
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DETECTING TEMPORAL MISALIGNMENT ATTACKS IN
MULTIMODAL FUSION FOR AUTONOMOUS DRIVING

Anonymous authors
Paper under double-blind review

ABSTRACT

Multimodal fusion (MMF) is crucial for autonomous driving perception, com-
bining camera and LiDAR streams for reliable scene understanding. However,
its reliance on precise temporal synchronization introduces a vulnerability: ad-
versaries can exploit network-induced delays to subtly misalign sensor streams,
degrading MMF performance. To address this, we propose AION, a lightweight,
plug-in defense tailored for the autonomous driving scenario. AION integrates
continuity-aware contrastive learning to learn smooth multimodal representations
and a DTW-based detection mechanism to trace temporal alignment paths and
generate misalignment scores. AION demonstrates strong and consistent ro-
bustness against a wide range of temporal misalignment attacks on KITTI and
nuScenes, achieving high average AUROC for camera-only (0.9493) and LiDAR-
only (0.9495) attacks, while sustaining robust performance under joint cross-
modal attacks (0.9195 on most attacks) with low false-positive rates across fusion
backbones. Code will be publicly released upon acceptance (currently available
at https://anonymous.4open.science/r/AION-F10B).

1 INTRODUCTION

Autonomous vehicles rely on multimodal fusion (MMF) of complementary sensors such as cameras
and LiDAR to achieve robust perception (Zhang et al., 2023; Feng et al., 2020; Chen et al., 2017).
While cameras provide rich semantic texture and LiDAR delivers accurate geometric depth, their in-
tegration crucially depends on precise temporal synchronization. Misalignments in frames can cause
fusion models to miss objects or generate spurious detections, leading to significant safety hazards
in downstream planning and control (Kuhse et al., 2024). Recent studies have shown that temporal
desynchronization is not only a benign calibration issue but also a potential attack vector, which is
known as a temporal misalignment (TMA) attack (Shahriar et al., 2025). Network-induced delays or
timestamp manipulation can be exploited by adversaries to misalign sensor streams in time, thereby
degrading the performance of detection and tracking without altering sensor content (Finkenzeller
et al., 2025). For example, prior work demonstrated that even a single-frame LiDAR delay can
reduce average precision by more than 88% across multiple detection models (Shahriar et al., 2025).

Existing efforts to handle temporal inconsistency primarily focus on calibration and benign jitter
compensation, such as filtering or offline timestamp alignment (Taylor & Nieto, 2016; Zhao et al.,
2021). While effective for clock drift or noise, these methods assume cooperative settings and
do not detect deliberate, adversarial misalignments. On the defense side, most work has targeted
adversarial examples or sensor spoofing(Sato et al., 2025; Gao et al., 2021), rely on spatial, semantic,
or cross-modal inconsistencies through consistency checks, autoencoders, or hardware safeguards,
leaving the temporal dimension of fusion largely unaddressed. Man et al. (2023) enforces track–label
consistency but ignores timestamp validity; Li et al. (2020) detects context violations yet fails on
time-shifted data; and Xu et al. (2024) catches gross spoofing but overlooks subtle desynchronization
within tolerance windows. To date, all defense mechanisms assume benign timestamps, leaving
them vulnerable to network-level latency manipulation.

To address this gap, we propose AION, a lightweight defense patch that augments existing perception
models by explicitly monitoring cross-modal temporal consistency. AION learns shared multimodal
representations of camera and LiDAR inputs and applies dynamic time warping (DTW) to trace
their temporal alignment path (Berndt & Clifford, 1994). In AD, consecutive frames are temporally

1

https://anonymous.4open.science/r/AION-F10B

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

adjacent and semantically similar, but standard contrastive learning treats pairs strictly as positive or
negative. This rigid approach fails to capture subtle temporal misalignments. To address this, we in-
troduce continuity-aware contrastive learning (CACL), which encourages the model to learn smooth
temporal transitions. Specifically, we estimate the “negativity” of two negative sample pairs based
on their temporal distance—pairs closer in time are penalized less than distant pairs—allowing the
model to adaptively respect temporal continuity, enabling fine-grained multimodal representation.

Moreover, DTW is effective in analyzing temporal alignment because it does not assume uniform
timing—a practical constraint for AD. Hence, instead of comparing sequences strictly index-to-
index, DTW allows non-linear warping along the time axis, making it robust to delays, drifts, or
jitter in multimodal sensors—precisely the distortions exploited by TMA attacks. Deviations in this
alignment yield anomaly scores that indicate potential desynchronization or TMA attacks. In the ab-
sence of reliable network timestamps, AION leverages such semantic coherence between modalities
to detect deviations in the time series input across different modalities.

Our contributions are as follows:

• We propose AION, a plug-in detection framework that couples multimodal representation
learning with DTW-based temporal alignment and consistency monitoring, providing an
efficient, downstream task-agnostic defense against TMA attacks.

• We introduce continuity-aware contrastive learning, which leverages temporal proximity
to assign graded negativity to sample pairs, enabling the model to learn smooth tempo-
ral transitions and detect fine-grained misalignments in multimodal sensor data. We also
demonstrate a novel use of DTW to estimate temporal misalignment, enabling real-time
detection of subtle temporal manipulations.

• We introduce seven temporal misalignment (TMA) attacks covering both benign faults and
adversarial patterns, and evaluate AION across multiple datasets and fusion backbones. It
achieves high detection and defense performance with AUROC 0.9493 for camera-only,
0.9495 for LiDAR-only, and 0.9195 on most cross-modal attacks, while maintaining low
false-positive rates, demonstrating robustness and generalizability. The implementation
code and trained models will be released to ensure reproducibility.

2 BACKGROUND AND THREAT MODEL

Dynamic Time Warping (DTW). DTW is a classical technique for measuring similarity between
two temporal sequences that may be out of phase or evolve at different speeds. Given sequences
X = (x1, . . . , xn) and Y = (y1, . . . , ym), DTW computes a cost matrix D(i, j) = d(xi, yj),
where d(·, ·) is a local distance (e.g., Cosine, Euclidean, etc.). An alignment path is defined as
P = {(i1, j1), . . . , (iL, jL)}, subject to boundary conditions (i1, j1) = (1, 1), (iL, jL) = (n,m),
monotonicity, and continuity. The quality of a path is measured by its cumulative alignment cost:

C(P) =
∑

(i,j)∈P

D(i, j),

and the optimal path is obtained as P⋆ = argminP C(P), which specifies how elements of X
and Y should be aligned in time, while the minimal cost provides a quantitative measure of align-
ment quality—rewarding well-aligned sequences and penalizing distortions. This makes DTW a
natural candidate for checking temporal alignment across multimodal signals that contain redundant
information from the same surroundings.

