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Figure 1: MSE loss (Left) vs. our MMPD loss (Right) using the same decoder-only Transformer
backbone on dataset ETTm1, input 336-predict 192 task. MSE results in a single, ambiguous
prediction with a symmetric, constant confidence interval, failing to capture sudden changes in the
future. In contrast, our MMPD generates multiple sharp predictions with associated probabilities
(only Top-3 predictions are shown), and the confidence intervals are asymmetric and vary over time.
More visualizations are shown in Fig. [TT|of Appendix

ABSTRACT

Despite the flourishing in time series (TS) forecasting backbones, the training
mostly relies on regression losses like Mean Square Error (MSE). However, MSE
assumes a one-mode Gaussian distribution, which struggles to capture complex
patterns, especially for real-world scenarios where multiple diverse outcomes
are possible. We propose the Multi-Mode Patch Diffusion (MMPD) loss, which
can be applied to any patch-based backbone that outputs latent tokens for the
future. Models trained with MMPD loss generate diverse predictions (modes)
with the corresponding probabilities. Technically, MMPD loss models the future
distribution with a diffusion model conditioned on latent tokens from the backbone.
A lightweight Patch Consistent MLP is introduced as the denoising network to
ensure consistency across denoised patches. Multi-mode predictions are generated
by a multi-mode inference algorithm that fits an evolving variational Gaussian
Mixture Model (GMM) during diffusion. Experiments on eight datasets show its
superiority in diverse forecasting. Its deterministic and probabilistic capabilities
also match the strong competitor losses, MSE and Student-T, respectively.

1 INTRODUCTION

Time series (TS) forecasting have made fast progress. Plenty of backbones have been proposed,
incorporating various techniques like sparse attention (Li et al.,2019; Zhou et al., 2021}), trend-season
decomposition (Wu et al., [2021; Zeng et al.| [2023), frequency enhancement (Zhou et al., [2022),
patchify (Nie et al.||2023};[Zhang & Yan, [2023)) and cross-channel dependency (Liu et al., 2023)).

Despite the rich works on backbone design, most works rely on regression losses like Mean Square
Error (MSE) for training. However, using MSE essentially assumes that the future follows a Gaussian
distribution with fixed variance (details in Sec. [3.I). Such a parametric distribution has several
limitations, including its symmetric formulation and independent, constant uncertainty.

Most importantly, the single-mode Gaussian cannot support diverse forecasting, where the same past
may lead to multiple possible futures. Diverse forecasting is necessary in the real world. On the
data side, multi-mode pattern is a fundamental property: identical inputs can diverge into different
futures due to unobserved background contexts (Bergmeir, [2024)). On the application side, it is a
natural requirement in downstream tasks: in domains like trading, an averaged forecast offers little
actionable insight, whereas multi-mode predictions enable risk-aware decision (Tsay, |[2005)).
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Therefore, even with carefully designed backbones, the model’s capacity remains limited if the
training loss cannot capture complex distributions. Several works have attempted to improve loss
functions: |Le Guen & Thome| (2019} |2020) explore the Dynamic Time Warping (DTW). Due to high
complexity, DTW-based losses are hard to scale to long-term forecasting. |Salinas et al.| (2020); [Rasul
et al.| (2023) model the future with negative binomial and Student-T distributions. |Woo et al.|(2024)
uses a mixture of parametric distributions. Although better than MSE, their formulations are still
manually predefined, limiting the ability to model complex distributions.

To fill the gap, we propose Multi-Mode Patch Diffusion (MMPD) loss to model complex future
distributions. MMPD is generally applicable to any patch-based backbone that divides input series
into patches and outputs latent tokens for the future, now one of the most important categories of
backbones in both supervised and foundation models. Given one input, models trained with MMPD
loss can predict multiple diverse futures (modes), each with an associated probability, as illustrated in
the right of Fig.[I] Meanwhile, MMPD loss also integrates with traditional deterministic forecasting,
similar to MSE.

Technically, inspired by recent efforts of diffusion on visual tokens (Li et al., |2024a), MMPD
constructs a diffusion process for future series conditioned on tokens from upstream forecasting
backbones. In Sec. we propose a lightweight Patch Consistent MLP as the denoising network
in MMPD loss. When denoising a patch, it not only takes the corresponding token as the condition
but also considers adjacent noisy patches, ensuring consistency across patches. The integration with
deterministic forecasting is achieved by optimizing the diffusion objective at special anchor inputs.
As diffusion samples exhibit multi-mode patterns, a multi-mode inference algorithm is devised in
Sec. It fits an evolving variational Gaussian Mixture Model (GMM) at each diffusion step
alongside the reverse process. Priors from the forward process are injected via variational inference
to guide the update of GMM. At the end of the reverse diffusion, the GMM outputs multi-mode
predictions with corresponding probabilities. The highlights are:

1) Beyond the dominant MSE loss that assumes a simple Gaussian distribution, we propose the
MMPD loss, leveraging the diffusion process to capture complex distributions. MMPD loss is
backbone-agnostic and readily applicable to any patch-based backbone.

2) Observing multi-mode patterns in predictions, we devise a multi-mode inference algorithm that out-
puts diverse predictions with associated probabilities. Unlike pre-defined mixture distributions (Woo
et al.,[2024)), the number and structure of modes are adaptively inferred, offering greater flexibility.

3) Experiments on eight datasets show the superiority of MMPD loss in diverse forecasting. Its
deterministic and probabilistic capabilities also match the best-performing competitor losses, MSE
and Student-T, respectively. Its generality is validated on four different backbones.

2  PRELIMINARIES ABOUT DIFFUSION MODELS

We leave the related works to Appendix [A]and briefly overview the preliminaries about diffusion
models. Given training samples and corresponding conditions (e.g., images and captions): y°, ¢ ~
q(y?, c), Diffusion models define a forward Markov process that gradually adds noise to the sample:

K
gy 1y’ c) = [T a0*y* o) aFly" o) =N VI-By 8D (D)
k=1
where {8y € (0, 1)}, is the variance schedule to control the added noise. With the forward process,
a reverse Markov process for denoising is modeled by a neural network:
K
po (Y o) = [T pe 0 MIy*0) po(vF T IyE 0) = N (vF T ey, ¢ k), 07T) ()
k=1
where o}, is a step-dependent constant and (1, represents the neural network that parameterizes
the reverse process. The parameters of p4 are learned by minimizing the negative log-likelihood
Eq(x0,c) [—log m(x0 |c)]. Through parameterization and simplification, the final objective is:

L=FEyocke [||6 — e¢(yk,c, k)\|§] y’c =Vary' + V1 —are e~ N(0,1) 3)

where o, =1 — 5y and ay = Hle 0. €¢ 1s a network to parameterize pig in Eq. |2} It takes noisy
sample y*, condition c and diffusion step & as input and outputs the estimated noise in y*. Once
well-trained, new samples can be generated from the reverse process, i.e., Eq.

2
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3 METHODOLOGY

3.1 BROADENING THE DEFINITION OF LOSS FROM A PROBABILISTIC VIEW

Given the past series x € RT, TS forecasting aims to predict values of the same series at the desired
future horizo y € R". From a probabilistic view, the task is to model the conditional distribution of
the future given its past: p(y|x). Assuming an independent Gaussian with predicted mean and fixed
variance: py(y|x) = N (y; fo(x), 0°I), the objective of maximum likelihood estimation yields:

1
max Eqx.y) [log pa(y[x)] = max Eq(xy) {22 ly = fo(x)ll5 + Const]
7 €
. T
= min Eq(x,y) {—202 MSE( fo(x), y)}

where f5(+) : RT — R7 is a neural network parameterized by 6 to predict the mean. o € R is the
constant standard deviation. ¢(x,y) is the training dataset distribution.

Using gradlent -based optimizers like Adam for training, the constant coefficient 55 will be absorbed
by the step size. Therefore, the following relationship holds (Bishop & Nasrabadi, [2006):

Using MSE loss implicitly assumes the future follows an independent Gaussian distribu-
tion, with predicted mean and fixed constant variance.

This assumption is restrictive with limitations: 1) a single-mode Gaussian is unsuitable when multiple
distinct futures are possible; 2) predicted steps are assumed independent, yet real-world steps are
often correlated; 3) variance is fixed, whereas uncertainty typically evolves over time; 4) the Gaussian
is symmetric, but real-world predictions may be asymmetric, e.g., rainfall is nonnegative.

More generally, regardless of how refined the network is, its expressiveness will be limited because
MSE assumes a simple, parametric form for the future distribution. The same limitations apply to
MAE loss, which assumes a Laplace distribution with predicted location and fixed, independent scale.

To move beyond restricted assumptions and model more complex distributions, we decouple the
forecasting network into a backbone and a projector:

fg(X) :g¢(H)aH: hib(x)ae: {¢ﬂ/)} (5)
1) The backbone h.,,(-) extracts latent representations and contains the majority of the parameters.
Plenty of backbones with various techniques have been proposed in recent years (Wen et al., [2023)).

2) The projector g, (-) maps the representations to the output space, typically via a lightweight MLP
with few parameters. Its design highly depends on the chosen distribution—for instance, using a
Gaussian with predicted variance requires the projector to output both mean and variance.

Since the backbone is the core and dominates the parameter count, from the perspective of backbone
optimization, the projector can be viewed as part of the loss, forming a composite, trainable loss:

min Loss” (H, ), H = hy(x) (6)
In this broader definition, the projector gy acts as an auxiliary module that guides backbone optimiza-
tion. This is conceptually related to the adversarial loss (Goodfellow et al.,[2014), where a learnable
discriminator is introduced to guide generator training. Adopting this view, we can design flexible
losses that capture richer distributions beyond Gaussian forms. Moreover, traditional losses naturally
fall into this framework: MSE can be expressed as: MSE?(H,y) = Ly — g4(H) ||§

3.2 DIFFUSION TRAINING WITH PATCH CONSISTENT MLP

Unlocking the capacity of backbones requires losses corresponding to more flexible distribution fami-
lies. Leveraging the strong ability to capture complex distributions, we propose a diffusion-based loss,
MMPD¢’(H7 y). Unlike standalone TS diffusion models relying on specialized architectures (Tashiro
et al.| 2021), MMPD serves as a plug-and-play loss applicable across various backbones.

In this work, we focus on patch-based backbones, which divide past series into patches as input and
output latent tokens for the futureﬂ Specifically, in these backbones, past series x is divided into

'We focus on univariate forecasting; for multivariate data, the loss is computed per channel and averaged.
2MMPD can also be adapted to non-patch-based backbones with minor modification, as shown in Appendix
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patches of length P and then embedded into 7'/ P latent tokens. Backbones capture dependency
among tokens and output latent tokens H = {h, }é:l, [ = 7/ P, each corresponding to a future patch.
As discussed in Appendix [A] many recent supervised and pre-training models fall into this category.

: \/\W The core idea of our MMPD loss is to enable
[ ! flexible distribution modeling through condi-

stept tional diffusion, where future latent tokens serve

AdaLN-MLP | rext as the condition. To achieve this, a denoising net-
work e4(y", {h;}_,, k) is required. As an aux-

L [eoken; L ‘ iliary module to guide backbone optimization,

Y e = 1 2V Vo T this denoiser should be lightweight. A straight-
""" m (t\:&h‘ M [,\:\’:\,H A1 forward strategy is to split y* into patches
" " L " " {p},...,pl} and use an MLP to denoise each

""" | )| ) T | )| e patch p’f conditioned on token h, as done in|Li
Figure 2: Patch Consistent MLP for diffusion. [etal.|(20244) for visual tokens. However, such

To predict the noise ¢; in patch p*, besides the cor- independent MLP models the marginal distribu-
responding token h; and diffusion step £, adjacent tion of each patch p(p;|x),1 < j < [ rather

noisy patches centered around j (p5_,.,...,p¥_ ; than the joint distribution of all future patches
and p¥ ;... p¥, colored in red) are also input p(P1; - » P |X) This can lead to inconsistent
to AdaLLN-MLP as conditions. This ensures con- Samples during inference, resulting in discontin-
sistency across denoised patches. uous jumps between patches shown in Fig. 3(a).

To maintain consistency among patches while keeping the denoiser lightweight, we extend Adaptive
Layer MLP (AdaLN-MLP) (Peebles & Xiel 2023) to construct the Patch Consistent MLP:

6¢>(yk7 {hj}é':p k) = [él LI él] éj = AdaLN—MLP(p;?’ C?)

cf = token; + step” + prevf + next;?

tokenj = W(t()ke”)hj stepk — Emb(step) (k‘)

previ = WFre) [ph o opl ] nextf = WD [ph o ph ]

As illustrated in Fig. 2| the predicted noise € € R” is the concatenation of predicted noise in
each patch, i.e., €; ¢ RP. AdaLN-MLP is the denoising MLP from DiT block (Peebles & Xie,
2023), with details in Appendix [B| To predict noise in patch p;?, the conditioning vector integrates
four components: latent tokens token, diffusion timestamp step”, previous and next noisy patches
prevy and next”. Here, W (token) ¢ Rdmoder X dmodet; W (prev) YW (prev) ¢ Rdmodet XrP gre Jearnable

matrices. Emb(***P)(.) is the positional encoding. r is a constant hyper-parameter that controls the
adjacent range around patch j that the MLP can access. Padding is used when 7 < rorj > 1 —r.

