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Abstract

This paper presents a new UNIfied pre-trained Language Model (UNILM) that
can be fine-tuned for both natural language understanding and generation tasks.
The model is pre-trained using three types of language modeling tasks: unidirec-
tional, bidirectional, and sequence-to-sequence prediction. The unified modeling
is achieved by employing a shared Transformer network and utilizing specific
self-attention masks to control what context the prediction conditions on. UNILM
compares favorably with BERT on the GLUE benchmark, and the SQuAD 2.0
and CoQA question answering tasks. Moreover, UNILM achieves new state-of-
the-art results on five natural language generation datasets, including improving
the CNN/DailyMail abstractive summarization ROUGE-L to 40.51 (2.04 absolute
improvement), the Gigaword abstractive summarization ROUGE-L to 35.75 (0.86
absolute improvement), the CoQA generative question answering F1 score to 82.5
(37.1 absolute improvement), the SQuAD question generation BLEU-4 to 22.12
(3.75 absolute improvement), and the DSTC7 document-grounded dialog response
generation NIST-4 to 2.67 (human performance is 2.65). The code and pre-trained
models are available at https://github.com/microsoft/unilm.

1 Introduction

Language model (LM) pre-training has substantially advanced the state of the art across a variety
of natural language processing tasks [8, 29, 19, 31, 9, 1]. Pre-trained LMs learn contextualized text
representations by predicting words based on their context using large amounts of text data, and can
be fine-tuned to adapt to downstream tasks.

Different prediction tasks and training objectives have been used for pre-training LMs of different
types, as shown in Table 1. ELMo [29] learns two unidirectional LMs: a forward LM reads the
text from left to right, and a backward LM encodes the text from right to left. GPT [31] uses
a left-to-right Transformer [43] to predict a text sequence word-by-word. In contrast, BERT [9]
employs a bidirectional Transformer encoder to fuse both the left and right context to predict the
masked words. Although BERT significantly improves the performance of a wide range of natural
language understanding tasks [9], its bidirectionality nature makes it difficult to be applied to natural
language generation tasks [44].

In this work we propose a new UNIfied pre-trained Language Model (UNILM) that can be applied to
both natural language understanding (NLU) and natural language generation (NLG) tasks. UNILM is
a multi-layer Transformer network, jointly pre-trained on large amounts of text, optimized for three
types of unsupervised language modeling objectives as shown in Table 2. In particular, we design a
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ELMo GPT BERT UNILM

Left-to-Right LM X X X
Right-to-Left LM X X
Bidirectional LM X X
Sequence-to-Sequence LM X

Table 1: Comparison between language model (LM) pre-training objectives.

Backbone
Network

LM Objectives of
Unified Pre-training What Unified LM Learns Example Downstream Tasks

Transformer
with shared
parameters
for all LM
objectives

Bidirectional LM Bidirectional encoding GLUE benchmark
Extractive question answering

Unidirectional LM Unidirectional decoding Long text generation

Sequence-to-Sequence LM
Unidirectional decoding
conditioned on
bidirectional encoding

Abstractive summarization
Question generation
Generative question answering

Table 2: The unified LM is jointly pre-trained by multiple language modeling objectives, sharing the
same parameters. We fine-tune and evaluate the pre-trained unified LM on various datasets, including
both language understanding and generation tasks.

set of cloze tasks [42] where a masked word is predicted based on its context. These cloze tasks differ
in how the context is defined. For a left-to-right unidirectional LM, the context of the masked word
to be predicted consists of all the words on its left. For a right-to-left unidirectional LM, the context
consists of all the words on the right. For a bidirectional LM, the context consists of the words on
both the right and the left [9]. For a sequence-to-sequence LM, the context of the to-be-predicted
word in the second (target) sequence consists of all the words in the first (source) sequence and the
words on the its left in the target sequence.

Similar to BERT, the pre-trained UNILM can be fine-tuned (with additional task-specific layers
if necessary) to adapt to various downstream tasks. But unlike BERT which is used mainly for
NLU tasks, UNILM can be configured, using different self-attention masks (Section 2), to aggregate
context for different types of language models, and thus can be used for both NLU and NLG tasks.