Temporal Synchronizer in AD We consider a multimodal perception pipeline for autonomous
driving (AD) that fuses heterogeneous sensor modalities, focusing on camera (SC) and LiDAR
(SL). At each discrete time step t, sensor S ∈ {SC , SL} produces a message

(
x
(i)
S , t

(i)
S

)
, where

x
(i)
S is the observation (image or point cloud) and t

(i)
S is the sensor-reported timestamp. In most

autonomous-driving (AD) systems, sensor data are exchanged via middleware based on the Data
Distribution Service (DDS). ROS 2, a widely used AD middleware, typically synchronizes cross-
modal messages with an approximate-time synchronizer 1 that matches timestamps within a toler-

1TimeSynchronizer and ApproximateTimeSynchronizer are commonly used message fil-
tering utilities in ROS2 that align multiple sensor message streams based on their timestamps. While

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

ance ∆t. Concretely, each sensor modality S keeps a finite FIFO buffer QS = {mS,1, . . . ,mS,N} of
recent messages (ordered by timestamp). An approximate-time synchronizer pairs messages across
modalities based on timestamp proximity. For a new camera message (or LiDAR message), m(i)

C ,
the synchronizer selects the LiDAR message (or camera message) with the closest timestamp,

j⋆(i) = argmin
k

∣∣t(i)C − t
(k)
L

∣∣,
and forms a pair (m(i)

C ,m
(j⋆)
L) if their reported time difference is within tolerance τ and that paired

data is then processed and fused by the perception model.

Multimodal Fusion-based Perception Each modality has its own encoder ES that extracts
feature-level representations: f

(i)
C = EC(x

(i)
C) and f

(j⋆)
L = EL(x

(j⋆)
L). The features are fused

using a multimodal operator F (·), where h(i) = F
(
f
(i)
C , f

(j⋆)
L

)
, and passed to a task-specific pre-

diction head g(·), yielding the final output y(i) = g(h(i)). Thus, in the benign case, temporally
aligned sensor data is paired, encoded, fused, and used to generate reliable perception outputs.

2.1 THREAT MODEL

This part discusses the threat model, outlining how an adversary can exploit timestamp manipulation
to disrupt sensor synchronization and compromise the perception pipeline (as outlined above).

Attacker Objective. We assume an adversary who does not tamper with raw sensor observations
xS or the model parameters. Instead, the attacker manipulates the reported timestamps to force
misaligned sensor pairs into the fusion stage. Concretely, for each message the adversary injects a
perturbation δ

(i)
t such that the system receives t̃(i)S = t

(i)
S + δ

(i)
S . The synchronizer then selects pairs

according to manipulated timestamps,

j̃⋆(i) = argmin
k

∣∣t̃(i)C − t̃
(k)
L

∣∣,
resulting in fused features h̃(i) = F

(
EC(x

(i)
C), EL(x

(j̃⋆)
L)

)
. Even though the reported misalignment

|t̃(i)C − t̃
(j̃⋆)
L | is within tolerance τ , the true temporal difference ∆

(i,j)
true = t

(i)
C − t

(j)
L may be large,

producing semantically inconsistent feature pairs. These corrupted representations h̃(i) propagate
through the fusion module, ultimately degrading predictions ỹ(i) without requiring the attacker to
alter raw sensor data or model parameters.

Attacker capability. We focus on the threat model where there is a compromised instance of in-
vehicle ECU or the ROS2 middleware situated upstream of the fusion node. From this position, the
attacker can read and write messages on the middleware bus and therefore inject messages m(i)

S =

(x
(i)
S , t̃

(i)
S), while leaving the payload x

(i)
S untouched. This capability is practically plausible because

many ROS2 deployments are not configured with authentication-by-default (Deng et al., 2022), and
ECUs frequently run third-party or legacy software that enlarges the attack surface (Checkoway
et al., 2011; Foster et al., 2015; Miller & Valasek, 2015; Yeasmin & Haque, 2021; Ghosal et al.,
2022); a single compromised node, therefore, suffices to propagate forged timestamps to the fusion
process. From an attacker’s perspective, the objective is to corrupt the timestamps in a way that
forces the approximate-time synchronizer to emit pairs for which true temporal separation |∆(i,j)

true | =∣∣t(i)C − t
(j)
L

∣∣ is large enough to break semantic correspondence and degrade downstream perception.

Defense Objectives. A practical defense against temporal misalignment attacks must satisfy three
key properties: i) it should accurately detect when sensor streams are out of sync, ii) generalize
across different architectures and sensor modalities, and iii) introduce minimal overhead so that real-
time perception pipelines remain unaffected. Meeting these requirements is essential for ensuring
that AD systems remain both robust and deployable in practice.

TimeSynchronizer performs strict timestamp matching, ApproximateTimeSynchronizer allows
messages with slight temporal differences—within a specified tolerance window—to be synchronized.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Downstream Task Head

In-
Vehicular
Network

ROS2
Middle-

ware

𝐸C

𝐸L
Shared Representation

Shared
Multimodal

Encoder
𝐸𝑚𝑚

Temporal Misalignment
Detection Patch

𝐷TW

M
is

al
ig

nm
en

t S
co

re

Automotive
Ethernet

Temporal Misalignment
Attack

𝑥C !

𝑥L "

𝑓C !

𝑓L "

𝑟C !

𝑟L "

Modality-specific
Representation

Figure 1: Overview of the proposed defense AION against any TMA attack.

3 TEMPORAL MISALIGNMENT DEFENSE: AION

To defend against such temporal misalignment attacks, we propose a countermeasure technique
named AION, that can detect if any of the sensor data streams are misaligned. We design AION
as an independent detection patch that can work on top of any MMF-based application, either in
parallel or sequentially, agnostic of the downstream task.

3.1 AION OVERVIEW

As shown in Fig. 1, AION primarily consists of a single shared multimodal representation encoder
(MRE) that maps any unimodal feature representation, regardless of its source or modality, to a
shared representation space. Furthermore, AION has two phases of implementation: i) development
and ii) deployment phase.

Development Phase. In the development phase, AION trains an MRE model using contrastive learn-
ing with positive and negative pairs based on their related temporal alignment. MRE learns how to
represent temporally aligned (positive) feature pairs from different modalities to similar represen-
tations and temporally misaligned (negative) pairs to different representations. Once the MRE is
trained, AION utilizes that trained MRE in the deployment phase to detect TMA attacks.

Deployment Phase. During the deployment phase, AION utilizes the trained MRE to create shared
representations of historical inputs from each modality and keeps a stack of these representations
for a small window. At the same time, AION also calculates and keeps track of a 2D similarity
matrix with pairwise inter-modality similarity scores between different representation pairs. The
diagonal elements in the similarity matrix indicate pairs that are temporally aligned and others that
are temporally misaligned to different extents as they deviate from the diagonal. On each such
similarity matrix, AION runs a dynamic time warping (DTW) algorithm to find the optimal path of
temporal alignment and the reward of such alignment, which is the summation of all their similarity
scores. Under a benign scenario, the optimal path with the highest reward would be the diagonal
one, and the reward would be higher. However, under a temporal misalignment attack, the optimal
path would deviate from the diagonal and follow the attacker’s misaligned pattern. In that case,
the optimal reward would be lower, which essentially indicates the existence of an adversary. We
elaborate on the details of each component of AION in the following subsections.