@)

The key distinction between Patch Consistent MLP and independent MLPs lies in its use of adjacent
patches as conditions, i.e., the last line of Eq.[7} Fig.[3(b) shows that this ensures consistency across
patches. Moreover, the additional parameters introduced (i.e., W (prev) W(nezt)y are minimal.

Integration with deterministic forecasting. MMPD loss provides a flexible distribution. But in
many applications, deterministic forecasting is still needed, which is the role typically served by MSE.
A naive solution is to generate multiple samples and take the mean or median. However, diffusion
iterations are costly. For efficiency, we integrate deterministic forecasting within the diffusion
framework. Considering the diffusion objective (Eq.[3)), if the noise cancels the sample at step k*

such that y** = 0, the target reduces to a scaled negative ground truth e = —\/jf’z_;*yo. Thus, we

treat (0, {h; }ézu k*) as an anchor input for deterministic forecasting and define the joint objective:

V Qg*
V1= Qg
where A = 0.99 by default balances the probabilistic and deterministic objectives. k£* is set to make
ag~ close to 0.5 such that \/7;:’;% ~ 1. Fig. @of Appendixalso shows that prediction accuracy is
robust w.r.t k* across a broad range. After training, the deterministic prediction is directly obtained as
— V\l/%:‘f* €4(0,{h; }9‘:17 k*), bypassing costly diffusion iterations. This integration introduces no
new architectures, as it reuses the denoiser €,. Importantly, the deterministic forecasting term does
not conflict with the diffusion term - it is merely a special case of the diffusion objective at the anchor.

2

£:)‘Hf_%(yka{hj}é-_l,k)Hi—i—(l—)\)‘ .

yO + 647(07 {hj}é':lv k*)

2
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Figure 3: (a) Samples predicted by an independent denoising MLP on dataset Dynamic, showing the
inconsistency between patches. (b) Samples predicted by our Patch Consistent MLP, displaying clear
multi-mode patterns that are challenging to represent using simple statistics (black line: median, red
area: 50% confidence interval). (c) The evolution of our multi-mode inference algorithm: at each step
k, posteriors and estimations p(Z’?{, p(w¥), p(A¥), u* are updated via variational EM steps, based
on newly generated samples {y*} The updates are also guided by priors at each step k.

n=1-
3.3 MULTI-MODE INFERENCE THROUGH EVOLVING VARIATIONAL GMM

Once trained, we get a flexible distribution py(y|x). However, unlike MSE loss that corresponds to a
closed-form Gaussian distribution, pg(y|x) modeled by a diffusion process is an implicit distribution
that lacks an explicit analytic form. To summarize this distribution and extract interpretable informa-
tion for downstream tasks, prior works typically draw samples from it and then compute statistics
such as the median and confidence interval (Rasul et al., [2021a; Shen & Kwok,[2023) . However, as
shown in Fig.[B|(b), the samples exhibit multi-mode patterns, indicating that the same past can lead to
multiple possible futures. Such diversity cannot be adequately captured by simple summary statistics.

To address this, we propose a multi-mode inference algorithm that explicitly summarizes distinct
outcomes. Suppose the true distribution takes the following multi-mode form:

q(y°lx) = }:wm YO —yn), }:wmfl ©)

where {y* }M_, denote the M possible predictions and the probability to predict y*, is w,,. To
estimate {wm, vy M _ | we combine this multi-mode prior with the forward diffusion process (i.e.,
Eq.[I), yielding the forward distribution at step k:

q(y*x) = }:u% (" Varyy,, (1 = an)l) (10)

This is a Gaussian mixture distribution governed by two priors:

1) Mixture weights. The weights w,,, remain constant across steps k. In practice, the number of
effective modes should be limited, i.e., w,, = 0 for most modes, to avoid over-fragmented predictions.
2) Covariance matrix. The covariance matrix evolves with &k and should be (1 — a&y,)I at step k.

Consequently, when drawing N samples via reverse diffusion, the collection at step k, Y* =
{y*}V_,, should follow the Gaussian mixture distribution in Eq. This observation leads to the
use of GMM over other clustering models. By fitting a GMM alongside the reverse process at each
step, we can recover {w,,,y% }M_| from the final GMM at step 0. To better leverage the priors
on mixture weights and covariance, we employ a variational GMM rather than the standard GMM,
which enables explicit prior injection. The prior at step & is set as:

kigk k Ak T k., k ky\—17\2" k T
a(YHZF, b A%) = T TIN5 b (A5) D5 q(zFwh) = ] T (wh)

n=1m=1 n=1m=1
#Prior for mixture weights: q(wk) = Dirichlet(w"; 7), m,, = p™ 1 (11)
#Prior for variance: g(A¥) = H Gamma(A R Y uk =, 0f = ux (1 - ayg)
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Algorithm 1 Multi-Mode Inference Algorithm

Input: Future tokens {h;}!_,, number of samples N to draw via diffusion, maximum number of
modes M, prior hyperparameters p,win Eq.[T]
Initialize: Estimation {u}2_, and parameters in posteriors {uX, v 7EM_
Ouput: Statistics and probability of each mode
# Generate initial samples at step K: {yEK}N_| ~ N (y¥;0,1)
fork=K—-1,...,0do
# Generate samples at step k: {y%}1_, ~ Diffusion ({y**1}2_,, {h; }2:17 k+1)

# E-step: update posterior p(Z¥)

k ~ k
p(zk) H H (Vnm)z ™5 ’Yﬁm = Zl’\yfnim,yk
n=1m=1 s=1 Tns
T M
7k = =3 [Zrllyh — #5134 rln(@m)| +5 [p@) - @] +o @) —u( X 7

s=1

# M-step: update estimation pu*, posterior p(w*), p(A¥)

o, = ﬁ 2[:1 TmYni N::L = Zr]:[ 1%]§m

p(w*) = Dirichlet(w*; #%); 7% =, + Nk

P(A®) = [Ty, Gamma(A%,: af,, 08, );th, = ul, + 5 Np; T, = of, 43 Z Trm 5 — 113
end for
Mode,, = {y?|argmax 32, = m}
P(Mode,,) = |Mode:L |/N and get statistics of each mode

Table 1: Top-3 MSE/MAE, MSE, CRPS evaluations of different losses. The forecasting horizon 7
is {96, 192, 336, 720} for the first seven datasets and {60, 120, 180, 300} for Dynamic. Results
are averaged over 4 horizons. Rank: average rank on 8 datasets. Bold/underline: best/second. Inf:
infinity problem caused by outliers. See Table[7]in Appendix [E] for full results.
Dataset ‘ETThl ETTml ETTh2 ETTm2 WTH ECL Traffic Dynamic Rank ‘ ETThl ETTml ETTh2 ETTm2 WTH ECL Traffic Dynamic Rank
Metric | Top-3 MSE | Top-3 MAE

MSE 0430 0.348 0364 0264 0.224 0.176 0433  0.336 3.5 | 0440 0381 0398 0.320 0.262 0278 0.326 0311 4875
MAE 0.441 0364 0368 0276 0.235 0.179 0449 0426 525 | 0437 0375 0392 0321 0.263 0272 0310 0295 4.125
Gaussian | 0.439  0.361  0.379 0.280 0.255 0.165 0419 0343 475 | 0437 0386 0411 0337 0292 0256 0.282 0309 5.125
Student-T | 0.430  0.352 0375 0.286 0.241 0.165 0416 0390 425 | 0428 0371 0398 0.333 0.263 0250 0261 0292 3.375
Mix 0425 0289 0343 0.245 0.209 0.147 0412 0322 1.875| 0.426 0.338 0387 0.308 0.242 0.240 0.261  0.246 2

MMPD | 0.396 0269 0299 0214 0193 0.47 0389 0301 1 0412 0331 0357 0285 0221 0238 0254 0207 1
Metric | MSE | CRPS

MSE 0425 0350 0376 0270 0.227 0.160 0.399 0345 1.875| 0337 0307 0308 0.247 0.218 0.270 0.343 0257 4.25

MAE 0432 0355 0366 0274 0233 0.164 0417 0426 35 | 0346 0313 0299 0247 0.220 0288 0.362 0275 4.625
Gaussian | 0.434  0.357 0.382 0284 0255 0.163 0413  0.349 4 0317 0.282 0315 0256 0228 0.190 0.217 0233 4.375
Student-T | 0426 0.349 0372 0.283 0.241 0.164 0418  0.392 35 | 0310 0271 0300 0.250 0.201 0.187 0.204 0.224 225

Mix 0.446 0358 0.390 0285 0.259 0.167 0.426  0.482 6 0316 0269 0310 0247 0209 Inf 0205 0.224 3
MMPD | 0412 0337 0.354 0264 0229 0.164 0409 0353 175 0318 0270 0301 0.243 0.199 0.191 0.202  0.203 2

We use q( ) to denote prior distributions and {7, uk vk }M_ without tilde for parameters in priors.

= {z%}N_,, where each zF is a one- -hot latent variable indicating the mode y* belongs to. Line
1 defines the GMM with means p* = {pu* }M_, inverse variances A* = {A¥ 1M _| and mixture
weights w* = {wk }M_  Line 2 assigns a constant Dirichlet prior w.r.t diffusion step &k for w¥. Its
parameter 7, decays by p when mode index m increases, encouraging higher-indexed modes to
vanish. Line 3 assigns a Gamma prior on A* such that (E[AX])~! = vk /uf =1 — a4, consistent
with the covariance prior. No prior is set for u* as it is related to the unknown y,. The only
hyperparameters are p and u, with p controlling the decay of the Dirichlet prior over mixture weights
and u setting the shape of the Gamma prior on variances. Their effects are evaluated in Appenidx [F]

With these priors, we get the multi-mode inference Algorith Zg_], with detailed derivations in Ap—
pendlxl p(+) denote posterior distributions and {7%,, u% % }M_, with tilde are for parameters in
posteriors. As shown in Fig. [3{c), rather than using standard GMM as a post-processing method only
applied to {y%}~_, we distribute GMM iterations across diffusion steps. This allows us to utilize
the knowledge from Eq.[I0] via evolving prior distributions, which mitigates the difficulty of GMM
initialization and makes a more informed choice of the number of active modes.

4 EXPERIMENTS

We conduct experiments on: ETTh1l, ETTm1, ETTh2, ETTm2, WTH, ECL, Traffic, Dynamic.
The first seven are widely used datasets from previous works (Nie et al., 2023). The new Dynamic
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Table 2: MSE, Mix and MMPD losses over backbones: Crossformer, SegRNN and MaskAE. Horizons
are consistent with those in Table[I] #1st: number of first ranks across 8 datasets. Inf: infinity problem
caused by outliers. See Table[8|89|in Appendix [E|for the full results.

Dataset ‘ ETThl ETTml ETTh2 ETTm2 WTH ECL Traffic Dynamic #lst ‘ ETThl ETTml ETTh2 ETTm2 WTH ECL Traffic Dynamic #Ist
Metric | Top-3 MSE | Top-3 MAE
MSE | 0.443 0378 0372 0266 0.223 0.184 0451 0331 0 | 0452 0397 0412 0323 0.268 0283 0342 0304 0
Crossformer | Mix | 0.433 0330 0.359 0.236 0.200 0.160 0.424  0.307 0 0433 0358 0400 0307 0.235 0255 0279 0233 0
MMPD | 0.381 0310 0315 0228 0.197 0.152 0.404  0.295 8 0410 0353 0372 0295 0.226 0.245 0.261  0.194 8
MSE | 0440 0385 0.365 0273 0.222 0.183 0464  0.333 0 | 0451 0417 0408 0337 0.269 0286 0.333  0.307 0
SegRNN Mix | 0435 0335 0341 0.248 0214 0.155 0439  0.330 0 | 0432 0378 0389 0311 0.246 0245 0.253 0247 1
MMPD | 0402 0321 0321 0233 0.201 0.150 0.418  0.295 8 0426 0375 0377 0305 0.234 0242 0260 0.210 7
MSE | 0438 0354 0355 0280 0.226 0.178 0.436  0.339 0 | 0447 0389 0392 0337 0.263 0280 0329 0312 0
MaskAE Mix | 0415 0314 0340 0.253 0203 0.150 0416 0.321 0 | 0425 0353 0384 0308 0.238 0241 0265 0244 0
MMPD | 0.399 0280 0311 0.247 0.197 0.144 0.387  0.296 8 0416 0.342 0367 0.304 0.225 0.234 0.253  0.203 8
Metric | MSE | CRPS
MSE | 0440 0.382 0.388 0271 0.228 0.170 0418  0.339 5 | 0344 0316 0319 0249 0221 0274 0348 0253 0
Crossformer | Mix | 0.460 0399 0403 0273 0241 0.182 0459 0455 0 | 0323 0281 0323 0248 0.202 Inf 0217 Inf 3
MMPD | 0416 0388 0374 0270 0.232 0.170 0.420  0.349 4 0314 0287 0316 0249 0.204 0.197 0.208 0.194 5
MSE | 0433 0383 0376 0279 0.226 0.168 0428  0.342 3 | 0341 0321 0314 0259 0.221 0273 0345 0255 0
SegRNN Mix | 0452 0381 0.375 0285 0.273 0.187 0468  0.465 2 Inf Inf Inf Inf Inf  Inf Inf Inf 0
MMPD | 0434 0386 0376 0285 0.232 0.167 0.421 0.341 3 0328 0299 0313 0257 0.210 0.193 0205  0.204 8
MSE | 0437 0357 0366 0.287 0.230 0.162 0403  0.349 3 0341 0310 0303 0259 0220 0271 0344  0.259 1
MaskAE Mix | 0456 0371 0394 0291 0270 0.170 0.441 0476 0 | 0319 0277 Inf 0.250 Inf 0.194 0.208 0.222 3
MMPD | 0421 0342 0362 0281 0.231 0.161 0.404  0.350 5 0319 0277 0305 0258 0.201 0.188 0.201  0.202 6

consists of 17 signals from a complex dynamical system without obvious periodic patterns. For each
dataset, we fix the look-back window 7" and make predictions on different horizons 7.

