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Abstract

A major limitation of prompt tuning is its dependence on large labeled
training datasets. Under few-shot learning settings, prompt tuning lags
far behind full-model fine-tuning, limiting its scope of application. In this
paper, we leverage the powerful LLMs to synthesize task-specific labeled
data for training the soft prompts. We first introduce a distribution-aligned
weighted generator tuning (DawGen) method to encourage generating
in-distribution data that aligns with the few-shot real data. Then, we
train soft prompts on both synthetic and real datasets using a gradient
surgery approach, which eliminates the conflicting gradients from different
data sources. Experiments on seven sentence-pair classification datasets
demonstrate the effectiveness of our proposed method for boosting prompt
tuning in few-shot learning settings. Results on QQP, MRPC, and SICK
datasets are even comparable to the performance of transfer learning from
large real-world datasets, showing the promise of synthetic data as an
alternative for enhancing soft prompt tuning.

1 Introduction

As Large Language Models (LLMs) increase in size, adapting them to downstream tasks
by fine-tuning (FT) a separate copy for each task becomes unfeasible. Prompt Tuning
(Lester et al., 2021) (PT) emerges as a solution to this challenge by freezing the LLM and
instead training a set of soft prompts pre-pended to the input data in an end-to-end manner.
Compared with other parameter-efficient learning methods such as adapter tuning (Houlsby
et al., 2019) and LoRA (Hu et al., 2022), PT makes no changes to the model architecture
and can be applied to a frozen model with a static computational graph, enabling fast and
flexible deployment. On a wide range of downstream tasks, PT has shown comparable
performance as FT (Lester et al., 2021; Liu et al., 2022). However, recent studies indicate that
PT requires sufficient labeled training data to achieve competitive performance as FT, yet in
few-shot settings, PT significantly underperforms FT (Gu et al., 2022; Guo et al., 2022).

To boost PT in few-shot learning tasks, previous methods mainly focus on finding a better
initialization for soft prompts (Gu et al., 2022; Guo et al., 2022). This is achieved by pre-
training the soft prompts on a large-scale real-world corpus such as OpenWebText (Gokaslan
& Cohen, 2019a) or similar source-domain datasets (Gu et al., 2022; Vu et al., 2022; Guo
et al., 2022). However, these approaches bear a common limitation: the dependence on large
real-world datasets. On the one hand, online text corpora often exhibit substantial domain
discrepancies varying across different downstream tasks. On the other hand, source-domain
datasets are often not readily available, particularly for low-resource and emerging domains.

Recently, there has been a growing interest in generating training data with LLMs (Ye et al.,
2022a; Meng et al., 2022; 2023; Yu et al., 2024). This paper extends this line of research to
tackle the limitation of prompt tuning in few-shot learning settings, aiming to bypass the
need for large-scale labeled training data. Specifically, we employ a source LLM to generate
a synthetic training set for the task at hand, which can be treated as a medium for carrying
the pre-learned knowledge from a source LLM, to train soft prompts for a target LLM to
achieve enhanced few-shot learning performance.

∗Please contact Xu Guo (xu008@e.ntu.edu.sg) for future questions.

1



Published as a conference paper at COLM 2024

Generative LLM gϕ

Few-shot Data
𝒟!"#$

Synthetic Labeled Data
𝒟%&'

Prompt 𝑄

Discriminative LLM 𝑓(Prompt 𝑃 Task

Data

Model

Model 

Figure 1: A schematic overview of the framework.

Step 1: traing a soft prompt
Q for a frozen LLM gϕ on
the few-shot training set Dreal .
Step 2: apply gϕ and Q to gen-
erate a synthetic labeled train-
ing setDsyn. Step 3: WithDreal
and Dsyn, train a soft prompt
P for a discriminative LLM fθ
to perform downstream tasks,
while tackling issues like gra-
dient conflicts.

We show an overview diagram of our framework in Figure 1. We divide the learning
procedure into three steps. First, to encourage the source LLM gϕ to generate in-domain
data, we train label-conditional soft prompts Q using a few real-world samples, Dreal , to
adapt the frozen gϕ to the task domain. However, given the limited number of real-world
samples, Q can easily overfit shortcut tokens (Du et al., 2021; Tang et al., 2023) and mislead
gϕ to generate texts that are not relevant to the task label, resulting in a poor distribution for
Dsyn. Hence, we introduce Distribution-Aligned Weighted GENerator tuning (DawGen1)
which encourages the generated texts under the same class to be semantically close while
those under different classes to be semantically distant. Second, we apply the adapted
generator gϕ,Q to generate a synthetic training set, Dsyn, for the task at hand. However,
directly combining synthetic data with the few-shot real data for training can lead to an
interference effect, due to their potential distribution gap. To better exploit the synthetic data
while making the best use of few-shot real data, we employ gradient surgery (Yu et al., 2020)
to modify the gradients computed on the synthetic data by subtracting the components that
oppose the direction of gradients from the real data. The trained soft prompts followed by
an input example are used to prompt the target LLM for label prediction. They can also be
combined with hard prompts to confer dual benefits (Gao et al., 2021; Gu et al., 2022).

Extensive experiments on seven sentence-pair classification tasks and two LLM backbones
demonstrate the effectiveness of our proposed framework for enhancing PT in few-shot
settings. Notably, PT with 102K parameters outperforms FT with 770M parameters by a
large margin in few-shot settings and can even achieve comparable performance to transfer
learning using extensive real-world datasets on QQP, MRPC, and SICK.

2 Related Work

2.1 Few-shot Learning with Pre-trained Language Models

Fine-tuning pre-trained language models has been the standard practice in few-shot learning,
where a language model and a task-specific head are tuned together for a given task (Zhang
et al., 2021; Gao et al., 2021; Liu et al., 2022; Zhang et al., 2022). However, fine-tuning
the entire model on a few training samples (e.g., 16 samples per class) often leads to
overfitting. One possible remedy is to manually craft hard prompts, consisting of natural
language instructions and demonstrations (Brown et al., 2020; Mishra et al., 2022) for LLMs
to perform in-context learning without updating any model parameters. Nevertheless, their
effectiveness greatly relies on the skills of the prompt engineer and the prompts they write.

Instead of manually crafted hard prompts, prompt tuning (Lester et al., 2021; Zhang et al.,
2022) learns soft prompt vectors from training data and PT on T5-large can outperform
the results of manual prompting on GPT-3. Still, PT performance greatly depends on
the availability of substantial training data (Gu et al., 2022; Guo et al., 2022). In few-shot
settings, PT significantly underperforms FT. To address this limitation, researchers have
studied utilizing online corpora to pre-train soft prompts under self-supervised learning
objectives (Gu et al., 2022), such as next sentence prediction (Devlin et al., 2019), or applying

1https://github.com/guoxuxu/soft-prompt-transfer/tree/main/DawGen
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transfer learning from datasets in similar domains (Guo et al., 2022). This paper provides an
alternative solution by employing a more powerful LLM to generate synthetic training data
for training soft prompts, thus circumventing the demand for extensive real-world data.