3.2 TECHNICAL DETAILS OF AION

To learn a unified representation for multimodal inputs, we use a shared MRE, Emm that projects
modality-specific features fC and fL from different modalities into a common latent space, such
that r(i)C = Emm(f

(i)
C) and r

(j)
L = Emm(f

(j)
L). The objective is to ensure that the shared repre-

sentations of semantically corresponding—i.e., temporally aligned—inputs are close in the latent
space, meaning r

(ti)
C = r

(ti)
L if i = j, and dissimilar otherwise. As the majority of MMF–based per-

ception models for AD primarily focus on fusing camera and LiDAR data, we center our technical
discussion of AION on these two modalities.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The development phase specifically involves the training of the MRE model and running the detec-
tion on benign data to set the threshold. To ensure effective learning, we utilize contrastive learning
with three types of data pairs for the model training.

3.2.1 DIFFERENT REPRESENTATION PAIRS.

To ensure that MRE effectively learns representations while respecting the subtle semantic changes
in temporally adjacent frames, we categorize representation pairs into three types based on their
degree of temporal (mis)alignment.
Definition 1 (Positive Pairs) A pair of features (r

(i)
C , r

(j)
L) is called a positive pair, denoted

(r
(i)
C , r

(j)
L) ∈ Tp, if they originate from the same temporal event, i.e., i = j.

Definition 2 (Near-Negative Pairs) A pair (r
(i)
C , r

(j)
L) is called a near-negative pair, denoted

(r
(i)
C , r

(j)
L) ∈ Tnn, if they come from different but temporally adjacent events, i.e., i ̸= j but i ≈ j.

Such pairs share partially overlapping semantic content due to their temporal proximity.

Definition 3 (Far-Negative Pairs) A pair (r
(i)
C , r

(j)
L) is called a far-negative pair, denoted

(r
(i)
C , r

(j)
L) ∈ Tfn, if they originate from temporally distant events with no semantic overlap, i.e.,

|i− j| ≫ 0.

3.2.2 CONTINUITY-AWARE CONTRASTIVE LEARNING-BASED TRAINING

The primary goal of the shared encoder Emm is to ensure that the representations of positive pairs
are highly similar—i.e., have minimal distance—while representations of negative pairs remain well
separated in the latent space. To achieve this, we adopt a contrastive learning objective, based on
relaxed contrastive (ReCo) as proposed in (Lin et al., 2023), to train Emm, where each training batch
consists of a set of discrete sample indices Ibatch = {n1, n2, . . . , nb}, where the batch size is b and
each nk corresponds to a unique sample in the batch.

Thus, the representation sequences rC = {r(n1)
C , r

(n2)
C , . . . , r

(nb)
C } and rL =

{r(n1)
L , r

(n2)
L , . . . , r

(nb)
L } from two different modalities are calculated on the sampled inputs

from the training set. These indices are chosen in a manner that ensures the batch contains both
near-negative and far-negative pairs. Based on the rC and rL, we compute a similarity matrix
S ∈ Rb×b, where each entry Sij denotes the cosine similarity between the camera representation
r
(i)
C and the LiDAR representation r

(j)
L , defined as:

Sij =
r
(i)
C · r(j)L

∥r(i)C ∥ ∥r(j)L ∥
(1)

For positive pairs, we define the positive loss as: Lpos =
∑b

i=1 (Sii − 1)
2
, which loss encourages

the cosine similarity between the shared representations of temporally aligned inputs to be as close
as possible to 1. Negative pairs consist of temporally misaligned inputs, and ideally, their repre-
sentations should exhibit minimal cosine similarity. To enforce this, we define the negative loss as:
Lneg =

∑b
i,j=1
i̸=j

(max(0, Sij))
2 · λij . This loss penalizes any similarity between the negative pairs

at different scales, which is the key enabler of CACL. The penalty is modulated by the weight λij ,
which reflects the expected degree of dissimilarity based on temporal distance.

To generalize this weighting scheme, we define λij as a smooth function of temporal distance:

λij = tanh
(

|i−j|
τ

)
, where, τ is a temperature-like scaling factor that controls sensitivity to

temporal separation. This formulation (as shown in Fig 5 in Appendix ??) offers a continuous
and differentiable measure of misalignment, encouraging the model to learn nuanced distinctions
across the temporal spectrum. The overall objective combines the positive and negative pair losses,
Ltotal = Lpos + Lneg. This loss ensures high cosine similarity for aligned (positive) pairs, while
pushing apart misaligned (negative) pairs. The extent of separation for negative pairs is controlled
by the penalty weight λij , allowing for flexibility based on temporal misalignment.

3.3 ATTACK DETECTION

The detection of TMA attacks, though AION consists of two main tasks.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Seven Temporal Misalignment Attack Strategies
Attack Type Delay δS Description
Constant Freeze δj = j (within window) Frame freezing, dropped frames
Random Replacement Random from [i−m, i] Random replacements, corrupted frames
Jitter Stochastic δt = µ+ εt, εt ∼ U(−∆,+∆) Probabilistic jitter, network jitter
Reversal Reordering δj = 2j (within window) Order reversal, out-of-order packets
Burst Intermittent δj = j (within burst) Intermittent freezes, bursty congestion
Drift Cumulative δj = ⌊r × j⌋ Gradual desync, clock skew
Scheduler Algorithm δj = f(q, dmax) (round-robin/priority) CPU scheduler (round-robin/priority)

3.3.1 HISTORICAL REPRESENTATION QUEUE AND SIMILARITY MATRIX

AION keeps queues of historical representations for each modality for the latest w sensor data. If
we assume the indices of that queue as Idetect = {n1, n2, . . . , nw}. For a presented window size
w, AION keeps track of the sequential representation rC = {r(n1)

C , r
(n2)
C , . . . , r

(nw)
C } and rL =

{r(n1)
L , r

(n2)
L , . . . , r

(nw)
L }. Similar to the training phase, as mentioned in equation 1, AION creates

the similarity matrix S ∈ Rw×w. With the arrival of every new message, AION updates rC , rL, and
S, and runs the DTW-based detection as described in the following part.

3.3.2 DYNAMIC TIME WARPING-BASED DETECTION

To quantify the extent of temporal misalignment within the rC and rL, AION employs DTW to
compute both the optimal temporal alignment path and the corresponding alignment reward. We
implemented DTW to identify the optimal warping path P that maximizes the accumulated similar-
ity, which we define as reward, over a similarity matrix. Algorithm 1, outlines this procedure, which
takes S as input and returns the optimal path P and total reward ϕ associated with that path. In an
ideal scenario, where all sensors remain temporally aligned, the optimal warping path follows the
diagonal: P∗ = {(1, 1), (2, 2), . . . , (w,w)}, as diagonal elements Sii have the highest similarity
scores. Under the optimal alignment path, the optimal accumulated reward, ϕ∗ =

∑w
i=1 Sii = w,

since the embedding function Emm is trained to maximize similarity for aligned pairs. Thus, any
deviation from that diagonal path P∗ or the optimal reward ϕ∗ can be considered anomalous.