Following Top-K accuracy for image classification (He et al., 2016), we use Top-K MSE/MAE
(K = 3 in our setting) to evaluate multi-mode prediction: Top-K modes with the highest probabilities
are selected and the minimum MSE/MAE among K modes is reported. Using small K and guided by
the probability of each mode, Top-K MSE is more applicable than Best MSE (Le Guen & Thomel
2020), which computes the MSE of all N samples and reports the best. We also report traditional
metrics such as MSE and Continuous Ranked Probability Score (CRPS) to evaluate deterministic
and probabilistic accuracy. Detailed setups, including datasets and metrics, are shown in Appendix [D]

4.1 MAIN RESULTS

MMPD vs. Baseline Losses. We compare MMPD with the following losses: 1) deterministic losses
MSE (Nie et al.| [2023) and MAE (Liu et al.,[2022a); 2) distribution-based losses Gaussian (Salinas
et al., [2020) and Student-T (Rasul et al.| 2023)); 3)Mix (Woo et al. 2024) that mixes multiple
parametric distributions for flexible modeling. We maintain the main backbone as a patch-based
decoder-only Transformer (Goswami et al., 2024; |Lin et al., 2024b)) and change the losses.

Top-3 MSE and Top-3 MAE in Table[I| show that only Mix and MMPD can capture multi-mode
patterns. Among them, our MMPD loss consistently outperforms Mix, as the number and form
of mixture components in Mix are predefined, while in MMPD, they are learned directly from
the data. Regarding deterministic forecasting performance measured by MSE, our MMPD loss is
comparable to the best competitor, MSE loss, and even outperforms it on some datasets, showing
MMPD effectively integrates deterministic forecasting. Similarly, MMPD performs on par with the
best-performing baseline, Student-T, in terms of probabilistic forecasting measured by CRPS.

Generality of MMPD Loss across Backbones. Besides the decoder-only Transformer used in
Table[T] we also compare MMPD loss with MSE and Mix across the following three backbones: 1)
channel-mixing Transformer Crossformer (Zhang & Yan, 2023), 2) patch-based RNN SegRNN (Lin
et al., 2023), 3) Masked AutoEncoder using pure Transformers MaskAE (Zhang et al., [2024b)).
Results in Table [2]demonstrate that the diverse forecasting capability of MMPD significantly outper-
forms MSE and Mix across all three backbones. The deterministic forecasting ability measured by
MSE is comparable to MSE loss, which is consistent with Table It is worth noting that, due to the
log-normal component, Mix loss is likely to generate outliers, leading to the infinity problem in CRPS.
This issue is particularly severe for the RNN-based SegRNN. In contrast, the CRPS of the MMPD
loss remains stable, regardless of whether the upstream backbone is an RNN or a Transformer.

4.2 MODEL ANALYSIS

Ablation of Patch Consistent MLP. In Fig. [d{a), the independent MLP, which does not incorporate
adjacent patches (r = 0), performs poorly in multi-mode prediction, with the Top-3 MSE even
exceeding MSE. This occurs because the independent MLP only models the marginal distribution of
each patch pg(p;|x) rather than the joint distribution of all patches, leading to inconsistent samples
as shown in Fig. Eka). In contrast, the Patch Consistent MLP, even with » = 1, significantly reduces
both Top-3 MSE and Top-3 MAE. Further increasing r slightly improves performance.
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Figure 4: (a) Metrics for varying adjacent range r in Patch Consistent MLP (r = 0: independent
MLP) on Dynamic (prediction horizon 7 = 180). (b) Metrics for varying probabilistic/deterministic
objective balancing weight A, with all other settings identical to (a). (c) Top-3 MSE/MAE comparison
between multi-mode inference and post-processing methods.

Effect of Balancing Weight ) in Eq.[8] Fig.[4(b) shows that when training with only the diffusion
objective (A = 1.0), the deterministic prediction capability measured by MSE is poor. Decreasing it
to 0.999, the MSE is greatly reduced, while other metrics are not harmed. As A gradually decreases,
MSE improves and stabilizes. An interesting observation is that when A decreases from 1.0 to 0.9,
besides MSE, other multi-mode and probabilistic metrics also get better. We suspect that this is the
collaborative effect brought by joint training of the two objectives.

Ablation of Multi-Mode Inference Algorithm. Fig.[d{c) compares our multi-mode inference algo-
rithm with various post-processing methods. Random assignment performs the worst, highlighting
the necessity of multi-mode extraction. Our multi-mode inference algorithm significantly outperforms
KMeans and spectral clustering. Furthermore, MMPD surpasses Post-GMM, which uses the same
GMM formulation as MMPD but is applied directly to final samples {y%}~_; without the evolving
priors. This stems from fitting an evolving GMM with dynamic priors on gradually denoised samples,
which mitigates the difficulty of parameter initialization in GMM and automatically selects a more
appropriate number of activated modes. Due to page limit, other hyperparameter evaluations (e.g.,
noise schedule, diffusion steps, hyperparameters in Algorithm I are provided in Appendix [F|

Adapting Encoder-Only Backbones for MMPD
MSE Loss</\/ ;\/ Loss. In the left of Fig. [5] besides backbones we

have evaluated, there are encoder-only backbones that
flatten the encoder outputs and linearly project them
to predict the series for MSE loss (Nie et al., 2023}
Luo & Wang|,|2024)). They do not generate future la-
tent tokens, meaning MMPD loss cannot be directly
applied. In the right of Fig.[5] we transform them into
decoder-only ones for our MMPD loss by appending
learnable tokens to the end of the input sequence.

7~ MMPD Loss
T
:1:%1: 000 D'\!__I_l

— { Ty

j000 gooooag

|:| past patches |:| patches to predict
Figure 5: Approach for adapting encoder-
only backbones to use MMPD loss: learn-
able tokens, indicating the patches to predict,
are appended to the end of the past patch
sequence. The padded sequence is fed to the
same network as encoder, transforming the
backbone into a decoder-only model. Only
the output tokens corresponding to the future
series are used for MMPD loss computation.

We adapt the encoder-only PatchTST (Nie et al.,
2023) into a decoder-only backbone to enable MMPD.
In Fig. [6[a)&6]c), the scale of the projection layer
in encoder-only version increases with input/output
lengths, while remaining constant with our adapta-
tion. Decoder-only PatchTST with MMPD gets lower
MSE, indicating better scalability. Also, our adap-
tation enables multi-mode and probabilistic forecast-
ing, evidenced by improved Top-3 MSE and CRPS in

Fig. [{[b)&6[d).

MMPD Loss vs. Standalone TS Diffusion Models. We also compare MMPD loss with standalone
TS diffusion models 1)CSDI (Tashiro et al., [2021), 2)TSDiff (Kollovieh et al., [2023), 3)MG-
TSD (Fan et al.| [2024), 4)Diffusion-TS (Yuan & Qiaol 2024). These models involve complex
denoising networks, making long-term experiments conducted in Sec.4.T|challenging. Following
Tashiro et al| (2021), we forecast the next 24 steps using the past 96 on ETTh1. Results in Table 3]
show that our MMPD significantly outperforms standalone diffusion models. This is because the
decoupling from the backbone allows the MMPD loss to fully leverage the advanced backbone.
Moreover, the lightweight denoising MLP in MMPD ensures faster inference compared to diffusion
models with heavier networks and complex diffusion processes.
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Figure 6: Comparison of adapted decoder-only PatchTST (Nie et al., 2023) with MMPD loss
(Dec+MMPD loss) against the original encoder-only version with MSE loss (Enc+MSE loss). (a),
(b): number of parameters and metrics (MSE, Top-3 MSE and CRPS) for varying input length 7" on
ETTml, the prediction horizon is set to 7 = 192. (c), (d): number of parameters and metrics for
varying prediction horizon 7 on ETTm1, the input length is set to 7" = 768.

Table 4: FLOPs across structures/stages for MSE Loss, TS Diffusion Models and MMPD Loss. S:
number of blocks in MLPs, d (short for d,,,,q4¢;): hidden state dimension. Fygp, Fyrp, Fro—mnp:
FLOPs of backbone, conventional MLP and Patch Consistent MLP. GMM FLOPs in MMPD are
omitted as they are negligible vs. neural networks. See derivation in Appendix E}

Structure/Stage MSE Loss TS Diffusion Models MMPD Loss

MLP Projector Fyrp = 0(%[(25+ 1)d2+Pd]) N/A Fpo—_mrp = O(%[(SS+3)d2 4 (27‘+2)Pd])
Training (forward only) Foko + Frrp Fokp Fyko + 2Fpc—mLp
Deterministic Inference Foky + Frurnp N/A Fyky + Fpo—nmrp
Prob/Multi-Mode Inference N/A NKFyp Fyrp + NKFpo—_nLp

Table 5: Memory, training (per batch) and inference time (per instance) of MSE Loss, Diffusion-TS
and MMPD Loss on dataset WTH, 7' = 336, 7 = 192, batch = 32, N = 100, K = 20.

Stace MSE Loss Diffusion-TS MMPD Loss

g Memory (GB) Time (ms) | Memory (GB) Time (ms) | Memory (GB) Time (ms)
Training 2.599 89.9 4.358 676.4 2.930 106.3
Deterministic Infer 0.031 2.3 N/A 0.034 3.1
Prob/Multi-Mode Infer N/A 11.245 28,495.1 0.505 415.8

Table 3: Evaluation of MMPD loss against TS dif-
fusion models on ETTh1, T' = 96, 7 = 24. “Time”
refers to average inference time per instance.

Efficiency Analysis. As shown in Table
the Patch Consistent MLP for MMPD incurs
marginally higher FLOPs than the conventional

MLP for MSE loss. During training, MSE loss

Top-3MSE Top-3MAE MSE i 4
requires one MLP forward pass, while MMPD

CRPS Time(s)

CSDI 0.225 0304 0339 0265 1014 X O .
TSDiff 0275 033 0345 0292 0419  loss requires two: one for the diffusion objec-
MG-TSD 0287 0331 0340 0306 0217 ; Ciotic
Diffusion-TS 0282 0324 0351 0204 050 lveand anpther for the determlqlstlc mn Eq
Decoder+MMPD  0.186 0280 0298 0254 0075  However, since the backbone dominates training

cost (i.e., Fyrp >> Fyrop, Fpo—mLp), the to-
tal training FLOPs of MMPD remain nearly identical to those of MSE. This equivalence also holds
for deterministic inference, where both losses require a single MLP pass. For probabilistic and
multi-mode inference, which MSE cannot perform, MMPD’s overhead is significantly lower than
that of standalone TS Diffusion models, as MMPD only requires a single heavy backbone pass
followed by multiple lightweight MLP passes. The theoretical analysis is consistently supported by
the experimental memory occupancy and speed measurements in Table[5]

5 FURTHER DISCUSSIONS AND CONCLUSION

In Appendix [H] we extend MMPD beyond its basic setting to non-patch-based backbones by inserting
a Transformer decoder layer between the backbone and MMPD loss. In Appendix [I} beyond the
single-dataset paradigm, we further apply MMPD to a multi-task model, UNITS (Gao et al.,|[2024),
to perform multi-task, few-shot and zero-shot forecasting. In both cases, MMPD functions as a
plug-and-play loss that can be incorporated with minimal changes. Compared with original models
trained with MSE loss, MMPD preserves deterministic forecasting performance while enabling richer
distribution modeling, supporting multi-mode and probabilistic forecasting.

