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MMPD: DIVERSE TIME SERIES FORECASTING VIA
MULTI-MODE PATCH DIFFUSION LOSS
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Figure 1: MSE loss (Left) vs. our MMPD loss (Right) using the same decoder-only Transformer
backbone on dataset ETTm1, input 336-predict 192 task. MSE results in a single, ambiguous
prediction with a symmetric, constant confidence interval, failing to capture sudden changes in the
future. In contrast, our MMPD generates multiple sharp predictions with associated probabilities
(only Top-3 predictions are shown), and the confidence intervals are asymmetric and vary over time.
More visualizations are shown in Fig. 11 of Appendix J.

ABSTRACT

Despite the flourishing in time series (TS) forecasting backbones, the training
mostly relies on regression losses like Mean Square Error (MSE). However, MSE
assumes a one-mode Gaussian distribution, which struggles to capture complex
patterns, especially for real-world scenarios where multiple diverse outcomes
are possible. We propose the Multi-Mode Patch Diffusion (MMPD) loss, which
can be applied to any patch-based backbone that outputs latent tokens for the
future. Models trained with MMPD loss generate diverse predictions (modes)
with the corresponding probabilities. Technically, MMPD loss models the future
distribution with a diffusion model conditioned on latent tokens from the backbone.
A lightweight Patch Consistent MLP is introduced as the denoising network to
ensure consistency across denoised patches. Multi-mode predictions are generated
by a multi-mode inference algorithm that fits an evolving variational Gaussian
Mixture Model (GMM) during diffusion. Experiments on eight datasets show its
superiority in diverse forecasting. Its deterministic and probabilistic capabilities
also match the strong competitor losses, MSE and Student-T, respectively.

1 INTRODUCTION

Time series (TS) forecasting have made fast progress. Plenty of backbones have been proposed,
incorporating various techniques like sparse attention (Li et al., 2019; Zhou et al., 2021), trend-season
decomposition (Wu et al., 2021; Zeng et al., 2023), frequency enhancement (Zhou et al., 2022),
patchify (Nie et al., 2023; Zhang & Yan, 2023) and cross-channel dependency (Liu et al., 2023).

Despite the rich works on backbone design, most works rely on regression losses like Mean Square
Error (MSE) for training. However, using MSE essentially assumes that the future follows a Gaussian
distribution with fixed variance (details in Sec. 3.1). Such a parametric distribution has several
limitations, including its symmetric formulation and independent, constant uncertainty.

Most importantly, the single-mode Gaussian cannot support diverse forecasting, where the same past
may lead to multiple possible futures. Diverse forecasting is necessary in the real world. On the
data side, multi-mode pattern is a fundamental property: identical inputs can diverge into different
futures due to unobserved background contexts (Bergmeir, 2024). On the application side, it is a
natural requirement in downstream tasks: in domains like trading, an averaged forecast offers little
actionable insight, whereas multi-mode predictions enable risk-aware decision (Tsay, 2005).
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Therefore, even with carefully designed backbones, the model’s capacity remains limited if the
training loss cannot capture complex distributions. Several works have attempted to improve loss
functions: Le Guen & Thome (2019; 2020) explore the Dynamic Time Warping (DTW). Due to high
complexity, DTW-based losses are hard to scale to long-term forecasting. Salinas et al. (2020); Rasul
et al. (2023) model the future with negative binomial and Student-T distributions. Woo et al. (2024)
uses a mixture of parametric distributions. Although better than MSE, their formulations are still
manually predefined, limiting the ability to model complex distributions.

To fill the gap, we propose Multi-Mode Patch Diffusion (MMPD) loss to model complex future
distributions. MMPD is generally applicable to any patch-based backbone that divides input series
into patches and outputs latent tokens for the future, now one of the most important categories of
backbones in both supervised and foundation models. Given one input, models trained with MMPD
loss can predict multiple diverse futures (modes), each with an associated probability, as illustrated in
the right of Fig. 1. Meanwhile, MMPD loss also integrates with traditional deterministic forecasting,
similar to MSE.

Technically, inspired by recent efforts of diffusion on visual tokens (Li et al., 2024a), MMPD
constructs a diffusion process for future series conditioned on tokens from upstream forecasting
backbones. In Sec. 3.2, we propose a lightweight Patch Consistent MLP as the denoising network
in MMPD loss. When denoising a patch, it not only takes the corresponding token as the condition
but also considers adjacent noisy patches, ensuring consistency across patches. The integration with
deterministic forecasting is achieved by optimizing the diffusion objective at special anchor inputs.
As diffusion samples exhibit multi-mode patterns, a multi-mode inference algorithm is devised in
Sec. 3.3. It fits an evolving variational Gaussian Mixture Model (GMM) at each diffusion step
alongside the reverse process. Priors from the forward process are injected via variational inference
to guide the update of GMM. At the end of the reverse diffusion, the GMM outputs multi-mode
predictions with corresponding probabilities. The highlights are:

1) Beyond the dominant MSE loss that assumes a simple Gaussian distribution, we propose the
MMPD loss, leveraging the diffusion process to capture complex distributions. MMPD loss is
backbone-agnostic and readily applicable to any patch-based backbone.

2) Observing multi-mode patterns in predictions, we devise a multi-mode inference algorithm that out-
puts diverse predictions with associated probabilities. Unlike pre-defined mixture distributions (Woo
et al., 2024), the number and structure of modes are adaptively inferred, offering greater flexibility.

3) Experiments on eight datasets show the superiority of MMPD loss in diverse forecasting. Its
deterministic and probabilistic capabilities also match the best-performing competitor losses, MSE
and Student-T, respectively. Its generality is validated on four different backbones.

2 PRELIMINARIES ABOUT DIFFUSION MODELS

We leave the related works to Appendix A and briefly overview the preliminaries about diffusion
models. Given training samples and corresponding conditions (e.g., images and captions): y0, c ∼
q(y0, c), Diffusion models define a forward Markov process that gradually adds noise to the sample:

q(y1:K |y0, c) =

K∏
k=1

q(yk|yk−1, c) q(yk|yk−1, c) = N (yk;
√
1− βky

k−1, βkI) (1)

where {βk ∈ (0, 1)}Kk=1 is the variance schedule to control the added noise. With the forward process,
a reverse Markov process for denoising is modeled by a neural network:

pϕ(y
0:K−1|yK , c) =

K∏
k=1

pϕ(y
k−1|yk, c) pϕ(y

k−1|yk, c) = N
(
yk−1;µϕ(y

k, c, k), σ2
kI
)

(2)

where σk is a step-dependent constant and µϕ represents the neural network that parameterizes
the reverse process. The parameters of µϕ are learned by minimizing the negative log-likelihood
Eq(x0,c)[− log pϕ(x

0|c)]. Through parameterization and simplification, the final objective is:

L = Ey0,c,k,ϵ

[
∥ϵ− ϵϕ(y

k, c, k)∥22
]

yk =
√
ᾱky

0 +
√
1− ᾱkϵ ϵ ∼ N (ϵ;0, I) (3)

where αk = 1− βk and ᾱk =
∏k
s=1 αs. ϵϕ is a network to parameterize µϕ in Eq. 2. It takes noisy

sample yk, condition c and diffusion step k as input and outputs the estimated noise in yk. Once
well-trained, new samples can be generated from the reverse process, i.e., Eq. 2.
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3 METHODOLOGY

3.1 BROADENING THE DEFINITION OF LOSS FROM A PROBABILISTIC VIEW

Given the past series x ∈ RT , TS forecasting aims to predict values of the same series at the desired
future horizon1 y ∈ Rτ . From a probabilistic view, the task is to model the conditional distribution of
the future given its past: p(y|x). Assuming an independent Gaussian with predicted mean and fixed
variance: pθ(y|x) = N (y; fθ(x), σ

2I), the objective of maximum likelihood estimation yields:

max
θ

Eq(x,y) [log pθ(y|x)] = max
θ

Eq(x,y)
[
− 1

2σ2
∥y − fθ(x)∥22 + Const

]
= min

θ
Eq(x,y)

[ τ

2σ2
MSE(fθ(x),y)

] (4)

where fθ(·) : RT → Rτ is a neural network parameterized by θ to predict the mean. σ ∈ R is the
constant standard deviation. q(x,y) is the training dataset distribution.

Using gradient-based optimizers like Adam for training, the constant coefficient τ
2σ2 will be absorbed

by the step size. Therefore, the following relationship holds (Bishop & Nasrabadi, 2006):

Using MSE loss implicitly assumes the future follows an independent Gaussian distribu-
tion, with predicted mean and fixed constant variance.

This assumption is restrictive with limitations: 1) a single-mode Gaussian is unsuitable when multiple
distinct futures are possible; 2) predicted steps are assumed independent, yet real-world steps are
often correlated; 3) variance is fixed, whereas uncertainty typically evolves over time; 4) the Gaussian
is symmetric, but real-world predictions may be asymmetric, e.g., rainfall is nonnegative.

More generally, regardless of how refined the network is, its expressiveness will be limited because
MSE assumes a simple, parametric form for the future distribution. The same limitations apply to
MAE loss, which assumes a Laplace distribution with predicted location and fixed, independent scale.

To move beyond restricted assumptions and model more complex distributions, we decouple the
forecasting network into a backbone and a projector:

fθ(x) = gϕ(H),H = hψ(x), θ = {ϕ, ψ} (5)

1) The backbone hψ(·) extracts latent representations and contains the majority of the parameters.
Plenty of backbones with various techniques have been proposed in recent years (Wen et al., 2023).

2) The projector gϕ(·) maps the representations to the output space, typically via a lightweight MLP
with few parameters. Its design highly depends on the chosen distribution—for instance, using a
Gaussian with predicted variance requires the projector to output both mean and variance.

Since the backbone is the core and dominates the parameter count, from the perspective of backbone
optimization, the projector can be viewed as part of the loss, forming a composite, trainable loss:

min
ϕ,ψ

Lossϕ(H,y),H = hψ(x) (6)

In this broader definition, the projector gϕ acts as an auxiliary module that guides backbone optimiza-
tion. This is conceptually related to the adversarial loss (Goodfellow et al., 2014), where a learnable
discriminator is introduced to guide generator training. Adopting this view, we can design flexible
losses that capture richer distributions beyond Gaussian forms. Moreover, traditional losses naturally
fall into this framework: MSE can be expressed as: MSEϕ(H,y) = 1

τ ∥y − gϕ(H)∥22
3.2 DIFFUSION TRAINING WITH PATCH CONSISTENT MLP
Unlocking the capacity of backbones requires losses corresponding to more flexible distribution fami-
lies. Leveraging the strong ability to capture complex distributions, we propose a diffusion-based loss,
MMPDϕ(H,y). Unlike standalone TS diffusion models relying on specialized architectures (Tashiro
et al., 2021), MMPD serves as a plug-and-play loss applicable across various backbones.

In this work, we focus on patch-based backbones, which divide past series into patches as input and
output latent tokens for the future2. Specifically, in these backbones, past series x is divided into

1We focus on univariate forecasting; for multivariate data, the loss is computed per channel and averaged.
2MMPD can also be adapted to non-patch-based backbones with minor modification, as shown in Appendix H
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patches of length P and then embedded into T/P latent tokens. Backbones capture dependency
among tokens and output latent tokens H = {hj}lj=1, l = τ/P , each corresponding to a future patch.
As discussed in Appendix A, many recent supervised and pre-training models fall into this category.
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Figure 2: Patch Consistent MLP for diffusion.
To predict the noise ϵj in patch pkj , besides the cor-
responding token hj and diffusion step k, adjacent
noisy patches centered around j (pkj−r, . . . ,p

k
j−1

and pkj+1, . . . ,p
k
j+r colored in red) are also input

to AdaLN-MLP as conditions. This ensures con-
sistency across denoised patches.

The core idea of our MMPD loss is to enable
flexible distribution modeling through condi-
tional diffusion, where future latent tokens serve
as the condition. To achieve this, a denoising net-
work ϵϕ(yk, {hj}lj=1, k) is required. As an aux-
iliary module to guide backbone optimization,
this denoiser should be lightweight. A straight-
forward strategy is to split yk into patches
{pk1 , . . . ,pkl } and use an MLP to denoise each
patch pkj conditioned on token hj , as done in Li
et al. (2024a) for visual tokens. However, such
independent MLP models the marginal distribu-
tion of each patch p(pj |x), 1 ≤ j ≤ l rather
than the joint distribution of all future patches
p(p1, . . . ,pl|x). This can lead to inconsistent
samples during inference, resulting in discontin-
uous jumps between patches shown in Fig. 3(a).

To maintain consistency among patches while keeping the denoiser lightweight, we extend Adaptive
Layer MLP (AdaLN-MLP) (Peebles & Xie, 2023) to construct the Patch Consistent MLP:

ϵϕ(y
k, {hj}lj=1, k) = [ϵ̂1 • . . . • ϵ̂l] ϵ̂j = AdaLN-MLP(pkj , c

k
j )

ckj = tokenj + stepk + prevkj + nextkj

tokenj = W(token)hj stepk = Emb(step)(k)

prevkj = W(prev)
[
pkj−r • . . . • pkj−1

]
nextkj = W(next)

[
pkj+1

• . . . • pkj+r
] (7)

As illustrated in Fig. 2, the predicted noise ϵ̂ ∈ Rτ is the concatenation of predicted noise in
each patch, i.e., ϵ̂j ∈ RP . AdaLN-MLP is the denoising MLP from DiT block (Peebles & Xie,
2023), with details in Appendix B. To predict noise in patch pkj , the conditioning vector integrates
four components: latent tokens tokenj , diffusion timestamp stepk, previous and next noisy patches
prevkj and nextkj . Here, W(token) ∈ Rdmodel×dmodel ;W(prev),W(prev) ∈ Rdmodel×rP are learnable
matrices. Emb(step)(·) is the positional encoding. r is a constant hyper-parameter that controls the
adjacent range around patch j that the MLP can access. Padding is used when j ≤ r or j > l − r.