The proposed UNILM has three main advantages. First, the unified pre-training procedure leads to a
single Transformer LM that uses the shared parameters and architecture for different types of LMs,
alleviating the need of separately training and hosting multiple LMs. Second, the parameter sharing
makes the learned text representations more general because they are jointly optimized for different
language modeling objectives where context is utilized in different ways, mitigating overfitting to
any single LM task. Third, in addition to its application to NLU tasks, the use of UNILM as a
sequence-to-sequence LM (Section 2.3), makes it a natural choice for NLG, such as abstractive
summarization and question generation.

Experimental results show that our model, used as a bidirectional encoder, compares favorably with
BERT on the GLUE benchmark and two extractive question answering tasks (i.e., SQuAD 2.0 and
CoQA). In addition, we demonstrate the effectiveness of UNILM on five NLG datasets, where it
is used as a sequence-to-sequence model, creating new state-of-the-art results on CNN/DailyMail
and Gigaword abstractive summarization, SQuAD question generation, CoQA generative question
answering, and DSTC7 dialog response generation.

2 Unified Language Model Pre-training

Given an input sequence x = x1 · · ·x|x|, UNILM obtains a contextualized vector representation for
each token. As shown in Figure 1, the pre-training optimizes the shared Transformer [43] network
with respect to several unsupervised language modeling objectives, namely, unidirectional LM,
bidirectional LM, and sequence-to-sequence LM. In order to control the access to the context of the
word token to be predicted, we employ different masks for self-attention. In other words, we use
masking to control how much context the token should attend to when computing its contextualized
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Figure 1: Overview of unified LM pre-training. The model parameters are shared across the LM
objectives (i.e., bidirectional LM, unidirectional LM, and sequence-to-sequence LM). We use different
self-attention masks to control the access to context for each word token. The right-to-left LM is
similar to the left-to-right one, which is omitted in the figure for brevity.

representation. Once UNILM is pretrained, we can fine-tune it using task-specific data for downstream
tasks.

2.1 Input Representation

The input x is a word sequence, which is either a text segment for unidirectional LMs or a pair of
segments packed together for bidirectional LM and sequence-to-sequence LM. We always add a
special start-of-sequence ([SOS]) token at the beginning of input, and a special end-of-sequence
([EOS]) token at the end of each segment. [EOS] not only marks the sentence boundary in NLU tasks,
but also is used for the model to learn when to terminate the decoding process in NLG tasks. The input
representation follows that of BERT [9]. Texts are tokenized to subword units by WordPiece [48].
For each input token, its vector representation is computed by summing the corresponding token
embedding, position embedding, and segment embedding. Since UNILM is trained using multiple
LM tasks, segment embeddings also play a role of LM identifier in that we use different segment
embeddings for different LM objectives.

2.2 Backbone Network: Multi-Layer Transformer

The input vectors {xi}|x|i=1 is first packed into H0 = [x1, · · · ,x|x|], and then encoded into contextual
representations at different levels of abstract Hl = [hl

1, · · · ,hl
|x|] using an L-layer Transformer

Hl = Transformerl(H
l−1), l ∈ [1, L]. In each Transformer block, multiple self-attention heads are

used to aggregate the output vectors of the previous layer. For the l-th Transformer layer, the output
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of a self-attention head Al is computed via:

Q = Hl−1WQ
l , K = Hl−1WK

l , V = Hl−1WV
l (1)

Mij =

{
0, allow to attend
−∞, prevent from attending

(2)

Al = softmax(
QKᵀ

√
dk

+M)Vl (3)

where the previous layer’s output Hl−1 ∈ R|x|×dh is linearly projected to a triple of queries, keys
and values using parameter matrices WQ

l ,W
K
l ,W

V
l ∈ Rdh×dk , respectively, and the mask matrix

M ∈ R|x|×|x| determines whether a pair of tokens can be attended to each other.

We use different mask matrices M to control what context a token can attend to when computing its
contextualized representation, as illustrated in Figure 1. Take bidirectional LM as an example. The
elements of the mask matrix are all 0s, indicating that all the tokens have access to each other.

2.3 Pre-training Objectives

We pretrain UNILM using four cloze tasks designed for different language modeling objectives.
In a cloze task, we randomly choose some WordPiece tokens in the input, and replace them with
special token [MASK]. Then, we feed their corresponding output vectors computed by the Transformer
network into a softmax classifier to predict the masked token. The parameters of UNILM are learned
to minimize the cross-entropy loss computed using the predicted tokens and the original tokens. It is
worth noting that the use of cloze tasks makes it possible to use the same training procedure for all
LMs, unidirectional and bidirectional alike.