In conclusion, we have proposed MMPD, a diffusion-based loss that goes beyond the dominant
single-mode MSE loss in TS forecasting. By modeling complex distributions, MMPD equips models
with multi-mode forecasting capabilities—an essential feature for many real-world applications, par-
ticularly those involving risk-aware decision making. Extensive benchmark experiments demonstrate
the effectiveness and broad applicability of our approach.
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A RELATED WORKS

Backbones for TS Forecasting. Early works employ RNNs (Flunkert et al.|[2017) and CNNs (Lea
et al., 2017) as backbones. Transformers for TS were introduced later, incorporating techniques
such as sparse attention (Li et al., 2019} |Zhou et al., [2021)), trend-season decomposition (Wu et al.}
2021)), frequency enhancement (Zhou et al., 2022} and hierarchical structure (Liu et al.| | 2022b)). Nie
et al.|(2023); Zhang & Yan|(2023) proposed patch-based Transformers that divide time series into
patches. This approach was later adopted widely, resulting in the development of various patch-based
models (Vijay et al., 2023} |Lin et al., 2023} Luo & Wang} 2024} |Zhang et al.| 2023} |Yu et al.| 2023}
Zhang et al., 2024a). Furthermore, many recent pre-training models (Zhang et al., |2024bj, Woo
et al.,|2024; |Goswami et al., 2024; |Liu et al., 2024b) and cross-modality models (Liu et al., [2024a;
Zhou et al,[2023; Jin et al., [2024])) also adopt patch-based backbones. Other studies have explored
lightweight designs (Zeng et al.l 2023} Lin et al.l 2024a) and cross-channel dependency capture (Liu
et al., [2023; |[Huang et al.| 2023). Despite such advances in backbones, they mostly use regression
loss functions. This greatly limits the backbones’ capability, especially in diverse forecasting.

Loss Functions for TS Forecasting. Despite extensive research on backbones, limited focus was
paid to forecasting specific losses. A line of works uses Dynamic Time Warping (DTW) (Miiller,
2007), which computes the similarity between two series with dynamic programming. |Cuturi &
Blondel (2017) makes DTW differentiable. |Le Guen & Thome|(2019;[2020) extend DTW to evaluate
shape and temporal distortions. However, it is hard to scale non-parallelizable DTW-based losses to
long-term tasks. Another line predicts future distributions by estimating their parameters. Common
distributions include Student-T (Rasul et al., [2023)), Gaussian and negative binomial (Salinas et al.,
2020). Additionally, Woo et al.|(2024) mix multiple parametric distributions (e.g., Gaussian, Log-
normal, etc.) via a Softmax layer. However, these methods rely on predefined formulations, failing to
capture complex patterns.

Deep Generative Models for TS. Pioneering efforts on deep generative models for TS include
GAN:Ss (Yoon et al.,[2019), normalizing flows (Rasul et al.,[2021b)) and VAEs (Li et al.,[2021)). With
the success of diffusion models (Ho et al.,|2020; [Peebles & Xiel|2023), many diffusion models for
TS have also been proposed. Rasul et al.|(2021a)) propose an RNN-based diffusion model. |Tashiro
et al.|(2021); |Alcaraz & Strodthoff (2022) condition diffusion on observed data for imputation. [Shen
& Kwok|(2023) and |Li et al.| (2024b)) respectively use the prediction of autoregressive models and
Transformers as the prior knowledge to guide diffusion. [Yuan & Qiao|(2024)) introduces trend-season
decomposition to enhance diffusion. These efforts primarily focus on refining denoising networks or
optimizing the diffusion process. In contrast, our approach leverages diffusion models to develop a
backbone-agnostic loss function.

B DETAILS OF ADALN-MLP

The AdaLN-MLP is an MLP that takes a noisy patch p and the condition vector c as input and
predicts the noise in p. It is originally a component of Diffusion Transformer (Peebles & Xie, [2023).
The Diffusion Transformer was designed to replace the U-Net backbone in diffusion models, and it
introduced Adaptive LayerNorm (AdaL.N) blocks to inject conditions into diffusion models. One
AdaLN block consists of an AdaLN-Attention block and an AdaLN-MLP block. For efficiency, we
only use the AdaLN-MLP in our MMPD loss. The computation process of one AdaLN-MLP block is
as follows:

ale’
AdalN(z,~, 3) = (1 + «) o LayerNorm(z) + 3 (12)

e = Wiaed(©), mdie = Wied(e), Blin = Wiid(e)
z(®) € Rmodet is the output of s-th block (with z(®) being the linearly embedded p) and ¢ € R%modet

is the condition. o denotes the element-wise product and MLP(-) is the standard multilayer perceptron.
(s) () (s)

gates Yscales Bshift € Rdmode are parameters to adjust the layer norm and they are obtained by
projecting the condition ¢(c) with Wézt)m Ws(fa)le7 ngfi)ﬂ € RmodaetXdmoact respectively, where ¢/(-)

is the activation function. Passing through S AdaLN-MLP blocks, z(%) is used to make the final

z(8) = z(=1 4 af;t)e o MLP (AdaLN(z(S_l), 'ys(cs) ﬁfl?ft))

(o7
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prediction by:
¢ = WD AdALN(2(®), 4. B0
(out) __ (out) (out) __ (out)
Vscale = Wscale¢(c)7 6shift - Wshift ¢(C)

Where W(fll’lal) c RPdeodEL and W(OU[) Wé(}ii]ft[) c RdmodElemodel

scale’

(13)

C DERIVATION OF MULTI-MODE INFERENCE ALGORITHM

To leverage the prior knowledge from forward diffusion, we set the following prior at step k:

N M
. . 1k
g(YHZF, ph AR =TT T] Nk ph,. (A%,) 71 T)zm

n=1m=1
N M
oziw) =TT T
q(w") :Dlrlchlet(w ST), T, = P
M
AF) = H Gamma(AF ;u* oF)
m=1

k
U,

(14)

=u,v® =ux (1 — ag)

uk ok AM_ w1th0ut tilde for parameters

Note that we use ¢(+) to denote prior distributions and {7~ Uy Y
in prior distributions. p(-) are for posterior distributions and {7, fn, Uy, }m—1 for parameters in

posterior distributions.

With the above priors, we get the joint distribution ¢(Y* Z* wk A¥|uF) =
q(YF|ZF ¥, AR)q(ZF|w")q(w")q(A¥).  Obtaining samples at step k, Y* = {yF}N_,,
our goal is to maximize the marginal log probability max,,« In ¢(Y*|u*) and get the posterior

distribution q(Z*, w*, A*[Y*, % ), where pf,, denotes optimal parameters. It is hard to directly
optimize the marginal distribution and obtain the posterior as they both contain complex integral
terms. Therefore, we introduce variational distribution p(Z*, w*, A¥) to approximate the posterior
through variational inference (Bishop & Nasrabadi, 2006). To maximize max,,« In q(Y*|p*) and

approximate posterior q(Z*, w*, A*|Y* p*) with p(Z*, w* A¥), we get the following objective:

max  Inq(Y* ) — KL[p(Z*, wh, A%)]|q(ZF, w¥, AF[Y*, 1)

k ok Ak k|, k p(Z*, wk, A") ko Ak
= max p(Z%,w" A [hﬁqY pn") —In dZ"dw"dA
/ ( ) ( | ) q(zk’v,k’ Qk|Yk7uk)

(15)

_ b ok oak gy AOYRZE wWR AR|GRY
7;2?;,)2 /p(z s W ,A )ln p(Zk7wk7Ak) dZ"dw"dA
= max L(p", p(ZF,wh, AF))

pk pk

where p* is short for p(Z*, w* A¥) and L(u*, p(Z*,w*, A¥)) is often called Evidence Lower
Bound (ELBO) in variational inference. Using mean field approximation, we decompose the varia-
tional distribution into p(Z*, w*, A¥) = p(ZF)p(w*)p(AF).

Given newly generated samples at step k, Y*, we maximize L£(u*, p(ZF), p(w"), p(A¥)) w.rt
p(Z*), u*, p(w*), p(A*) one by one. An advantage of fitting an evolving variational GMM alongside
the diffusion process is that we can use well-fitted posteriors, i.e., p(Z*¥*1), uF+1, p(wh+1) p(A*F+1)
at step k + 1 as the initialization of step k. This is because in diffusion, the difference between
samples generated in two adjacent steps Y**! and Y* is small, and in our setting, the difference
between the prior distributions of two adjacent steps is also minimal. As a result, we initialize

15



Under review as a conference paper at ICLR 2026

p(ZF), u*, p(w*), p(A*) using optimized parameters from last step & + 1 as the following:

N M
H H ~k+1 7L’NL
n=1m=1
a——s 6
p(w*) = Dlrlchlet( kL)
m=1
E-step: Update p(Z*). Fixing pu*, p(w*), p(A¥), the objective becomes:
max (", p(Z) p(w"). p(AY)
= max / p(ZF)p(AF)In q(Y*|ZF, u*, A*)dZ*dA®
p(Z¥)  Jzk Ak
a7
+/ p(ZF)p(w") In q(ZF |w)dZ* dw" — / p(Z*)Inp(Z*)dZ"* + Const
Zk wk zk
= min KL[p(Z")||p(Z*
min [P(Z%)||p(Z")]
where Const denotes constant terms w.r.t p(Z¥), p(Z*) is a new distribution with:
Inp(Z*) = Epary[Inq(Y*|ZF, u¥, AP)] + B,y [In g(Z¥|w")] + Const (18)
Therefore, KL divergence is minimized when p(Z*) = p(Z*):
In p(Z") = I F(Z")
N M N M
= Ep(Ak)[Z Z E N (yE; k(AR + ]Ep(wk)[z Z . Inw” | 4 Const
n=1m=1 n=1m=1
N M
= Z Z 2k In~k 4 Const
where
k 1[agt pkt T 1o (k+1 ~k+1
1n7nm = 5 57]%_;,_1 ||yn - H2 + Tln(27T> 5 [w(um ) - ln(vm )]
M (20)
+(@n) (T
s=1
Normalizing it, we get the formulation of p(ZF) :
k
T TLGE s o= T - 1)

n=1m=1 Zs:l Tns
which means that the posterior probability of y* belonging to mode m is p(z%, = 1) =7F .

M-step: Update p*. Note that p(Z*) has already be updated. Fixing p(Z*), p(w*), p(A¥), the
objective becomes:

max  L(p*, p(Z"), p(w"), p(A*))

= max / p(ZF)p(AF)In q(Y*|ZF, u*, A¥)dZ*dA* + Const
Zk A

©
N ) (22)
—ma By (32 3 2 IS 8 (85) 1)
n=1m=1
M N
= Iﬁlkn ~k:+1 Z 'Ynm”yfz - l'l’fn”%
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Setting the gradient w.r.t u*, to zero, we get the updated p*:

N N

1 ~
k ~k k k _ § :~k:
“’m - Nk 7nmyna Nm - f}/nm (23)
m n=1 n=1

M-step: Update p(w”). Note that p(Z*), u* have already be updated. Similar to E-step, fixing
p(Z*), u*, p(AF¥), the objective becomes:

max E(uk,p(zk),p(wk)aP(Ak))

p(wk)

= max
p(wk)

(w") In ¢(Z*|w*)dZ* dw* (24)

/ ) In g(w®)dw" — / p(W") Inp(w")dw" + Const
wk wk
And the log probability of the optimal p(w*) should be:

Inp(wk) = E,zx[In q(Z*|w*)] + In g(w") + Const

M
~ (25)
= Z (Tm + NF — 1) Inwk, + Const
m=1
Therefore, the updated p(w*) is the following Dirichlet distribution:
p(w*) = Dirichlet(w*; #%), #* =n,, + N (26)

M-step: Update p(A*). Note that p(Z*), u* p(w*) have already be updated. Fixing
p(zk)a Mk,p(wk), the objective becomes:

k k k k
max L(p",p(Z"), p(w"), p(A"))

= max / p(ZF)p(AF)In q(Y*|ZF, u*, A¥)dZFd A" 27)
p(AF) VAN

- / p(AF)Ing(A*)dAF — / p(AF) Inp(A*)dA* + Const
Ak Ak

The log probability of the optimal p(A*) should be:

Inp(A")
=E,zr [Inq(Y*|Z*, u*, A¥)] + In g(A*) + Const

Iy L (28)
Z {(u + Nk - 1) InAF — <v,’§1 +3 Zﬁﬁmﬂyﬁ — uan%) Aﬁl} + Const
m=1 n=1
which means the updated p(A¥) is the following Gamma distribution:
H Gamma(AF ; aF, oF)
(29)

ur, = uk, + 2me oy, =k, + = Z%mllm’i — pk I3
n=1

Eq. @@L@@] are the resulting four steps in Algorithm [I] As each of the four steps raises

L(puF p(ZF), p(w"*), p(A*)), the objective gets greater after one iteration. It is also possible to

perform the four-step iteration multiple times at each step k to ensure convergence.

17
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D DETAILED SETUP OF EXPERIMENTS

D.1 DATASETS

We conduct experiments on eight datasets following [Nie et al.| (2023); [Wu et al.| (2023). These
datasets include:

* 1)ETTh1 and 2)ETTm1. These two datasets record 7 key indicators of an electricity
transformer, such as load and oil temperature. ETTh1 records data points every hour, and
ETTm1 records every 15 minutes. The whole datasets cover a period of two years and we
use data from the first 20 months and split it into train/validation/test sets with a ratio of
0.6:0.2:0.2.

e 3)ETTh2 and 4 ETTm2. The contents, formats and data split of these two datasets are sim-
ilar to those of ETTh1 and ETTm1, but the records are from another electricity transformer.