2.2 LLMs as Task-specific Training Data Generators

Early efforts in generating synthetic data with language models were to augment the existing
dataset with generic texts (Kumar et al., 2020; Puri et al., 2020; Anaby-Tavor et al., 2020). E.g.,
Puri et al. (2020) use GPT-2 to generate a synthetic corpus to substitute the Wikipedia corpus
to improve the performance of QA tasks. These texts are not tailored to any downstream
task and therefore can not be used to train task-specific models. As LLMs continue to grow
in size, recent works have shifted towards creating a new paradigm for playing with LLMs,
i.e., distilling task-specific training data directly from a frozen LLM to enhance downstream
tasks (Schick & Schütze, 2021b; Ye et al., 2022a; Meng et al., 2022; Gao et al., 2023; Meng
et al., 2023; Yu et al., 2024). These synthetic datasets are then used to boost downstream
models such as DistillBERT and RoBERTa (Meng et al., 2022; 2023).

However, when prompted with a simple label-conditional natural language prompt, the
LLM generator can easily forget label information when generating long sequences (Li et al.,
2022; Zhong et al., 2024) and therefore may generate samples that are not associated with
the given labels. Moreover, the LLM generator, when frozen for inference, tends to generate
texts that follow its pertaining data distribution, which often exhibits a domain gap with
the task at hand (Guo & Yu, 2022). This paper provides a distribution-aligned weighted
generator tuning method to mitigate these issues.

2.3 Learning with Synthetic Training Data

The existence of low-quality samples can be detrimental to model training. Synthetic
datasets are often generated at scale, which is inevitable to contain low-quality data (Gao
et al., 2023). Recent works on synthetic text generation with LLMs (Ye et al., 2022a; Meng
et al., 2022; 2023) adopt various training strategies to exploit the synthetic training data. For
example, ZeroGen (Ye et al., 2022a; Gao et al., 2022) employs a noise-robust loss function
(Ghosh et al., 2017) for learning with synthetic training data. FewGen (Meng et al., 2023)
adopts label smoothing and temporal ensembling (Laine & Aila, 2016) to degrade the
confidence level of model prediction during training. ProGen (Ye et al., 2022b) incorporates
a quality estimation module to select the synthetic dataset. These methods are primarily
employed to work with synthetic data; however, in our paper, where we use a few real
samples for supervision, they cannot address the disparity between real and synthetic data.
Hence, we propose to use the gradient surgery method (Yu et al., 2020) to directly alter the
conflicting gradients on the synthetic data, thereby enhancing the learning performance.

3 Synthesizing Training Data for Prompt Tuning

3.1 Preliminaries

Prompt Tuning. Lester et al. (2021) converts all downstream tasks into a text-to-text gen-
eration format (Raffel et al., 2020) in order to reduce the gap between pre-training and
downstream tasks. Taking sentence-pair classification as an example, given a labeled train-
ing example (X, y) ∈ D, |D| = N, where X = [S1, S2] represents a sentence pair and y ∈ Y
denotes a class label. For example, in paraphrase detection, the label space Y may include
two labels, yes and no, indicating if two sentences are paraphrases. In order to fully utilize
the pretrained model, we devise a task-specific natural language prompt H and a template
T (·) that reformat the original task as a cloze-style task. T (X) = {H, X, [MASK]}. One
example for paraphase detection is “Are ⟨S1⟩ and ⟨S2⟩ equivalent? [MASK]”. An LLM, fθ ,
predicts the label y at the position of the [MASK] token.

Prompt tuning is done by prepending n tokens with trainable prompt embeddings, P ∈
Rn×d, to the template T . Throughout the training, θ remains unchanged and P is optimized
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by minimizing the cross-entropy loss on the training set D:

Lce(P) = −E(X,y)∈D log Prθ([MASK] = y|[P; E]) (1)

Synthetic Text Generation. Taking sentence-pair classification as an example. Given the
label space Y = {Yl}L

l=1, we compose a label-conditional prompt for each Yl using the
template Tc(Yl) = {H, Yl , X}, e.g., “Sentence 1 and sentence 2 are equivalent. Sentence
1: ⟨S1⟩. Sentence 2: ”. Then, an autoregressive LLM, gϕ, takes Tc(Yl) as the context and
generates a subsequent sequence of tokens x1:K that maximize the joint likelihood:

K

∏
j=1

Prϕ(xj|x<j; Tc(Yl)). (2)

The decoding process stops when the end-of-sentence token is predicted or the maximum
sequence length, K, is reached. The generated sentence for S2 is expected to satisfy the
relationship Yl with S1. To encourage generating diverse Xsyn for the same label Yl , we
employ a stochastic decoding algorithm (e.g., top-k and nucleus sampling). The generated
sentence pairs and the given label yl establish a synthetic dataset Dsyn = {(Xsyn, ysyn)}.
3.2 Distribution-Aligned Weighted Generator Tuning

For every downstream task, we use the few-shot real dataset, Dreal , to perform domain
adaptation for the generator gϕ to improve the quality of the synthetic dataset Dsyn.

Parameter-Efficient Generator Tuning. Recent LLMs for text generation often have billions
of parameters. As such, tuning the entire model ϕ for domain adaptation is impractical.
Parameter-efficient methods, such as prompt tuning (Lester et al., 2021) and prefix tuning
(Li & Liang, 2021), arise as an alternative to full-model fine-tuning by pre-pending a few
external prompt embeddings, Q, to the input (or every transformer layer’s output as done
by prefix tuning), and training Q on the domain-specific data while keeping ϕ unchanged.

For a downstream task with L classes, we can train one soft prompt Ql ∈ Rn×d for each
class label Yl . The training objective for tuning Ql in this setting is the standard language
modeling objective. The generator parameters ϕ are frozen and only the soft prompt Ql is
optimized on the real training set Dreal :

Lgen(Ql) = −
1

|Dreal | ∑
X∈Dreal ,y=Yl

∑
xj∈X

log Prϕ(xj|x<j; Ql). (3)

Weighted Generator Tuning. The above language modeling objective treats all tokens
equally. To encourage the data generator network to generate label-discriminative texts,
FewGen (Meng et al., 2023) propose to train a weight net, ΦW : Rd 7→ R, which learns to
assign higher weights to those generated tokens that are more likely to discriminate the
ground-truth label Yl from other labels Yl′ ∈ Y by minimizing the weighted generation loss,

LwGen(Ql) = −EX∈Dreal ,Y=Yl Exj∈XWj · log Prϕ(xj|x<j; Ql). (4)

Here, Q and W are optimized under the bi-level optimization framework. That is, first
optimizing the loss LwGen produces a function Q of W: Q(W), which is then applied a
second time to optimize the weight net, W, by minimizing the following loss:

Ldisc(W) = −Exj∈X
Prϕ(xj|x<j; Ql(W))

∑l′ Prϕ(xj|, x<j; Ql′(W))
. (5)

By optimizing Q and W iteratively, the generator gϕ,Q learns to generate tokens that are
more related to the given label than other labels.
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Algorithm 1: Generator Tuning.
Data: Few-shot real dataset Dreal .
Initialize: Prompts Q, Pre-trained LLM

gϕ.
1 initialize t = 0;
2 while t < T + 1 do
3 t+ = 1;
4 B ← Sample a batch from Dreal ;
5 Qt(Wt)← Take a gradient descent

step on B with LDawGen(Qt; Wt);
6 Wt+1 ← Take a gradient descent step

on B with Ldisc(Qt(Wt));
7 Qt+1 ← Take a gradient descent step

on B with LDawGen(Qt; Wt+1);
8 end

Output: Generator gϕ,Q

Algorithm 2: Prompt Tuning.
Data: Few-shot Dreal and synthetic Dsyn.
Initialize: Prompts P, Pre-trained LLM fθ .