Unidirectional LM We use both left-to-right and right-to-left LM objectives. Take the left-to-right
LM as an example. The representation of each token encodes only the leftward context tokens
and itself. For instance, to predict the masked token of “x1x2 [MASK] x4”, only tokens x1, x2 and
itself can be used. This is done by using a triangular matrix for the self-attention mask M (as in
Equation (2)), where the upper triangular part of the self-attention mask is set to −∞, and the other
elements to 0, as shown in Figure 1. Similarly, a right-to-left LM predicts a token conditioned on its
future (right) context.

Bidirectional LM Following [9], a bidirectional LM allows all tokens to attend to each other in
prediction. It encodes contextual information from both directions, and can generate better contextual
representations of text than its unidirectional counterpart. As indicated in Equation (2), the self-
attention mask M is a zero matrix, so that every token is allowed to attend across all positions in the
input sequence.

Sequence-to-Sequence LM As shown in Figure 1, for prediction, the tokens in the first (source)
segment can attend to each other from both directions within the segment, while the tokens of the
second (target) segment can only attend to the leftward context in the target segment and itself, as
well as all the tokens in the source segment. For example, given source segment t1t2 and its target
segment t3t4t5, we feed input “[SOS] t1 t2 [EOS] t3 t4 t5 [EOS]” into the model. While both t1
and t2 have access to the first four tokens, including [SOS] and [EOS], t4 can only attend to the first
six tokens.

Figure 1 shows the self-attention mask M used for the sequence-to-sequence LM objective. The left
part of M is set to 0 so that all tokens can attend to the first segment. The upper right part is set to
−∞ to block attentions from the source segment to the target segment. Moreover, for the lower right
part, we set its upper triangular part to −∞, and the other elements to 0, which prevents tokens in the
target segment from attending their future (right) positions.

During training, we randomly choose tokens in both segments, and replace them with the special
token [MASK]. The model is learned to recover the masked tokens. Since the pair of source and target
texts are packed as a contiguous input text sequence in training, we implicitly encourage the model
to learn the relationship between the two segments. In order to better predict tokens in the target
segment, UNILM learns to effectively encode the source segment. Thus, the cloze task designed for
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the sequence-to-sequence LM, also known as the encoder-decoder model, simultaneously pre-trains
a bidirectional encoder and an unidirectional decoder. The pre-trained model, used as an encoder-
decoder model, can be easily adapted to a wide range of conditional text generation tasks, such as
abstractive summarization.

Next Sentence Prediction For the bidirectional LM, we also include the next sentence prediction
task for pre-training, as in [9].

2.4 Pre-training Setup

The overall training objective the sum of different types of LM objectives described above. Specif-
ically, within one training batch, 1/3 of the time we use the bidirectional LM objective, 1/3 of
the time we employ the sequence-to-sequence LM objective, and both left-to-right and right-to-left
LM objectives are sampled with rate of 1/6. The model architecture of UNILM follows that of
BERTLARGE [9] for a fair comparison. The gelu activation [18] is used as GPT [31]. Specifically, we
use a 24-layer Transformer with 1, 024 hidden size, and 16 attention heads, which contains about
340M parameters. The weight matrix of the softmax classifier is tied with token embeddings. UNILM
is initialized by BERTLARGE, and then pre-trained using English Wikipedia2 and BookCorpus [53],
which have been processed in the same way as [9]. The vocabulary size is 28, 996. The maximum
length of input sequence is 512. The token masking probability is 15%. Among masked positions,
80% of the time we replace the token with [MASK], 10% of the time with a random token, and
keeping the original token for the rest. In addition, 80% of the time we randomly mask one token
each time, and 20% of the time we mask a bigram or a trigram.

Adam [22] with β1 = 0.9, β2 = 0.999 is used for optimization. The learning rate is 3e-5, with linear
warmup over the first 40, 000 steps and linear decay. The dropout rate is 0.1. The weight decay is
0.01. The batch size is 330. The pre-training procedure runs for about 770, 000 steps. It takes about
7 hours for 10, 000 steps using 8 Nvidia Telsa V100 32GB GPU cards with mixed precision training.