The key distinction between Patch Consistent MLP and independent MLPs lies in its use of adjacent
patches as conditions, i.e., the last line of Eq. 7. Fig. 3(b) shows that this ensures consistency across
patches. Moreover, the additional parameters introduced (i.e., W(prev),W(next)) are minimal.

Integration with deterministic forecasting. MMPD loss provides a flexible distribution. But in
many applications, deterministic forecasting is still needed, which is the role typically served by MSE.
A naive solution is to generate multiple samples and take the mean or median. However, diffusion
iterations are costly. For efficiency, we integrate deterministic forecasting within the diffusion
framework. Considering the diffusion objective (Eq. 3), if the noise cancels the sample at step k∗

such that yk
∗
= 0, the target reduces to a scaled negative ground truth ϵ = −

√
ᾱk∗√

1−ᾱk∗
y0. Thus, we

treat (0, {hj}lj=1, k
∗) as an anchor input for deterministic forecasting and define the joint objective:

L = λ
∥∥ϵ− ϵϕ(y

k, {hj}lj=1, k)
∥∥2
2
+ (1− λ)

∥∥∥∥ √
ᾱk∗√

1− ᾱk∗
y0 + ϵϕ(0, {hj}lj=1, k

∗)

∥∥∥∥2
2

(8)

where λ = 0.99 by default balances the probabilistic and deterministic objectives. k∗ is set to make
ᾱk∗ close to 0.5 such that

√
ᾱk∗√

1−ᾱk∗
≈ 1. Fig. 9 of Appendix F also shows that prediction accuracy is

robust w.r.t k∗ across a broad range. After training, the deterministic prediction is directly obtained as
−

√
1−ᾱk∗√
ᾱk∗

ϵϕ(0, {hj}lj=1, k
∗), bypassing costly diffusion iterations. This integration introduces no

new architectures, as it reuses the denoiser ϵϕ. Importantly, the deterministic forecasting term does
not conflict with the diffusion term - it is merely a special case of the diffusion objective at the anchor.
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Figure 3: (a) Samples predicted by an independent denoising MLP on dataset Dynamic, showing the
inconsistency between patches. (b) Samples predicted by our Patch Consistent MLP, displaying clear
multi-mode patterns that are challenging to represent using simple statistics (black line: median, red
area: 50% confidence interval). (c) The evolution of our multi-mode inference algorithm: at each step
k, posteriors and estimations p(Zk), p(wk), p(Λk),µk are updated via variational EM steps, based
on newly generated samples {ykn}Nn=1. The updates are also guided by priors at each step k.

3.3 MULTI-MODE INFERENCE THROUGH EVOLVING VARIATIONAL GMM
Once trained, we get a flexible distribution pθ(y|x). However, unlike MSE loss that corresponds to a
closed-form Gaussian distribution, pθ(y|x) modeled by a diffusion process is an implicit distribution
that lacks an explicit analytic form. To summarize this distribution and extract interpretable informa-
tion for downstream tasks, prior works typically draw samples from it and then compute statistics
such as the median and confidence interval (Rasul et al., 2021a; Shen & Kwok, 2023) . However, as
shown in Fig. 3(b), the samples exhibit multi-mode patterns, indicating that the same past can lead to
multiple possible futures. Such diversity cannot be adequately captured by simple summary statistics.

To address this, we propose a multi-mode inference algorithm that explicitly summarizes distinct
outcomes. Suppose the true distribution takes the following multi-mode form:

q(y0|x) =
M∑
m=1

wmδ(y
0 − y∗

m),

M∑
m=1

wm = 1 (9)

where {y∗
m}Mm=1 denote the M possible predictions and the probability to predict y∗

m is wm. To
estimate {wm,y∗

m}Mm=1, we combine this multi-mode prior with the forward diffusion process (i.e.,
Eq. 1), yielding the forward distribution at step k:

q(yk|x) =
M∑
m=1

wmN (yk;
√
ᾱky

∗
m, (1− ᾱk)I) (10)

This is a Gaussian mixture distribution governed by two priors:

1) Mixture weights. The weights wm remain constant across steps k. In practice, the number of
effective modes should be limited, i.e.,wm ≈ 0 for most modes, to avoid over-fragmented predictions.
2) Covariance matrix. The covariance matrix evolves with k and should be (1− ᾱk)I at step k.

Consequently, when drawing N samples via reverse diffusion, the collection at step k, Yk =
{ykn}Nn=1, should follow the Gaussian mixture distribution in Eq. 10. This observation leads to the
use of GMM over other clustering models. By fitting a GMM alongside the reverse process at each
step, we can recover {wm,y∗

m}Mm=1 from the final GMM at step 0. To better leverage the priors
on mixture weights and covariance, we employ a variational GMM rather than the standard GMM,
which enables explicit prior injection. The prior at step k is set as:

q(Yk|Zk,µk,Λk) =

N∏
n=1

M∏
m=1

N (ykn;µ
k
m, (Λ

k
m)−1I)z

k
nm q(Zk|wk) =

N∏
n=1

M∏
m=1

(wkm)z
k
nm

#Prior for mixture weights: q(wk) = Dirichlet(wk;π), πm = ρm−1

#Prior for variance: q(Λk) =

M∏
m=1

Gamma(Λkm;ukm, v
k
m), ukm = u, vkm = u ∗ (1− ᾱk)

(11)
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Algorithm 1 Multi-Mode Inference Algorithm

Input: Future tokens {hj}lj=1, number of samples N to draw via diffusion, maximum number of
modes M , prior hyperparameters ρ, u in Eq. 11.
Initialize: Estimation {µKm}Mm=1 and parameters in posteriors {ũKm, ṽKm , π̃Km}Mm=1
Ouput: Statistics and probability of each mode
# Generate initial samples at step K: {yKn }Nn=1 ∼ N (yK ;0, I)
for k = K − 1, . . . , 0 do

# Generate samples at step k: {ykn}Nn=1 ∼ Diffusion
(
{yk+1

n }Nn=1, {hj}lj=1, k + 1
)

# E-step: update posterior p(Zk)

p(Zk) =
N∏
n=1

M∏
m=1

(γ̃knm)z
k
nm ; γ̃knm =

γk
nm∑M

s=1 γ
k
ns

ln γk
nm = − 1

2

[
ũk+1
m

ṽk+1
m

∥yk
n − µk+1

m ∥22 + τ ln(2π)
]
+ τ

2

[
ψ(ũk+1

m )− ln(ṽk+1
m )

]
+ψ(π̃k+1

m )−ψ(
M∑
s=1

π̃k+1
s )

# M-step: update estimation µk, posterior p(wk), p(Λk)

µkm = 1

Ñk
m

∑N
n=1 γ̃

k
nmykn; Ñk

m =
∑N
n=1 γ̃

k
nm

p(wk) = Dirichlet(wk; π̃k); π̃km = πm + Ñk
m

p(Λk) =
∏M
m=1 Gamma(Λkm; ũkm, ṽ

k
m); ũkm = ukm+ τ

2 Ñ
k
m; ṽkm = vkm+ 1

2

N∑
n=1

γ̃knm∥ykn−µkm∥22
end for
Modem = {y0

n| argmax
s
γ̃0ns = m}

P (Modem) = |Modem|/N and get statistics of each mode

Table 1: Top-3 MSE/MAE, MSE, CRPS evaluations of different losses. The forecasting horizon τ
is {96, 192, 336, 720} for the first seven datasets and {60, 120, 180, 300} for Dynamic. Results
are averaged over 4 horizons. Rank: average rank on 8 datasets. Bold/underline: best/second. Inf:
infinity problem caused by outliers. See Table 7 in Appendix E for full results.

Dataset ETTh1 ETTm1 ETTh2 ETTm2 WTH ECL Traffic Dynamic Rank ETTh1 ETTm1 ETTh2 ETTm2 WTH ECL Traffic Dynamic Rank

Metric Top-3 MSE Top-3 MAE

MSE 0.430 0.348 0.364 0.264 0.224 0.176 0.433 0.336 3.5 0.440 0.381 0.398 0.320 0.262 0.278 0.326 0.311 4.875
MAE 0.441 0.364 0.368 0.276 0.235 0.179 0.449 0.426 5.25 0.437 0.375 0.392 0.321 0.263 0.272 0.310 0.295 4.125

Gaussian 0.439 0.361 0.379 0.280 0.255 0.165 0.419 0.343 4.75 0.437 0.386 0.411 0.337 0.292 0.256 0.282 0.309 5.125
Student-T 0.430 0.352 0.375 0.286 0.241 0.165 0.416 0.390 4.25 0.428 0.371 0.398 0.333 0.263 0.250 0.261 0.292 3.375

Mix 0.425 0.289 0.343 0.245 0.209 0.147 0.412 0.322 1.875 0.426 0.338 0.387 0.308 0.242 0.240 0.261 0.246 2
MMPD 0.396 0.269 0.299 0.214 0.193 0.147 0.389 0.301 1 0.412 0.331 0.357 0.285 0.221 0.238 0.254 0.207 1
Metric MSE CRPS

MSE 0.425 0.350 0.376 0.270 0.227 0.160 0.399 0.345 1.875 0.337 0.307 0.308 0.247 0.218 0.270 0.343 0.257 4.25
MAE 0.432 0.355 0.366 0.274 0.233 0.164 0.417 0.426 3.5 0.346 0.313 0.299 0.247 0.220 0.288 0.362 0.275 4.625

Gaussian 0.434 0.357 0.382 0.284 0.255 0.163 0.413 0.349 4 0.317 0.282 0.315 0.256 0.228 0.190 0.217 0.233 4.375
Student-T 0.426 0.349 0.372 0.283 0.241 0.164 0.418 0.392 3.5 0.310 0.271 0.300 0.250 0.201 0.187 0.204 0.224 2.25

Mix 0.446 0.358 0.390 0.285 0.259 0.167 0.426 0.482 6 0.316 0.269 0.310 0.247 0.209 Inf 0.205 0.224 3
MMPD 0.412 0.337 0.354 0.264 0.229 0.164 0.409 0.353 1.75 0.318 0.270 0.301 0.243 0.199 0.191 0.202 0.203 2

We use q(·) to denote prior distributions and {πm, ukm, vkm}Mm=1 without tilde for parameters in priors.
Zk = {zkn}Nn=1, where each zkn is a one-hot latent variable indicating the mode ykn belongs to. Line
1 defines the GMM with means µk = {µkm}Mm=1, inverse variances Λk = {Λkm}Mm=1 and mixture
weights wk = {wkm}Mm=1. Line 2 assigns a constant Dirichlet prior w.r.t diffusion step k for wk. Its
parameter πm decays by ρ when mode index m increases, encouraging higher-indexed modes to
vanish. Line 3 assigns a Gamma prior on Λk such that (E[Λkm])−1 = vkm/u

k
m = 1− ᾱk, consistent

with the covariance prior. No prior is set for µk as it is related to the unknown y∗
m. The only

hyperparameters are ρ and u, with ρ controlling the decay of the Dirichlet prior over mixture weights
and u setting the shape of the Gamma prior on variances. Their effects are evaluated in Appenidx F.

With these priors, we get the multi-mode inference Algorithm 1, with detailed derivations in Ap-
pendix C. p(·) denote posterior distributions and {π̃km, ũkm, ṽkm}Mm=1 with tilde are for parameters in
posteriors. As shown in Fig. 3(c), rather than using standard GMM as a post-processing method only
applied to {y0

n}Nn=1, we distribute GMM iterations across diffusion steps. This allows us to utilize
the knowledge from Eq. 10 via evolving prior distributions, which mitigates the difficulty of GMM
initialization and makes a more informed choice of the number of active modes.

4 EXPERIMENTS
We conduct experiments on: ETTh1, ETTm1, ETTh2, ETTm2, WTH, ECL, Traffic, Dynamic.
The first seven are widely used datasets from previous works (Nie et al., 2023). The new Dynamic
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Table 2: MSE, Mix and MMPD losses over backbones: Crossformer, SegRNN and MaskAE. Horizons
are consistent with those in Table 1. #1st: number of first ranks across 8 datasets. Inf: infinity problem
caused by outliers. See Table 8&9 in Appendix E for the full results.