Justification on Detection. The fundamental assumption behind this approach is that DTW max-
imizes cumulative alignment reward by optimally aligning sequences. Given a well-trained Emm,
the cost function Sij satisfies:

Sij = 1 iff i = j
In a benign case, where data samples are perfectly aligned, ϕben is maximized, and aben is mini-
mized, since all elements on the optimal path mostly satisfy i = j, therefore:

ϕben =
∑

(i,j)∈Pben

Sij ≈
W∑
i=1

Sii thus, aben ≈ 0

However, in the presence of malicious misalignment, the warping path necessarily includes terms
where i ̸= j, leading to Sij << 1 for some (i, j). Since DTW maximizes the total reward, the
deviation from P∗ implies a decrease in ϕmal and an increase in amal is minimized, such that:

ϕmal =
∑

(i,j)∈Pmal

Sij <

W∑
i=1

Sii thus, amal >> 0

This establishes the fundamental assumption that as misalignment increases, so does anomaly score,
reinforcing the validity of DTW in the anomaly detection process. Empirical validation in Sec-
tion 3.3 further supports this claim.

4 EXPERIMENTAL SETTINGS

To evaluate the effectiveness of AION in detecting TMA attacks, we conduct a detection analysis
under various attack scenarios. We synthetically generate different degrees of temporal misalign-
ment by perturbing the input sequences in the test data as described in Table 1. For two different
models trained on two different datasets, we evaluate AION’s ability to distinguish between normal
and misaligned sequences under diverse TMA attacks.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.1 DATASETS

We evaluate AION on two standard multimodal AD datasets:

KITTI Tracking Dataset. The KITTI benchmark (Geiger et al., 2012), collected in Karlsruhe,
Germany, covers city, residential, and highway scenes. It provides a forward-facing RGB camera
and a Velodyne LiDAR, with 3D bounding boxes and labels for cars, pedestrians, and cyclists.

NuScenes Dataset. The NuScenes benchmark (Caesar et al., 2020), recorded in Boston and Sin-
gapore, captures dense urban traffic. It includes six RGB cameras, a Velodyne LiDAR, and five
radars. NuScenes consists of 1000 20-second sequences with 3D bounding boxes and tracking IDs
for different classes, such as vehicles, pedestrians, bicycles, and barriers.

4.2 MODEL ARCHITECTURE

We implemented AION for both the KITTI and nuScenes datasets to evaluate its adaptability across
different sensor setups and driving scenarios.

AION on KITTI: For the KITTI dataset, we adopt a straightforward approach by testing with two
off-the-shelf, pre-trained image and LiDAR feature encoders. The MRE of AION is implemented us-
ing a simple convolutional neural network (CNN) architecture, featuring two distinct input branches
and a shared output branch. For each KITTI sample, an RGB image of size [3, 375, 1242] is en-
coded using ResNet-50 (He et al., 2016) to produce image features fC ∈ R2048×12×39, while the
LiDAR point cloud [k, 3] is processed by PointPillars (Lang et al., 2019) to yield LiDAR features
fL ∈ R384×248×216. Our encoder Emm maps both fC and fL to a shared space by applying
modality-specific convolutional branches, global average pooling, and a shared projection head,
producing 256-dimensional representations rC and rL.

AION on nuScenes: For the nuScenes dataset, we build AION on top of BEVFusion (Liu et al.,
2023) to demonstrate AION’s adaptability to complex MMF architectures. Each input includes six
camera images and a LiDAR point cloud. We use BEVFusion’s encoders to obtain BEV features
fC , fL ∈ R64×180×180 for camera and LiDAR, respectively. These are passed to a hybrid encoder
Emm, which first applies shared CNN layers to produce [256×23×23] embeddings. A lightweight
transformer then processes spatial tokens with positional encodings and global self-attention, fol-
lowed by mean pooling to produce 256-dimensional representations rC and rL.

4.3 EVALUATION SETTINGS

Attack Hyperparameters. We generate misaligned samples for both datasets using the TMA
attacks defined in Table 1, injecting perturbations into test sequences at fixed intervals. All attacks
follow a periodic structure parameterized by attack interval t and duration n, set to default values
t = 25 and n = 10 for consistent evaluation. Attack-specific parameters emulate realistic timing
faults: Random uses a history window m = 10; Jitter applies mean delay µ = 1 and jitter range
∆ = 3; Burst uses burst size s = 3 and gap g = 2; Drift applies drift rate r = 0.5; and Scheduler
uses time quantum q = 3, maximum delay dmax = 5, and round-robin scheduling. For multi-modal
attacks, we introduce controlled cross-sensor variability to model heterogeneous pipeline behavior,
including ±20% variation for Random parameters (t, n,m), ±30% variation for Jitter (µ,∆) and
Drift (r), and ±2-frame variation for Burst (s, g) and Scheduler (q, dmax), along with phase offsets
up to 40% of the attack interval to enforce realistic temporal desynchronization between Camera
and LiDAR streams.

Anomaly Detection Methodology. To classify whether an input sequence is malicious, we ana-
lyze the cross-modal temporal consistency of multimodal pairs within a defined observation window
w = 3. In this evaluation, we label a window as malicious if at least half of its multimodal pairs
contain a misaligned sample. We analyze the anomaly scores using the ROC curve and calculate the
area under the ROC curve (AUROC) as the key detection metric.

Software Implementation We implement and evaluate AION in Python 3.8 using PyTorch, lever-
aging open-source frameworks such as OpenPCDet (Team, 2020). Experiments were primarily
conducted on a high-performance server running Ubuntu 20.04.6 LTS, equipped with an Intel Xeon

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Gold 5520 CPU (16 cores, 2.20 GHz), 128 GB RAM, and three NVIDIA RTX 6000 Ada GPUs. For
scalability profiling, we additionally evaluate AION on a more modest Ubuntu machine with an Intel
Core i9-9820X CPU (10 cores, 3.30 GHz) and a single RTX 2080 Ti GPU, reflecting the constraints
of a realistic automotive deployment scenario.

5 DETECTION RESULTS

We evaluate the performance of AION across both datasets and model architectures. We begin by
illustrating the detection process on the nuScenes dataset, including visualizations of similarity and
anomaly scores under different attack types. Finally, we present the ROC curves, along with the
AUROC scores, for both datasets.

5.1 VISUALIZATION OF SIMILARITY MATRIX

Fig 2 illustrates four different similarity matrices with the Camera and LiDAR representations, rC
and rL, from time steps 10 to 40 under various TMA attacks (launched from 20 to 30), including the
benign case. The top left-most panel shows the similarity matrix between rC and rL under benign
conditions—i.e., with no delay in either modality. As illustrated, the highest similarity scores lie
along the diagonal path from (10, 10) to (40, 40), indicating perfect temporal alignment between
both modalities. However, all the following panels depict cases where seven types of temporal mis-
alignments are introduced by delaying the camera stream under TMA attacks: all between time steps
20 and 30. In these scenarios, the highest similarity scores often diverge from the diagonal beyond
time step 20 and only steadily return to the diagonal again around time step 30. These deviations
clearly signify temporal misalignments, which AION leverages to detect such TMA attacks. We
provide further figures in Appendix D, showing the impact of compromising only LiDAR (Figure 6)
and both modalities (Figure 7).