2.5 Fine-tuning on Downstream NLU and NLG Tasks

For NLU tasks, we fine-tune UNILM as a bidirectional Transformer encoder, like BERT. Take text
classification as an example. We use the encoding vector of [SOS] as the representation of input,
denoted as hL

1 , and feed it to a randomly initialized softmax classifier (i.e., the task-specific output
layer), where the class probabilities are computed as softmax(hL

1W
C), where WC ∈ Rdh×C is

a parameter matrix, and C the number of categories. We maximize the likelihood of the labeled
training data by updating the parameters of the pre-trained LM and the added softmax classifier.

For NLG tasks, we take the sequence-to-sequence task as an example. The fine-tuning procedure is
similar to pre-training using the self-attention masks as in Section 2.3. Let S1 and S2 denote source
and target sequences, respectively. We pack them together with special tokens, to form the input
“[SOS] S1 [EOS] S2 [EOS]”. The model is fine-tuned by masking some percentage of tokens in the
target sequence at random, and learning to recover the masked words. The training objective is to
maximize the likelihood of masked tokens given context. It is worth noting that [EOS], which marks
the end of the target sequence, can also be masked during fine-tuning, thus when this happens, the
model learns when to emit [EOS] to terminate the generation process of the target sequence.

3 Experiments

We have conducted experiments on both NLU (i.e., the GLUE benchmark, and extractive question
answering) and NLG tasks (i.e., abstractive summarization, question generation, generative question
answering, and dialog response generation).

3.1 Abstractive Summarization

Automatic text summarization produces a concise and fluent summary conveying the key information
in the input (e.g., a news article). We focus on abstractive summarization, a generation task where

2Wikipedia version: enwiki-20181101.
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RG-1 RG-2 RG-L

Extractive Summarization
LEAD-3 40.42 17.62 36.67
Best Extractive [27] 43.25 20.24 39.63

Abstractive Summarization
PGNet [37] 39.53 17.28 37.98
Bottom-Up [16] 41.22 18.68 38.34
S2S-ELMo [13] 41.56 18.94 38.47
UNILM 43.33 20.21 40.51

Table 3: Evaluation results on CNN/DailyMail
summarization. Models in the first block are ex-
tractive systems listed here for reference, while
the others are abstractive models. The results
of the best reported extractive model are taken
from [27]. RG is short for ROUGE.

RG-1 RG-2 RG-L

10K Training Examples
Transformer [43] 10.97 2.23 10.42
MASS [39] 25.03 9.48 23.48
UNILM 32.96 14.68 30.56

Full Training Set
OpenNMT [23] 36.73 17.86 33.68
Re3Sum [4] 37.04 19.03 34.46
MASS [39] 37.66 18.53 34.89
UNILM 38.45 19.45 35.75

Table 4: Results on Gigaword abstractive summa-
rization. Models in the first block only use 10K
examples for training, while the others use 3.8M
examples. Results of OpenNMT and Transformer
are taken from [4, 39]. RG is short for ROUGE.

the summary is not constrained to reusing the phrases or sentences in the input text. We use the
non-anonymized version of the CNN/DailyMail dataset [37] and Gigaword [36] for model fine-tuning
and evaluation. We fine-tune UNILM as a sequence-to-sequence model following the procedure
described in Section 2.5 by concatenating document (the first segment) and summary (the second
segment) as input which is truncated according to a pre-defined maximum length.

We fine-tune our model on the training set for 30 epochs. We reuse most hyper-parameters from
pre-training. The masking probability is 0.7. We also use label smoothing [40] with rate of 0.1. For
CNN/DailyMail, we set batch size to 32, and maximum length to 768. For Gigaword, we set batch
size to 64, and maximum length to 256. During decoding, we use beam search with beam size of 5.
The input document is truncated to the first 640 and 192 tokens for CNN/DailyMail and Gigaword,
respectively. We remove duplicated trigrams in beam search, and tweak the maximum summary
length on the development set [28, 13].