* 5)WTH. This dataset contains 21 weather indicators in Beutenberg, including air tempera-
ture and dewpoint, with data points recorded every 10 minutes throughout the year 2020.
The train/validation/test sets are split with a ratio of 0.7:0.1:0.2.

* 6)ECL. This dataset records the hourly electricity consumption (in kW) of 321 clients from
2012 to 2014. The train/validation/test sets are split with a ratio of 0.7:0.1:0.2.

» T)Traffic This dataset includes road occupancy rates measured by 862 sensors on freeways
in the San Francisco Bay area from July 2016 to June 2018, with data points recorded every
hour. The train/validation/test sets are split with a ratio of 0.7:0.1:0.2.

* 8)Dynamic. This dataset consists of 17 sensors reading and control signals of a sim-
ulated complex dynamical system, with data points recorded every second. The orig-
inal dataset is from https://www.kaggle.com/datasets/patrickfleith/
dynamical-system—-multivariate-time-series—forecast| and contains
5,000,000 timestamps. For training time concerns, we use the first 10% data, which
corresponds to 500,000 timestamps, and split it into train/validation/test sets with a ratio of
0.7:0.1:0.2. It is worth noting that, despite using only 10% of the original data, the selected
timestamps still far exceed those in the previous seven datasets.

The first seven datasets are widely used datasets for TS forecasting (Nie et al., 2023} [Wu et al.
2023). In line with standard protocol, we use the last 7' = 336 steps to predict the next 7 =
{96,192, 336, 720} steps. To evaluate model performance in more complex scenarios, we introduce
a new dataset, Dynamic, which has more complex patterns with no obvious periodicity. For Dynamic,
we use the last T = 600 steps (10 minutes) to predict the next 7 = {60,120, 180,300} steps
(corresponding to {1, 2, 3, 5} minutes). Additionally, due to the large scale of Dynamic, we divide its
test set into non-overlapping windows by setting the sliding window step equal to 7. In contrast, for
the other datasets, we generate overlapping windows with a sliding step of 1, following the common
protocol. Detailed statistical characteristics of the used datasets are shown in Table[6]

Table 6: Statistical characteristics of datasets

Dataset \ #Channels #Timestamps Split T T Field
ETTh1 7 14,400 0.6:0.2:0.2 336 {96, 192, 336, 720} Electricity Transformer
ETTml 7 57,600 0.6:0.2:0.2 336 {96, 192, 336, 720} Electricity Transformer
ETTh2 7 14,400 0.6:0.2:0.2 336 {96, 192, 336, 720} Electricity Transformer
ETTm?2 7 57,600 0.6:0.2:0.2 336 {96, 192, 336, 720} Electricity Transformer
WTH 21 52,696 0.7:0.1:0.2 336 {96, 192,336,720} Meteorological Indicators
ECL 321 26,304 0.7:0.1:0.2 336 {96, 192, 336, 720} Electricity Consumption
Traffic 862 17,544 0.7:0.1:0.2 336 {96, 192, 336, 720} Road Occupancy
Dynamic 17 500,000 0.7:0.1:0.2 600 {60, 120, 180, 300} Complex Dynamical System

18


https://www.kaggle.com/datasets/patrickfleith/dynamical-system-multivariate-time-series-forecast
https://www.kaggle.com/datasets/patrickfleith/dynamical-system-multivariate-time-series-forecast

Under review as a conference paper at ICLR 2026

D.2 METRICS

Top-K MSE. The ground truth target is y € R”. Multi-mode predictions are {y,,}M_,,y,, € R”

and corresponding probabilities are {w,, }M_, Zn]\le wy, = 1. Top-K MSE is computed as:

M = Top-K({wm }m—1)

1.
¥Ym € M,MSE,, = ;||ym—y|\§ (30)
Top-K MSE = min MSE,,
me

We first pick the Top-K modes with the highest probabilities into M. Then MSE of each mode in M
is computed. Finally, the minimum MSE among the selected K mode is reported as Top-K MSE.

Top-K MAE. The computation of Top-K MAE is similar to Top-K MSE, with MSE changing to
MAE:

M = Top-K({wm} 1)
1,
Vm € M,MAEm = ;HY’m - y||1 (31)

Top-K MAE = min MAE,,
meM

MSE. Given ground truth target y € R” and deterministic prediction y € R”, MSE is computed as:

1,
MSE = —||y - |3 (32)

CRPS. CRPS is a frequently used metric for probabilistic prediction and it is originally defined for
the scaler variable. Given the ground truth target y € R and the cumulative distribution function

(CDF) of the predicted distribution ﬁ(y), the CRPS is defined as:

+oo

CRPS(F',y) = / (Fo) 1G> v) a5 (33)

— 00

Gneiting & Raftery| (2007)) show that CRPS can also be computed by:

_ B 1
CRPS(F,y) = Eg [[y — yll - 5Eg5- |

y—yl] (34)
where ¥, y* are random variables following the predicted distribution, i.e., distribution corresponding
to F'(y).

Following this formulation, given the ground truth target y € R7 and samples draw from the
probabilistic model {y;}¥ ;,y; € R", we compute the CRPS by:

| X ] XN
CRPS; ~ ~ Z; it — ye| — N2 Zl z_:l |Yi.t — Uit
= == (35)
1 T
CRPS = — > CRPS;

t=1

where 7j; ; € R is the predicted value of timestamp ¢ in sample y;. v, € R is the target at timestamp ¢.
We approximate the CRPS at each step and use the average across steps as the CRPS of the whole
series.

Remark. CRPS also has the following connection with quantile loss:

_ 1
CRPS(Fo) =2 [ paly = F ' (a))d

pa(u) = u(a = 1(u < 0))

(36)
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As a result, some works (Woo et al.| 2024)) approximate CRPS; by:

2 & _
CRPS; ~ K Z Poy, (yt - Q({yi,t}zj‘vzlv ak)) 37
k=1

where Q({7i.+} 1, ax) computes the a-quantile at step ¢. {a }<_, are some pre-defined quantiles
for integral approximation. We do not use this approximation because it will be affected by the
selection of {ay < | and the quantile function Q(-).

‘We have described the metrics for a univariate instance. Since all the datasets we used are multivariate,
we compute the metrics for each channel and then average them across channels to obtain the metrics
for a multivariate instance. Finally, the metrics for a dataset are calculated by averaging the metrics
across all instances in the test set.

D.3 IMPLEMENTATIONS

The default patch size is set to P = 12. For the sake of saving runtime memory, we use P = 24 at
7 = {336,720} or when the dataset is ECL or Traffic. As for the Patch Consistent MLP, we use a
one-block MLP with the dimension of hidden states d,,,0qc1 = 256, adjacent range hyper-parameter
r = 3 on all datasets.

Regarding the training process, we use a linear noise schedule with Ky,.4;, = 1,000 diffusion
steps (Ho et al.|[2020). The default diffusion-deterministic balancing weight, i.e., A in Eq. |8} is set to
0.99. When using SegRNN as the backbone, it is set to 0.9. Adam optimizer with a learning rate
of le-4 is used for optimization. The maximum number of training epochs is set to 20, and if the
validation loss does not decrease over 5 consecutive validations, the training process is terminated
early. The commonly used instance normalization (Kim et al., [2021) is also applied to reduce the
distribution shift.

As for inference, for each input, we generate N = 100 samples and set the maximum number of
modes to M = 10. In our multi-mode inference algorithm, we resample the inference-time diffusion
steps to Ky, fer = 20 and perform 10 EM iterations at each step. The hyper-parameters are set to
p = 0.5, u = 100. For other baselines, we draw /N samples from their corresponding distributions
and post-process them with a GMM in the same formulation as in MMPD to obtain multi-mode
predictions.

All models are implemented in Pytorch and run on NVIDIA GeForce RTX 3090 GPUs with 24GB
memory.

E FULL RESULTS

Due to space limitations in the main text, we present the full results from Sec. here. Table
shows the Top-3 MSE, Top-3 MAE, MSE and CRPS evaluations of different loss functions across
various forecasting horizons 7. Table [§]displays the Top-3 MSE and Top-3 MAE evaluations for MSE,
Mix, and MMPD across three different backbones at different forecasting horizons. Finally, Table 9]
presents the MSE and CRPS evaluations across three different backbones at different forecasting
horizons.
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Table 7: Full Top-3 MSE, Top-3 MAE, MSE and CRPS evaluations of different loss functions on
different forecasting horizons 7, which is set to {96, 192, 336, 720} for the first seven datasets and
{60, 120, 180, 300} for Dynamic. “Gauss” is short for “Gaussian”. “T” is short for “Student-T”.
Bold/underline indicates the best/second. Our method is marked in gray. Inf indicates the infinity
problem caused by outliers.

Metric Top-3 MSE Top-3 MAE MSE
Loss MSE MAE Gauss T Mix MMPD | MSE MAE Gauss T Mix MMPD | MSE MAE Gauss T Mix MMPD | MSE MAE Mix MMPD
96 [0.365 0.390 0381 0.375 0371 0.329 |0.399 0.395 0400 0391 0.382 0.371 |0.374 0385 0.383 0.377 0399 0375 |0.316 0.325 0.286  0.289
19210412 0425 0429 0415 0411 0396 | 0426 0422 0427 0415 0419 0405 (0411 0415 0426 0413 0426 0406 |0.331 0.338 0311 0314
ETTh | 336 /0446 0450 0447 0458 0410 0415 0449 0444 0444 0442 0419 0422 | 0436 0439 0440 0454 0449 0422 0342 0349 0314 0326
- 720 | 0.496 0.501 0.501 0.470 0.510 0.445 | 0.488 0486 0.476 0.463 0486 0.453 |0.481 0.488 0.488 0.462 0.511 0.444 |0.361 0371 0.353  0.340
‘ Avg ‘ 0.430 0.441 0.439 0.430 0.437 0428 ‘ 0.425 0432 0434 0426 0446 0412 ‘ 0.337 0.346 0.316 0318
96 10.265 0.309 0.291 0.284 . 333 0.336 0.344 0.327 0307 0297 0287 0303 0280 |0.281 0291 0239 0.239
1920317 0.344 0340 0.333 0253 0240 | 0364 0.363 0.375 0.358 0334 0338 0331 0337 0315 |0.296 0304 0258 0259
ETTml 336 |0.368 0.371 0.370 0.364 0.320 0.291 |0.393 0.385 0.393 0.381 0.359 0.364 0359 0.371 0352 |0.311 0316 0.276  0.280
720 [ 0441 0433 0444 0426 0397 0367 |0435 0419 0432 0418 0420 0430 0419 0423 0401 |0.338 0339 0304 0303
[Avg[0.348 0364 0361 0.352 0289 0.269 | 0381 0375 0.386 0371 0355 0357 0349 0358 0337 0307 0313 0.269 0270
96 |0.273 0.293 0.285 0. 0.260 . 0.334 0336 0.347 0.343 0.296 0305 0.304 0322 0.293 |0.264 0.263 0271 0271
1921 0.345 0360 0.363 0.382 0.382 0.395 0.385 7 0.358 0.377 0361 0.401 0.357 |0.299 0.291 0.309  0.294
ETTha | 3360391 0408 0419 0414 0.416 0433 0416 0404 0419 0400 0402 0366 |0.318 0315 0318 0312
720 | 0448 0411 0450 0430 0430 0360 |0.463 0433 0.469 0.448 0.408 0.430 0.423 0437 0400 |0.350 0.326 0.343  0.329
‘ Avg ‘ 0.364 0368 0.379 0.375 0343  0.299 ‘ 0.398 0392 0411 0.398 0.366 0.382 0372 0.390 0.354 ‘ 0.308 0.299 0.310  0.301
96 |0.156 0.174 0.176 0.180 0.156 0.135 |0.244 0253 0270 0258 0.174 0194 0.180 0.179 0.173 |0.196 0.200 0193 0.192
1920223 0241 0233 0.248 0293 0.298 0.307 0.305 0238 0243 0246 0244 0227 |0.229 0230 0226 0225
ETTm2 336 0.293 0.301 0.308 0.322 0.342 0338 0.356 0.364 0.298 0306 0.317 0318 0.289 | 0.261 0262  0.255
720 | 0383 0.387 0.403 0.395 0399 0.397 0.417 0407 0384 0393 0390 0.399 0.367 |0.304 0309 0.298
[Avg|0.264 0276 0.280 0.286 02 0320 0.321 0.337 0333 0274 0284 0.283 0285 0264 |0.247 0247 0243
96 | 0.142 0.153 0.156 0.157 0.192 0.193 0.207 0.193 0153 0166 0.160 0.167 0.153 |0.168 0152 0.149
1921 0.185 0.199 0.214 0.211 0.234 0.238 0.263 0.243 0.193 0.196 0218 0210 0212 0.193 |0.198 0.184  0.177
WTH | 336|024 0256 0273 0261 0284 0.283 0.308 0.281 0244 0252 0270 0259 0.276 0248 |0.231 0222 0212
720 [ 0.325 0.333 0.375 0.336 0.340 0337 0.388 0.335 0.321 0330 0.367 0.333 0.380 0323 |0.276 0277 0.256
‘ Avg ‘ 0.224 0.235 0.255 0.241 0.209 0.193 ‘ 0.262 0.263 0.292 0.263 ‘ 0.227 0.233 0.255 0.241 0259 0.229 ‘ 0.218 0.220 0.228 0201 0.209 0.199
96 | 0.141 0.144 0.130 0.133 0.119 0.119 | 0.247 0.242 0.224 0.220 0.130 0.132 0.131 0.133 0.136  0.133 |0.258 0.275 0.167 0.165 0.165 0.169
192]0.162 0.165 0.149 0.152 0136 0.134 | 0266 0.261 0.241 0.237 0.147 0151 0.148 0.151 0.153 0151 |0.265 0.282 0.179 0.177 0176 0.181
ECL 336 |0.181 0.183 0.172 0.169 0.151 0.147 | 0.284 0.278 0.266 0.255 0.164 0.168 0.169 0.167 0.170 0.167 |0.272 0.289 0.197 0.190 0.640 0.195
L 7200219 0222 0207 0207 0.182 0186 |0315 0.309 0.293 0.287 0200 0206 0.202 0205 0210 0205 |0.287 0.304 0217 0214 Inf  0.221
[Avg | 0.176 0179 0.165 0.165 0.147 0.147 | 0.278 0272 0256 0250 0160 0.164 0.163 0.164 0.167 0.164 0270 0288 0.190 0.187 Inf 0.191
96 |0.382 0.408 0.382 0380 0373 0350 |0.295 0.283 0266 0.246 0368 0389 0388 0392 0.398 (.383 [0.335 0354 0206 0.193 (.19 0.190
192 | 0.412 0434 0.405 0.404 0399 0.374 | 0309 0.297 0. 0.254 0.387 0.410 0.403 0408 0.415 0398 [0.339 0359 0212 0.199 0.199 0.196
Traffic | 336 [0441 0.446 0421 0419 0414 0391 |0326 0304 0. 0411 0420 0414 0419 0426 0411 0345 0361 0216 0204 0.204 0.201
720 | 0495 0.508 0.468 0.462 0.460 0.440 |0.372 0.357 0307 0.283 0.432 0450 0.447 0453 0465 0444 |0.355 0376 0234 0221 0222 0.219
‘Avg 0.433 0449 0419 0416 0412 0.389 |0.326 0310 0.282 0.261 0.399 0417 0413 0418 0426 0409 |0.343 0362 0217 0.204 0205 0.202
60 |0.229 0.285 0.234 0.277 0.216 0.214 0.191 0.205 0.183 0.240 0300 0.246 0.285 0.348 0.250 |0.203 0.220 0.165 0.152 0.154 0.133
120 | 0302 0.393 0310 0.363 0285 0271 0.284 0.264 0314 0393 0320 0367 0.445 0326 |0241 0259 0. 208 0.207
Dynamic 180 | 0.360 0.465 0.371 0.421 0.335 0323 0.337 0.325 0.371 0.460 0.377 0421 0521 0382 |0.270 0.289
YRAMIC | 300 | 0452 0.561 0.455 0.500 0409 0394 0409 0.398 0454 0.554 0452 0495 0.615 0456 |0315 0.332