Dataset ETTh1 ETTm1 ETTh2 ETTm2 WTH ECL Traffic Dynamic #1st ETTh1 ETTm1 ETTh2 ETTm2 WTH ECL Traffic Dynamic #1st

Metric Top-3 MSE Top-3 MAE

MSE 0.443 0.378 0.372 0.266 0.223 0.184 0.451 0.331 0 0.452 0.397 0.412 0.323 0.268 0.288 0.342 0.304 0
Mix 0.433 0.330 0.359 0.236 0.200 0.160 0.424 0.307 0 0.433 0.358 0.400 0.307 0.235 0.255 0.279 0.233 0Crossformer

MMPD 0.381 0.310 0.315 0.228 0.197 0.152 0.404 0.295 8 0.410 0.353 0.372 0.295 0.226 0.245 0.261 0.194 8

MSE 0.440 0.385 0.365 0.273 0.222 0.183 0.464 0.333 0 0.451 0.417 0.408 0.337 0.269 0.286 0.333 0.307 0
Mix 0.435 0.335 0.341 0.248 0.214 0.155 0.439 0.330 0 0.432 0.378 0.389 0.311 0.246 0.245 0.253 0.247 1SegRNN

MMPD 0.402 0.321 0.321 0.233 0.201 0.150 0.418 0.295 8 0.426 0.375 0.377 0.305 0.234 0.242 0.260 0.210 7

MSE 0.438 0.354 0.355 0.280 0.226 0.178 0.436 0.339 0 0.447 0.389 0.392 0.337 0.263 0.280 0.329 0.312 0
Mix 0.415 0.314 0.340 0.253 0.203 0.150 0.416 0.321 0 0.425 0.353 0.384 0.308 0.238 0.241 0.265 0.244 0MaskAE

MMPD 0.399 0.280 0.311 0.247 0.197 0.144 0.387 0.296 8 0.416 0.342 0.367 0.304 0.225 0.234 0.253 0.203 8
Metric MSE CRPS

MSE 0.440 0.382 0.388 0.271 0.228 0.170 0.418 0.339 5 0.344 0.316 0.319 0.249 0.221 0.274 0.348 0.253 0
Mix 0.460 0.399 0.403 0.273 0.241 0.182 0.459 0.455 0 0.323 0.281 0.323 0.248 0.202 Inf 0.217 Inf 3Crossformer

MMPD 0.416 0.388 0.374 0.270 0.232 0.170 0.420 0.349 4 0.314 0.287 0.316 0.249 0.204 0.197 0.208 0.194 5

MSE 0.433 0.383 0.376 0.279 0.226 0.168 0.428 0.342 3 0.341 0.321 0.314 0.259 0.221 0.273 0.345 0.255 0
Mix 0.452 0.381 0.375 0.285 0.273 0.187 0.468 0.465 2 Inf Inf Inf Inf Inf Inf Inf Inf 0SegRNN

MMPD 0.434 0.386 0.376 0.285 0.232 0.167 0.421 0.341 3 0.328 0.299 0.313 0.257 0.210 0.193 0.205 0.204 8

MSE 0.437 0.357 0.366 0.287 0.230 0.162 0.403 0.349 3 0.341 0.310 0.303 0.259 0.220 0.271 0.344 0.259 1
Mix 0.456 0.371 0.394 0.291 0.270 0.170 0.441 0.476 0 0.319 0.277 Inf 0.250 Inf 0.194 0.208 0.222 3MaskAE

MMPD 0.421 0.342 0.362 0.281 0.231 0.161 0.404 0.350 5 0.319 0.277 0.305 0.258 0.201 0.188 0.201 0.202 6

consists of 17 signals from a complex dynamical system without obvious periodic patterns. For each
dataset, we fix the look-back window T and make predictions on different horizons τ .

Following Top-K accuracy for image classification (He et al., 2016), we use Top-K MSE/MAE
(K = 3 in our setting) to evaluate multi-mode prediction: Top-K modes with the highest probabilities
are selected and the minimum MSE/MAE among K modes is reported. Using small K and guided by
the probability of each mode, Top-K MSE is more applicable than Best MSE (Le Guen & Thome,
2020), which computes the MSE of all N samples and reports the best. We also report traditional
metrics such as MSE and Continuous Ranked Probability Score (CRPS) to evaluate deterministic
and probabilistic accuracy. Detailed setups, including datasets and metrics, are shown in Appendix D.

4.1 MAIN RESULTS

MMPD vs. Baseline Losses. We compare MMPD with the following losses: 1) deterministic losses
MSE (Nie et al., 2023) and MAE (Liu et al., 2022a); 2) distribution-based losses Gaussian (Salinas
et al., 2020) and Student-T (Rasul et al., 2023); 3)Mix (Woo et al., 2024) that mixes multiple
parametric distributions for flexible modeling. We maintain the main backbone as a patch-based
decoder-only Transformer (Goswami et al., 2024; Lin et al., 2024b) and change the losses.

Top-3 MSE and Top-3 MAE in Table 1 show that only Mix and MMPD can capture multi-mode
patterns. Among them, our MMPD loss consistently outperforms Mix, as the number and form
of mixture components in Mix are predefined, while in MMPD, they are learned directly from
the data. Regarding deterministic forecasting performance measured by MSE, our MMPD loss is
comparable to the best competitor, MSE loss, and even outperforms it on some datasets, showing
MMPD effectively integrates deterministic forecasting. Similarly, MMPD performs on par with the
best-performing baseline, Student-T, in terms of probabilistic forecasting measured by CRPS.

Generality of MMPD Loss across Backbones. Besides the decoder-only Transformer used in
Table 1, we also compare MMPD loss with MSE and Mix across the following three backbones: 1)
channel-mixing Transformer Crossformer (Zhang & Yan, 2023), 2) patch-based RNN SegRNN (Lin
et al., 2023), 3) Masked AutoEncoder using pure Transformers MaskAE (Zhang et al., 2024b).
Results in Table 2 demonstrate that the diverse forecasting capability of MMPD significantly outper-
forms MSE and Mix across all three backbones. The deterministic forecasting ability measured by
MSE is comparable to MSE loss, which is consistent with Table 1. It is worth noting that, due to the
log-normal component, Mix loss is likely to generate outliers, leading to the infinity problem in CRPS.
This issue is particularly severe for the RNN-based SegRNN. In contrast, the CRPS of the MMPD
loss remains stable, regardless of whether the upstream backbone is an RNN or a Transformer.

4.2 MODEL ANALYSIS

Ablation of Patch Consistent MLP. In Fig. 4(a), the independent MLP, which does not incorporate
adjacent patches (r = 0), performs poorly in multi-mode prediction, with the Top-3 MSE even
exceeding MSE. This occurs because the independent MLP only models the marginal distribution of
each patch pθ(pj |x) rather than the joint distribution of all patches, leading to inconsistent samples
as shown in Fig. 3(a). In contrast, the Patch Consistent MLP, even with r = 1, significantly reduces
both Top-3 MSE and Top-3 MAE. Further increasing r slightly improves performance.
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Figure 4: (a) Metrics for varying adjacent range r in Patch Consistent MLP (r = 0: independent
MLP) on Dynamic (prediction horizon τ = 180). (b) Metrics for varying probabilistic/deterministic
objective balancing weight λ, with all other settings identical to (a). (c) Top-3 MSE/MAE comparison
between multi-mode inference and post-processing methods.
Effect of Balancing Weight λ in Eq. 8. Fig. 4(b) shows that when training with only the diffusion
objective (λ = 1.0), the deterministic prediction capability measured by MSE is poor. Decreasing it
to 0.999, the MSE is greatly reduced, while other metrics are not harmed. As λ gradually decreases,
MSE improves and stabilizes. An interesting observation is that when λ decreases from 1.0 to 0.9,
besides MSE, other multi-mode and probabilistic metrics also get better. We suspect that this is the
collaborative effect brought by joint training of the two objectives.

Ablation of Multi-Mode Inference Algorithm. Fig. 4(c) compares our multi-mode inference algo-
rithm with various post-processing methods. Random assignment performs the worst, highlighting
the necessity of multi-mode extraction. Our multi-mode inference algorithm significantly outperforms
KMeans and spectral clustering. Furthermore, MMPD surpasses Post-GMM, which uses the same
GMM formulation as MMPD but is applied directly to final samples {y0

n}Nn=1 without the evolving
priors. This stems from fitting an evolving GMM with dynamic priors on gradually denoised samples,
which mitigates the difficulty of parameter initialization in GMM and automatically selects a more
appropriate number of activated modes. Due to page limit, other hyperparameter evaluations (e.g.,
noise schedule, diffusion steps, hyperparameters in Algorithm 1) are provided in Appendix F.

Encoder
Decoder

(same net as Encoder)

MSE Loss

MMPD Loss

Linear Projection

Flatten

past patches patches to predict

Figure 5: Approach for adapting encoder-
only backbones to use MMPD loss: learn-
able tokens, indicating the patches to predict,
are appended to the end of the past patch
sequence. The padded sequence is fed to the
same network as encoder, transforming the
backbone into a decoder-only model. Only
the output tokens corresponding to the future
series are used for MMPD loss computation.

Adapting Encoder-Only Backbones for MMPD
Loss. In the left of Fig. 5, besides backbones we
have evaluated, there are encoder-only backbones that
flatten the encoder outputs and linearly project them
to predict the series for MSE loss (Nie et al., 2023;
Luo & Wang, 2024). They do not generate future la-
tent tokens, meaning MMPD loss cannot be directly
applied. In the right of Fig. 5, we transform them into
decoder-only ones for our MMPD loss by appending
learnable tokens to the end of the input sequence.

We adapt the encoder-only PatchTST (Nie et al.,
2023) into a decoder-only backbone to enable MMPD.
In Fig. 6(a)&6(c), the scale of the projection layer
in encoder-only version increases with input/output
lengths, while remaining constant with our adapta-
tion. Decoder-only PatchTST with MMPD gets lower
MSE, indicating better scalability. Also, our adap-
tation enables multi-mode and probabilistic forecast-
ing, evidenced by improved Top-3 MSE and CRPS in
Fig. 6(b)&6(d).

MMPD Loss vs. Standalone TS Diffusion Models. We also compare MMPD loss with standalone
TS diffusion models 1)CSDI (Tashiro et al., 2021), 2)TSDiff (Kollovieh et al., 2023), 3)MG-
TSD (Fan et al., 2024), 4)Diffusion-TS (Yuan & Qiao, 2024). These models involve complex
denoising networks, making long-term experiments conducted in Sec. 4.1 challenging. Following
Tashiro et al. (2021), we forecast the next 24 steps using the past 96 on ETTh1. Results in Table 3
show that our MMPD significantly outperforms standalone diffusion models. This is because the
decoupling from the backbone allows the MMPD loss to fully leverage the advanced backbone.
Moreover, the lightweight denoising MLP in MMPD ensures faster inference compared to diffusion
models with heavier networks and complex diffusion processes.
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Figure 6: Comparison of adapted decoder-only PatchTST (Nie et al., 2023) with MMPD loss
(Dec+MMPD loss) against the original encoder-only version with MSE loss (Enc+MSE loss). (a),
(b): number of parameters and metrics (MSE, Top-3 MSE and CRPS) for varying input length T on
ETTm1, the prediction horizon is set to τ = 192. (c), (d): number of parameters and metrics for
varying prediction horizon τ on ETTm1, the input length is set to T = 768.

Table 4: FLOPs across structures/stages for MSE Loss, TS Diffusion Models and MMPD Loss. S:
number of blocks in MLPs, d (short for dmodel): hidden state dimension. Fbkb, FMLP , FPC−MLP :
FLOPs of backbone, conventional MLP and Patch Consistent MLP. GMM FLOPs in MMPD are
omitted as they are negligible vs. neural networks. See derivation in Appendix G.

Structure/Stage MSE Loss TS Diffusion Models MMPD Loss

MLP Projector FMLP = O( τP [(2S + 1)d2 + Pd]) N/A FPC−MLP = O( τP [(5S + 3)d2 + (2r + 2)Pd])
Training (forward only) Fbkb + FMLP Fbkb Fbkb + 2FPC−MLP

Deterministic Inference Fbkb + FMLP N/A Fbkb + FPC−MLP

Prob/Multi-Mode Inference N/A NKFbkb Fbkb +NKFPC−MLP

Table 5: Memory, training (per batch) and inference time (per instance) of MSE Loss, Diffusion-TS
and MMPD Loss on dataset WTH, T = 336, τ = 192, batch = 32, N = 100,K = 20.

Stage MSE Loss Diffusion-TS MMPD Loss
Memory (GB) Time (ms) Memory (GB) Time (ms) Memory (GB) Time (ms)

Training 2.599 89.9 4.358 676.4 2.930 106.3
Deterministic Infer 0.031 2.3 N/A 0.034 3.1
Prob/Multi-Mode Infer N/A 11.245 28,495.1 0.505 415.8

Table 3: Evaluation of MMPD loss against TS dif-
fusion models on ETTh1, T = 96, τ = 24. “Time”
refers to average inference time per instance.

Top-3 MSE Top-3 MAE MSE CRPS Time(s)

CSDI 0.225 0.304 0.339 0.265 1.014
TSDiff 0.275 0.336 0.345 0.292 0.419

MG-TSD 0.287 0.331 0.340 0.306 0.217
Diffusion-TS 0.282 0.324 0.351 0.294 0.520

Decoder+MMPD 0.186 0.280 0.298 0.254 0.075

Efficiency Analysis. As shown in Table 4,
the Patch Consistent MLP for MMPD incurs
marginally higher FLOPs than the conventional
MLP for MSE loss. During training, MSE loss
requires one MLP forward pass, while MMPD
loss requires two: one for the diffusion objec-
tive and another for the deterministic in Eq. 8.
However, since the backbone dominates training
cost (i.e., Fbkb >> FMLP , FPC−MLP ), the to-

tal training FLOPs of MMPD remain nearly identical to those of MSE. This equivalence also holds
for deterministic inference, where both losses require a single MLP pass. For probabilistic and
multi-mode inference, which MSE cannot perform, MMPD’s overhead is significantly lower than
that of standalone TS Diffusion models, as MMPD only requires a single heavy backbone pass
followed by multiple lightweight MLP passes. The theoretical analysis is consistently supported by
the experimental memory occupancy and speed measurements in Table 5.

5 FURTHER DISCUSSIONS AND CONCLUSION

In Appendix H, we extend MMPD beyond its basic setting to non-patch-based backbones by inserting
a Transformer decoder layer between the backbone and MMPD loss. In Appendix I, beyond the
single-dataset paradigm, we further apply MMPD to a multi-task model, UNITS (Gao et al., 2024),
to perform multi-task, few-shot and zero-shot forecasting. In both cases, MMPD functions as a
plug-and-play loss that can be incorporated with minimal changes. Compared with original models
trained with MSE loss, MMPD preserves deterministic forecasting performance while enabling richer
distribution modeling, supporting multi-mode and probabilistic forecasting.

In conclusion, we have proposed MMPD, a diffusion-based loss that goes beyond the dominant
single-mode MSE loss in TS forecasting. By modeling complex distributions, MMPD equips models
with multi-mode forecasting capabilities—an essential feature for many real-world applications, par-
ticularly those involving risk-aware decision making. Extensive benchmark experiments demonstrate
the effectiveness and broad applicability of our approach.
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Rishika Bhagwatkar, Marin Biloš, Hena Ghonia, Nadhir Hassen, Anderson Schneider, et al.
Lag-llama: Towards foundation models for time series forecasting. In R0-FoMo: Workshop on
Robustness of Few-shot and Zero-shot Learning in Foundation Models at NeurIPS, 2023.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic
forecasting with autoregressive recurrent networks. International journal of forecasting, 2020.