1 initialize t = 0;
2 while t < T + 1 do
3 t+ = 1;
4 Breal ,Bsyn ← Sample a batch from Dreal ,Dsyn;

5 Compute gradients δreal =
∂Lce(P)

∂P on Breal ;

6 Compute gradients δsyn = ∂Lce(P)
∂P on Bsyn;

7 if δsyn · δreal < 0 then
8 δ′syn = δsyn − Projδreal

(δsyn);
9 end

10 δ = δreal + ϵ · δ′syn;
11 P← P− η · δ;
12 end

Output: Soft prompt P

Distribution-Aligned Regularization. However, given the few-shot training set, it is easy
for the weight net to overfit shortcut tokens, which are not robust tokens for the given task.
For example, the token “not” can discriminate the positive sentence “It is a good movie”
from the negative sentence “It is not a good movie”, but is obviously not a generalizable
label-discriminative token. Hence, enforcing the generator to solely rely on the weights
may lead to generating sentences that are irrelevant to the given label. We propose to
regularize the generator tuning objective by adding a sentence-level distribution constraint
to encourage the generated sentence to align with the in-distribution data:

LDawGen(Q) = El∈[1,L]LwGen(Ql) + Ldist(Q), (6)

where

Ldist(Q) = E(X,y)∈Dreal
max(0, 1− D(W · Zi,l , W · Zj,l) + D(W · Zi,l , W · Zj,l′)). (7)

Here, W ∈ R1×K indicates the weights for a sequence of K tokens. Zi,l = gϕ,Q(Xi), Zi,l ∈
RK×d, denotes the last-layer hidden states output from the generator gϕ,Q(·) for i-th instance
Xi of class Yl , and Zj,l′ represents that from a different class Yl′ . D(·, ·) measures the cosine
similarity between two vectors. By minimizing Ldist(Q), we encourage the generated texts
to stay close to the ones in the same class while being pulled away from those that belong to
other classes. We present the whole procedures in Algorithm 1.

3.3 Training Soft Prompts with Synthetic Data Augmentation

Despite the domain adaptation procedure employed, the resulting synthetic training set
can inevitably contain low-quality data. Training soft prompts with a naive combination
of synthetic and few-shot real data can result in the optimization process being dominated
by gradients from the synthetic data. Hence, we up-sample the few-shot data by pairing
each batch of synthetic data with a corresponding batch from the few-shot real data. Then,
we employ gradient surgery to these paired batches to resolve conflicting gradients from
different data sources in prompt tuning.

Gradient Surgery. It was first proposed to de-conflict gradients in a multi-task learning
setting, where a model θ is trained on a set of M tasks (Yu et al., 2020). Let δi = ∂Li(θ)

∂θ

denote the gradients of i-th task loss Li(θ) with respect to the model θ. ∀δi ∈ {δi}M
i=1, δi is

iteratively altered across all the other tasks by subtracting the component
δi ·δj
∥δj∥2 δj, which is

its projection to the plane of j-th task’ gradient δj, where j ̸= i. This step is applied when
δi · δj < 0, which indicates the two tasks have interference in driving the optimization path.
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In this paper, we treat the gradients from real data, δreal , as the positive gradients for the
task and always project the gradients of the synthetic data, δsyn, to the direction of δreal :

Projδreal
(δsyn) =

δsyn · δreal

δreal · δreal
δreal =

δsyn · δreal

∥ δreal ∥
· δreal
∥ δreal ∥

, (8)

where δreal
∥δreal∥

is the normal plane of the gradients δreal from real data, and δsyn ·δreal
∥δreal∥

is the
magnitude of the projection of δsyn onto this normal plane. If δsyn · δreal < 0, then the
projected gradients will be dropped and the gradients of synthetic data will be modified as:

δ′syn = δsyn − Projδreal
(δsyn). (9)

By removing the conflicting gradients of the synthetic data, we train soft prompts using the
loss function in Equation 1 and update the weights with a gradient descent approach:

P← P− η(δreal + ϵ · δ′syn), (10)

where η is the learning rate and ϵ is a factor for controlling the strength of synthetic
knowledge guidance, which was studied in a similar work in computer vision (Zhu et al.,
2023). The whole algorithm is presented in Algorithm 2.

4 Experiments

4.1 Datasets, Metrics, and Settings

We conduct evaluations on seven sentence-pair classification datasets in two tasks. In the
paraphrase detection task, we use MRPC (Dolan & Brockett, 2005) and QQP2. In the natural
language inference task, we use MNLI (Williams et al., 2018), SNLI (Bowman et al., 2015),
QNLI (Rajpurkar et al., 2016), RTE (Dagan et al., 2005), and SICK (Marelli et al., 2014). We
follow LM-BFF (Gao et al., 2021) to prepare the few-shot learning setting: both Dtrain and
Ddev contain 16 samples per class, which are sampled from the original training set using 5
random seeds, and the original development set is used as the test set. We adopt Accuracy
for all the classification tasks and report the average test accuracy over 5 seeds. We compare
methods using the average performance across the seven datasets. More details about the
datasets, models, and training settings can be found in the Appendix.

4.2 Baselines

We consider the following zero-shot and few-shot baseline methods. We also compared
with two transfer learning methods, SPOT (Vu et al., 2022) and OPTIMA (Guo et al., 2022),
where a large-scale real-world source-domain dataset is available.

(Zero-shot) Prompting. We prompt the frozen T5-large and Flan-T5-large with only task-
specific natural language prompts (i.e., hard prompts) and treat it as the zero-shot learning
baseline. For fair comparisons, we apply the same hard prompts for all baselines where
applicable. Prompt-based templates are presented in the Appendix.

In-context Learning (ICL). Following GPT-3 (Brown et al., 2020), we incorporate the ac-
quired few-shot examples as demonstrations in the hard prompt templates, which is also
called few-shot prompting (in contrast to zero-shot prompting). The role of few-shot ex-
amples helps the frozen T5-large and Flan-T5-large models better understand the task by
exemplifying the task instruction with real-world examples. The order of few-shot samples
is randomly determined and we report the average performance across five runs.

Full-model Fine-tuning (FT). We feed the few-shot data without any hard prompts into
T5-large and Flan-T5-large and fine-tune the entire networks. Different from traditional
fine-tuning that trains an additional classification layer from scratch, here, we apply the
label verbalizer and tune the language modeling head instead.