Some figures in Figure 7 show unique scenarios where both modalities are delayed by the same
amount (i.e., constant delay) under TMA attack. In this case, the similarity scores remain high
(and the same) across both diagonal and occasionally, off-diagonal elements, from time steps 20 to
30. Such patterns may emerge under both benign and malicious conditions. For instance, under
benign conditions, the vehicle may be stationary without any moving objects in the scene, result-
ing in temporally consistent features over time. In contrast, an attacker could also replicate this
same scene with a malicious delay to all modalities by the same constant offset, creating a similar
similarity matrix. Hence, these unique, advanced attacks become a challenging task just by ana-
lyzing the cross-modal alignment similarities. Although AION, when limited to only the modalities
used in MMF, cannot reliably detect such an advanced attack case, incorporating additional data
sources—such as inertial measurements (IMU), controller area network (CAN) signals, or other
external references—can provide complementary evidence and help detect such advanced attacks.
However, as we only rely on the multimodal data in this work, we consider this extension as future
work for AION.

5.2 DETECTION PERFORMANCE OF AION

We illustrate the detection performance of AION from two different perspectives.

Visualization of Anomaly Scores. Figure ?? illustrates the temporal evolution of anomaly scores,
provided by AION, across different time steps under various TMA attacks on the camera stream.
Each shaded region indicates whether the system is operating under benign (green) or malicious
(red) conditions, based on the temporal alignment. As shown, AION consistently produces higher
anomaly scores during periods where temporal misalignment is introduced, compared to benign
intervals. This clear contrast in anomaly demonstrates the effectiveness of AION in detecting ma-
licious temporal misalignment induced by a wide range of TMA attacks. Figure 8 in Appendix E
shows the anomaly scores under LiDAR-based TMA attack.

ROC Curve with AUROC Scores. Fig. 4 illustrates that across both datasets and in all single-
modality settings, AION exhibits consistently strong detection performance. The ROC curves re-
main tightly concentrated near the top-left corner, and AUROC values range from 0.92–0.98. This

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

10 15 20 25 30 35 40
Camera Time Step

10
15

20
25

30
35

40
LiD

AR
 T

im
e

St
ep

Benign Condition (No Delays)

0.0

0.2

0.4

0.6

0.8

1.0

10 15 20 25 30 35 40
Camera Time Step

10
15

20
25

30
35

40
LiD

AR
 T

im
e

St
ep

Constant Delay on Camera

0.0

0.2

0.4

0.6

0.8

1.0

10 15 20 25 30 35 40
Camera Time Step

10
15

20
25

30
35

40
LiD

AR
 T

im
e

St
ep

Random Delay on Camera

0.0

0.2

0.4

0.6

0.8

1.0

10 15 20 25 30 35 40
Camera Time Step

10
15

20
25

30
35

40
LiD

AR
 T

im
e

St
ep

Reversal Delay on Camera

0.0

0.2

0.4

0.6

0.8

1.0

10 15 20 25 30 35 40
Camera Time Step

10
15

20
25

30
35

40
LiD

AR
 T

im
e

St
ep

Jitter Delay on Camera

0.0

0.2

0.4

0.6

0.8

1.0

10 15 20 25 30 35 40
Camera Time Step

10
15

20
25

30
35

40
LiD

AR
 T

im
e

St
ep

Burst Delay on Camera

0.0

0.2

0.4

0.6

0.8

1.0

10 15 20 25 30 35 40
Camera Time Step

10
15

20
25

30
35

40
LiD

AR
 T

im
e

St
ep

Drift Delay on Camera

0.0

0.2

0.4

0.6

0.8

1.0

10 15 20 25 30 35 40
Camera Time Step

10
15

20
25

30
35

40
LiD

AR
 T

im
e

St
ep

Scheduler Delay on Camera

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Similarity scores/matrix between Camera and LiDAR representation embeddings under
different TMA attacks on Camera between time steps 20 to 30.

0 20 40
Time Index

0.0

0.5

1.0

1.5

An
om

al
y

Sc
or

e

Constant Attack

0 20 40
Time Index

0

1

An
om

al
y

Sc
or

e

Random Attack

0 20 40
Time Index

0

1

2

An
om

al
y

Sc
or

e

Reversal Attack

0 20 40
Time Index

0

1

2

An
om

al
y

Sc
or

e

Jitter Attack

0 20 40
Time Index

0.0

0.5

1.0

1.5
An

om
al

y
Sc

or
e

Burst Attack

0 20 40
Time Index

0

1

2

An
om

al
y

Sc
or

e

Drift Attack

0 20 40
Time Index

0

1

2

An
om

al
y

Sc
or

e

Scheduler Attack

Figure 3: Anomaly scores generated by AION under various camera-only TMA attacks. The ‘red’
and ‘green’ shaded regions indicate periods with and without attacks, respectively. Distinctive
score patterns across these regions highlight AION’s effectiveness against diverse TMA attacks.

robustness holds for all attack variants—including Drift, Jitter, Random, Burst, Scheduler, and even
Reversal—demonstrating that AION reliably captures modality-specific temporal deviations with-
out having dataset-specific dependancy. High AUROC under Drift attacks further highlights AION’s
sensitivity to low-variance and slowly evolving perturbations, underscoring the strength of its DTW-
based detection.

AION also maintains competitive performance under both-modality attacks for the majority of per-
turbations. Random, Drift, Jitter, Burst, and Scheduler attacks maintain AUROC scores close to
their single-modality counterparts, indicating that AION effectively leverages cross-modal temporal
correlations even when both sensors are perturbed. The close alignment of trends between KITTI
and nuScenes suggests strong generalization across datasets with distinct motion statistics and sen-
sor characteristics. Moreover, the consistently high true positive rates with a low false positive rate
underscore the AION’s reliability in realistic AD environments subjected to TMA attacks.

A notable limitation arises under perfectly synchronized, cross-modal perturbations—such as Con-
stant and Reversal attacks—when applied simultaneously to both camera and lidar. These attacks
preserve the highest cross-modal similarity along the diagonal path, effectively suppressing the tem-
poral discrepancies that AION relies upon for detection. This exposes an important avenue for
future work by incorporating additional modalities (e.g., CAN, IMU, etc.) and developing invariant
temporal anomaly features that remain robust under coordinated multi-sensor manipulation.

Scalability. To enable efficient multi-modal representation learning, AION introduces only a
lightweight overhead. Below, we elaborate on the computation overhead of AION on the NuScenes
dataset, as it is more computationally demanding with 6 cameras compared to the single front cam-
era in KITTI. Compared to full perception model stacks, AION is highly compact, with only ∼1.97
million parameters (∼7.9 MB in FP32), whereas typical perception pipelines (such as BEVFusion)
exceed 30 million parameters (∼127 MB in FP32) (Liu et al., 2023). On an RTX 2080Ti GPU, our
profiling reveals that AION’s computational overhead consists of two components: (1) MRE infer-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

Attacks on Camera (KITTI)

Constant: 0.9717
Random: 0.9214
Drift: 0.9425
Jitter: 0.9583
Reversal: 0.9398
Burst: 0.9255
Scheduler: 0.9611
Random

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Attacks on Lidar (KITTI)

Constant: 0.9690
Random: 0.9531
Drift: 0.9356
Jitter: 0.9616
Reversal: 0.9425
Burst: 0.9352
Scheduler: 0.9244
Random

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Attacks on Both (KITTI)

Constant: 0.1274
Random: 0.9092
Drift: 0.9331
Jitter: 0.9149
Reversal: 0.5218
Burst: 0.8720
Scheduler: 0.9034
Random