Lifeng Shen and James Kwok. Non-autoregressive conditional diffusion models for time series
prediction. In International Conference on Machine Learning (ICML), 2023.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: Conditional score-based
diffusion models for probabilistic time series imputation. In Conference on Neural Information
Processing Systems (NeurIPS), 2021.

Ruey S Tsay. Analysis of financial time series. John wiley & sons, 2005.

E Vijay, Arindam Jati, Nam Nguyen, Gift Sinthong, and Jayant Kalagnanam. Tsmixer: Lightweight
mlp-mixer model for multivariate time series forecasting. In ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining (KDD), 2023.

Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun.
Transformers in time series: A survey. 2023.

Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo.
Unified training of universal time series forecasting transformers. In International Conference on
Machine Learning (ICML), 2024.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with auto-correlation for long-term series forecasting. In Conference on Neural Information
Processing Systems (NeurIPS), 2021.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In International Conference on
Learning Representations (ICLR), 2023.

Jinsung Yoon, Daniel Jarrett, and Mihaela Van der Schaar. Time-series generative adversarial
networks. In Conference on Neural Information Processing Systems (NeurIPS), 2019.

Chengqing Yu, Fei Wang, Zezhi Shao, Tao Sun, Lin Wu, and Yongjun Xu. Dsformer: A double sam-
pling transformer for multivariate time series long-term prediction. In Conference on Information
and Knowledge Management (CIKM), 2023.

Xinyu Yuan and Yan Qiao. Diffusion-ts: Interpretable diffusion for general time series generation. In
International Conference on Learning Representations (ICLR), 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In AAAI Conference on Artificial Intelligence (AAAI), 2023.

Yitian Zhang, Liheng Ma, Soumyasundar Pal, Yingxue Zhang, and Mark Coates. Multi-resolution
time-series transformer for long-term forecasting. In International Conference on Artificial
Intelligence and Statistics (AISTATS), 2024a.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In International Conference on Learning Representations
(ICLR), 2023.

Yunhao Zhang, Minghao Liu, Shengyang Zhou, and Junchi Yan. UP2ME: Univariate pre-training to
multivariate fine-tuning as a general-purpose framework for multivariate time series analysis. In
International Conference on Machine Learning (ICML), 2024b.

Zhenwei Zhang, Xin Wang, and Yuantao Gu. Sageformer: Series-aware graph-enhanced transformers
for multivariate time series forecasting. arXiv preprint arXiv:2307.01616, 2023.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wan Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In AAAI
Conference on Artificial Intelligence (AAAI), 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International Conference
on Machine Learning (ICML), 2022.

Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al. One fits all: Power general time series analysis
by pretrained lm. In Conference on Neural Information Processing Systems (NeurIPS), 2023.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A RELATED WORKS

Backbones for TS Forecasting. Early works employ RNNs (Flunkert et al., 2017) and CNNs (Lea
et al., 2017) as backbones. Transformers for TS were introduced later, incorporating techniques
such as sparse attention (Li et al., 2019; Zhou et al., 2021), trend-season decomposition (Wu et al.,
2021), frequency enhancement (Zhou et al., 2022) and hierarchical structure (Liu et al., 2022b). Nie
et al. (2023); Zhang & Yan (2023) proposed patch-based Transformers that divide time series into
patches. This approach was later adopted widely, resulting in the development of various patch-based
models (Vijay et al., 2023; Lin et al., 2023; Luo & Wang, 2024; Zhang et al., 2023; Yu et al., 2023;
Zhang et al., 2024a). Furthermore, many recent pre-training models (Zhang et al., 2024b; Woo
et al., 2024; Goswami et al., 2024; Liu et al., 2024b) and cross-modality models (Liu et al., 2024a;
Zhou et al., 2023; Jin et al., 2024) also adopt patch-based backbones. Other studies have explored
lightweight designs (Zeng et al., 2023; Lin et al., 2024a) and cross-channel dependency capture (Liu
et al., 2023; Huang et al., 2023). Despite such advances in backbones, they mostly use regression
loss functions. This greatly limits the backbones’ capability, especially in diverse forecasting.

Loss Functions for TS Forecasting. Despite extensive research on backbones, limited focus was
paid to forecasting specific losses. A line of works uses Dynamic Time Warping (DTW) (Müller,
2007), which computes the similarity between two series with dynamic programming. Cuturi &
Blondel (2017) makes DTW differentiable. Le Guen & Thome (2019; 2020) extend DTW to evaluate
shape and temporal distortions. However, it is hard to scale non-parallelizable DTW-based losses to
long-term tasks. Another line predicts future distributions by estimating their parameters. Common
distributions include Student-T (Rasul et al., 2023), Gaussian and negative binomial (Salinas et al.,
2020). Additionally, Woo et al. (2024) mix multiple parametric distributions (e.g., Gaussian, Log-
normal, etc.) via a Softmax layer. However, these methods rely on predefined formulations, failing to
capture complex patterns.

Deep Generative Models for TS. Pioneering efforts on deep generative models for TS include
GANs (Yoon et al., 2019), normalizing flows (Rasul et al., 2021b) and VAEs (Li et al., 2021). With
the success of diffusion models (Ho et al., 2020; Peebles & Xie, 2023), many diffusion models for
TS have also been proposed. Rasul et al. (2021a) propose an RNN-based diffusion model. Tashiro
et al. (2021); Alcaraz & Strodthoff (2022) condition diffusion on observed data for imputation. Shen
& Kwok (2023) and Li et al. (2024b) respectively use the prediction of autoregressive models and
Transformers as the prior knowledge to guide diffusion. Yuan & Qiao (2024) introduces trend-season
decomposition to enhance diffusion. These efforts primarily focus on refining denoising networks or
optimizing the diffusion process. In contrast, our approach leverages diffusion models to develop a
backbone-agnostic loss function.

B DETAILS OF ADALN-MLP

The AdaLN-MLP is an MLP that takes a noisy patch p and the condition vector c as input and
predicts the noise in p. It is originally a component of Diffusion Transformer (Peebles & Xie, 2023).
The Diffusion Transformer was designed to replace the U-Net backbone in diffusion models, and it
introduced Adaptive LayerNorm (AdaLN) blocks to inject conditions into diffusion models. One
AdaLN block consists of an AdaLN-Attention block and an AdaLN-MLP block. For efficiency, we
only use the AdaLN-MLP in our MMPD loss. The computation process of one AdaLN-MLP block is
as follows:

z(s) = z(s−1) +α
(s)
gate ◦ MLP

(
AdaLN(z(s−1),γ

(s)
scale,β

(s)
shift)

)
AdaLN(z,γ,β) = (1 + γ) ◦ LayerNorm(z) + β

α
(s)
gate = W

(s)
gateϕ(c), γ

(s)
scale = W

(s)
scaleϕ(c), β

(s)
shift = W

(s)
shiftϕ(c)

(12)

z(s) ∈ Rdmodel is the output of s-th block (with z(0) being the linearly embedded p) and c ∈ Rdmodel

is the condition. ◦ denotes the element-wise product and MLP(·) is the standard multilayer perceptron.
α

(s)
gate,γ

(s)
scale,β

(s)
shift ∈ Rdmodel are parameters to adjust the layer norm and they are obtained by

projecting the condition ϕ(c) with W
(s)
gate,W

(s)
scale,W

(s)
shift ∈ Rdmodel×dmodel respectively, where ϕ(·)

is the activation function. Passing through S AdaLN-MLP blocks, z(S) is used to make the final
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prediction by:

ϵ̂ = W(final)AdaLN(z(S),γ(out)
scale,β

(out)
shift )

γ(out)
scale = W(out)

scaleϕ(c), β(out)
shift = W(out)

shift ϕ(c)
(13)

where W(final) ∈ RP×dmodel and W(out)
scale,W

(out)
shift ∈ Rdmodel×dmodel .

C DERIVATION OF MULTI-MODE INFERENCE ALGORITHM

To leverage the prior knowledge from forward diffusion, we set the following prior at step k:

q(Yk|Zk,µk,Λk) =

N∏
n=1

M∏
m=1

N (ykn;µ
k
m, (Λ

k
m)−1I)z

k
nm

q(Zk|wk) =

N∏
n=1

M∏
m=1

(wkm)z
k
nm

q(wk) =Dirichlet(wk;π), πm = ρm−1

q(Λk) =

M∏
m=1

Gamma(Λkm;ukm, v
k
m)

ukm =u, vkm = u ∗ (1− ᾱk)

(14)

Note that we use q(·) to denote prior distributions and {πkm, ukm, vkm}Mm=1 without tilde for parameters
in prior distributions. p(·) are for posterior distributions and {π̃km, ũkm, ṽkm}Mm=1 for parameters in
posterior distributions.

With the above priors, we get the joint distribution q(Yk,Zk,wk,Λk|µk) =
q(Yk|Zk,µk,Λk)q(Zk|wk)q(wk)q(Λk). Obtaining samples at step k, Yk = {ykn}Nn=1,
our goal is to maximize the marginal log probability maxµk ln q(Yk|µk) and get the posterior
distribution q(Zk,wk,Λk|Yk,µkopt), where µkopt denotes optimal parameters. It is hard to directly
optimize the marginal distribution and obtain the posterior as they both contain complex integral
terms. Therefore, we introduce variational distribution p(Zk,wk,Λk) to approximate the posterior
through variational inference (Bishop & Nasrabadi, 2006). To maximize maxµk ln q(Yk|µk) and
approximate posterior q(Zk,wk,Λk|Yk,µk) with p(Zk,wk,Λk), we get the following objective:

max
µk,pk

ln q(Yk|µk)− KL[p(Zk,wk,Λk)||q(Zk,wk,Λk|Yk,µk)]

= max
µk,pk

∫
p(Zk,wk,Λk)

[
ln q(Yk|µk)− ln

p(Zk,wk,Λk)

q(Zk,wk,Λk|Yk,µk)

]
dZkdwkdΛk

= max
µk,pk

∫
p(Zk,wk,Λk) ln

q(Yk,Zk,wk,Λk|µk)
p(Zk,wk,Λk)

dZkdwkdΛk

= max
µk,pk

L(µk, p(Zk,wk,Λk))

(15)

where pk is short for p(Zk,wk,Λk) and L(µk, p(Zk,wk,Λk)) is often called Evidence Lower
Bound (ELBO) in variational inference. Using mean field approximation, we decompose the varia-
tional distribution into p(Zk,wk,Λk) = p(Zk)p(wk)p(Λk).

Given newly generated samples at step k, Yk, we maximize L(µk, p(Zk), p(wk), p(Λk)) w.r.t
p(Zk),µk, p(wk), p(Λk) one by one. An advantage of fitting an evolving variational GMM alongside
the diffusion process is that we can use well-fitted posteriors, i.e., p(Zk+1),µk+1, p(wk+1), p(Λk+1)
at step k + 1 as the initialization of step k. This is because in diffusion, the difference between
samples generated in two adjacent steps Yk+1 and Yk is small, and in our setting, the difference
between the prior distributions of two adjacent steps is also minimal. As a result, we initialize
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p(Zk),µk, p(wk), p(Λk) using optimized parameters from last step k + 1 as the following:

p(Zk) =

N∏
n=1

M∏
m=1

(γ̃k+1
nm )z

k
nm

µk = µk+1

p(wk) = Dirichlet(wk; π̃k+1)

p(Λk) =

M∏
m=1

Gamma(Λkm; ũk+1
m , ṽk+1

m )

(16)

E-step: Update p(Zk). Fixing µk, p(wk), p(Λk), the objective becomes:
max
p(Zk)

L(µk, p(Zk), p(wk), p(Λk))

= max
p(Zk)

∫
Zk,Λk

p(Zk)p(Λk) ln q(Yk|Zk,µk,Λk)dZkdΛk

+

∫
Zk,wk

p(Zk)p(wk) ln q(Zk|w)dZkdwk −
∫
Zk

p(Zk) ln p(Zk)dZk + Const

= min
p(Zk)

KL[p(Zk)||p̃(Zk)]

(17)

where Const denotes constant terms w.r.t p(Zk), p̃(Zk) is a new distribution with:
ln p̃(Zk) = Ep(Λk)[ln q(Y

k|Zk,µk,Λk)] + Ep(wk)[ln q(Z
k|wk)] + Const (18)

Therefore, KL divergence is minimized when p(Zk) = p̃(Zk):
ln p(Zk) = ln p̃(Zk)

= Ep(Λk)[

N∑
n=1

M∑
m=1

zknm lnN (ykn;µ
k
m, (Λ

k
m)−1I)] + Ep(wk)[

N∑
n=1

M∑
m=1

zknm lnwkm] + Const

=

N∑
n=1

M∑
m=1

zknm ln γknm + Const

(19)

where

ln γknm =− 1

2

[
ũk+1
m

ṽk+1
m

∥ykn − µk+1
m ∥22 + τ ln(2π)

]
+
τ

2

[
ψ(ũk+1

m )− ln(ṽk+1
m )

]
+ ψ(π̃k+1

m )− ψ(

M∑
s=1

π̃k+1
s )

(20)

Normalizing it, we get the formulation of p(Zk) :

p(Zk) =

N∏
n=1

M∏
m=1

(γ̃knm)z
k
nm , γ̃knm =

γknm∑M
s=1 γ

k
ns

(21)

which means that the posterior probability of ykn belonging to mode m is p(zknm = 1) = γ̃knm.