2https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
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Method #Trainable
Params QQP MRPC MNLI SNLI QNLI RTE SICK AVG

T5-large

Prompting 0 42.63 33.80 33.20 33.31 49.46 52.35 14.51 37.04
In-Context 59.55 33.52 34.49 33.80 49.72 48.52 40.90 42.93

FT
770M

72.50 61.72 42.82 48.90 50.11 55.81 77.90 58.54
Prompt-based FT 60.15 59.66 42.94 54.16 51.75 57.18 69.98 56.55
PFT + soft prompt 60.22 56.18 43.86 48.45 57.38 55.60 76.23 56.85

PPT 410K 46.11 52.37 34.05 35.28 52.86 48.59 45.64 44.99
Prompt Tuning 102K 47.28 58.94 33.29 33.21 52.68 51.70 27.80 43.49
Ours 102K 66.77 69.67 53.20 46.81 69.84 57.40 72.73 62.35

SPOT†
102K 64.5 68.7 74.3 78.8 - - 72.9 -

OPTIMA† 69.1 71.2 78.4 82.1 - - 73.3 -

Flan-T5-large

Prompting 0 62.15 67.71 62.13 64.07 80.29 26.35 33.31 56.57
In-Context 82.84 75.27 62.44 54.87 89.98 19.06 38.02 60.35

FT
770M

79.17 78.29 79.76 86.37 56.86 86.57 83.73 78.68
Prompt-based FT 80.28 78.04 78.42 88.11 50.56 84.84 80.96 77.32
PFT + soft prompt 79.64 77.65 79.87 86.90 80.37 84.91 70.60 79.99

Prompt Tuning 102K 70.40 72.82 59.89 63.26 83.73 26.78 60.61 62.49
Ours 82.14 78.40 71.84 82.43 88.80 56.82 79.88 77.19

Table 1: Test accuracy on all datasets. The best result of each dataset is bolded. †: SPOT and
OPTIMA are transfer learning techniques that require a fully labeled source dataset, with
performance numbers from (Guo et al., 2022)

Prompt-based Full-model Fine-tuning (PFT). Using hard prompts for model tuning is
represented by LM-BFF (Gao et al., 2021) and PET (Schick & Schütze, 2021a). Here, we
apply the same hard prompts as other baselines to wrap every training sample for tuning
T5-large and Flan-T5-large. We also consider incorporating soft prompts for model tuning
as P-Tuning (Liu et al., 2022) and DART (Zhang et al., 2022), denoted as PFT + soft prompt.

Pre-trained Prompt Tuning (PPT). Proposed by Gu et al. (2022) to pre-train soft prompts
on text corpus from OpenWebText (Gokaslan & Cohen, 2019b) using the next sentence
prediction objective (Devlin et al., 2019). We download the pre-trained checkpoint for T5-xxl
and fine-tune them on the sentence-pair classification tasks.

FewGen. Proposed by Meng et al. (2023), where authors first use the few-shot data to adapt
CTRL (Keskar et al., 2019) to every task with prefix tuning and then generate synthetic
datasets using the adapted generator. We use their code3 to produce the synthetic datasets
(denoted as FewGen) for all tasks and train soft prompts for T5-large or Flan-T5-large. It
can be treated as the ablation for DawGen where only LwGen is applied.

4.3 Few-shot learning performance

Our main results are presented in Table 1. Overall, compared with the naive prompt tuning
method, our approach yields an average improvement of approximately 18% across all
datasets when applied to T5-large, and about 15% for Flan-T5-large. In particular, PT (using
102K parameters) under our framework outperforms FT (using 770M parameters) by an
average improvement of 3.8% across all datasets based on T5-large. When compared to
SPOT and OPTIMA, which use large real-world datasets for transfer learning, our approach
exhibits competitive performance on QQP, MRPC, and SICK, though its performance on

3https://github.com/yumeng5/FewGen
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Method Generator QQP MRPC MNLI SNLI QNLI RTE SICK AVG

T5-Large

Real+Syn

FewGen

52.64 70.53 38.15 33.96 57.08 52.64 48.01 50.43
Real+Syn+LS 53.09 67.94 38.58 34.11 56.99 56.03 58.05 52.11
Real→ Syn 59.51 70.04 47.46 41.99 65.52 57.91 65.81 58.32
Syn→ Real 63.78 68.92 36.97 35.17 63.24 53.86 52.90 53.55
(Real, Syn) 66.44 68.12 48.03 44.81 64.15 56.54 68.46 59.51

Real+Syn

DawGen

62.86 70.38 43.97 35.62 60.11 53.29 51.31 53.93
Real→ Syn 62.60 69.39 47.94 46.14 66.33 58.12 61.48 58.85
Syn→ Real 62.69 69.28 42.45 38.01 60.35 55.31 56.20 54.89
(Real, Syn) 61.77 69.99 48.76 45.10 66.37 57.20 70.80 59.99

Flan-T5-large

Real+Syn

FewGen

81.13 76.82 67.91 66.79 85.32 54.01 75.04 72.43
Real+Syn+LS 79.56 76.06 73.50 71.42 82.96 55.88 70.37 72.82
Real→ Syn 79.09 76.08 64.94 63.46 85.76 57.19 71.15 71.10
Syn→ Real 82.18 79.00 68.35 72.24 82.08 58.70 77.88 74.34
(Real, Syn) 82.33 78.04 68.86 80.14 87.19 56.68 78.56 75.97

Real+Syn

DawGen

83.60 76.81 71.85 72.48 84.11 53.72 69.17 73.10
Real→ Syn 80.50 75.64 66.42 69.41 86.52 54.22 73.33 72.29
Syn→ Real 83.26 78.55 72.15 77.29 87.51 50.76 72.17 74.53
(Real, Syn) 81.83 76.96 70.18 79.69 87.38 51.63 76.97 74.94

Table 2: Test accuracy of different strategies for learning on real and synthetic data, where
synthetic datasets are generated by FewGen and DawGen respectively. The best result in
each group is bolded.

MNLI and SNLI remains a big challenge, highlighting the possibility of using synthetic
training data as an alternative to enhance few-shot prompt tuning.

When comparing Prompt Tuning (PT) with both Prompting and In-Context Learning base-
lines, we observed that PT’s performance enhancement is marginal, despite leveraging
102K parameters to learn from data. This suggests that PT can be prone to overfitting when
applied to few-shot datasets. On the contrary, FT employs 770M parameters and, despite its
greater tendency to overfit the data, surpasses PT by an average of 14-18%, indicating that a
better pre-trained initialization can significantly enhance the learning outcomes.

4.4 The order in which synthetic and real data appears does matter

Previous research (Vu et al., 2022; Gu et al., 2022; Guo et al., 2022) indicates that data-driven
initialization significantly improves PT. Here, we study how the order in which synthetic
data and real data appear affects PT. We experimented with several strategies: Real+Syn
directly combines the synthetic and few-shot real data as a new training set and performs
shuffling before mini-batch training. Real→ Syn trains soft prompt first on Dreal and then
on Dsyn in every training epoch. Syn→ Real, on the contrary, trains soft prompt first on
Dsyn and then on Dreal in every training epoch. (Real, Syn) means pairing every batch
sampled from Dsyn with a batch sampled from Dreal and combining them as a new batch to
train soft prompts, which is employed in our approach. Results are presented in Table 2.