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Attacks on Camera (nuScenes)

Constant: 0.9791
Random: 0.9572
Drift: 0.9463
Jitter: 0.9283
Reversal: 0.9554
Burst: 0.9541
Scheduler: 0.9494
Random

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Attacks on Lidar (nuScenes)

Constant: 0.9781
Random: 0.9577
Drift: 0.9497
Jitter: 0.9280
Reversal: 0.9552
Burst: 0.9505
Scheduler: 0.9518
Random

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Attacks on Both (nuScenes)

Constant: 0.0983
Random: 0.9394
Drift: 0.9433
Jitter: 0.9060
Reversal: 0.5095
Burst: 0.9365
Scheduler: 0.9369
Random

Figure 4: ROC curves with AUROC scores of AION under TMA attacks across KITTI and
nuScenes, evaluated on camera, lidar, and both camera–lidar modalities.

ence requires 1.74 ms per forward pass (574 inf/s) and consumes 42.5 MB of GPU memory, and (2)
DTW-based detection adds 1.52 ms per inference (659 inf/s) and runs on CPU without GPU mem-
ory overhead. The total AION overhead is approximately 3.26 ms per inference with a combined
throughput of ∼307 inf/s (see Table 2).

Comp Latency Throughput GPU Mem

MRE 1.74 ms 574 inf/s 42.5 MB
DTW 1.52 ms 659 inf/s –

Total 3.26 ms 307 inf/s 42.5 MB

Table 2: Computational overhead of AION.

Given that typical MMF-based AD perception
pipelines operate at 10–20 Hz (corresponding
to 50–100 ms per frame), AION’s overhead of
3.26 ms represents only 3.3–6.5% of the avail-
able frame budget, and can run in parallel to the
downstream task. While DTW has O(w2) com-
plexity, we empirically find that a short window
(w = 3 to 5) is sufficient to detect misalignment
attacks in AD while keeping the runtime negli-
gible and suitable for real-time deployment. Larger windows, on the other hand, add cost and may
dilute temporal granularity, hurting effectiveness. This demonstrates that AION’s robustness gains
come at a very negligible computational cost, making it highly feasible for real-time deployment in
production AD systems.

6 CONCLUSION

Temporal misalignment attacks are an emerging threat to AD perception, where adversaries manipu-
late timestamps—without altering sensor data—causing the temporal synchronizer to inadvertently
induce cross-modal misalignment. To counter this challenge, we introduced AION, a lightweight
defense that integrates multimodal shared representation learning with dynamic time warping to en-
force temporal consistency before fusion. AION exhibits consistently strong robustness on diverse
temporal misalignment attacks across KITTI and nuScenes, achieving high average AUROC scores
for camera-only (0.9493) and LiDAR-only (0.9495) attacks, and maintaining resilient performance
under both-modality attacks (0.9195 on most attacks). These results highlight the importance of
synchronization-aware perception architectures and establish temporal consistency checking as a
critical security property for safety-critical autonomous systems.

LLM Usage Disclosure. LLMs were used for editorial purposes in this manuscript, and all outputs
were inspected by the authors to ensure accuracy and originality.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Donald J Berndt and James Clifford. Using dynamic time warping to find patterns in time series.
In Proceedings of the 3rd international conference on knowledge discovery and data mining, pp.
359–370, 1994.

Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
autonomous driving. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 11621–11631, 2020.

Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham, Stefan Sav-
age, Karl Koscher, Alexei Czeskis, Franziska Roesner, and Tadayoshi Kohno. Comprehensive ex-
perimental analyses of automotive attack surfaces. In 20th USENIX security symposium (USENIX
Security 11), 2011.

Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. Multi-view 3d object detection network
for autonomous driving. In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, pp. 1907–1915, 2017.

Gelei Deng, Guowen Xu, Yuan Zhou, Tianwei Zhang, and Yang Liu. On the (in) security of secure
ros2. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security, pp. 739–753, 2022.

Di Feng, Christian Haase-Schütz, Lars Rosenbaum, Heinz Hertlein, Claudius Glaeser, Fabian Timm,
Werner Wiesbeck, and Klaus Dietmayer. Deep multi-modal object detection and semantic seg-
mentation for autonomous driving: Datasets, methods, and challenges. IEEE Transactions on
Intelligent Transportation Systems, 22(3):1341–1360, 2020.

Andreas Finkenzeller, Andrew Roberts, Mauro Bellone, Olaf Maennel, Mohammad Hamad, and
Sebastian Steinhorst. Sensor fusion desynchronization attacks. In 37th Euromicro Conference on
Real-Time Systems (ECRTS 2025), pp. 6–1. Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
2025.

Ian Foster, Andrew Prudhomme, Karl Koscher, and Stefan Savage. Fast and vulnerable: A story of
telematic failures. In 9th USENIX Workshop on Offensive Technologies (WOOT 15), 2015.

Cong Gao, Geng Wang, Weisong Shi, Zhongmin Wang, and Yanping Chen. Autonomous driving
security: State of the art and challenges. IEEE Internet of Things Journal, 9(10):7572–7595,
2021.

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti
vision benchmark suite. In 2012 IEEE conference on computer vision and pattern recognition,
pp. 3354–3361. IEEE, 2012.

Amrita Ghosal, Subir Halder, and Mauro Conti. Secure over-the-air software update for connected
vehicles. Computer Networks, 218:109394, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Daniel Kuhse, Nils Holscher, Mario Gunzel, Harun Teper, Georg Von Der Bruggen, Jian-Jia Chen,
and Ching-Chi Lin. Sync or sink? the robustness of sensor fusion against temporal misalignment.
In IEEE Real-Time and Embedded Technology and Applications Symposium, pp. 122–134, 2024.

Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom. Point-
pillars: Fast encoders for object detection from point clouds. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 12697–12705, 2019.

Shasha Li, Shitong Zhu, Sudipta Paul, Amit Roy-Chowdhury, Chengyu Song, Srikanth Krishna-
murthy, Ananthram Swami, and Kevin S Chan. Connecting the dots: Detecting adversarial pertur-
bations using context inconsistency. In European Conference on Computer Vision, pp. 396–413.
Springer, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zudi Lin, Erhan Bas, Kunwar Yashraj Singh, Gurumurthy Swaminathan, and Rahul Bhotika. Re-
laxing contrastiveness in multimodal representation learning. In Proceedings of the IEEE/CVF
winter conference on applications of computer vision, pp. 2227–2236, 2023.

Zhijian Liu, Haotian Tang, Alexander Amini, Xinyu Yang, Huizi Mao, Daniela L Rus, and Song
Han. Bevfusion: Multi-task multi-sensor fusion with unified bird’s-eye view representation. In
2023 IEEE international conference on robotics and automation (ICRA), pp. 2774–2781. IEEE,
2023.

Yanmao Man, Raymond Muller, Ming Li, Z Berkay Celik, and Ryan Gerdes. That person moves
like a car: Misclassification attack detection for autonomous systems using spatiotemporal con-
sistency. In 32nd USENIX Security Symposium (USENIX Security 23), pp. 6929–6946, 2023.

Charlie Miller and Chris Valasek. Remote exploitation of an unaltered passenger vehicle. Black Hat
USA, 2015(S 91):1–91, 2015.

