labels for cars, pedestrians, and cyclists.

NuScenes Dataset. The NuScenes benchmark (Caesar et al., 2020), recorded in Boston and Sin-
gapore, captures dense urban traffic. It includes six RGB cameras, a Velodyne LiDAR, and five
radars. NuScenes consists of 1000 20-second sequences with 3D bounding boxes and tracking IDs
for different classes, such as vehicles, pedestrians, bicycles, and barriers.

4.2 MODEL ARCHITECTURE

We implemented AION for both the KITTI and nuScenes datasets to evaluate its adaptability across
different sensor setups and driving scenarios.

AION on KITTI: For the KITTI dataset, we adopt a straightforward approach by testing with two
off-the-shelf, pre-trained image and LiDAR feature encoders. The MRE of AION is implemented us-
ing a simple convolutional neural network (CNN) architecture, featuring two distinct input branches
and a shared output branch. For each KITTI sample, an RGB image of size [3, 375, 1242] is en-
coded using ResNet-50 (He et al., 2016) to produce image features fC ∈ R2048×12×39, while the
LiDAR point cloud [k, 3] is processed by PointPillars (Lang et al., 2019) to yield LiDAR features
fL ∈ R384×248×216. Our encoder Emm maps both fC and fL to a shared space by applying
modality-specific convolutional branches, global average pooling, and a shared projection head,
producing 256-dimensional representations rC and rL.

AION on nuScenes: For the nuScenes dataset, we build AION on top of BEVFusion (Liu et al.,
2023) to demonstrate AION’s adaptability to complex MMF architectures. Each input includes six
camera images and a LiDAR point cloud. We use BEVFusion’s encoders to obtain BEV features
fC , fL ∈ R64×180×180 for camera and LiDAR, respectively. These are passed to a hybrid encoder
Emm, which first applies shared CNN layers to produce [256×23×23] embeddings. A lightweight
transformer then processes spatial tokens with positional encodings and global self-attention, fol-
lowed by mean pooling to produce 256-dimensional representations rC and rL.

4.3 EVALUATION SETTINGS

Attack Hyperparameters. We generate misaligned samples for both datasets using the TMA
attacks defined in Table 1, injecting perturbations into test sequences at fixed intervals. All attacks
follow a periodic structure parameterized by attack interval t and duration n, set to default values
t = 25 and n = 10 for consistent evaluation. Attack-specific parameters emulate realistic timing
faults: Random uses a history window m = 10; Jitter applies mean delay µ = 1 and jitter range
∆ = 3; Burst uses burst size s = 3 and gap g = 2; Drift applies drift rate r = 0.5; and Scheduler
uses time quantum q = 3, maximum delay dmax = 5, and round-robin scheduling. For multi-modal
attacks, we introduce controlled cross-sensor variability to model heterogeneous pipeline behavior,
including ±20% variation for Random parameters (t, n,m), ±30% variation for Jitter (µ,∆) and
Drift (r), and ±2-frame variation for Burst (s, g) and Scheduler (q, dmax), along with phase offsets
up to 40% of the attack interval to enforce realistic temporal desynchronization between Camera
and LiDAR streams.

Anomaly Detection Methodology. To classify whether an input sequence is malicious, we ana-
lyze the cross-modal temporal consistency of multimodal pairs within a defined observation window
w = 3. In this evaluation, we label a window as malicious if at least half of its multimodal pairs
contain a misaligned sample. We analyze the anomaly scores using the ROC curve and calculate the
area under the ROC curve (AUROC) as the key detection metric.

Software Implementation We implement and evaluate AION in Python 3.8 using PyTorch, lever-
aging open-source frameworks such as OpenPCDet (Team, 2020). Experiments were primarily
conducted on a high-performance server running Ubuntu 20.04.6 LTS, equipped with an Intel Xeon
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Gold 5520 CPU (16 cores, 2.20 GHz), 128 GB RAM, and three NVIDIA RTX 6000 Ada GPUs. For
scalability profiling, we additionally evaluate AION on a more modest Ubuntu machine with an Intel
Core i9-9820X CPU (10 cores, 3.30 GHz) and a single RTX 2080 Ti GPU, reflecting the constraints
of a realistic automotive deployment scenario.