We observed that a naive combination of Syn + Real data performs the worst, where the
few-shot real data could be overwhelmed by the larger synthetic data. Simply applying a
label smoothing regularization, denoted as Syn + Real + LS, generally does not help. In
contrast, (Real, Syn), which up-samples the few-shot real data when paired with either
FewGen or DawGen data, confers an obvious improvement for both T5-large and Flan-T5-
large. We also observed an interesting phenomenon, where T5-large prefers Real→ Syn
while Flan-T5-large prefers Syn→ Real. This may suggest that training a model initially on
the few-shot real data is not always an advantage and the order in which real and synthetic
data are presented impacts differently for different LLM backbones.
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Generator Real GS QQP MRPC MNLI SNLI QNLI RTE SICK AVG

T5-Large

FewGen
56.70 69.25 42.18 34.63 56.91 53.87 34.11 49.66

! 66.44 68.12 48.03 44.81 64.15 56.54 68.46 59.51
! ! 67.85 70.05 49.52 46.39 66.96 55.96 72.08 61.25

DawGen
58.62 69.11 44.30 36.63 61.97 55.16 50.39 53.74

! 61.77 69.99 48.76 45.10 66.37 57.20 70.80 59.99
! ! 66.77 69.67 53.20 46.81 69.84 57.40 72.73 62.35

Flan-T5-large

FewGen
78.29 78.72 62.03 66.13 84.00 50.54 69.81 69.93

! 82.33 78.04 68.86 80.14 87.19 56.68 78.56 75.97
! ! 81.76 78.36 75.26 81.07 87.67 61.13 79.26 77.78

DawGen
83.11 77.05 68.21 70.49 84.07 49.02 68.66 71.52

! 81.83 76.96 70.18 79.69 87.38 51.63 76.97 74.94
! ! 82.14 78.40 71.84 82.43 88.80 56.82 79.88 77.19

Table 3: Test accuracy of ablation studies. “GS” stands for “Gradient Surgery” in prompt
tuning.

4.5 Ablation study

We evaluate every component in our approach and present the results in Table 3. Specif-
ically, we observe that: 1) the distribution-aligned regularization term Ldist is effective -
Comparing DawGen against FewGen, the soft prompts trained exclusively on DawGen
results in an average improvement of 4% for T5-large and 1.6% for Flan-T5-large across
all datasets compared to the one trained on FewGen; 2) utilizing a few real samples to
augment synthetic datasets is beneficial, and this benefit is more pronounced on FewGen
than DawGen, indicating that the higher the quality of a synthetic dataset, the less it requires
supplementation with real data supervision. 3) the gradient surgery technique effectively
mitigates the conflict between synthetic and real data sources - applying gradient surgery
further improves the performance by an average of approximately 2% across the datasets.

4.6 Instruction-tuned models are better few-shot learners

Recent works (Varia et al., 2023; Aly et al., 2023) suggested that the advantage of instruction
tuning (Ouyang et al., 2022; Chung et al., 2022) for language models can extend to few-shot
learning settings. This is further corroborated in our experiments. Across the tables, Flan-
T5-large excels T5-large on all experiments by a large margin. In this paper, we provide
a few new findings to this avenue: 1) instruction-tuned models can follow soft prompts
better, as shown by PFT + soft prompt versus PFT, where an average improvement of 2% is
spotted on Flan-T5-large while no increase is observed on T5-large. 2) Prompt Tuning on
top of instruction-tuned models are less prone to overfitting the few-shot data. It is shown
that Flan-T5-large elevates the PT performance of T5-large by around 20% on average. 3)
instruction-tuned models prefer using synthetic data to warm up the learning, as shown in
Table 2. Moreover, when using Flan-T5-large as the backbone, Syn→ Real strategy leads
to an average improvement of about 3 ∼ 4%, as shown by comparing either FewGen or
DawGen from Table 3 with Syn→ Real from Table 2. While synthetic data is often used as
a form of regularization for learning on real datasets, in our study, presenting a few real
samples after training on synthetic data produces a regularization effect. We suspect that
the instruction-following capability of Flan-T5-large may play an important role.

5 Conclusion

This paper presents a framework for generating synthetic training data with LLMs to boost
prompt tuning in few-shot settings. We introduce Distribution-Aligned Weighted GENerator
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tuning (DawGen) to encourage the generation of label-relevant text samples to improve the
quality of the synthetic dataset. To better exploit the synthetic data while making the best
use of the few-shot real data set, we employ the gradient surgery technique during prompt
tuning to eliminate the conflicting gradients from the synthetic data batches. Experiments
on seven sentence-pair classification datasets and two LLM backbones demonstrated the
effectiveness of our method for boosting prompt tuning in few-shot settings with synthetic
data. We show that Prompt Tuning augmented with DawGen can surpass Full-Model
Fine-Tuning in few-shot settings by a large margin, highlighting the feasibility of using
LLM-generated data as an alternative.

6 Limitations and Discussions

Currently, there are a few limitations of this study that may limit the impact scope of the
insights conveyed by this paper.

• The gap between the evaluation metric and the quality of the synthetic data. Specif-
ically, the downstream few-shot learning performance of prompt tuning, which is
often measured by accuracy, may only reflect the preferences of the model rather
than aligning with human judgment in terms of the quality of the synthetic data.
There should be intuitive methods to explain to humans why one synthetic sample
is superior to another.

• The few-shot learning performance on these public benchmarks reported in this
study does not stand for the state-of-the-art. They only reflect the performance of
prompt tuning. More advanced parameter-efficient learning methods like LoRA
could bring higher performance than prompt tuning. Nevertheless, the relevant
improvements in this study can still support the effectiveness of a specific strategy.

• Synthetic data generation cost can be a concern. Current data generators rely on
large language models, which have a deep stack of transformer layers. Feedforward
computations and autoregressive generations involve non-trivial GPU, memory,
and time costs. A few research efforts, such as FastGen Ge et al. (2024), have been
devoted to accelerating LLM inference costs.

7 Future Directions

In Table 4, we compare the modern augmentation paradigm, which leverages Generative AI,
specifically LLMs, with the traditional paradigm that relies on transfer learning. Together
with the discussions in the Limitation section, we propose the following directions: 1)
employ explainable approaches to highlight the influential elements in the synthetic data
and then devise quantitative measures to assess the data quality; and 2) develop inference
acceleration algorithms tailored specifically for batch generation.

Paradigms Data Source Label Pretrain Challenge
Transfer Learning real-world human annotation ! distribution gap
Generative AI LLM-generated given as prompts × data quality,

task relevance

Table 4: Two paradigms for boosting few-shot learning performance of soft prompt tuning.
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Callison-Burch, and Jian Su (eds.), Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pp. 632–642, Lisbon, Portugal, September 2015. Association
for Computational Linguistics. doi: 10.18653/v1/D15-1075. URL https://aclanthology.
org/D15-1075.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. Advances in neural information processing systems,
33:1877–1901, 2020.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan
Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-
finetuned language models. arXiv preprint arXiv:2210.11416, 2022.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entail-
ment challenge. In Machine learning challenges workshop, pp. 177–190. Springer, 2005.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/
N19-1423. URL https://aclanthology.org/N19-1423.