Takami Sato, Ryo Suzuki, Yuki Hayakawa, Kazuma Ikeda, Ozora Sako, Rokuto Nagata, Ryo
Yoshida, Qi Alfred Chen, and Kentaro Yoshioka. On the realism of lidar spoofing attacks against
autonomous driving vehicle at high speed and long distance. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2025.

Md Hasan Shahriar, Md Mohaimin Al Barat, Harshavardhan Sundar, Naren Ramakrishnan,
Y Thomas Hou, and Wenjing Lou. On the fragility of multimodal perception to temporal mis-
alignment in autonomous driving. arXiv preprint arXiv:2507.09095, 2025.

Zachary Taylor and Juan Nieto. Motion-based calibration of multimodal sensor extrinsics and timing
offset estimation. IEEE Transactions on Robotics, 32(5):1215–1229, 2016.

OpenPCDet Development Team. Openpcdet: An open-source toolbox for 3d object detection from
point clouds. https://github.com/open-mmlab/OpenPCDet, 2020.

Yuan Xu, Gelei Deng, Xingshuo Han, Guanlin Li, Han Qiu, and Tianwei Zhang. Physcout: Detect-
ing sensor spoofing attacks via spatio-temporal consistency. In Proceedings of the 2024 on ACM
SIGSAC Conference on Computer and Communications Security, pp. 1879–1893, 2024.

Sadia Yeasmin and Anwar Haque. A multi-factor authenticated blockchain-based ota update frame-
work for connected autonomous vehicles. In 2021 IEEE 94th Vehicular Technology Conference
(VTC2021-Fall), pp. 1–6. IEEE, 2021.

Xinyu Zhang, Yan Gong, Jianli Lu, Jiayi Wu, Zhiwei Li, Dafeng Jin, and Jun Li. Multi-modal fusion
technology based on vehicle information: A survey. IEEE Transactions on Intelligent Vehicles, 8
(6):3605–3619, 2023.

Ganning Zhao, Jiesi Hu, Suya You, and C-C Jay Kuo. Calibdnn: multimodal sensor calibration for
perception using deep neural networks. In Signal Processing, Sensor/Information Fusion, and
Target Recognition XXX, volume 11756, pp. 324–335. SPIE, 2021.

A CONSIDERED ATTACKS

We evaluate our defense against seven distinct temporal misalignment attack strategies that model
various real-world failure modes and adversarial scenarios in autonomous driving systems. Each
attack operates on the temporal dimension of sensor data streams, introducing misalignment between
camera and LiDAR modalities through different delay and manipulation patterns.

Constant Attack: Introduces complete frame freezing by replacing consecutive frames with a single
frozen frame at periodic intervals. This attack simulates dropped frames or sensor failures, where
frames within the attack window are replaced with the frame at the start of the window. The delay
δj = j for position j within the attack window, as each subsequent frame uses data from j frames
earlier, creating temporal plateaus that break cross-modal temporal alignment.

Random Attack: Applies random frame replacements by selecting frames uniformly at random
from a history window m. This attack models corrupted frames or packet loss with random retrans-
mission, introducing temporal discontinuities that disrupt the expected temporal ordering. Unlike

12

https://github.com/open-mmlab/OpenPCDet

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

delay-based attacks, this attack replaces frames with random historical frames rather than applying
a deterministic delay distribution.

Jitter Attack: Applies stochastic timing delays following δt = µ + εt, where εt ∼
Uniform(−∆,+∆) and δt represents the delay amount in frames. Each frame within the attack
window is shifted backward by δt frames, modeling realistic network jitter and timing noise from
scheduler fluctuations or multi-threading effects.

Reversal Attack: Reverses the temporal order of frames within periodic attack windows, where
the delay δj = 2j for position j within the attack window. This attack simulates out-of-order
packet delivery scenarios, where frames arrive in reverse temporal sequence, violating the expected
monotonic temporal progression.

Burst Attack: Introduces intermittent freezes with gaps between bursts, where frames within each
burst are frozen by replacing them with earlier frames. This attack models bursty network conges-
tion, where multiple short bursts of frozen frames are separated by gaps of normal operation. Within
each burst, the delay increases as δj = j for position j within the burst, creating a more subtle
misalignment pattern than continuous freezing.

Drift Attack: Applies gradually accumulating delays following δi = ⌊r×i⌋, where r is the drift rate
and δi represents the delay amount in frames. This attack simulates clock skew and buffer buildup
scenarios, where delays accumulate linearly over time, either within periodic attack windows or
continuously across all frames, creating a cumulative desynchronization effect.

Scheduler Attack: Mimics CPU scheduler behavior by applying delays following deterministic
patterns δi = f(quantum, dmax), where δi represents the delay amount in frames and f implements
round-robin or priority-based scheduling algorithms. This attack models system-level delays from
task preemption and priority-based processing, where delays cycle through values or increase based
on priority aging mechanisms.

B DTW ALGORITHM FOR AION IN MISALIGNMENT DETECTION

In this section, we describe how we apply DTW to measure temporal misalignment in AION and to
quantify anomaly score on a window of multimodal representations.

C PLOT OF λ FUNCTION

We plot the λ function to show how it assigns penalty weights based on the temporal misalignment
|i − j| between sequence elements, highlighting the effect of the sensitivity factor τ in controlling
the transition from near-negative to far-negative pairs.

D ADDITIONAL FIGURES ON COSINE SIMILARITY

We provide additional visualizations of the cosine similarity matrices under TMA attacks applied
to both LiDAR-only (Figure 6) and both-modalities (Figure 7). These figures complement the
main-text analysis by illustrating how TMA systematically perturbs the temporal similarity structure
across different sensor configurations.

E ADDITIONAL VISUALIZATION OF ANOMALY SCORES

Figure 8 presents the anomaly score trajectories for LiDAR-based TMA attacks, complementing
the camera-based results shown in Fig. 3. As with the camera stream, AION exhibits a clear
separation between benign (green) and malicious (red) intervals, consistently producing elevated
anomaly scores whenever temporal misalignment is introduced. This reinforces that AION detects
misalignment-induced anomalies reliably across sensing modalities, including LiDAR.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 1: OPTIMAL WARPING PATH AND REWARD COMPUTATION

Input : Cost matrix S ∈ Rw×w

Output: Optimal path P∗ and reward ϕ∗

/* Initialization */
Initialize accumulated score matrix R ∈ Rw×w;
R(1, 1)← S(1, 1);
for n← 2 to w do

R(n, 1)← S(n, 1) +R(n− 1, 1);
end
for m← 2 to w do

R(1,m)← S(1,m) +R(1,m− 1);
end
/* Dynamic programming recursion */
for n← 2 to w do

for m← 2 to w do
R(n,m)← S(n,m) + max{R(n− 1,m− 1), R(n− 1,m), R(n,m− 1)};

end
end
/* Backtracking */
P∗ ← [(w,w)], (n,m)← (w,w);
while (n,m) ̸= (1, 1) do

if n = 1 then
m← m− 1;

else if m = 1 then
n← n− 1;

else
(n,m)← argmax{R(n− 1,m− 1), R(n− 1,m), R(n,m− 1)};

end
Prepend (n,m) to P∗;

end
/* Final reward */
ϕ∗ ← R(w,w);
return P∗, ϕ∗;

0 1 2 3 4 5 6 7 8 9 10
|ni nj|

0.00

0.25

0.50

0.75

1.00

ij

= 1
= 2
= 3
= 4
= 5

Figure 5: Visualization of the function λij for different misalignment level (|i − j|) and sensitivity
factor (τ). The x-axis represents the absolute difference |i− j|, indicating the transition from near-
negative to far-negative pairs, and the y-axis shows the corresponding penalty weights λij . Different
lines indicate how the function saturates more quickly for smaller τ , indicating the role of τ in
setting the boundary between the near and far negative.