M-step: Update µk. Note that p(Zk) has already be updated. Fixing p(Zk), p(wk), p(Λk), the
objective becomes:

max
µk

L(µk, p(Zk), p(wk), p(Λk))

= max
µk

∫
Zk,Λk

p(Zk)p(Λk) ln q(Yk|Zk,µk,Λk)dZkdΛk + Const

= max
µk

Ep(Zk),p(Λk)[

N∑
n=1

M∑
m=1

zknm lnN (ykn;µ
k
m, (Λ

k
m)−1I)]

= min
µk

M∑
m=1

ũk+1
m

ṽk+1
m

N∑
n=1

γ̃knm∥ykn − µkm∥22

(22)
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Setting the gradient w.r.t µkm to zero, we get the updated µk:

µkm =
1

Ñk
m

N∑
n=1

γ̃knmykn, Ñk
m =

N∑
n=1

γ̃knm (23)

M-step: Update p(wk). Note that p(Zk),µk have already be updated. Similar to E-step, fixing
p(Zk),µk, p(Λk), the objective becomes:

max
p(wk)

L(µk, p(Zk), p(wk), p(Λk))

= max
p(wk)

∫
Zk,wk

p(Zk)p(wk) ln q(Zk|wk)dZkdwk

+

∫
wk

p(wk) ln q(wk)dwk −
∫
wk

p(wk) ln p(wk)dwk + Const

(24)

And the log probability of the optimal p(wk) should be:

ln p(wk) = Ep(Zk)[ln q(Z
k|wk)] + ln q(wk) + Const

=

M∑
m=1

(πm + Ñk
m − 1) lnwkm + Const

(25)

Therefore, the updated p(wk) is the following Dirichlet distribution:

p(wk) = Dirichlet(wk; π̃k), π̃km = πm + Ñk
m (26)

M-step: Update p(Λk). Note that p(Zk),µk, p(wk) have already be updated. Fixing
p(Zk),µk, p(wk), the objective becomes:

max
p(Λk)

L(µk, p(Zk), p(wk), p(Λk))

= max
p(Λk)

∫
Zk,Λk

p(Zk)p(Λk) ln q(Yk|Zk,µk,Λk)dZkdΛk

+

∫
Λk

p(Λk) ln q(Λk)dΛk −
∫
Λk

p(Λk) ln p(Λk)dΛk + Const

(27)

The log probability of the optimal p(Λk) should be:

ln p(Λk)

=Ep(Zk)[ln q(Y
k|Zk,µk,Λk)] + ln q(Λk) + Const

=

M∑
m=1

{(
ukm +

τ

2
Ñk
m − 1

)
ln Λkm −

(
vkm +

1

2

N∑
n=1

γ̃knm∥ykn − µkm∥22

)
Λkm

}
+ Const

(28)

which means the updated p(Λk) is the following Gamma distribution:

p(Λk) =

M∏
m=1

Gamma(Λkm; ũkm, ṽ
k
m)

ũkm = ukm +
τ

2
Ñk
m, ṽkm = vkm +

1

2

N∑
n=1

γ̃knm∥ykn − µkm∥22

(29)

Eq. 21,23,26,29 are the resulting four steps in Algorithm 1. As each of the four steps raises
L(µk, p(Zk), p(wk), p(Λk)), the objective gets greater after one iteration. It is also possible to
perform the four-step iteration multiple times at each step k to ensure convergence.
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D DETAILED SETUP OF EXPERIMENTS

D.1 DATASETS

We conduct experiments on eight datasets following Nie et al. (2023); Wu et al. (2023). These
datasets include:

• 1)ETTh1 and 2)ETTm1. These two datasets record 7 key indicators of an electricity
transformer, such as load and oil temperature. ETTh1 records data points every hour, and
ETTm1 records every 15 minutes. The whole datasets cover a period of two years and we
use data from the first 20 months and split it into train/validation/test sets with a ratio of
0.6:0.2:0.2.

• 3)ETTh2 and 4)ETTm2. The contents, formats and data split of these two datasets are sim-
ilar to those of ETTh1 and ETTm1, but the records are from another electricity transformer.

• 5)WTH. This dataset contains 21 weather indicators in Beutenberg, including air tempera-
ture and dewpoint, with data points recorded every 10 minutes throughout the year 2020.
The train/validation/test sets are split with a ratio of 0.7:0.1:0.2.

• 6)ECL. This dataset records the hourly electricity consumption (in kW) of 321 clients from
2012 to 2014. The train/validation/test sets are split with a ratio of 0.7:0.1:0.2.

• 7)Traffic This dataset includes road occupancy rates measured by 862 sensors on freeways
in the San Francisco Bay area from July 2016 to June 2018, with data points recorded every
hour. The train/validation/test sets are split with a ratio of 0.7:0.1:0.2.

• 8)Dynamic. This dataset consists of 17 sensors reading and control signals of a sim-
ulated complex dynamical system, with data points recorded every second. The orig-
inal dataset is from https://www.kaggle.com/datasets/patrickfleith/
dynamical-system-multivariate-time-series-forecast and contains
5,000,000 timestamps. For training time concerns, we use the first 10% data, which
corresponds to 500,000 timestamps, and split it into train/validation/test sets with a ratio of
0.7:0.1:0.2. It is worth noting that, despite using only 10% of the original data, the selected
timestamps still far exceed those in the previous seven datasets.

The first seven datasets are widely used datasets for TS forecasting (Nie et al., 2023; Wu et al.,
2023). In line with standard protocol, we use the last T = 336 steps to predict the next τ =
{96, 192, 336, 720} steps. To evaluate model performance in more complex scenarios, we introduce
a new dataset, Dynamic, which has more complex patterns with no obvious periodicity. For Dynamic,
we use the last T = 600 steps (10 minutes) to predict the next τ = {60, 120, 180, 300} steps
(corresponding to {1, 2, 3, 5} minutes). Additionally, due to the large scale of Dynamic, we divide its
test set into non-overlapping windows by setting the sliding window step equal to τ . In contrast, for
the other datasets, we generate overlapping windows with a sliding step of 1, following the common
protocol. Detailed statistical characteristics of the used datasets are shown in Table 6.

Table 6: Statistical characteristics of datasets

Dataset #Channels #Timestamps Split T τ Field

ETTh1 7 14,400 0.6:0.2:0.2 336 {96, 192, 336, 720} Electricity Transformer
ETTm1 7 57,600 0.6:0.2:0.2 336 {96, 192, 336, 720} Electricity Transformer
ETTh2 7 14,400 0.6:0.2:0.2 336 {96, 192, 336, 720} Electricity Transformer
ETTm2 7 57,600 0.6:0.2:0.2 336 {96, 192, 336, 720} Electricity Transformer
WTH 21 52,696 0.7:0.1:0.2 336 {96, 192, 336, 720} Meteorological Indicators
ECL 321 26,304 0.7:0.1:0.2 336 {96, 192, 336, 720} Electricity Consumption

Traffic 862 17,544 0.7:0.1:0.2 336 {96, 192, 336, 720} Road Occupancy
Dynamic 17 500,000 0.7:0.1:0.2 600 {60, 120, 180, 300} Complex Dynamical System
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D.2 METRICS

Top-K MSE. The ground truth target is y ∈ Rτ . Multi-mode predictions are {ỹm}Mm=1,ym ∈ Rτ

and corresponding probabilities are {wm}Mm=1,
∑M
m=1 wm = 1. Top-K MSE is computed as:

M = Top-K({wm}Mm=1)

∀m ∈ M,MSEm =
1

τ
∥ỹm − y∥22

Top-K MSE = min
m∈M

MSEm

(30)

We first pick the Top-K modes with the highest probabilities into M. Then MSE of each mode in M
is computed. Finally, the minimum MSE among the selected K mode is reported as Top-K MSE.

Top-K MAE. The computation of Top-K MAE is similar to Top-K MSE, with MSE changing to
MAE:

M = Top-K({wm}Mm=1)

∀m ∈ M,MAEm =
1

τ
∥ỹm − y∥1

Top-K MAE = min
m∈M

MAEm

(31)

MSE. Given ground truth target y ∈ Rτ and deterministic prediction ỹ ∈ Rτ , MSE is computed as:

MSE =
1

τ
∥ỹ − y∥22 (32)

CRPS. CRPS is a frequently used metric for probabilistic prediction and it is originally defined for
the scaler variable. Given the ground truth target y ∈ R and the cumulative distribution function
(CDF) of the predicted distribution F̃ (y), the CRPS is defined as:

CRPS(F̃ , y) =
∫ +∞

−∞

(
F̃ (ỹ)− 1(ỹ ≥ y)

)2
dỹ (33)

Gneiting & Raftery (2007) show that CRPS can also be computed by:

CRPS(F̃ , y) = Eỹ [|ỹ − y|]− 1

2
Eỹ,ỹ∗ [|ỹ − ỹ∗|] (34)

where ỹ, ỹ∗ are random variables following the predicted distribution, i.e., distribution corresponding
to F̃ (y).

Following this formulation, given the ground truth target y ∈ Rτ and samples draw from the
probabilistic model {ỹi}Ni=1,yi ∈ Rτ , we compute the CRPS by:

CRPSt ≈
1

N

N∑
i=1

|ỹi,t − yt| −
1

2N2

N∑
i=1

N∑
j=1

|ỹi,t − ỹj,t|

CRPS =
1

τ

τ∑
t=1

CRPSt

(35)

where ỹi,t ∈ R is the predicted value of timestamp t in sample ỹi. yt ∈ R is the target at timestamp t.
We approximate the CRPS at each step and use the average across steps as the CRPS of the whole
series.

Remark. CRPS also has the following connection with quantile loss:

CRPS(F̃ , y) = 2

∫ 1

0

ρα(y − F̃−1(α))dα

ρα(u) = u(α− 1(u < 0))

(36)
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As a result, some works (Woo et al., 2024) approximate CRPSt by:

CRPSt ≈
2

K

K∑
k=1

ραk

(
yt −Q({ỹi,t}Ni=1, αk)

)
(37)

where Q({ỹi,t}Ni=1, αk) computes the αk-quantile at step t. {αk}Kk=1 are some pre-defined quantiles
for integral approximation. We do not use this approximation because it will be affected by the
selection of {αk}Kk=1 and the quantile function Q(·).
We have described the metrics for a univariate instance. Since all the datasets we used are multivariate,
we compute the metrics for each channel and then average them across channels to obtain the metrics
for a multivariate instance. Finally, the metrics for a dataset are calculated by averaging the metrics
across all instances in the test set.

D.3 IMPLEMENTATIONS

The default patch size is set to P = 12. For the sake of saving runtime memory, we use P = 24 at
τ = {336, 720} or when the dataset is ECL or Traffic. As for the Patch Consistent MLP, we use a
one-block MLP with the dimension of hidden states dmodel = 256, adjacent range hyper-parameter
r = 3 on all datasets.

Regarding the training process, we use a linear noise schedule with Ktrain = 1, 000 diffusion
steps (Ho et al., 2020). The default diffusion-deterministic balancing weight, i.e., λ in Eq. 8, is set to
0.99. When using SegRNN as the backbone, it is set to 0.9. Adam optimizer with a learning rate
of 1e-4 is used for optimization. The maximum number of training epochs is set to 20, and if the
validation loss does not decrease over 5 consecutive validations, the training process is terminated
early. The commonly used instance normalization (Kim et al., 2021) is also applied to reduce the
distribution shift.

As for inference, for each input, we generate N = 100 samples and set the maximum number of
modes to M = 10. In our multi-mode inference algorithm, we resample the inference-time diffusion
steps to Kinfer = 20 and perform 10 EM iterations at each step. The hyper-parameters are set to
ρ = 0.5, u = 100. For other baselines, we draw N samples from their corresponding distributions
and post-process them with a GMM in the same formulation as in MMPD to obtain multi-mode
predictions.

All models are implemented in Pytorch and run on NVIDIA GeForce RTX 3090 GPUs with 24GB
memory.

E FULL RESULTS

Due to space limitations in the main text, we present the full results from Sec. 4.1 here. Table 7
shows the Top-3 MSE, Top-3 MAE, MSE and CRPS evaluations of different loss functions across
various forecasting horizons τ . Table 8 displays the Top-3 MSE and Top-3 MAE evaluations for MSE,
Mix, and MMPD across three different backbones at different forecasting horizons. Finally, Table 9
presents the MSE and CRPS evaluations across three different backbones at different forecasting
horizons.
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Table 7: Full Top-3 MSE, Top-3 MAE, MSE and CRPS evaluations of different loss functions on
different forecasting horizons τ , which is set to {96, 192, 336, 720} for the first seven datasets and
{60, 120, 180, 300} for Dynamic. “Gauss” is short for “Gaussian”. “T” is short for “Student-T”.
Bold/underline indicates the best/second. Our method is marked in gray. Inf indicates the infinity
problem caused by outliers.