| Avg|0.336 0.426 0343 0.390 0322 0301 |0311 0295 0.309 0292 [0.345 0426 0349 0392 0482 0353 |0.257 0.275
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Table 8: Full Top-3 MSE and Top-3 MAE evaluations of MSE, Mix and MMPD losses across three
different backbones on different forecasting horizons 7, which is set to {96, 192, 336, 720} for the
first seven datasets and {60, 120, 180, 300} for Dynamic. Bold indicates the best among three losses.
Our method is marked in gray.

Metric | Top-3 MSE | Top-3 MAE
Backbone ‘ Crossformer ‘ SegRNN ‘ MaskAE ‘ Crossformer ‘ SegRNN ‘ MaskAE
Loss ‘ MSE Mix MMPD ‘ MSE Mix MMPD‘ MSE Mix MMPD‘ MSE Mix MMPD ‘ MSE Mix MMPD‘ MSE Mix MMPD

96 10.365 0.329 0336 |0.375 0354 0.334 | 0.374 0.351 0.341 |0.406 0.372 0377 |0.413 0389 0.385 |0.407 0.390 0.376
19210417 0.404 0.369 |0.421 0.466 0.383 | 0.416 0.393 0.386 |0.437 0.413 0.398 |0.441 0.448 0415 | 0431 0412 0.405
336 [0.462 0.466 0.399 | 0464 0423 0.408 | 0.461 0.426 0.413 | 0.464 0.454 0.420 |0.459 0.428 0.428 | 0.458 0.425 0.426
720 [ 0.528 0.533 0.418 |0.500 0.497 0.482 | 0.503 0.491 0.457 | 0.499 0.492 0.447 | 0490 0.464 0475 |0.492 0471 0.455

| Avg | 0.443 0.433 0.381 |0.440 0435 0.402 |0.438 0415 0399 |0.452 0433  0.410 |0451 0.432 0426 |0.447 0425 0.416

96 0.274 0.202 0248 |0.311 0254 0.250 | 0.266 0.234 0.207 |0.340 0.293 0307 |0.375 0332 0.331 |0.334 0.314 0.299
192 1 0.347 0.284 0.269 |0.364 0.313 0.301 |0.326 0.278 0.240 | 0.384 0.335 0.333 | 0.406 0.366 0.365 |0.374 0.334 0.314
336 [0.399 0.337 0.328 | 0410 0.347 0.329 | 0.381 0.329 0.297 | 0.410 0366 0.365 |0.432 0.391 0.379 | 0.405 0.359 0.354
720 [ 0.492 0497 0.395 | 0454 0428 0.404 | 0.442 0417 0375 | 0.455 0.437 0407 | 0.455 0.424 0424 | 0443 0406 0.401

Avg| 0378 0330 0310 |0.385 0.335 0.321 | 0.354 0314 0.280 |0.397 0.358 0.353 |0.417 0378 0.375 |0.389 0.353 0.342

96 |0.301 0.294 0.250 |0.288 0.275 0.273 | 0.270 0.279 0.236 |0.359 0.351 0.326 |0.352 0.341 0.338 | 0.331 0.342 0.310
192 1 0.368 0.353  0.304 | 0.359 0.356 0.321 |0.341 0333 0.318 |0.402 0.394 0.363 |0.401 0.399 0.379 |0.378 0.377 0.371
336 [0.386 0.362 0.327 | 0.383 0.355 0.314 | 0.387 0.358 0.322 | 0.420 0.401 0.377 |0.419 0397 0.373 | 0414 0391 0.374
7201 0.433 0427 0377 | 0429 0.380 0.376 | 0.423 0390 0.368 | 0.468 0.452 0.422 | 0457 0419 0.417 | 0448 0426 0.414

| Avg| 0372 0359 0315 |0.365 0.341 0.321 | 0355 0340 0311 |0.412 0400 0.372 |0.408 0389 0.377 |0.392 0.384 0.367

96 |0.158 0.150 0.141 |0.173 0.161 0.142 | 0.171 0.191 0.148 | 0.250 0.247 0.231 |0.267 0.252 0.239 | 0.263 0.250 0.233
19210220 0.200 0.196 |0.236 0.208 0.215 |0.235 0.214 0.223 |0.291 0.281 0.277 |0.314 0.288 0.288 | 0.308 0.285 0.285
336 0.295 0.255 0.224 | 0.297 0.267 0.235 | 0.306 0.264 0.261 |0.346 0.321 0.295 | 0.354 0.326 0.309 |0.358 0.321 0.311
720 0.391 0.338 0.350 |0.387 0.355 0.340 | 0.409 0.342 0.355 | 0.406 0.378 0.379 |0.413 0.378 0.384 | 0.420 0.377 0.386

| Avg | 0266 0236 0.228 |0.273 0.248 0.233 | 0.280 0.253 0.247 |0.323 0.307 0.295 |0.337 0311 0.305 |0.337 0.308 0.304

96 |0.134 0.130  0.120 | 0.140 0.140 0.125 | 0.140 0.132 0.118 |0.189 0.174 0.157 |0.198 0.179 0.165 | 0.190 0.171 0.153
192 0.186 0.168 0.164 |0.182 0.189 0.165 | 0.185 0.164 0.162 | 0.241 0.213 0.202 | 0.239 0.234 0.210 | 0.236 0.207 0.197
336 0.247 0.217 0210 |0.240 0.233 0.217 | 0.246 0.229 0.210 | 0.296 0.252 0.241 | 0.288 0.266 0.252 | 0.284 0.264 0.241
720 0.327 0.284 0.297 |0.327 0.295 0.296 |0.332 0.287 0.300 | 0.347 0.300 0.304 |0.352 0.304 0.309 |0.344 0.309 0.309

| Avg| 0223 0200 0.197 ]0.222 0.214 0.201 | 0226 0.203 0.197 |0.268 0.235 0.226 |0.269 0.246 0.234 | 0.263 0.238 0.225

96 |0.146 0.130 0.120 |0.145 0.130 0.122 | 0.142 0.122 0.118 |0.253 0.223 0.214 |0.252 0218 0.217 | 0.247 0.213 0.209
192 {0.169 0.148 0.139 |0.168 0.143 0.136 | 0.164 0.139 0.132 | 0.275 0.242 0.232 | 0.273 0.231 0.229 | 0.267 0.230 0.221
336|0.192 0.169 0.164 | 0.188 0.160 0.151 | 0.184 0.156 0.145 | 0.295 0.266 0.257 |0.292 0.251 0.244 | 0.286 0.245 0.235
7201 0.229 0.193 0.186 |0.230 0.190 0.190 | 0.224 0.186 0.182 | 0.327 0.288 0.279 |0.326 0.280 0.278 | 0.319 0.275 0.269

| Avg | 0.184 0.160 0.152 |0.183 0.155 0.150 | 0.178 0.150 0.144 |0.288 0.255 0.245 |0.286 0.245 0.242 | 0.280 0.241 0.234

96 10.397 0.375 0.367 | 0.409 0.388 0.365 | 0.384 0.372 0.345 | 0.310 0.259 0.248 |0.305 0.232 0.242 | 0.299 0.245 0.235
19210436 0.409 0.389 |0.440 0.419 0.400 | 0.418 0.400 0.373 |0.326 0.272 0.253 |0.318 0.245 0.251 | 0.316 0.257 0.244
336 [ 0.453 0.431 0.405 | 0463 0432 0.428 |0.432 0418 0.392 | 0341 0.280 0.260 |0.328 0.253 0.263 | 0.321 0.265 0.253
720 [ 0.518 0.483 0.456 |0.543 0.516 0.481 |0.509 0.476 0.440 | 0.391 0.304 0.283 |0.380 0.280 0.285 | 0.381 0.291 0.278

| Avg| 0451 0.424 0.404 |0.464 0439 0418 | 0436 0416 0.387 |0.342 0.279 0.261 |0.333 0.253 0260 |0.329 0.265 0.253

60 |0.227 0.194 0.162 | 0.228 0.248 0.176 | 0.230 0.205 0.172 | 0.207 0.131 0.089 |0.212 0.182 0.108 | 0.213 0.149 0.105
120 | 0.300 0.297 0.258 |0.304 0.332 0.266 |0.304 0.301 0.263 | 0.281 0.218 0.163 |0.285 0.252 0.185 |0.286 0.224 0.177
180 | 0.357 0.335 0.332 |0.356 0.344 0.328 | 0.363 0.342 0.334 | 0.329 0.263 0.224 |0.329 0.258 0.239 | 0.338 0.267 0.229
300 [ 0.440 0.401 0.429 |0.445 0.395 0.408 |0.458 0.437 0.414 | 0399 0319 0.300 | 0.403 0.299 0.308 | 0.410 0.338 0.299

| Avg| 0331 0307 0.295 |0.333 0.330 0.295 | 0.339 0321 0.296 |0.304 0.233 0.194 |0.307 0247 0210 |0.312 0.244 0.203

ETThl

ETTml

ETTh2

ETTm2

weather

ECL

Traffic

Dynamic
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Table 9: Full MSE and CRPS evaluations of MSE, Mix and MMPD losses across three different
backbones on different forecasting horizons 7, which is set to {96, 192, 336, 720} for the first seven
datasets and {60, 120, 180, 300} for Dynamic. Bold indicates the best among three losses. Our
method is marked in gray. Inf indicates the infinity problem caused by outliers.