William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential
paraphrases. In Proceedings of the Third International Workshop on Paraphrasing (IWP2005),
2005. URL https://aclanthology.org/I05-5002.

Mengnan Du, Varun Manjunatha, Rajiv Jain, Ruchi Deshpande, Franck Dernoncourt, Jiuxi-
ang Gu, Tong Sun, and Xia Hu. Towards interpreting and mitigating shortcut learning be-
havior of NLU models. In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek
Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao
Zhou (eds.), Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 915–929, Online, June 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.71. URL
https://aclanthology.org/2021.naacl-main.71.

Jiahui Gao, Renjie Pi, Yong Lin, Hang Xu, Jiacheng Ye, Zhiyong Wu, Weizhong Zhang,
Xiaodan Liang, Zhenguo Li, and Lingpeng Kong. Self-guided noise-free data generation
for efficient zero-shot learning. arXiv preprint arXiv:2205.12679, 2022.

Jiahui Gao, Renjie Pi, LIN Yong, Hang Xu, Jiacheng Ye, Zhiyong Wu, WEIZHONG ZHANG,
Xiaodan Liang, Zhenguo Li, and Lingpeng Kong. Self-guided noise-free data generation
for efficient zero-shot learning. In International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=h5OpjGd lo6.

11

https://aclanthology.org/2023.findings-emnlp.158
https://aclanthology.org/2023.findings-emnlp.158
https://aclanthology.org/D15-1075
https://aclanthology.org/D15-1075
https://aclanthology.org/N19-1423
https://aclanthology.org/I05-5002
https://aclanthology.org/2021.naacl-main.71
https://openreview.net/forum?id=h5OpjGd_lo6


Published as a conference paper at COLM 2024

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better
few-shot learners. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.),
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 3816–3830, Online, August 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.acl-long.295. URL https://aclanthology.org/2021.acl-long.295.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model
tells you what to discard: Adaptive KV cache compression for LLMs. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=uNrFpDPMyo.

Aritra Ghosh, Himanshu Kumar, and P Shanti Sastry. Robust loss functions under label
noise for deep neural networks. In Proceedings of the AAAI conference on artificial intelligence,
volume 31, 2017.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus, 2019a. URL http://Skylion007.
github.io/OpenWebTextCorpus.

Aaron Gokaslan and Vanya Cohen, 2019b. URL https://skylion007.github.io/
OpenWebTextCorpus/.

Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang. PPT: Pre-trained prompt tuning for
few-shot learning. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.),
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 8410–8423, Dublin, Ireland, May 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.acl-long.576. URL https://aclanthology.org/2022.
acl-long.576.

Xu Guo and Han Yu. On the domain adaptation and generalization of pretrained language
models: A survey. arXiv preprint arXiv:2211.03154, 2022.

Xu Guo, Boyang Li, and Han Yu. Improving the sample efficiency of prompt tuning with
domain adaptation. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Find-
ings of the Association for Computational Linguistics: EMNLP 2022, pp. 3523–3537, Abu
Dhabi, United Arab Emirates, December 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.findings-emnlp.258. URL https://aclanthology.org/2022.
findings-emnlp.258.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Larous-
silhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer
learning for nlp. In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In
International Conference on Learning Representations, 2022. URL https://openreview.net/
forum?id=nZeVKeeFYf9.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney, Caiming Xiong, and Richard Socher.
Ctrl: A conditional transformer language model for controllable generation. arXiv preprint
arXiv:1909.05858, 2019.

Varun Kumar, Ashutosh Choudhary, and Eunah Cho. Data augmentation using pre-trained
transformer models. In Proceedings of the 2nd Workshop on Life-long Learning for Spoken Lan-
guage Systems, pp. 18–26, Suzhou, China, December 2020. Association for Computational
Linguistics. URL https://aclanthology.org/2020.lifelongnlp-1.3.

Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. arXiv
preprint arXiv:1610.02242, 2016.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-
tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language

12

https://aclanthology.org/2021.acl-long.295
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://skylion007.github.io/OpenWebTextCorpus/
https://skylion007.github.io/OpenWebTextCorpus/
https://aclanthology.org/2022.acl-long.576
https://aclanthology.org/2022.acl-long.576
https://aclanthology.org/2022.findings-emnlp.258
https://aclanthology.org/2022.findings-emnlp.258
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://aclanthology.org/2020.lifelongnlp-1.3


Published as a conference paper at COLM 2024

Processing, pp. 3045–3059, Online and Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.243. URL
https://aclanthology.org/2021.emnlp-main.243.

Dingcheng Li, Zheng Chen, Eunah Cho, Jie Hao, Xiaohu Liu, Fan Xing, Chenlei Guo, and
Yang Liu. Overcoming catastrophic forgetting during domain adaptation of seq2seq
language generation. In Proceedings of the 2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp. 5441–5454,
2022.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4582–4597, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.
353. URL https://aclanthology.org/2021.acl-long.353.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang.
P-tuning: Prompt tuning can be comparable to fine-tuning across scales and tasks. In
Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers),
pp. 61–68, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi:
10.18653/v1/2022.acl-short.8. URL https://aclanthology.org/2022.acl-short.8.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa Bentivogli, Raffaella Bernardi, and
Roberto Zamparelli. A SICK cure for the evaluation of compositional distributional seman-
tic models. In Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Hrafn Loftsson, Bente
Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk, and Stelios Piperidis (eds.), Pro-
ceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14),
pp. 216–223, Reykjavik, Iceland, May 2014. European Language Resources Association
(ELRA). URL http://www.lrec-conf.org/proceedings/lrec2014/pdf/363 Paper.pdf.

Yu Meng, Jiaxin Huang, Yu Zhang, and Jiawei Han. Generating training data with language
models: Towards zero-shot language understanding. Advances in Neural Information
Processing Systems, 35:462–477, 2022.

Yu Meng, Martin Michalski, Jiaxin Huang, Yu Zhang, Tarek Abdelzaher, and Jiawei Han.
Tuning language models as training data generators for augmentation-enhanced few-shot
learning. In International Conference on Machine Learning, pp. 24457–24477. PMLR, 2023.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, Yejin Choi, and Hannaneh Hajishirzi. Re-
framing instructional prompts to GPTk’s language. In Smaranda Muresan, Preslav Nakov,
and Aline Villavicencio (eds.), Findings of the Association for Computational Linguistics:
ACL 2022, pp. 589–612, Dublin, Ireland, May 2022. Association for Computational Lin-
guistics. doi: 10.18653/v1/2022.findings-acl.50. URL https://aclanthology.org/2022.
findings-acl.50.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language
models to follow instructions with human feedback. Advances in neural information
processing systems, 35:27730–27744, 2022.

Raul Puri, Ryan Spring, Mohammad Shoeybi, Mostofa Patwary, and Bryan Catanzaro.
Training question answering models from synthetic data. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 5811–5826,
Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/
2020.emnlp-main.468. URL https://aclanthology.org/2020.emnlp-main.468.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a
unified text-to-text transformer. Journal of machine learning research, 21(140):1–67, 2020.