5 DETECTION RESULTS

We evaluate the performance of AION across both datasets and model architectures. We begin by
illustrating the detection process on the nuScenes dataset, including visualizations of similarity and
anomaly scores under different attack types. Finally, we present the ROC curves, along with the
AUROC scores, for both datasets.

5.1 VISUALIZATION OF SIMILARITY MATRIX

Fig 2 illustrates four different similarity matrices with the Camera and LiDAR representations, rC
and rL, from time steps 10 to 40 under various TMA attacks (launched from 20 to 30), including the
benign case. The top left-most panel shows the similarity matrix between rC and rL under benign
conditions—i.e., with no delay in either modality. As illustrated, the highest similarity scores lie
along the diagonal path from (10, 10) to (40, 40), indicating perfect temporal alignment between
both modalities. However, all the following panels depict cases where seven types of temporal mis-
alignments are introduced by delaying the camera stream under TMA attacks: all between time steps
20 and 30. In these scenarios, the highest similarity scores often diverge from the diagonal beyond
time step 20 and only steadily return to the diagonal again around time step 30. These deviations
clearly signify temporal misalignments, which AION leverages to detect such TMA attacks. We
provide further figures in Appendix D, showing the impact of compromising only LiDAR (Figure 6)
and both modalities (Figure 7).

Some figures in Figure 7 show unique scenarios where both modalities are delayed by the same
amount (i.e., constant delay) under TMA attack. In this case, the similarity scores remain high
(and the same) across both diagonal and occasionally, off-diagonal elements, from time steps 20 to
30. Such patterns may emerge under both benign and malicious conditions. For instance, under
benign conditions, the vehicle may be stationary without any moving objects in the scene, result-
ing in temporally consistent features over time. In contrast, an attacker could also replicate this
same scene with a malicious delay to all modalities by the same constant offset, creating a similar
similarity matrix. Hence, these unique, advanced attacks become a challenging task just by ana-
lyzing the cross-modal alignment similarities. Although AION, when limited to only the modalities
used in MMF, cannot reliably detect such an advanced attack case, incorporating additional data
sources—such as inertial measurements (IMU), controller area network (CAN) signals, or other
external references—can provide complementary evidence and help detect such advanced attacks.
However, as we only rely on the multimodal data in this work, we consider this extension as future
work for AION.

5.2 DETECTION PERFORMANCE OF AION

We illustrate the detection performance of AION from two different perspectives.

Visualization of Anomaly Scores. Figure ?? illustrates the temporal evolution of anomaly scores,
provided by AION, across different time steps under various TMA attacks on the camera stream.
Each shaded region indicates whether the system is operating under benign (green) or malicious
(red) conditions, based on the temporal alignment. As shown, AION consistently produces higher
anomaly scores during periods where temporal misalignment is introduced, compared to benign
intervals. This clear contrast in anomaly demonstrates the effectiveness of AION in detecting ma-
licious temporal misalignment induced by a wide range of TMA attacks. Figure 8 in Appendix E
shows the anomaly scores under LiDAR-based TMA attack.

ROC Curve with AUROC Scores. Fig. 4 illustrates that across both datasets and in all single-
modality settings, AION exhibits consistently strong detection performance. The ROC curves re-
main tightly concentrated near the top-left corner, and AUROC values range from 0.92–0.98. This
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Figure 2: Similarity scores/matrix between Camera and LiDAR representation embeddings under
different TMA attacks on Camera between time steps 20 to 30.
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Figure 3: Anomaly scores generated by AION under various camera-only TMA attacks. The ‘red’
and ‘green’ shaded regions indicate periods with and without attacks, respectively. Distinctive
score patterns across these regions highlight AION’s effectiveness against diverse TMA attacks.

robustness holds for all attack variants—including Drift, Jitter, Random, Burst, Scheduler, and even
Reversal—demonstrating that AION reliably captures modality-specific temporal deviations with-
out having dataset-specific dependancy. High AUROC under Drift attacks further highlights AION’s
sensitivity to low-variance and slowly evolving perturbations, underscoring the strength of its DTW-
based detection.