Metric Top-3 MSE Top-3 MAE MSE CRPS

Loss MSE MAE Gauss T Mix MMPD MSE MAE Gauss T Mix MMPD MSE MAE Gauss T Mix MMPD MSE MAE Gauss T Mix MMPD

96 0.365 0.390 0.381 0.375 0.371 0.329 0.399 0.395 0.400 0.391 0.382 0.371 0.374 0.385 0.383 0.377 0.399 0.375 0.316 0.325 0.291 0.283 0.286 0.289
192 0.412 0.425 0.429 0.415 0.411 0.396 0.426 0.422 0.427 0.415 0.419 0.405 0.411 0.415 0.426 0.413 0.426 0.406 0.331 0.338 0.311 0.300 0.311 0.314
336 0.446 0.450 0.447 0.458 0.410 0.415 0.449 0.444 0.444 0.442 0.419 0.422 0.436 0.439 0.440 0.454 0.449 0.422 0.342 0.349 0.320 0.322 0.314 0.326
720 0.496 0.501 0.501 0.470 0.510 0.445 0.488 0.486 0.476 0.463 0.486 0.453 0.481 0.488 0.488 0.462 0.511 0.444 0.361 0.371 0.345 0.333 0.353 0.340ETTh1

Avg 0.430 0.441 0.439 0.430 0.425 0.396 0.440 0.437 0.437 0.428 0.426 0.412 0.425 0.432 0.434 0.426 0.446 0.412 0.337 0.346 0.317 0.310 0.316 0.318

96 0.265 0.309 0.291 0.284 0.188 0.180 0.333 0.336 0.344 0.327 0.277 0.272 0.290 0.307 0.297 0.287 0.303 0.280 0.281 0.291 0.253 0.242 0.239 0.239
192 0.317 0.344 0.340 0.333 0.253 0.240 0.364 0.363 0.375 0.358 0.321 0.314 0.323 0.334 0.338 0.331 0.337 0.315 0.296 0.304 0.274 0.261 0.258 0.259
336 0.368 0.371 0.370 0.364 0.320 0.291 0.393 0.385 0.393 0.381 0.354 0.348 0.360 0.359 0.364 0.359 0.371 0.352 0.311 0.316 0.284 0.276 0.276 0.280
720 0.441 0.433 0.444 0.426 0.397 0.367 0.435 0.419 0.432 0.418 0.398 0.392 0.427 0.420 0.430 0.419 0.423 0.401 0.338 0.339 0.317 0.304 0.304 0.303ETTm1

Avg 0.348 0.364 0.361 0.352 0.289 0.269 0.381 0.375 0.386 0.371 0.338 0.331 0.350 0.355 0.357 0.349 0.358 0.337 0.307 0.313 0.282 0.271 0.269 0.270

96 0.273 0.293 0.285 0.305 0.260 0.241 0.334 0.336 0.347 0.343 0.328 0.310 0.294 0.296 0.305 0.304 0.322 0.293 0.264 0.263 0.271 0.261 0.271 0.271
192 0.345 0.360 0.363 0.364 0.320 0.283 0.382 0.382 0.395 0.385 0.371 0.344 0.367 0.358 0.377 0.361 0.401 0.357 0.299 0.291 0.305 0.292 0.309 0.294
336 0.391 0.408 0.419 0.403 0.363 0.310 0.414 0.416 0.433 0.416 0.393 0.368 0.399 0.404 0.419 0.400 0.402 0.366 0.318 0.315 0.329 0.316 0.318 0.312
720 0.448 0.411 0.450 0.430 0.430 0.360 0.463 0.433 0.469 0.448 0.454 0.407 0.444 0.408 0.430 0.423 0.437 0.400 0.350 0.326 0.355 0.332 0.343 0.329ETTh2

Avg 0.364 0.368 0.379 0.375 0.343 0.299 0.398 0.392 0.411 0.398 0.387 0.357 0.376 0.366 0.382 0.372 0.390 0.354 0.308 0.299 0.315 0.300 0.310 0.301

96 0.156 0.174 0.176 0.180 0.156 0.135 0.244 0.253 0.270 0.258 0.242 0.224 0.169 0.174 0.194 0.180 0.179 0.173 0.196 0.200 0.211 0.194 0.193 0.192
192 0.223 0.241 0.233 0.248 0.203 0.185 0.293 0.298 0.307 0.305 0.279 0.266 0.234 0.238 0.243 0.246 0.244 0.227 0.229 0.230 0.235 0.230 0.226 0.225
336 0.293 0.301 0.308 0.322 0.259 0.225 0.342 0.338 0.356 0.364 0.319 0.294 0.298 0.298 0.306 0.317 0.318 0.289 0.261 0.258 0.269 0.270 0.262 0.255
720 0.383 0.387 0.403 0.395 0.362 0.313 0.399 0.397 0.417 0.407 0.393 0.357 0.379 0.384 0.393 0.390 0.399 0.367 0.304 0.301 0.310 0.305 0.309 0.298ETTm2

Avg 0.264 0.276 0.280 0.286 0.245 0.214 0.320 0.321 0.337 0.333 0.308 0.285 0.270 0.274 0.284 0.283 0.285 0.264 0.247 0.247 0.256 0.250 0.247 0.243

96 0.142 0.153 0.156 0.157 0.144 0.121 0.192 0.193 0.207 0.193 0.183 0.155 0.149 0.153 0.166 0.160 0.167 0.153 0.168 0.171 0.172 0.148 0.152 0.149
192 0.185 0.199 0.214 0.211 0.182 0.157 0.234 0.238 0.263 0.243 0.220 0.193 0.193 0.196 0.218 0.210 0.212 0.193 0.198 0.200 0.205 0.186 0.184 0.177
336 0.244 0.256 0.273 0.261 0.222 0.206 0.284 0.283 0.308 0.281 0.256 0.236 0.244 0.252 0.270 0.259 0.276 0.248 0.231 0.233 0.240 0.214 0.222 0.212
720 0.325 0.333 0.375 0.336 0.288 0.290 0.340 0.337 0.388 0.335 0.309 0.301 0.321 0.330 0.367 0.333 0.380 0.323 0.276 0.276 0.295 0.257 0.277 0.256WTH

Avg 0.224 0.235 0.255 0.241 0.209 0.193 0.262 0.263 0.292 0.263 0.242 0.221 0.227 0.233 0.255 0.241 0.259 0.229 0.218 0.220 0.228 0.201 0.209 0.199

96 0.141 0.144 0.130 0.133 0.119 0.119 0.247 0.242 0.224 0.220 0.220 0.212 0.130 0.132 0.131 0.133 0.136 0.133 0.258 0.275 0.167 0.165 0.165 0.169
192 0.162 0.165 0.149 0.152 0.136 0.134 0.266 0.261 0.241 0.237 0.226 0.225 0.147 0.151 0.148 0.151 0.153 0.151 0.265 0.282 0.179 0.177 0.176 0.181
336 0.181 0.183 0.172 0.169 0.151 0.147 0.284 0.278 0.266 0.255 0.242 0.239 0.164 0.168 0.169 0.167 0.170 0.167 0.272 0.289 0.197 0.190 0.640 0.195
720 0.219 0.222 0.207 0.207 0.182 0.186 0.315 0.309 0.293 0.287 0.271 0.274 0.200 0.206 0.202 0.205 0.210 0.205 0.287 0.304 0.217 0.214 Inf 0.221ECL

Avg 0.176 0.179 0.165 0.165 0.147 0.147 0.278 0.272 0.256 0.250 0.240 0.238 0.160 0.164 0.163 0.164 0.167 0.164 0.270 0.288 0.190 0.187 Inf 0.191

96 0.382 0.408 0.382 0.380 0.373 0.350 0.295 0.283 0.266 0.246 0.245 0.237 0.368 0.389 0.388 0.392 0.398 0.383 0.335 0.354 0.206 0.193 0.194 0.190
192 0.412 0.434 0.405 0.404 0.399 0.374 0.309 0.297 0.274 0.254 0.254 0.246 0.387 0.410 0.403 0.408 0.415 0.398 0.339 0.359 0.212 0.199 0.199 0.196
336 0.441 0.446 0.421 0.419 0.414 0.391 0.326 0.304 0.280 0.261 0.261 0.253 0.411 0.420 0.414 0.419 0.426 0.411 0.345 0.361 0.216 0.204 0.204 0.201
720 0.495 0.508 0.468 0.462 0.460 0.440 0.372 0.357 0.307 0.283 0.284 0.280 0.432 0.450 0.447 0.453 0.465 0.444 0.355 0.376 0.234 0.221 0.222 0.219Traffic

Avg 0.433 0.449 0.419 0.416 0.412 0.389 0.326 0.310 0.282 0.261 0.261 0.254 0.399 0.417 0.413 0.418 0.426 0.409 0.343 0.362 0.217 0.204 0.205 0.202

60 0.229 0.285 0.234 0.277 0.216 0.179 0.214 0.191 0.205 0.183 0.157 0.109 0.240 0.300 0.246 0.285 0.348 0.250 0.203 0.220 0.165 0.152 0.154 0.133
120 0.302 0.393 0.310 0.363 0.303 0.275 0.285 0.271 0.284 0.264 0.227 0.184 0.314 0.393 0.320 0.367 0.445 0.326 0.241 0.259 0.217 0.208 0.207 0.187
180 0.360 0.465 0.371 0.421 0.350 0.338 0.335 0.323 0.337 0.325 0.270 0.236 0.371 0.460 0.377 0.421 0.521 0.382 0.270 0.289 0.252 0.245 0.243 0.223
300 0.452 0.561 0.455 0.500 0.419 0.415 0.409 0.394 0.409 0.398 0.330 0.301 0.454 0.554 0.452 0.495 0.615 0.456 0.315 0.332 0.296 0.290 0.290 0.270Dynamic

Avg 0.336 0.426 0.343 0.390 0.322 0.301 0.311 0.295 0.309 0.292 0.246 0.207 0.345 0.426 0.349 0.392 0.482 0.353 0.257 0.275 0.233 0.224 0.224 0.203
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Table 8: Full Top-3 MSE and Top-3 MAE evaluations of MSE, Mix and MMPD losses across three
different backbones on different forecasting horizons τ , which is set to {96, 192, 336, 720} for the
first seven datasets and {60, 120, 180, 300} for Dynamic. Bold indicates the best among three losses.
Our method is marked in gray.

Metric Top-3 MSE Top-3 MAE

Backbone Crossformer SegRNN MaskAE Crossformer SegRNN MaskAE

Loss MSE Mix MMPD MSE Mix MMPD MSE Mix MMPD MSE Mix MMPD MSE Mix MMPD MSE Mix MMPD

96 0.365 0.329 0.336 0.375 0.354 0.334 0.374 0.351 0.341 0.406 0.372 0.377 0.413 0.389 0.385 0.407 0.390 0.376
192 0.417 0.404 0.369 0.421 0.466 0.383 0.416 0.393 0.386 0.437 0.413 0.398 0.441 0.448 0.415 0.431 0.412 0.405
336 0.462 0.466 0.399 0.464 0.423 0.408 0.461 0.426 0.413 0.464 0.454 0.420 0.459 0.428 0.428 0.458 0.425 0.426
720 0.528 0.533 0.418 0.500 0.497 0.482 0.503 0.491 0.457 0.499 0.492 0.447 0.490 0.464 0.475 0.492 0.471 0.455ETTh1

Avg 0.443 0.433 0.381 0.440 0.435 0.402 0.438 0.415 0.399 0.452 0.433 0.410 0.451 0.432 0.426 0.447 0.425 0.416

96 0.274 0.202 0.248 0.311 0.254 0.250 0.266 0.234 0.207 0.340 0.293 0.307 0.375 0.332 0.331 0.334 0.314 0.299
192 0.347 0.284 0.269 0.364 0.313 0.301 0.326 0.278 0.240 0.384 0.335 0.333 0.406 0.366 0.365 0.374 0.334 0.314
336 0.399 0.337 0.328 0.410 0.347 0.329 0.381 0.329 0.297 0.410 0.366 0.365 0.432 0.391 0.379 0.405 0.359 0.354
720 0.492 0.497 0.395 0.454 0.428 0.404 0.442 0.417 0.375 0.455 0.437 0.407 0.455 0.424 0.424 0.443 0.406 0.401ETTm1

Avg 0.378 0.330 0.310 0.385 0.335 0.321 0.354 0.314 0.280 0.397 0.358 0.353 0.417 0.378 0.375 0.389 0.353 0.342

96 0.301 0.294 0.250 0.288 0.275 0.273 0.270 0.279 0.236 0.359 0.351 0.326 0.352 0.341 0.338 0.331 0.342 0.310
192 0.368 0.353 0.304 0.359 0.356 0.321 0.341 0.333 0.318 0.402 0.394 0.363 0.401 0.399 0.379 0.378 0.377 0.371
336 0.386 0.362 0.327 0.383 0.355 0.314 0.387 0.358 0.322 0.420 0.401 0.377 0.419 0.397 0.373 0.414 0.391 0.374
720 0.433 0.427 0.377 0.429 0.380 0.376 0.423 0.390 0.368 0.468 0.452 0.422 0.457 0.419 0.417 0.448 0.426 0.414ETTh2

Avg 0.372 0.359 0.315 0.365 0.341 0.321 0.355 0.340 0.311 0.412 0.400 0.372 0.408 0.389 0.377 0.392 0.384 0.367

96 0.158 0.150 0.141 0.173 0.161 0.142 0.171 0.191 0.148 0.250 0.247 0.231 0.267 0.252 0.239 0.263 0.250 0.233
192 0.220 0.200 0.196 0.236 0.208 0.215 0.235 0.214 0.223 0.291 0.281 0.277 0.314 0.288 0.288 0.308 0.285 0.285
336 0.295 0.255 0.224 0.297 0.267 0.235 0.306 0.264 0.261 0.346 0.321 0.295 0.354 0.326 0.309 0.358 0.321 0.311
720 0.391 0.338 0.350 0.387 0.355 0.340 0.409 0.342 0.355 0.406 0.378 0.379 0.413 0.378 0.384 0.420 0.377 0.386ETTm2

Avg 0.266 0.236 0.228 0.273 0.248 0.233 0.280 0.253 0.247 0.323 0.307 0.295 0.337 0.311 0.305 0.337 0.308 0.304

96 0.134 0.130 0.120 0.140 0.140 0.125 0.140 0.132 0.118 0.189 0.174 0.157 0.198 0.179 0.165 0.190 0.171 0.153
192 0.186 0.168 0.164 0.182 0.189 0.165 0.185 0.164 0.162 0.241 0.213 0.202 0.239 0.234 0.210 0.236 0.207 0.197
336 0.247 0.217 0.210 0.240 0.233 0.217 0.246 0.229 0.210 0.296 0.252 0.241 0.288 0.266 0.252 0.284 0.264 0.241
720 0.327 0.284 0.297 0.327 0.295 0.296 0.332 0.287 0.300 0.347 0.300 0.304 0.352 0.304 0.309 0.344 0.309 0.309weather

Avg 0.223 0.200 0.197 0.222 0.214 0.201 0.226 0.203 0.197 0.268 0.235 0.226 0.269 0.246 0.234 0.263 0.238 0.225