Metric | MSE | CRPS
Backbone ‘ Crossformer ‘ SegRNN ‘ MaskAE ‘ Crossformer ‘ SegRNN ‘ MaskAE

Loss ‘ MSE Mix MMPD ‘ MSE Mix MMPD‘ MSE Mix MMPD‘ MSE Mix MMPD ‘ MSE Mix MMPD‘ MSE Mix MMPD

96 |0.373 0418 0.381 |0.377 0.396 0.374 | 0.386 0.397 0.383 |0.320 0.294 0.293 |0.320 0.294 0.296 |0.320 0.293 0.294

192 10.419 0.459 0.403 | 0.419 0.480 0424 | 0422 0453 0414 |0.337 0315 0.305 | 0336 0330 0.316 |0.334 0.316 0.312

ETThi 336 [ 0.455 0.468 0.422 | 0.454 0454 0460 |0.454 0.464 0.428 | 0349 0332 0.324 | 0346 Inf  0.331 | 0.347 0.320 0.328
720 [ 0.512 0.495 0.456 | 0.484 0.480 0.479 |0.487 0.508 0.457 | 0.370 0.352 0.335 | 0.363 Inf 0.369 |0.363 0.345 0.340

| Avg | 0.440 0.460 0.416 |0.433 0452 0434 | 0437 0456 0.421 |0.344 0323 0314 |0341 Inf = 0.328 |0.341 0.319 0.319

96 |0.293 0.309 0.345 |0.324 0.317 0332 | 0.294 0323 0.298 |0.284 0.244 0.266 |0.297 0.261 0.273 |0.282 0.258 0.255

192 10.360 0.351 0.355 |0.368 0.359 0.389 |0.333 0.339 0.316 | 0.307 0.260 0.272 |0.315 Inf  0.292 |0.300 0.262 0.259

ETTml 336 0.398 0.378 0.409 |0.401 0.390 0.380 | 0.375 0373 0.350 | 0.323 0.280 0.295 |0.328 Inf 0.301 |0.317 0.278 0.285
k 7201 0.478 0.559 0.445 | 0.439 0.460 0445 | 0428 0448 0405 |0.351 0.340 0.316 |0.346 0.321 0328 |0.339 0312 0.310

| Avg | 0382 0399 0388 |0.383 0.381 0.386 | 0.357 0371 0.342 |0.316 0.281 0.287 |0.321 Inf = 0.299 |0310 0.277 0.277

96 |0.332 0.326 0.329 |0.312 0.320 0319 |0.288 0.338 0.296 |0.285 0.286 0.288 |0.278 0.275 0.281 |0.260 0.281 0.265

192 10.399 0.394 0.376 |0.379 0.388 0.373 | 0.364 0.394 0.372 | 0316 0320 0.311 |[0.313 0.312 0.314 | 0.296 0.310 0.306

ETTh2 336 [0.393 0421 0.373 |0.389 0.374 0.384 |0.393 0.408 0.371 |0.324 0330 0.319 0321 Inf 0.317 | 0.317 0.320 0318
720 [ 0.428 0472 0.419 | 0425 0417 0430 |0.418 0435 0.408 | 0.351 0356 0.346 |0.345 0.329 0.340 | 0.338 Inf  0.331

| Avg | 0388 0.403  0.374 |0.376 0.375 0.376 | 0366 0394 0.362 |0.319 0.323 0316 |0314 Inf = 0313 | 0303 Inf 0305

96 |0.166 0.177 0.174 |0.185 0.182 0.173 |0.184 0.182 0.182 |0.197 0.200 0.195 |0.211 0.197 0.206 |0.207 0.196 0.200

192 10.234 0.226 0.241 |0.247 0.241 0265 |0.248 0.257 0.256 |0.228 0.225 0.231 [0.243 Inf 0.244 |0.239 0.231 0.244

ETTm?2 336 [0.299 0.297 0.272 | 0.300 0.324 0.307 |0.310 0.319 0.303 | 0.264 0.260 0.251 |0.270 0.303 0.261 | 0.273 0.262 0.270
720 | 0.387 0.391 0.391 |0.383 0.391 0.397 |0.405 0.406 0.382 |0.309 0.308 0.318 |0.313 1Inf 0.317 | 0.318 0.309 0.318

| Avg| 0271 0273 0270 |0.279 0.285 0.285 | 0.287 0.291 0.281 |0.249 0.248 0249 |0259 Inf = 0.257 |0.259 0.250 0.258

96 |0.144 0.156 0.148 |0.151 0.170 0.149 | 0.149 0.162 0.150 |0.166 0.147 0.150 |0.172 Inf 0.156 | 0.168 0.148 0.147

1921 0.196 0.209 0.199 |0.188 0.249 0.191 |0.194 0211 0.192 |0.202 0.186 0.185 |0.198 0.211 0.192 | 0.199 Inf  0.181

WTH 336 [ 0.250 0.263 0.253 | 0.241 0.305 0.248 | 0.247 0.330 0.248 | 0.238 0.219 0.217 |0.232 0.240 0.227 | 0.233 0.251 0.216
720 [ 0.322 0.336 0.326 |0.323 0.368 0.340 |0.328 0.377 0333 |0.279 0.255 0.263 |0.281 Inf  0.267 | 0.279 0.276 0.261

| Avg| 0228 0.241 0232 ]0.226 0.273 0.232 | 0.230 0270 0231 |0.221 0.202 0204 |0221 Inf = 0210 | 0220 Inf = 0.201

96 |0.138 0.147 0.133 |0.134 0.152  0.135 | 0.130 0.137 0.130 |0.261 Inf = 0.170 |0.260 Inf  0.170 |0.258 0.166 0.166

192 | 0.156 0.168 0.154 |0.155 0.171 0.154 |0.149 0.156 0.147 | 0.268 1Inf 0.186 |0.267 Inf 0.183 |0.265 0.179 0.178

ECL 336 [0.176 0.193 0.187 |0.171 0.194 0.172 | 0.166 0.173 0.164 | 0.276 Inf  0.209 |0.275 Inf 0.196 |0.273 0.192 0.191
720 [ 0.210 0.222 0.208 |0.210 0.231 0.206 |0.204 0.214 0.202 | 0.291 Inf  0.224 |0.291 Inf 0.222 | 0.289 0.238 0.216

| Avg [ 0.170 0.182 0.170 |0.168 0.187 0.167 |0.162 0.170 0.161 |0.274 Inf = 0.197 |0273 Inf = 0.193 | 0271 0.194 0.188

96 |0.386 0.427 0.398 |0.390 0.425 0.383 | 0.371 0.408 0.375 |0.339 0.205 0.198 |0.337 Inf  0.192 |0.335 0.195 0.189

192 | 0412 0443  0.409 | 0412 0.446 0.409 | 0395 0.427 0394 |0.344 0.211 0.202 |0.341 Inf  0.199 |0.341 0.203 0.195

Traffic 3360422 0460 0.419 | 0431 0.463 0.429 | 0.402 0442 0406 |0.348 0.216 0.207 |0.344 Inf 0.207 | 0.342 0.207 0.201
€ 1720|0454 0507 0454 |0477 0.536 0.464 |0.446 0488 0440 |0362 0234 0223 |0.358 Inf  0.222 | 0358 0226 0.218

vg | 0. . . . . X X . ! . . . .3 ni E . . ..

Avg | 0.418 0459 0.420 |0.428 0.468 0.421 | 0.403 0.441 0404 |0.348 0.217 0.208 |0.345 Inf  0.205 | 0.344 0.208 0.201

60 |0.238 0.326 0.237 |0.238 0.367 0.238 | 0.241 0335 0.245 |0.201 Inf =~ 0.119 |0.202 0.172 0.130 |0.204 0.149 0.132

120 | 0.311 0432 0.308 |0.313 0.454 0311 |0.316 0.441 0.316 |0.237 Inf 0171 [0.239 Inf 0.187 |0.242 0.204 0.183

Dynami 180 | 0.366 0.493 0.380 |0.369 0.474 0.368 |0.376 0.511 0379 |0.266 Inf 0.215 |0.268 Inf  0.225 | 0.273 0.241 0.222
YRAMIC | 300 | 0.441 0.570 0472 |0.446 0.565 0.446 |0.462 0.615 0458 |0.307 Inf 0271 (0310 Inf 0274 [0317 0293 0270

| Avg | 0.339 0455 0349 |0.342 0465 0341 |0.349 0476 0350 |0.253 Inf 0194 |0255 Inf = 0.204 | 0259 0.222 0.202
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F ADDITIONAL EXPERIMENTS ON HYPER-PARAMETERS

Table 10: Metrics comparison of different noise
schedules on ETTh1 (T = 336, 7 = 96). The de-
fault schedule used in main experiments is marked
in gray.

Top-3 MSE Top-3 MAE MSE CRPS

Quadratic 0.314 0.362 0.379 0.286
Cosine 0.317 0.364 0.382 0.289
Linear 0.329 0.371 0.375 0.289

Table 11: Top-3 MSE/MAE evaluations versus
varying maximum number of modes M in Algo-
rithmﬂ]on ETThl (T" = 336, 7 = 96). The default
setting in main experiments is marked in gray.

M 5 10 15 20 25

Top-3 MSE  0.3200 0.3197 0.3200 0.3199 0.3203
Top-3 MAE 0.3667 0.3667 0.3668 0.3667 0.3668

Table 12: Top-3 MSE/MAE evaluations versus
varying mixture weights prior hyperparameter p in
Algorithm[Ton ETTh1 (T" = 336, 7 = 96).

p 0.1 0.3 0.5 0.7 0.9

Top-3 MSE 0.329 0.322 0.320 0.314 0.307
Top-3 MAE 0.377 0.378 0.367 0.358 0.354

Table 13: Top-3 MSE/MAE evaluations versus
varying variance prior hyperparameter v in Algo-
rithm[Tlon ETTh1 (T = 336, 7 = 96).

u 0001 001 01 1 10 100 1000

Top-3MSE 0.322 0.321 0.323 0.323 0.318 0.320 0.314
Top-3 MAE 0.372 0.371 0.372 0.372 0.361 0.367 0.364

Noise Schedule. In our main experiments,
we use the linear schedule as default. Ta-
ble further evaluates two advanced sched-
ules: Quadratic (Kong & Pingl [2021) and Co-
sine (Nichol & Dhariwal, [2021)). Results show
that MMPD benefits from these advanced sched-
ules. This indicates that developing time-series-
specific schedules is a promising direction, since
time series and image data have fundamentally
different characteristics.

Diffusion Steps in Training. Fig. [7] demon-
strates that increasing the number of training
diffusion steps Kyrqin significantly improves
Top-3 MSE, Top-3 MAE and MSE. Notably,
this enhancement comes without computational
overhead during inference, as we employ resam-
pling with fixed inference steps K, f,-. For our
experiments, we adopt Ky, = 1,000 as the
default setting.

Diffusion Steps in Inference. Fig. [§] shows
that increasing the number of inference diffu-
sion steps Ky, rer consistently improves predic-
tion accuracy. However, as revealed by our ef-
ficiency analysis in Table [d] this improvement
comes with increased computational overhead.
To achieve a balance between accuracy and ef-
ficiency, we set Kinfer = 20 as our default
configuration.

Anchor step k£* in Eq.[8] Fig. [0 shows that
overly large &y~ harms multi-mode and prob-
abilistic prediction, while small ones degrade
deterministic prediction. The performance is ro-

bust across a broad range around &~ = 0.5. To maintain a simple formulation of Eq. |8, we choose
k* to make &~ close to 0.5.

Maximum number of modes ) in Algorithm [1| Table|l1|shows that the multi-mode accuracy
remains robust w.r.t M. This arises from using a variational GMM rather than a standard one. In this
formulation, only the maximum number of modes needs to be specified, while the inference algorithm
automatically determines the appropriate number of active modes. This behavior is illustrated in
Fig. c), where we set M = 10, but only 3 modes are activated after inference.

Mixture weights prior hyperparameter p in Algorithm[I} p controls the prior over the number of
activated modes-a larger p encourages utilizing more modes. Table[T2]shows that larger p leads to
slightly lower Top-3 MSE/MAE, but activating too many modes may confuse downstream users.

Variance prior hyperparameter v in Algorithm[I} u influences the prior over the variance, where
a larger value reflects greater confidence in the variance estimated from forward diffusion. As shown
in the Table|13|below, performance remains robust.

G DETAILED FLOPS ANALYSIS

FLOPs of MSE Loss. MSE loss uses a conventional MLP to project latent tokens into future series.
A conventional S-block MLP consists of three components:

* One linear input layer with O(d?) FLOPs;
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Figure 7: (a) Top-3 MSE, (b) Top-3 MAE, (c) MSE, (d) CRPS evaluations versus varying diffusion
steps in training (Ky;.qin) on ETTh] (T = 336, 7 = 96). The Linear noise schedule is used and the
diffusion steps in inference are set to Ky, er = 20.

- [N

Top-3 MSE
Top-3 MAE
CRPS

60 500 1000 To 20 To 20 160
Inference Steps Kinrer Inference Sty Inference Steps Kinre:

Figure 8: (a) Top-3 MSE, (b) Top-3 MAE, (c) CRPS evaluations versus varying diffusion steps in
inference (K, fer). Kyrain = 1,000 and other settings are same as Fig. MSE is omitted as Ky, fer
does not affect deterministic prediction.
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Figure 9: (a) Top-3 MSE & Top-3 MAE, (b) MSE & CRPS evaluations versus varying & in Eq.
on ETThl (T = 336, 7 = 96).