F HARDWARE-IN-THE-LOOP TESTBED

To assess AION’s compatibility with real-world deployment constraints, we develop a hardware-in-
the-loop automotive Ethernet (AE) testbed that emulates a production in-vehicle sensing and fusion
setup. As shown in Fig. 9, multiple Raspberry Pis, preloaded with the KITTI dataset, operate as

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

10 15 20 25 30 35 40
Camera Time Step

10
15

20
25

30
35

40
LiD

AR
 T

im
e

St
ep

Benign Condition (No Delays)

0.0

0.2

0.4

0.6

0.8

1.0

10 15 20 25 30 35 40
Camera Time Step

10
15

20
25

30
35

40
LiD

AR
 T

im
e

St
ep

Constant Delay on Lidar

0.0

0.2

0.4

0.6

0.8

1.0

10 15 20 25 30 35 40
Camera Time Step

10
15

20
25

30
35

40
LiD

AR
 T

im
e

St
ep

Random Delay on Lidar

0.0

0.2

0.4

0.6

0.8

1.0

10 15 20 25 30 35 40
Camera Time Step

10
15

20
25

30
35

40
LiD

AR
 T

im
e

St
ep

Reversal Delay on Lidar

0.0

0.2

0.4

0.6

0.8

1.0

10 15 20 25 30 35 40
Camera Time Step

10
15

20
25

30
35

40
LiD

AR
 T

im
e

St
ep

Jitter Delay on Lidar

0.0

0.2

0.4

0.6

0.8

1.0

10 15 20 25 30 35 40
Camera Time Step

10
15

20
25

30
35

40
LiD

AR
 T

im
e

St
ep

Burst Delay on Lidar

0.0

0.2

0.4

0.6

0.8

1.0

10 15 20 25 30 35 40
Camera Time Step

10
15

20
25

30
35

40
LiD

AR
 T

im
e

St
ep

Drift Delay on Lidar

0.0

0.2

0.4

0.6

0.8

1.0

10 15 20 25 30 35 40
Camera Time Step

10
15

20
25

30
35

40
LiD

AR
 T

im
e

St
ep

Scheduler Delay on Lidar

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6: Similarity scores/matrix between Camera and LiDAR representation embeddings under
different TMA attacks on LiDAR between time steps 20 to 30.

10 15 20 25 30 35 40
Camera Time Step

10
15

20
25

30
35

40
LiD

AR
 T

im
e

St
ep

Benign Condition (No Delays)

0.0

0.2

0.4

0.6

0.8

1.0

10 15 20 25 30 35 40
Camera Time Step

10
15

20
25

30
35

40
LiD

AR
 T

im
e

St
ep

Constant Delay on Both

0.0

0.2

0.4

0.6

0.8

1.0

10 15 20 25 30 35 40
Camera Time Step

10
15

20
25

30
35

40
LiD

AR
 T

im
e

St
ep

Random Delay on Both

0.0

0.2

0.4

0.6

0.8

1.0

10 15 20 25 30 35 40
Camera Time Step

10
15

20
25

30
35

40
LiD

AR
 T

im
e

St
ep

Reversal Delay on Both

0.0

0.2

0.4

0.6

0.8

1.0

10 15 20 25 30 35 40
Camera Time Step

10
15

20
25

30
35

40
LiD

AR
 T

im
e

St
ep

Jitter Delay on Both

0.0

0.2

0.4

0.6

0.8

1.0

10 15 20 25 30 35 40
Camera Time Step

10
15

20
25

30
35

40
LiD

AR
 T

im
e

St
ep

Burst Delay on Both

0.0

0.2

0.4

0.6

0.8

1.0

10 15 20 25 30 35 40
Camera Time Step

10
15

20
25

30
35

40
LiD

AR
 T

im
e

St
ep

Drift Delay on Both

0.0

0.2

0.4

0.6

0.8

1.0

10 15 20 25 30 35 40
Camera Time Step

10
15

20
25

30
35

40
LiD

AR
 T

im
e

St
ep

Scheduler Delay on Both

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: Similarity scores/matrix between Camera and LiDAR representation embeddings under
different TMA attacks on Both Camera and LiDAR between time steps 20 to 30.

camera and LiDAR sensor nodes, with an additional Pi and server CPU together serving as the
fusion node. All these nodes communicate over AE using media converters and an AE switch. The
full pipeline runs on ROS2, enabling realistic sensor message timing and fusion workloads. Within
this environment, we injected TMA attacks into the ROS2 message streams and empirically verified
that AION detects them reliably. Additional implementation details of the testbed will be provided
in the final version.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0 20 40
Time Index

0.0

0.5

1.0

1.5

An
om

al
y

Sc
or

e

Constant Attack

0 20 40
Time Index

0

1

An
om

al
y

Sc
or

e
Random Attack

0 20 40
Time Index

0

1

2

An
om

al
y

Sc
or

e

Reversal Attack

0 20 40
Time Index

0.0

0.5

1.0

An
om

al
y

Sc
or

e

Jitter Attack

0 20 40
Time Index

0.0

0.5

1.0

1.5

An
om

al
y

Sc
or

e

Burst Attack

0 20 40
Time Index

0

1

2

An
om

al
y

Sc
or

e

Drift Attack

0 20 40
Time Index

0

1

2

An
om

al
y

Sc
or

e

Scheduler Attack

Figure 8: Anomaly scores generated by AION under various LiDAR-only TMA attacks. The ‘red’
and ‘green’ shaded regions indicate periods with and without attacks, respectively. Distinctive
score patterns across these regions highlight AION’s effectiveness against diverse TMA attacks.

Camera Node

LiDAR Node

Fusion Node

AE Switch

Media Converter

Perception
Visualization

AE Cable

Figure 9: Hardware-in-the-loop automotive Ethernet (AE) testbed

16

	Introduction
	Background and Threat Model
	Threat Model

	Temporal Misalignment Defense: Aion
	Aion Overview
	Technical Details of Aion
	Different Representation Pairs.
	Continuity-Aware Contrastive Learning-based Training

	Attack Detection
	Historical Representation Queue and Similarity Matrix
	Dynamic Time Warping-based Detection

	Experimental Settings
	Datasets
	Model Architecture
	Evaluation Settings

	Detection Results
	Visualization of Similarity Matrix
	Detection Performance of Aion

	Conclusion
	Considered Attacks
	DTW Algorithm for Aion in Misalignment Detection
	Plot of Function
	Additional Figures on Cosine Similarity
	Additional Visualization of Anomaly Scores
	Hardware-in-the-Loop Testbed