96 0.146 0.130 0.120 0.145 0.130 0.122 0.142 0.122 0.118 0.253 0.223 0.214 0.252 0.218 0.217 0.247 0.213 0.209
192 0.169 0.148 0.139 0.168 0.143 0.136 0.164 0.139 0.132 0.275 0.242 0.232 0.273 0.231 0.229 0.267 0.230 0.221
336 0.192 0.169 0.164 0.188 0.160 0.151 0.184 0.156 0.145 0.295 0.266 0.257 0.292 0.251 0.244 0.286 0.245 0.235
720 0.229 0.193 0.186 0.230 0.190 0.190 0.224 0.186 0.182 0.327 0.288 0.279 0.326 0.280 0.278 0.319 0.275 0.269ECL

Avg 0.184 0.160 0.152 0.183 0.155 0.150 0.178 0.150 0.144 0.288 0.255 0.245 0.286 0.245 0.242 0.280 0.241 0.234

96 0.397 0.375 0.367 0.409 0.388 0.365 0.384 0.372 0.345 0.310 0.259 0.248 0.305 0.232 0.242 0.299 0.245 0.235
192 0.436 0.409 0.389 0.440 0.419 0.400 0.418 0.400 0.373 0.326 0.272 0.253 0.318 0.245 0.251 0.316 0.257 0.244
336 0.453 0.431 0.405 0.463 0.432 0.428 0.432 0.418 0.392 0.341 0.280 0.260 0.328 0.253 0.263 0.321 0.265 0.253
720 0.518 0.483 0.456 0.543 0.516 0.481 0.509 0.476 0.440 0.391 0.304 0.283 0.380 0.280 0.285 0.381 0.291 0.278Traffic

Avg 0.451 0.424 0.404 0.464 0.439 0.418 0.436 0.416 0.387 0.342 0.279 0.261 0.333 0.253 0.260 0.329 0.265 0.253

60 0.227 0.194 0.162 0.228 0.248 0.176 0.230 0.205 0.172 0.207 0.131 0.089 0.212 0.182 0.108 0.213 0.149 0.105
120 0.300 0.297 0.258 0.304 0.332 0.266 0.304 0.301 0.263 0.281 0.218 0.163 0.285 0.252 0.185 0.286 0.224 0.177
180 0.357 0.335 0.332 0.356 0.344 0.328 0.363 0.342 0.334 0.329 0.263 0.224 0.329 0.258 0.239 0.338 0.267 0.229
300 0.440 0.401 0.429 0.445 0.395 0.408 0.458 0.437 0.414 0.399 0.319 0.300 0.403 0.299 0.308 0.410 0.338 0.299Dynamic

Avg 0.331 0.307 0.295 0.333 0.330 0.295 0.339 0.321 0.296 0.304 0.233 0.194 0.307 0.247 0.210 0.312 0.244 0.203
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Table 9: Full MSE and CRPS evaluations of MSE, Mix and MMPD losses across three different
backbones on different forecasting horizons τ , which is set to {96, 192, 336, 720} for the first seven
datasets and {60, 120, 180, 300} for Dynamic. Bold indicates the best among three losses. Our
method is marked in gray. Inf indicates the infinity problem caused by outliers.

Metric MSE CRPS

Backbone Crossformer SegRNN MaskAE Crossformer SegRNN MaskAE

Loss MSE Mix MMPD MSE Mix MMPD MSE Mix MMPD MSE Mix MMPD MSE Mix MMPD MSE Mix MMPD

96 0.373 0.418 0.381 0.377 0.396 0.374 0.386 0.397 0.383 0.320 0.294 0.293 0.320 0.294 0.296 0.320 0.293 0.294
192 0.419 0.459 0.403 0.419 0.480 0.424 0.422 0.453 0.414 0.337 0.315 0.305 0.336 0.330 0.316 0.334 0.316 0.312
336 0.455 0.468 0.422 0.454 0.454 0.460 0.454 0.464 0.428 0.349 0.332 0.324 0.346 Inf 0.331 0.347 0.320 0.328
720 0.512 0.495 0.456 0.484 0.480 0.479 0.487 0.508 0.457 0.370 0.352 0.335 0.363 Inf 0.369 0.363 0.345 0.340ETTh1

Avg 0.440 0.460 0.416 0.433 0.452 0.434 0.437 0.456 0.421 0.344 0.323 0.314 0.341 Inf 0.328 0.341 0.319 0.319

96 0.293 0.309 0.345 0.324 0.317 0.332 0.294 0.323 0.298 0.284 0.244 0.266 0.297 0.261 0.273 0.282 0.258 0.255
192 0.360 0.351 0.355 0.368 0.359 0.389 0.333 0.339 0.316 0.307 0.260 0.272 0.315 Inf 0.292 0.300 0.262 0.259
336 0.398 0.378 0.409 0.401 0.390 0.380 0.375 0.373 0.350 0.323 0.280 0.295 0.328 Inf 0.301 0.317 0.278 0.285
720 0.478 0.559 0.445 0.439 0.460 0.445 0.428 0.448 0.405 0.351 0.340 0.316 0.346 0.321 0.328 0.339 0.312 0.310ETTm1

Avg 0.382 0.399 0.388 0.383 0.381 0.386 0.357 0.371 0.342 0.316 0.281 0.287 0.321 Inf 0.299 0.310 0.277 0.277

96 0.332 0.326 0.329 0.312 0.320 0.319 0.288 0.338 0.296 0.285 0.286 0.288 0.278 0.275 0.281 0.260 0.281 0.265
192 0.399 0.394 0.376 0.379 0.388 0.373 0.364 0.394 0.372 0.316 0.320 0.311 0.313 0.312 0.314 0.296 0.310 0.306
336 0.393 0.421 0.373 0.389 0.374 0.384 0.393 0.408 0.371 0.324 0.330 0.319 0.321 Inf 0.317 0.317 0.320 0.318
720 0.428 0.472 0.419 0.425 0.417 0.430 0.418 0.435 0.408 0.351 0.356 0.346 0.345 0.329 0.340 0.338 Inf 0.331ETTh2

Avg 0.388 0.403 0.374 0.376 0.375 0.376 0.366 0.394 0.362 0.319 0.323 0.316 0.314 Inf 0.313 0.303 Inf 0.305

96 0.166 0.177 0.174 0.185 0.182 0.173 0.184 0.182 0.182 0.197 0.200 0.195 0.211 0.197 0.206 0.207 0.196 0.200
192 0.234 0.226 0.241 0.247 0.241 0.265 0.248 0.257 0.256 0.228 0.225 0.231 0.243 Inf 0.244 0.239 0.231 0.244
336 0.299 0.297 0.272 0.300 0.324 0.307 0.310 0.319 0.303 0.264 0.260 0.251 0.270 0.303 0.261 0.273 0.262 0.270
720 0.387 0.391 0.391 0.383 0.391 0.397 0.405 0.406 0.382 0.309 0.308 0.318 0.313 Inf 0.317 0.318 0.309 0.318ETTm2

Avg 0.271 0.273 0.270 0.279 0.285 0.285 0.287 0.291 0.281 0.249 0.248 0.249 0.259 Inf 0.257 0.259 0.250 0.258

96 0.144 0.156 0.148 0.151 0.170 0.149 0.149 0.162 0.150 0.166 0.147 0.150 0.172 Inf 0.156 0.168 0.148 0.147
192 0.196 0.209 0.199 0.188 0.249 0.191 0.194 0.211 0.192 0.202 0.186 0.185 0.198 0.211 0.192 0.199 Inf 0.181
336 0.250 0.263 0.253 0.241 0.305 0.248 0.247 0.330 0.248 0.238 0.219 0.217 0.232 0.240 0.227 0.233 0.251 0.216
720 0.322 0.336 0.326 0.323 0.368 0.340 0.328 0.377 0.333 0.279 0.255 0.263 0.281 Inf 0.267 0.279 0.276 0.261WTH

Avg 0.228 0.241 0.232 0.226 0.273 0.232 0.230 0.270 0.231 0.221 0.202 0.204 0.221 Inf 0.210 0.220 Inf 0.201

96 0.138 0.147 0.133 0.134 0.152 0.135 0.130 0.137 0.130 0.261 Inf 0.170 0.260 Inf 0.170 0.258 0.166 0.166
192 0.156 0.168 0.154 0.155 0.171 0.154 0.149 0.156 0.147 0.268 Inf 0.186 0.267 Inf 0.183 0.265 0.179 0.178
336 0.176 0.193 0.187 0.171 0.194 0.172 0.166 0.173 0.164 0.276 Inf 0.209 0.275 Inf 0.196 0.273 0.192 0.191
720 0.210 0.222 0.208 0.210 0.231 0.206 0.204 0.214 0.202 0.291 Inf 0.224 0.291 Inf 0.222 0.289 0.238 0.216ECL

Avg 0.170 0.182 0.170 0.168 0.187 0.167 0.162 0.170 0.161 0.274 Inf 0.197 0.273 Inf 0.193 0.271 0.194 0.188

96 0.386 0.427 0.398 0.390 0.425 0.383 0.371 0.408 0.375 0.339 0.205 0.198 0.337 Inf 0.192 0.335 0.195 0.189
192 0.412 0.443 0.409 0.412 0.446 0.409 0.395 0.427 0.394 0.344 0.211 0.202 0.341 Inf 0.199 0.341 0.203 0.195
336 0.422 0.460 0.419 0.431 0.463 0.429 0.402 0.442 0.406 0.348 0.216 0.207 0.344 Inf 0.207 0.342 0.207 0.201
720 0.454 0.507 0.454 0.477 0.536 0.464 0.446 0.488 0.440 0.362 0.234 0.223 0.358 Inf 0.222 0.358 0.226 0.218Traffic

Avg 0.418 0.459 0.420 0.428 0.468 0.421 0.403 0.441 0.404 0.348 0.217 0.208 0.345 Inf 0.205 0.344 0.208 0.201

60 0.238 0.326 0.237 0.238 0.367 0.238 0.241 0.335 0.245 0.201 Inf 0.119 0.202 0.172 0.130 0.204 0.149 0.132
120 0.311 0.432 0.308 0.313 0.454 0.311 0.316 0.441 0.316 0.237 Inf 0.171 0.239 Inf 0.187 0.242 0.204 0.183
180 0.366 0.493 0.380 0.369 0.474 0.368 0.376 0.511 0.379 0.266 Inf 0.215 0.268 Inf 0.225 0.273 0.241 0.222
300 0.441 0.570 0.472 0.446 0.565 0.446 0.462 0.615 0.458 0.307 Inf 0.271 0.310 Inf 0.274 0.317 0.293 0.270Dynamic

Avg 0.339 0.455 0.349 0.342 0.465 0.341 0.349 0.476 0.350 0.253 Inf 0.194 0.255 Inf 0.204 0.259 0.222 0.202
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F ADDITIONAL EXPERIMENTS ON HYPER-PARAMETERS

Table 10: Metrics comparison of different noise
schedules on ETTh1 (T = 336, τ = 96). The de-
fault schedule used in main experiments is marked
in gray.

Top-3 MSE Top-3 MAE MSE CRPS

Quadratic 0.314 0.362 0.379 0.286
Cosine 0.317 0.364 0.382 0.289
Linear 0.329 0.371 0.375 0.289

Table 11: Top-3 MSE/MAE evaluations versus
varying maximum number of modes M in Algo-
rithm 1 on ETTh1 (T = 336, τ = 96). The default
setting in main experiments is marked in gray.

M 5 10 15 20 25

Top-3 MSE 0.3200 0.3197 0.3200 0.3199 0.3203
Top-3 MAE 0.3667 0.3667 0.3668 0.3667 0.3668

Table 12: Top-3 MSE/MAE evaluations versus
varying mixture weights prior hyperparameter ρ in
Algorithm 1 on ETTh1 (T = 336, τ = 96).

ρ 0.1 0.3 0.5 0.7 0.9

Top-3 MSE 0.329 0.322 0.320 0.314 0.307
Top-3 MAE 0.377 0.378 0.367 0.358 0.354

Table 13: Top-3 MSE/MAE evaluations versus
varying variance prior hyperparameter u in Algo-
rithm 1 on ETTh1 (T = 336, τ = 96).

u 0.001 0.01 0.1 1 10 100 1000

Top-3 MSE 0.322 0.321 0.323 0.323 0.318 0.320 0.314
Top-3 MAE 0.372 0.371 0.372 0.372 0.361 0.367 0.364

Noise Schedule. In our main experiments,
we use the linear schedule as default. Ta-
ble 10 further evaluates two advanced sched-
ules: Quadratic (Kong & Ping, 2021) and Co-
sine (Nichol & Dhariwal, 2021). Results show
that MMPD benefits from these advanced sched-
ules. This indicates that developing time-series-
specific schedules is a promising direction, since
time series and image data have fundamentally
different characteristics.

Diffusion Steps in Training. Fig. 7 demon-
strates that increasing the number of training
diffusion steps Ktrain significantly improves
Top-3 MSE, Top-3 MAE and MSE. Notably,
this enhancement comes without computational
overhead during inference, as we employ resam-
pling with fixed inference steps Kinfer. For our
experiments, we adopt Ktrain = 1, 000 as the
default setting.

Diffusion Steps in Inference. Fig. 8 shows
that increasing the number of inference diffu-
sion steps Kinfer consistently improves predic-
tion accuracy. However, as revealed by our ef-
ficiency analysis in Table 4, this improvement
comes with increased computational overhead.
To achieve a balance between accuracy and ef-
ficiency, we set Kinfer = 20 as our default
configuration.

Anchor step k∗ in Eq. 8. Fig. 9 shows that
overly large ᾱk∗ harms multi-mode and prob-
abilistic prediction, while small ones degrade
deterministic prediction. The performance is ro-

bust across a broad range around ᾱk∗ = 0.5. To maintain a simple formulation of Eq. 8, we choose
k∗ to make ᾱk∗ close to 0.5.

Maximum number of modes M in Algorithm 1. Table 11 shows that the multi-mode accuracy
remains robust w.r.t M . This arises from using a variational GMM rather than a standard one. In this
formulation, only the maximum number of modes needs to be specified, while the inference algorithm
automatically determines the appropriate number of active modes. This behavior is illustrated in
Fig. 3(c), where we set M = 10, but only 3 modes are activated after inference.