* S hidden blocks, each has two linear layers and one activation layer between them. The
FLOPs are O(2d?);

* One linear output layer with O(Pd) FLOPs;

Therefore, the FLOPs for a conventional MLP applied to one token is O ((2S 4 1)d? + Pd). To
predict a series of length 7, this MLP is simultaneously applied to 7/P tokens, making the total
FLOPs Fyp = O(5[(25 + 1)d* + Pd)).

For both training and deterministic inference, MSE loss requires one backbone forward pass and
one MLP forward pass, so the FLOPs are Fyx, + Farzp. It should be noted that MSE loss cannot
perform probabilistic or multi-mode prediction, marked with “N/A” in Tables 4}

FLOPs of MMPD Loss. MMPD loss uses Patch Consistent MLP as the denoising network, which is
slightly more complex than the conventional MLP above. A S-block Patch Consistent MLP consists
of three components:

« Input operations in Eq. [7} requiring O(d? + (2r + 1) Pd) FLOPs;
¢ S AdaLN-MLP blocks in Eq. |12} each requires O(5d?) FLOPs;
* One AdaLN output block in Eq. 13| requiring O(2d? + Pd) FLOPs;

Same as MSE, the Patch Consistent MLP is simultaneously applied to 7/ P tokens, so the total FLOPs
are Fpo_ymLp = O(%[(5S + 3)d2 + (27“ + 2)Pd])
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As for EM steps in Algorithm [T} three vector operations contribute most FLOPs and other scalar
operations are negligible. The three vector operations are: 1) Computation of In~¥ = requires
O(3TMN) ; 2) pk, requires O(27M N); 3) 0¥, requires O(3rM N) . So one EM step has the
FLOPs of FEIM = O(STMN)

For training, MMPD Loss requires one backbone forward pass and two Patch Consistent MLP
passes: one for the diffusion objective and another for the deterministic objective in Eq.[8] So the
training FLOPs are Fypp, + 2Fpeo—ppp. Considering the backbone dominates training cost (i.e.,
Fory >> Fyrop, Fpo—anp), training FLOPs of MMPD remain nearly identical to those of MSE.

Similar to MSE, deterministic inference of MMPD loss requires one backbone forward pass and one
Patch Consistent MLP forward pass, so the FLOPs are Fyx, + Fpo—ar1 p, differences only lie in MLP
architectures. For probabilistic and multi-mode predictions, MMPD needs to generate N samples,
each through K diffusion-EM iterations. So the FLOPs are Fyx, + K(NFpo—nnp + Fenm)- As
Fpy << NFpo_nrp, we omit it in Table [4] for simplicity. To generate one instance, MMPD
loss only requires a single backbone pass, followed by K lightweight MLP passes, making its cost
significantly lower than that of TS Diffusion models requiring K backbone passes.

H FURTHER DISCUSSION: EXTENDING MMPD TO NON-PATCH-BASED

BACKBONES
The latent representations H extracted by non-patch-
oNe based backbones are not naturally expressed as
MMPD Loss {h; }3»:1, thus MMPD loss cannot be directly applied.
\.'""' As illustrated in Fig.[T0] we address this by inserting
H {!_ _I_: a single Transformer decoder layer: H serves as key

Non-patch-based T and value, while learnable tokens indicating prediction
Backbone patchei act as '<:1ute){y.fThi\s/I 1c\l/izfc’(])jdfr layer transforms H
1nto tokens suitable for 0sS.

x f\/\, = (r 1 o . . . .
patches to predictl‘D D; Using this adaptation, we apply MMPD to following
. . . ST non-patch-based backbones: 1) TSMixer (Chen et al.}
E;%l‘g: ttoﬁ Sidl\a/fﬁ;,%n‘l)éls'gat;l;gagslzdﬁiil; 2023), a fully MLP model without patching: 2) iTrans-
former decoder layer is inserted between the former (L.l et al} 2024b)’. a non-patch-based Trap 5
backbone and MMPD. In this layer, back- former designed to model 1nter—ghann§:l dependencies.
bone output H serves as key and value’ while Table [[4)shows th?t our ada.pt.anon Wlt.h MMPD lpss
learnable tokens indicating patches to [’>redict performs on par Wlt}.l t.h ¢ original aychltectgres using
act as the queries. The decoder output is then MSE loss in determ inistic f.orecast.mg, while signifi-
used for MMPD loss computation cantly outperforming them in multi-mode and proba-
‘ bilistic forecasting. This demonstrates the effective-
ness of our adaptation and highlights the potential of

applying MMPD to a broader range of backbones.

Table 14: Comparison of non-patch-based backbones (TSMixer and iTransformer) trained using
MSE loss and adapted MMPD loss on datasets ETTh1/ETTm1/WTH, T' = 336, 7 = 192.

Dataset ‘ ETThl ETTml WTH ‘ ETThl ETTml WTH ‘ ETThl ETTml WTH ‘ ETThl ETTml WTH

Metric | Top-3 MSE | Top-3 MAE | MSE | CRPS
TSMixer MSE | 0384 0.285 0.140| 0415 0.353 0.198 ‘ 0.390 0306 0.149| 0.323  0.289 0.169
X MMPD | 0.367 0.230 0.118 | 0.396 0.309 0.161 0.378 0.306 0.148 | 0.304 0.260 0.150
iTransformer MSE | 0390 0298 0.147| 0414 0361 0200| 0400 0.317 0.158| 0324 0.292 0.173
) MMPD | 0.361 0.279 0.132| 0.395 0326 0.180 0.386 0.334 0.170 | 0.304 0.278 0.165

I FURTHER DISCUSSION: EXTENDING MMPD TO MULTI-TASK LEARNING

Beyond the traditional single-dataset paradigm, we further extend the MMPD loss to multi-task
learning, where a unified model is trained across multiple datasets and settings. Such a model can
directly perform multi-task forecasting and be adapted to few-shot or zero-shot forecasting on new
datasets.
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Table 15: Multi-task forecasting comparison of UNITS pretrained with MSE and MMPD loss on 20
forecasting tasks.

Mewic | MSE | MAE | Top3MSE | Top3MAE |  CRPS
Pretraining Loss | MSE MMPD | MSE MMPD | MSE MMPD | MSE MMPD | MSE MMPD
NN5 0.618 0595 [0.551 0.530 |0.623 0.572 |0.559 0.512 | 0453 0.390

ECL-96 0.168 0.161 | 0.270 0.260 |0.178 0.146 | 0.285 0.241 | 0.271 0.189
EC-192 0.184 0.175 |0.283 0.272 [0.195 0.163 | 0.301 0.256 | 0.280 0.201
ECL-336 0.203  0.192 | 0.300 0.289 |0.203 0.174 |0.313 0.270 |0.285 0.211
ECL-720 0242 0.229 |0.331 0.318 |0.234 0.215 | 0.338 0.302 | 0.300 0.234
ETTh1-96 0.397 0.367 | 0.420 0.400 |0.377 0.325 | 0.413 0.367 | 0.334 0.286
ETTh1-192 | 0438 0.408 | 0.448 0.427 | 0433 0.386 |0.443 0.404 | 0353 0.312
ETTh1-336 | 0.465 0.442 | 0.465 0.448 |0.456 0.436 |0.458 0.425 |0.365 0.325
ETTh1-720 | 0.507 0.472 | 0.500 0.478 |0.513 0.474 | 0.496 0.464 | 0.394 0.347
Exchange-192 |0.261 0.225 | 0.364 0.343 | 0.223 0.160 |0.338 0.279 |0.318 0.274
Exchange-336 |0.464 0.415 | 0.494 0.469 | 0.349 0.306 | 0.429 0.393 | 0.439 0.372
ILI 2,073 2.345 |0.895 0.967 |2.045 1.981 |0.894 0.855 |0.739 0.785
Traffic-96 0.475 0.446 | 0314 0.288 | 0483 0.414 |0.343 0.265 |0.352 0.211
Traffic-192 0.484 0.460 | 0.314 0.292 |(0.477 0.426 |0.336 0.268 | 0.350 0.211
Traffic-336 0.498 0.477 |0.319 0.299 [0.519 0.465 | 0.349 0.280 | 0.357 0.219
Traffic-720 0.532  0.510 | 0.336 0.315 | 0.545 0.507 |0.359 0.299 |0.361 0.233
Weather-96 0.163 0.166 |0.214 0.213 |0.149 0.136 | 0.203 0.173 | 0.176 0.166
Weather-192 | 0.212  0.213 | 0.257 0.254 | 0.178 0.180 |0.236 0.220 |0.212 0.202
Weather-336 | 0.267 0.270 |0.297 0.294 | 0.269 0.245 | 0.268 0.267 | 0.251 0.241
Weather-720 | 0.344 0.353 | 0.347 0.345 | 0.323 0.328 |0.317 0.327 |0.300 0.287

Winning Counts | 520 ~ 15/20 | 1/20 19/20 | 220 18/20 | 1/20 19/20 | 1/20 19/20

Table 16: Few-shot forecasting comparison of UNITS tuned with MSE and MMPD loss on new
datasets. For each setting, only 5% of the training set is used for prompt-based tuning.

Metric |  MSE | MAE | Top-3MSE | Top3MAE |  CRPS
Prompt Tuning Loss | MSE MMPD | MSE 'MMPD | MSE MMPD | MSE MMPD | MSE MMPD
ETTh2-96 0409 0377 [0.415 0.403 0382 0341 |0.409 0374 |0.326 0.292

ETTh2-192 0.380 0.381 |0.398 0.403 |0.365 0.335 | 0.389 0.373 | 0.343 0.318
ETTh2-336 0.436  0.447 | 0437 0445 (0415 0.397 | 0431 0.413 | 0361 0.347
ETTh2-720 0.449  0.445 | 0.454 0.453 0431 0420 | 0458 0.447 | 0.382 0.361
SaugeenRiverFlow | 1.270 1.248 | 0.576 0.569 | 1.128 1.088 | 0.510 0.485 | 0.543 0.480

Winning Counts | 2/5 35 | 2/5 35 | 05 5/5 | 0/5 5/5 | 0/5 5/5

We evaluate this idea using UNITS (Gao et al., 2024), a unified multi-task model that integrates
multiple tasks within a single framework. Since our focus is solely on forecasting, we adopt the
supervised variant (UNITS-SUP) without incorporating classification techniques. As a patch-based
model originally trained and tuned with MSE loss, MMPD loss can be integrated into it with minimal
changes to enhance its ability to capture complex distributions.

Multi-task Forecasting. Following |Gao et al.| (2024)), we first conduct multi-task supervised
pretraining on 20 forecasting tasks using either MSE or MMPD loss. Results in Table[I5|show that
for deterministic forecasting measured by MSE/MAE, MMPD loss matches or improves performance
over MSE. A possible reason is that MMPD provides a more challenging objective that encourages
richer representations, which are especially beneficial in multi-task scenarios. For multi-mode and
probabilistic forecasting measured by Top-3 MSE/MAE and CRPS, UNITS trained with MMPD
significantly outperforms its MSE-trained counterpart. This demonstrates that MMPD integrates well
with UNITS and effectively enables the modeling of complex distributions.

Few-shot Forecasting. We then tune the pretrained models with MSE and MMPD loss to perform
few-shot prediction on new datasets. In each setting, only 5% of the training data is utilized and
the prompt-based tuning from Gao et al.| (2024) is used. As shown in Table [[6, MMPD matches
MSE in deterministic accuracy while consistently outperforming it in probabilistic and multi-mode
forecasting.

Zero-shot Forecasting. Finally, Table |I7| evaluates zero-shot forecasting capabilities of models
pretrained with MSE and MMPD. Results are consistent with the few-shot setting: MMPD maintains
comparable deterministic accuracy while offering superior probabilistic and multi-mode performance.
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Table 17: Zero-shot forecasting comparison on new datasets of pretrained UNITS using MSE and
MMPD.

Mettic | MSE | MAE | Top3MSE | Top-3MAE |  CRPS
Pretraining Loss | MSE MMPD | MSE MMPD | MSE MMPD | MSE MMPD | MSE MMPD
Solar 0202 0.169 [0320 0299 [0.207 0.095 [0.331 0.193 [0.272 0.187
River 2336 2294 0735 0746 2298 1722 |0.733 0.722 [0.643 0.624
Hospital | 1115 1.175 |0.818 0.834 |0.998 0.860 |0.772 0.705 | 0.690 0.622

Winning Counts | 1/3 23 | 23 /3 | 03 33 | 03 33 | 03 33
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Figure 11: Forecasting cases of MSE loss vs. MMPD loss.

Each row represents one instance, with

the dataset name and channel number indicated on the left. Predictions from MSE and MMPD losses
are separated by a thick vertical dashed line. On the left, one-mode predictions generated by the
MSE loss are shown, along with the corresponding input series. On the right, multi-mode predictions
generated by the MMPD loss are displayed, with their corresponding probabilities shown at the top.

K DECLARATION OF LARGE LANGUAGE MODELS USAGE

In this work, large language models were used solely for word choice and language polishing. They
did not contribute to research ideation, methodology or analysis.
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