AION also maintains competitive performance under both-modality attacks for the majority of per-
turbations. Random, Drift, Jitter, Burst, and Scheduler attacks maintain AUROC scores close to
their single-modality counterparts, indicating that AION effectively leverages cross-modal temporal
correlations even when both sensors are perturbed. The close alignment of trends between KITTI
and nuScenes suggests strong generalization across datasets with distinct motion statistics and sen-
sor characteristics. Moreover, the consistently high true positive rates with a low false positive rate
underscore the AION’s reliability in realistic AD environments subjected to TMA attacks.

A notable limitation arises under perfectly synchronized, cross-modal perturbations—such as Con-
stant and Reversal attacks—when applied simultaneously to both camera and lidar. These attacks
preserve the highest cross-modal similarity along the diagonal path, effectively suppressing the tem-
poral discrepancies that AION relies upon for detection. This exposes an important avenue for
future work by incorporating additional modalities (e.g., CAN, IMU, etc.) and developing invariant
temporal anomaly features that remain robust under coordinated multi-sensor manipulation.

Scalability. To enable efficient multi-modal representation learning, AION introduces only a
lightweight overhead. Below, we elaborate on the computation overhead of AION on the NuScenes
dataset, as it is more computationally demanding with 6 cameras compared to the single front cam-
era in KITTI. Compared to full perception model stacks, AION is highly compact, with only ∼1.97
million parameters (∼7.9 MB in FP32), whereas typical perception pipelines (such as BEVFusion)
exceed 30 million parameters (∼127 MB in FP32) (Liu et al., 2023). On an RTX 2080Ti GPU, our
profiling reveals that AION’s computational overhead consists of two components: (1) MRE infer-

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

Attacks on Camera (KITTI)

Constant: 0.9717
Random: 0.9214
Drift: 0.9425
Jitter: 0.9583
Reversal: 0.9398
Burst: 0.9255
Scheduler: 0.9611
Random

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Attacks on Lidar (KITTI)

Constant: 0.9690
Random: 0.9531
Drift: 0.9356
Jitter: 0.9616
Reversal: 0.9425
Burst: 0.9352
Scheduler: 0.9244
Random

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Attacks on Both (KITTI)

Constant: 0.1274
Random: 0.9092
Drift: 0.9331
Jitter: 0.9149
Reversal: 0.5218
Burst: 0.8720
Scheduler: 0.9034
Random

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Attacks on Camera (nuScenes)

Constant: 0.9791
Random: 0.9572
Drift: 0.9463
Jitter: 0.9283
Reversal: 0.9554
Burst: 0.9541
Scheduler: 0.9494
Random

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Attacks on Lidar (nuScenes)

Constant: 0.9781
Random: 0.9577
Drift: 0.9497
Jitter: 0.9280
Reversal: 0.9552
Burst: 0.9505
Scheduler: 0.9518
Random

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Attacks on Both (nuScenes)

Constant: 0.0983
Random: 0.9394
Drift: 0.9433
Jitter: 0.9060
Reversal: 0.5095
Burst: 0.9365
Scheduler: 0.9369
Random

Figure 4: ROC curves with AUROC scores of AION under TMA attacks across KITTI and
nuScenes, evaluated on camera, lidar, and both camera–lidar modalities.

ence requires 1.74 ms per forward pass (574 inf/s) and consumes 42.5 MB of GPU memory, and (2)
DTW-based detection adds 1.52 ms per inference (659 inf/s) and runs on CPU without GPU mem-
ory overhead. The total AION overhead is approximately 3.26 ms per inference with a combined
throughput of ∼307 inf/s (see Table 2).

Comp Latency Throughput GPU Mem

MRE 1.74 ms 574 inf/s 42.5 MB
DTW 1.52 ms 659 inf/s –

Total 3.26 ms 307 inf/s 42.5 MB

Table 2: Computational overhead of AION.