13

https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.acl-long.353
https://aclanthology.org/2022.acl-short.8
http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf
https://aclanthology.org/2022.findings-acl.50
https://aclanthology.org/2022.findings-acl.50
https://aclanthology.org/2020.emnlp-main.468


Published as a conference paper at COLM 2024

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+
questions for machine comprehension of text. In Jian Su, Kevin Duh, and Xavier Carreras
(eds.), Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing,
pp. 2383–2392, Austin, Texas, November 2016. Association for Computational Linguistics.
doi: 10.18653/v1/D16-1264. URL https://aclanthology.org/D16-1264.

Timo Schick and Hinrich Schütze. Exploiting cloze-questions for few-shot text classification
and natural language inference. In Paola Merlo, Jorg Tiedemann, and Reut Tsarfaty (eds.),
Proceedings of the 16th Conference of the European Chapter of the Association for Computational
Linguistics: Main Volume, pp. 255–269, Online, April 2021a. Association for Computational
Linguistics. doi: 10.18653/v1/2021.eacl-main.20. URL https://aclanthology.org/2021.
eacl-main.20.

Timo Schick and Hinrich Schütze. Generating datasets with pretrained language models. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp.
6943–6951, Online and Punta Cana, Dominican Republic, November 2021b. Association
for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.555. URL https:
//aclanthology.org/2021.emnlp-main.555.

Ruixiang Tang, Dehan Kong, Longtao Huang, and Hui Xue. Large language models can
be lazy learners: Analyze shortcuts in in-context learning. In Anna Rogers, Jordan Boyd-
Graber, and Naoaki Okazaki (eds.), Findings of the Association for Computational Linguistics:
ACL 2023, pp. 4645–4657, Toronto, Canada, July 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.findings-acl.284. URL https://aclanthology.org/
2023.findings-acl.284.

Siddharth Varia, Shuai Wang, Kishaloy Halder, Robert Vacareanu, Miguel Ballesteros,
Yassine Benajiba, Neha Anna John, Rishita Anubhai, Smaranda Muresan, and Dan Roth.
Instruction tuning for few-shot aspect-based sentiment analysis. In Jeremy Barnes, Orphée
De Clercq, and Roman Klinger (eds.), Proceedings of the 13th Workshop on Computational
Approaches to Subjectivity, Sentiment, & Social Media Analysis, pp. 19–27, Toronto, Canada,
July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.wassa-1.3.
URL https://aclanthology.org/2023.wassa-1.3.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou’, and Daniel Cer. SPoT: Better frozen
model adaptation through soft prompt transfer. In Smaranda Muresan, Preslav Nakov,
and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 5039–5059, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.346.
URL https://aclanthology.org/2022.acl-long.346.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus
for sentence understanding through inference. In Marilyn Walker, Heng Ji, and Amanda
Stent (eds.), Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp.
1112–1122, New Orleans, Louisiana, June 2018. Association for Computational Linguistics.
doi: 10.18653/v1/N18-1101. URL https://aclanthology.org/N18-1101.

Jiacheng Ye, Jiahui Gao, Qintong Li, Hang Xu, Jiangtao Feng, Zhiyong Wu, Tao Yu, and Ling-
peng Kong. ZeroGen: Efficient zero-shot learning via dataset generation. In Proceedings of
the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 11653–11669,
Abu Dhabi, United Arab Emirates, December 2022a. Association for Computational
Linguistics. URL https://aclanthology.org/2022.emnlp-main.801.

Jiacheng Ye, Jiahui Gao, Zhiyong Wu, Jiangtao Feng, Tao Yu, and Lingpeng Kong. ProGen:
Progressive zero-shot dataset generation via in-context feedback. In Yoav Goldberg,
Zornitsa Kozareva, and Yue Zhang (eds.), Findings of the Association for Computational
Linguistics: EMNLP 2022, pp. 3671–3683, Abu Dhabi, United Arab Emirates, December
2022b. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-emnlp.
269. URL https://aclanthology.org/2022.findings-emnlp.269.

14

https://aclanthology.org/D16-1264
https://aclanthology.org/2021.eacl-main.20
https://aclanthology.org/2021.eacl-main.20
https://aclanthology.org/2021.emnlp-main.555
https://aclanthology.org/2021.emnlp-main.555
https://aclanthology.org/2023.findings-acl.284
https://aclanthology.org/2023.findings-acl.284
https://aclanthology.org/2023.wassa-1.3
https://aclanthology.org/2022.acl-long.346
https://aclanthology.org/N18-1101
https://aclanthology.org/2022.emnlp-main.801
https://aclanthology.org/2022.findings-emnlp.269


Published as a conference paper at COLM 2024

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea
Finn. Gradient surgery for multi-task learning. Advances in Neural Information Processing
Systems, 33:5824–5836, 2020.

Yue Yu, Yuchen Zhuang, Jieyu Zhang, Yu Meng, Alexander J Ratner, Ranjay Krishna, Jiaming
Shen, and Chao Zhang. Large language model as attributed training data generator: A
tale of diversity and bias. Advances in Neural Information Processing Systems, 36, 2024.

Haode Zhang, Yuwei Zhang, Li-Ming Zhan, Jiaxin Chen, Guangyuan Shi, Xiao-Ming Wu,
and Albert Y.S. Lam. Effectiveness of pre-training for few-shot intent classification. In
Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.),
Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 1114–1120, Punta
Cana, Dominican Republic, November 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.findings-emnlp.96. URL https://aclanthology.org/2021.
findings-emnlp.96.

Ningyu Zhang, Luoqiu Li, Xiang Chen, Shumin Deng, Zhen Bi, Chuanqi Tan, Fei Huang,
and Huajun Chen. Differentiable prompt makes pre-trained language models better
few-shot learners. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=ek9a0qIafW.

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhanc-
ing large language models with long-term memory. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 19724–19731, 2024.

Beier Zhu, Yulei Niu, Yucheng Han, Yue Wu, and Hanwang Zhang. Prompt-aligned gradient
for prompt tuning. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 15659–15669, 2023.

15

https://aclanthology.org/2021.findings-emnlp.96
https://aclanthology.org/2021.findings-emnlp.96
https://openreview.net/forum?id=ek9a0qIafW


Published as a conference paper at COLM 2024

A Experimental Setup Details

A.1 Datasets

The dataset statistics are presented in Table 5. We sample the few-shot |Dtrain| and |Ddev|
from their original training sets and report performance on their original development sets.
For MNLI, we report test accuracy on the matched version. We covert their original labels
using the verbalizer as in the Table.

Task Train Dev nclass Verbalizers

QQP 363,846 40,430 2 yes/no
MRPC 3,068 408 2 yes/no

MNLI 392,702 9,815 3 yes/maybe/no
SNLI 549,367 9,842 3 yes/maybe/no
QNLI 104,743 5,463 2 yes/no
RTE 2,490 278 2 yes/no
SICK 4,439 4,906 3 yes/maybe/no

Table 5: The original dataset statistics.

A.2 Hard prompt template.