Mixture weights prior hyperparameter ρ in Algorithm 1. ρ controls the prior over the number of
activated modes-a larger ρ encourages utilizing more modes. Table 12 shows that larger ρ leads to
slightly lower Top-3 MSE/MAE, but activating too many modes may confuse downstream users.

Variance prior hyperparameter u in Algorithm 1. u influences the prior over the variance, where
a larger value reflects greater confidence in the variance estimated from forward diffusion. As shown
in the Table 13 below, performance remains robust.

G DETAILED FLOPS ANALYSIS

FLOPs of MSE Loss. MSE loss uses a conventional MLP to project latent tokens into future series.
A conventional S-block MLP consists of three components:

• One linear input layer with O(d2) FLOPs;
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Figure 7: (a) Top-3 MSE, (b) Top-3 MAE, (c) MSE, (d) CRPS evaluations versus varying diffusion
steps in training (Ktrain) on ETTh1 (T = 336, τ = 96). The Linear noise schedule is used and the
diffusion steps in inference are set to Kinfer = 20.
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Figure 8: (a) Top-3 MSE, (b) Top-3 MAE, (c) CRPS evaluations versus varying diffusion steps in
inference (Kinfer). Ktrain = 1, 000 and other settings are same as Fig. 7. MSE is omitted as Kinfer

does not affect deterministic prediction.
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Figure 9: (a) Top-3 MSE & Top-3 MAE, (b) MSE & CRPS evaluations versus varying ᾱk∗ in Eq. 8
on ETTh1 (T = 336, τ = 96).

• S hidden blocks, each has two linear layers and one activation layer between them. The
FLOPs are O(2d2);

• One linear output layer with O(Pd) FLOPs;

Therefore, the FLOPs for a conventional MLP applied to one token is O
(
(2S + 1)d2 + Pd

)
. To

predict a series of length τ , this MLP is simultaneously applied to τ/P tokens, making the total
FLOPs FMLP = O( τP [(2S + 1)d2 + Pd]).

For both training and deterministic inference, MSE loss requires one backbone forward pass and
one MLP forward pass, so the FLOPs are Fbkb + FMLP . It should be noted that MSE loss cannot
perform probabilistic or multi-mode prediction, marked with “N/A” in Tables 4.

FLOPs of MMPD Loss. MMPD loss uses Patch Consistent MLP as the denoising network, which is
slightly more complex than the conventional MLP above. A S-block Patch Consistent MLP consists
of three components:

• Input operations in Eq. 7, requiring O(d2 + (2r + 1)Pd) FLOPs;
• S AdaLN-MLP blocks in Eq. 12, each requires O(5d2) FLOPs;
• One AdaLN output block in Eq. 13, requiring O(2d2 + Pd) FLOPs;

Same as MSE, the Patch Consistent MLP is simultaneously applied to τ/P tokens, so the total FLOPs
are FPC−MLP = O( τP [(5S + 3)d2 + (2r + 2)Pd]).
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As for EM steps in Algorithm 1, three vector operations contribute most FLOPs and other scalar
operations are negligible. The three vector operations are: 1) Computation of ln γknm requires
O(3τMN) ; 2) µkm requires O(2τMN); 3) ṽkm requires O(3τMN) . So one EM step has the
FLOPs of FEM = O(8τMN).

For training, MMPD Loss requires one backbone forward pass and two Patch Consistent MLP
passes: one for the diffusion objective and another for the deterministic objective in Eq. 8. So the
training FLOPs are Fbkb + 2FPC−MLP . Considering the backbone dominates training cost (i.e.,
Fbkb >> FMLP , FPC−MLP ), training FLOPs of MMPD remain nearly identical to those of MSE.

Similar to MSE, deterministic inference of MMPD loss requires one backbone forward pass and one
Patch Consistent MLP forward pass, so the FLOPs are Fbkb+FPC−MLP , differences only lie in MLP
architectures. For probabilistic and multi-mode predictions, MMPD needs to generate N samples,
each through K diffusion-EM iterations. So the FLOPs are Fbkb +K(NFPC−MLP + FEM ). As
FEM << NFPC−MLP , we omit it in Table 4 for simplicity. To generate one instance, MMPD
loss only requires a single backbone pass, followed by K lightweight MLP passes, making its cost
significantly lower than that of TS Diffusion models requiring K backbone passes.

H FURTHER DISCUSSION: EXTENDING MMPD TO NON-PATCH-BASED
BACKBONES

Non-patch-based 
Backbone

Transformer
Decoder Layer

patches to predict
𝒙𝒙

𝑯𝑯

𝑉𝑉 𝐾𝐾 𝑄𝑄

MMPD Loss

Figure 10: Adapting non-patch-based back-
bones to use MMPD loss: a single Trans-
former decoder layer is inserted between the
backbone and MMPD. In this layer, back-
bone output H serves as key and value, while
learnable tokens indicating patches to predict
act as the queries. The decoder output is then
used for MMPD loss computation.

The latent representations H extracted by non-patch-
based backbones are not naturally expressed as
{hj}lj=1, thus MMPD loss cannot be directly applied.
As illustrated in Fig. 10, we address this by inserting
a single Transformer decoder layer: H serves as key
and value, while learnable tokens indicating prediction
patches act as query. This decoder layer transforms H
into tokens suitable for MMPD loss.

Using this adaptation, we apply MMPD to following
non-patch-based backbones: 1) TSMixer (Chen et al.,
2023), a fully MLP model without patching; 2) iTrans-
former (Li et al., 2024b), a non-patch-based Trans-
former designed to model inter-channel dependencies.
Table 14 shows that our adaptation with MMPD loss
performs on par with the original architectures using
MSE loss in deterministic forecasting, while signifi-
cantly outperforming them in multi-mode and proba-
bilistic forecasting. This demonstrates the effective-
ness of our adaptation and highlights the potential of
applying MMPD to a broader range of backbones.

Table 14: Comparison of non-patch-based backbones (TSMixer and iTransformer) trained using
MSE loss and adapted MMPD loss on datasets ETTh1/ETTm1/WTH, T = 336, τ = 192.

Dataset ETTh1 ETTm1 WTH ETTh1 ETTm1 WTH ETTh1 ETTm1 WTH ETTh1 ETTm1 WTH

Metric Top-3 MSE Top-3 MAE MSE CRPS

MSE 0.384 0.285 0.140 0.415 0.353 0.198 0.390 0.306 0.149 0.323 0.289 0.169TSMixer MMPD 0.367 0.230 0.118 0.396 0.309 0.161 0.378 0.306 0.148 0.304 0.260 0.150

MSE 0.390 0.298 0.147 0.414 0.361 0.200 0.400 0.317 0.158 0.324 0.292 0.173iTransformer MMPD 0.361 0.279 0.132 0.395 0.326 0.180 0.386 0.334 0.170 0.304 0.278 0.165

I FURTHER DISCUSSION: EXTENDING MMPD TO MULTI-TASK LEARNING

Beyond the traditional single-dataset paradigm, we further extend the MMPD loss to multi-task
learning, where a unified model is trained across multiple datasets and settings. Such a model can
directly perform multi-task forecasting and be adapted to few-shot or zero-shot forecasting on new
datasets.
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Table 15: Multi-task forecasting comparison of UNITS pretrained with MSE and MMPD loss on 20
forecasting tasks.

Metric MSE MAE Top-3 MSE Top-3 MAE CRPS

Pretraining Loss MSE MMPD MSE MMPD MSE MMPD MSE MMPD MSE MMPD

NN5 0.618 0.595 0.551 0.530 0.623 0.572 0.559 0.512 0.453 0.390
ECL-96 0.168 0.161 0.270 0.260 0.178 0.146 0.285 0.241 0.271 0.189
EC-192 0.184 0.175 0.283 0.272 0.195 0.163 0.301 0.256 0.280 0.201

ECL-336 0.203 0.192 0.300 0.289 0.203 0.174 0.313 0.270 0.285 0.211
ECL-720 0.242 0.229 0.331 0.318 0.234 0.215 0.338 0.302 0.300 0.234
ETTh1-96 0.397 0.367 0.420 0.400 0.377 0.325 0.413 0.367 0.334 0.286

ETTh1-192 0.438 0.408 0.448 0.427 0.433 0.386 0.443 0.404 0.353 0.312
ETTh1-336 0.465 0.442 0.465 0.448 0.456 0.436 0.458 0.425 0.365 0.325
ETTh1-720 0.507 0.472 0.500 0.478 0.513 0.474 0.496 0.464 0.394 0.347

Exchange-192 0.261 0.225 0.364 0.343 0.223 0.160 0.338 0.279 0.318 0.274
Exchange-336 0.464 0.415 0.494 0.469 0.349 0.306 0.429 0.393 0.439 0.372

ILI 2.073 2.345 0.895 0.967 2.045 1.981 0.894 0.855 0.739 0.785
Traffic-96 0.475 0.446 0.314 0.288 0.483 0.414 0.343 0.265 0.352 0.211

Traffic-192 0.484 0.460 0.314 0.292 0.477 0.426 0.336 0.268 0.350 0.211
Traffic-336 0.498 0.477 0.319 0.299 0.519 0.465 0.349 0.280 0.357 0.219
Traffic-720 0.532 0.510 0.336 0.315 0.545 0.507 0.359 0.299 0.361 0.233
Weather-96 0.163 0.166 0.214 0.213 0.149 0.136 0.203 0.173 0.176 0.166

Weather-192 0.212 0.213 0.257 0.254 0.178 0.180 0.236 0.220 0.212 0.202
Weather-336 0.267 0.270 0.297 0.294 0.269 0.245 0.268 0.267 0.251 0.241
Weather-720 0.344 0.353 0.347 0.345 0.323 0.328 0.317 0.327 0.300 0.287

Winning Counts 5/20 15/20 1/20 19/20 2/20 18/20 1/20 19/20 1/20 19/20

Table 16: Few-shot forecasting comparison of UNITS tuned with MSE and MMPD loss on new
datasets. For each setting, only 5% of the training set is used for prompt-based tuning.

Metric MSE MAE Top-3 MSE Top-3 MAE CRPS

Prompt Tuning Loss MSE MMPD MSE MMPD MSE MMPD MSE MMPD MSE MMPD

ETTh2-96 0.409 0.377 0.415 0.403 0.382 0.341 0.409 0.374 0.326 0.292
ETTh2-192 0.380 0.381 0.398 0.403 0.365 0.335 0.389 0.373 0.343 0.318
ETTh2-336 0.436 0.447 0.437 0.445 0.415 0.397 0.431 0.413 0.361 0.347
ETTh2-720 0.449 0.445 0.454 0.453 0.431 0.420 0.458 0.447 0.382 0.361

SaugeenRiverFlow 1.270 1.248 0.576 0.569 1.128 1.088 0.510 0.485 0.543 0.480

Winning Counts 2/5 3/5 2/5 3/5 0/5 5/5 0/5 5/5 0/5 5/5

We evaluate this idea using UNITS (Gao et al., 2024), a unified multi-task model that integrates
multiple tasks within a single framework. Since our focus is solely on forecasting, we adopt the
supervised variant (UNITS-SUP) without incorporating classification techniques. As a patch-based
model originally trained and tuned with MSE loss, MMPD loss can be integrated into it with minimal
changes to enhance its ability to capture complex distributions.

Multi-task Forecasting. Following Gao et al. (2024), we first conduct multi-task supervised
pretraining on 20 forecasting tasks using either MSE or MMPD loss. Results in Table 15 show that
for deterministic forecasting measured by MSE/MAE, MMPD loss matches or improves performance
over MSE. A possible reason is that MMPD provides a more challenging objective that encourages
richer representations, which are especially beneficial in multi-task scenarios. For multi-mode and
probabilistic forecasting measured by Top-3 MSE/MAE and CRPS, UNITS trained with MMPD
significantly outperforms its MSE-trained counterpart. This demonstrates that MMPD integrates well
with UNITS and effectively enables the modeling of complex distributions.

Few-shot Forecasting. We then tune the pretrained models with MSE and MMPD loss to perform
few-shot prediction on new datasets. In each setting, only 5% of the training data is utilized and
the prompt-based tuning from Gao et al. (2024) is used. As shown in Table 16, MMPD matches
MSE in deterministic accuracy while consistently outperforming it in probabilistic and multi-mode
forecasting.

Zero-shot Forecasting. Finally, Table 17 evaluates zero-shot forecasting capabilities of models
pretrained with MSE and MMPD. Results are consistent with the few-shot setting: MMPD maintains
comparable deterministic accuracy while offering superior probabilistic and multi-mode performance.
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Table 17: Zero-shot forecasting comparison on new datasets of pretrained UNITS using MSE and
MMPD.

Metric MSE MAE Top-3 MSE Top-3 MAE CRPS

Pretraining Loss MSE MMPD MSE MMPD MSE MMPD MSE MMPD MSE MMPD

Solar 0.202 0.169 0.320 0.299 0.207 0.095 0.331 0.193 0.272 0.187
River 2.336 2.294 0.735 0.746 2.298 1.722 0.733 0.722 0.643 0.624

Hospital 1.115 1.175 0.818 0.834 0.998 0.860 0.772 0.705 0.690 0.622

Winning Counts 1/3 2/3 2/3 1/3 0/3 3/3 0/3 3/3 0/3 3/3
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Figure 11: Forecasting cases of MSE loss vs. MMPD loss. Each row represents one instance, with
the dataset name and channel number indicated on the left. Predictions from MSE and MMPD losses
are separated by a thick vertical dashed line. On the left, one-mode predictions generated by the
MSE loss are shown, along with the corresponding input series. On the right, multi-mode predictions
generated by the MMPD loss are displayed, with their corresponding probabilities shown at the top.

K DECLARATION OF LARGE LANGUAGE MODELS USAGE

In this work, large language models were used solely for word choice and language polishing. They
did not contribute to research ideation, methodology or analysis.
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