Given that typical MMF-based AD perception
pipelines operate at 10–20 Hz (corresponding
to 50–100 ms per frame), AION’s overhead of
3.26 ms represents only 3.3–6.5% of the avail-
able frame budget, and can run in parallel to the
downstream task. While DTW has O(w2) com-
plexity, we empirically find that a short window
(w = 3 to 5) is sufficient to detect misalignment
attacks in AD while keeping the runtime negli-
gible and suitable for real-time deployment. Larger windows, on the other hand, add cost and may
dilute temporal granularity, hurting effectiveness. This demonstrates that AION’s robustness gains
come at a very negligible computational cost, making it highly feasible for real-time deployment in
production AD systems.

6 CONCLUSION

Temporal misalignment attacks are an emerging threat to AD perception, where adversaries manipu-
late timestamps—without altering sensor data—causing the temporal synchronizer to inadvertently
induce cross-modal misalignment. To counter this challenge, we introduced AION, a lightweight
defense that integrates multimodal shared representation learning with dynamic time warping to en-
force temporal consistency before fusion. AION exhibits consistently strong robustness on diverse
temporal misalignment attacks across KITTI and nuScenes, achieving high average AUROC scores
for camera-only (0.9493) and LiDAR-only (0.9495) attacks, and maintaining resilient performance
under both-modality attacks (0.9195 on most attacks). These results highlight the importance of
synchronization-aware perception architectures and establish temporal consistency checking as a
critical security property for safety-critical autonomous systems.

LLM Usage Disclosure. LLMs were used for editorial purposes in this manuscript, and all outputs
were inspected by the authors to ensure accuracy and originality.
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A CONSIDERED ATTACKS

We evaluate our defense against seven distinct temporal misalignment attack strategies that model
various real-world failure modes and adversarial scenarios in autonomous driving systems. Each
attack operates on the temporal dimension of sensor data streams, introducing misalignment between
camera and LiDAR modalities through different delay and manipulation patterns.

Constant Attack: Introduces complete frame freezing by replacing consecutive frames with a single
frozen frame at periodic intervals. This attack simulates dropped frames or sensor failures, where
frames within the attack window are replaced with the frame at the start of the window. The delay
δj = j for position j within the attack window, as each subsequent frame uses data from j frames
earlier, creating temporal plateaus that break cross-modal temporal alignment.

Random Attack: Applies random frame replacements by selecting frames uniformly at random
from a history window m. This attack models corrupted frames or packet loss with random retrans-
mission, introducing temporal discontinuities that disrupt the expected temporal ordering. Unlike
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delay-based attacks, this attack replaces frames with random historical frames rather than applying
a deterministic delay distribution.

Jitter Attack: Applies stochastic timing delays following δt = µ + εt, where εt ∼
Uniform(−∆,+∆) and δt represents the delay amount in frames. Each frame within the attack
window is shifted backward by δt frames, modeling realistic network jitter and timing noise from
scheduler fluctuations or multi-threading effects.

Reversal Attack: Reverses the temporal order of frames within periodic attack windows, where
the delay δj = 2j for position j within the attack window. This attack simulates out-of-order
packet delivery scenarios, where frames arrive in reverse temporal sequence, violating the expected
monotonic temporal progression.

Burst Attack: Introduces intermittent freezes with gaps between bursts, where frames within each
burst are frozen by replacing them with earlier frames. This attack models bursty network conges-
tion, where multiple short bursts of frozen frames are separated by gaps of normal operation. Within
each burst, the delay increases as δj = j for position j within the burst, creating a more subtle
misalignment pattern than continuous freezing.

Drift Attack: Applies gradually accumulating delays following δi = ⌊r×i⌋, where r is the drift rate
and δi represents the delay amount in frames. This attack simulates clock skew and buffer buildup
scenarios, where delays accumulate linearly over time, either within periodic attack windows or
continuously across all frames, creating a cumulative desynchronization effect.

Scheduler Attack: Mimics CPU scheduler behavior by applying delays following deterministic
patterns δi = f(quantum, dmax), where δi represents the delay amount in frames and f implements
round-robin or priority-based scheduling algorithms. This attack models system-level delays from
task preemption and priority-based processing, where delays cycle through values or increase based
on priority aging mechanisms.

B DTW ALGORITHM FOR AION IN MISALIGNMENT DETECTION

In this section, we describe how we apply DTW to measure temporal misalignment in AION and to
quantify anomaly score on a window of multimodal representations.