Task Template label

QQP Question 1 is ⟨different⟩ from Question 2. Question 1: ⟨S1⟩ Question 2:
Question 1 is ⟨equivalent⟩ to Question 2. Question 1: ⟨S1⟩ Question 2:

different
equivalent

MRPC Sentence 1 is ⟨different⟩ from Sentence 2. Sentence 1: ⟨S1⟩ Sentence 2:
Sentence 1 is ⟨equivalent⟩ to Sentence 2. Sentence 1: ⟨S1⟩ Sentence 2:

different
equivalent

MNLI Sentence 1 ⟨implies⟩ Sentence 2. Sentence 1: ⟨S1⟩ Sentence 2:
Sentence 2 ⟨supplements⟩ Sentence 1. Sentence 1: ⟨S1⟩ Sentence 2:
Sentence 2 ⟨contradicts⟩Sentence 1. Sentence 1: ⟨S1⟩ Sentence 2:

implies
supplements
contradicts

SNLI Sentence 1 ⟨implies⟩ Sentence 2. Sentence 1: ⟨S1⟩ Sentence 2:
Sentence 2 ⟨supplements⟩Sentence 1. Sentence 1: ⟨S1⟩ Sentence 2:
Sentence 2 ⟨contradicts⟩ Sentence 1. Sentence 1: ⟨S1⟩ Sentence 2:

implies
supplements
contradicts

QNLI Paragraph is ⟨relevant⟩ to Question. Question: ⟨S1⟩ Paragraph:
Paragraph is ⟨irrelevant⟩ to Question. Question: ⟨S1⟩ Paragraph:

relevant
irrelevant

RTE Sentence 1 ⟨implies⟩ Sentence 2. Sentence 1: ⟨S1⟩ Sentence 2:
Sentence 2 ⟨supplements⟩ Sentence 1. Sentence 1: ⟨S1⟩ Sentence 2:

implies
supplements

SICK Sentence 1 ⟨implies⟩ Sentence 2. Sentence 1: ⟨S1⟩ Sentence 2:
Sentence 2 ⟨supplements⟩ Sentence 1. Sentence 1: ⟨S1⟩ Sentence 2:
Sentence 2 ⟨contradicts⟩ Sentence 1. Sentence 1: ⟨S1⟩ Sentence 2:

implies
supplements
contradicts

Table 6: Natural language prompt templates used for generator tuning.

A.3 Models and Training Setting

Generator Tuning. Following FewGen (Meng et al., 2023), we use CTRL (1.6B parameters)
(Keskar et al., 2019) as the generator gϕ and apply prefix tuning to train it on the few-shot
real dataset via training a set of label-specific Q = {Ql} using the few-shot data Dreal
following Algorithm 1. We generate 1000 synthetic samples per class for every task using
the same setting as FewGen4. Following Li & Liang (2021), we set the prefix length to the
number of tokens in the natural prompts in Table 5. We use the same hyperparameters for
all tasks and set the batch size to 2. The learning rate for weight net is set to 1e-2 and the
one for Q is set to 5e-3. The number of training epochs is fixed to 20. More details can be
found in the original paper (Meng et al., 2023).

4https://github.com/yumeng5/FewGen
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Task Template Verbalizers

QQP Are ⟨S1⟩ and ⟨S2⟩ equivalent? [MASK] yes/no
MRPC Are the first sentence: ⟨S1⟩ and the second sentence: ⟨S2⟩ equivalent?

[MASK]
yes/no

MNLI hypothesis: ⟨S2⟩ premise: ⟨S1⟩ answer: [MASK] yes/maybe/no
SNLI hypothesis: ⟨S2⟩ premise: ⟨S1⟩ answer: [MASK] yes/maybe/no
QNLI Is the question: ⟨S2⟩ relevant to the paragraph: ⟨S1⟩ ? [MASK] yes/no
RTE hypothesis: ⟨S2⟩ premise: ⟨S1⟩ answer: [MASK] yes/no
SICK hypothesis: ⟨S2⟩ premise: ⟨S1⟩ answer: [MASK] yes/maybe/no

Table 7: Natural language prompt templates used for prompt tuning.

QQP MRPC MNLI SNLI QNLI RTE SICK
T5-large - 0.014 8e-3 - 8e-3 9e-4 -

Flan-T5-large 0.2 0.002 - - 9e-8 - -

Table 8: p-values for DawGen over full-model finetuning.

Prompt Tuning. Following previous works (Lester et al., 2021; Gu et al., 2022; Guo et al.,
2022), we conduct prompt tuning on T5 (Raffel et al., 2020) and use the lm-adapted version
of T5-large (770M parameters) for the main experiments. We also experimented with Flan-
T5-large (Chung et al., 2022), which further trained T5-large on instruction tuning datasets to
improve its instruction following capability (Ouyang et al., 2022). We fix the prompt length
n = 100 and learning rate η = 0.3 as suggested by Lester et al. (2021). We use the cosine
learning rate scheduler for all methods. We set the maximum number of training steps to 1,
000 and evaluate models on the development set every 4 steps. We set batch size to 4 for
MRPC and QQP, and 6 for the other NLI datasets. For all the prompt tuning experiments,
the T5-large and Flan-T5-large backbone models are fixed and only soft prompt embeddings
are updated. All the training experiments are done on NVIDIA A6000 with 49 GB.

B Significance tests

We conducted a significance test for Table 1 on results where our method was superior. Table
8 shows the p-values. Our method shows statistically significant improvement over the
second-best baseline, full-model fine-tuning (FT). Although not superior in every task, our
method shows higher average improvements while using only 102K parameters, compared
to 770M in full-model fine-tuning.

C Discussion of the computational cost

Comparing the computational costs of different training paradigms directly is challenging
due to variations in training data, pretraining strategies, and stopping conditions. There
could be a trade-off between performance and computational cost.

• PPT: It involves a one-time pre-training of prompts on 10GB of OpenWebText data
using next sentence prediction. While these prompts are reusable across tasks, they
may underperform in tasks that are underrepresented in the OpenWebText corpora.

• SPoT: Prompts are pre-trained on one or more source tasks, and then adapted for
a target task. However, selecting appropriate source tasks requires an extensive
search and may struggle with large domain gaps.

• DawGen: It involves a one-time adaptation of the generator to the target task using
few-shot examples. The adapted generator can then produce unlimited synthetic
data, enhancing the flexibility of prompt training. However, the generation cost
depends on the LLM backbone and the advanced inference acceleration methods
such as FastGen.

17


	Introduction
	Related Work
	Few-shot Learning with Pre-trained Language Models
	LLMs as Task-specific Training Data Generators
	Learning with Synthetic Training Data

	Synthesizing Training Data for Prompt Tuning
	Preliminaries
	Distribution-Aligned Weighted Generator Tuning
	Training Soft Prompts with Synthetic Data Augmentation

	Experiments
	Datasets, Metrics, and Settings
	Baselines
	Few-shot learning performance
	The order in which synthetic and real data appears does matter
	Ablation study
	Instruction-tuned models are better few-shot learners

	Conclusion
	Limitations and Discussions
	Future Directions
	Experimental Setup Details
	Datasets
	Hard prompt template.
	Models and Training Setting

	Significance tests
	Discussion of the computational cost