C PLOT OF λ FUNCTION

We plot the λ function to show how it assigns penalty weights based on the temporal misalignment
|i − j| between sequence elements, highlighting the effect of the sensitivity factor τ in controlling
the transition from near-negative to far-negative pairs.

D ADDITIONAL FIGURES ON COSINE SIMILARITY

We provide additional visualizations of the cosine similarity matrices under TMA attacks applied
to both LiDAR-only (Figure 6) and both-modalities (Figure 7). These figures complement the
main-text analysis by illustrating how TMA systematically perturbs the temporal similarity structure
across different sensor configurations.

E ADDITIONAL VISUALIZATION OF ANOMALY SCORES

Figure 8 presents the anomaly score trajectories for LiDAR-based TMA attacks, complementing
the camera-based results shown in Fig. 3. As with the camera stream, AION exhibits a clear
separation between benign (green) and malicious (red) intervals, consistently producing elevated
anomaly scores whenever temporal misalignment is introduced. This reinforces that AION detects
misalignment-induced anomalies reliably across sensing modalities, including LiDAR.
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Algorithm 1: OPTIMAL WARPING PATH AND REWARD COMPUTATION

Input : Cost matrix S ∈ Rw×w

Output: Optimal path P∗ and reward ϕ∗

/* Initialization */
Initialize accumulated score matrix R ∈ Rw×w;
R(1, 1)← S(1, 1);
for n← 2 to w do

R(n, 1)← S(n, 1) +R(n− 1, 1);
end
for m← 2 to w do

R(1,m)← S(1,m) +R(1,m− 1);
end
/* Dynamic programming recursion */
for n← 2 to w do

for m← 2 to w do
R(n,m)← S(n,m) + max{R(n− 1,m− 1), R(n− 1,m), R(n,m− 1)};

end
end
/* Backtracking */
P∗ ← [(w,w)], (n,m)← (w,w);
while (n,m) ̸= (1, 1) do

if n = 1 then
m← m− 1;

else if m = 1 then
n← n− 1;

else
(n,m)← argmax{R(n− 1,m− 1), R(n− 1,m), R(n,m− 1)};

end
Prepend (n,m) to P∗;

end
/* Final reward */
ϕ∗ ← R(w,w);
return P∗, ϕ∗;

0 1 2 3 4 5 6 7 8 9 10
|ni nj|
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= 1
= 2
= 3
= 4
= 5

Figure 5: Visualization of the function λij for different misalignment level (|i − j|) and sensitivity
factor (τ ). The x-axis represents the absolute difference |i− j|, indicating the transition from near-
negative to far-negative pairs, and the y-axis shows the corresponding penalty weights λij . Different
lines indicate how the function saturates more quickly for smaller τ , indicating the role of τ in
setting the boundary between the near and far negative.

F HARDWARE-IN-THE-LOOP TESTBED

To assess AION’s compatibility with real-world deployment constraints, we develop a hardware-in-
the-loop automotive Ethernet (AE) testbed that emulates a production in-vehicle sensing and fusion
setup. As shown in Fig. 9, multiple Raspberry Pis, preloaded with the KITTI dataset, operate as
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Figure 6: Similarity scores/matrix between Camera and LiDAR representation embeddings under
different TMA attacks on LiDAR between time steps 20 to 30.
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Figure 7: Similarity scores/matrix between Camera and LiDAR representation embeddings under
different TMA attacks on Both Camera and LiDAR between time steps 20 to 30.

camera and LiDAR sensor nodes, with an additional Pi and server CPU together serving as the
fusion node. All these nodes communicate over AE using media converters and an AE switch. The
full pipeline runs on ROS2, enabling realistic sensor message timing and fusion workloads. Within
this environment, we injected TMA attacks into the ROS2 message streams and empirically verified
that AION detects them reliably. Additional implementation details of the testbed will be provided
in the final version.
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Figure 8: Anomaly scores generated by AION under various LiDAR-only TMA attacks. The ‘red’
and ‘green’ shaded regions indicate periods with and without attacks, respectively. Distinctive
score patterns across these regions highlight AION’s effectiveness against diverse TMA attacks.
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Figure 9: Hardware-in-the-loop automotive Ethernet (AE) testbed
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