We use the F1 version of ROUGE [25] as the evaluation metric for both datasets. In Table 3, we
compare UNILM against the baseline and several state-of-the-art models on CNN/DailyMail. LEAD-
3 is a baseline model that extracts the first three sentences in a document as its summary. PGNet [37]
is a sequence-to-sequence model based on the pointer-generator network. S2S-ELMo [13] uses a
sequence-to-sequence model augmented with pre-trained ELMo representations, which is termed as
SRC-ELMO+SHDEMB in [13]. Bottom-Up [16] is a sequence-to-sequence model augmented with a
bottom-up content selector for selecting salient phrases. We also include in Table 3 the best reported
extractive summarization result [27] on the dataset. As shown in Table 3, our model outperforms all
previous abstractive systems, creating a new state-of-the-art abstractive summarization result on the
dataset. Our model also outperforms the best extractive model [27] by 0.88 point in ROUGE-L.

In Table 4, we evaluate the models on Gigaword with different scales (10K and 3.8M). Both
Transformer [43] and OpenNMT [23] implement standard attentional sequence-to-sequence models.
Re3Sum [4] retrieves summaries as candidate templates, and then use an extended sequence-to-
sequence model to generate summaries. MASS [39] is a pre-trained sequence-to-sequence model
based on Transformer networks. Experimental results show that UNILM achieves better performance
than previous work. Besides, in the low-resource setting (i.e., only 10,000 examples are used as
training data), our model outperforms MASS by 7.08 point in ROUGE-L.

3.2 Question Answering (QA)

The task is to answer a question given a passage [33, 34, 15]. There are two settings. The first is
called extractive QA, where the answer is assumed to be a text span in the passage. The other is
called generative QA, where the answer needs to be generated on the fly.

Extractive QA This task can be formulated as a NLU task where we need to predict the start and
end positions of the answer spans within the passage. We fine-tune the pre-trained UNILM as a
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EM F1

RMR+ELMo [20] 71.4 73.7
BERTLARGE 78.9 81.8
UNILM 80.5 83.4

Table 5: Extractive QA results on
the SQuAD development set.

F1

DrQA+ELMo [35] 67.2
BERTLARGE 82.7
UNILM 84.9

Table 6: Extractive QA results
on the CoQA development set.

F1

Seq2Seq [35] 27.5
PGNet [35] 45.4
UNILM 82.5

Table 7: Generative QA results
on the CoQA development set.

bidirectional encoder for the task. We conduct experiments on the Stanford Question Answering
Dataset (SQuAD) 2.0 [34], and Conversational Question Answering (CoQA) [35] datasets.

The results on SQuAD 2.0 are reported in Table 5, where we compare two models in Exact Match
(EM) and F1 score. RMR+ELMo [20] is an LSTM-based question answering model augmented with
pre-trained language representation. BERTLARGE is a cased model, fine-tuned on the SQuAD training
data for 3 epochs, with batch size 24, and maximum length 384. UNILM is fine-tuned in the same
way as BERTLARGE. We see that UNILM outperforms BERTLARGE.

CoQA is a conversational question answering dataset. Compared with SQuAD, CoQA has several
unique characteristics. First, the examples in CoQA are conversational, so we need to answer the
input question based on conversation histories. Second, the answers in CoQA can be free-form texts,
including a large portion is of yes/no answers.

We modify the model used for SQuAD as follows. Firstly, in addition to the asked question,
we concatenate the question-answer histories to the first segment, so that the model can capture
conversational information. Secondly, for yes/no questions, we use the final hidden vector of the
[SOS] token to predict whether the input is a yes/no question, and whether the answer is yes or no.
For other examples, we select a passage subspan with the highest F1 score for training.

The results on CoQA are reported in Table 6, where we compare two models in F1 scores.
DrQA+ELMo [35] is an LSTM-based question answering model augmented with pre-trained ELMo
representation. BERTLARGE is a cased model, fine-tuned on the CoQA training data for 2 epochs,
with batch size 16, and maximum length 512. UNILM is fine-tuned with the same hyper-parameters
as BERTLARGE. We see that UNILM outperforms BERTLARGE.

Generative QA Generative question answering generates free-form answers for the input question
and passage, which is a NLG task. In contrast, extractive methods can only predict subspans of the
input passage as answers. On the CoQA dataset (as described above), Reddy et al. [2019] show that
vanilla sequence-to-sequence models still underperforms extractive methods by a wide margin.

We adapt UNILM to generative question answering as a sequence-to-sequence model. The first
segment (i.e., the input sequence) is the concatenation of conversational histories, the input question
and the passage. The second segment (i.e., the output sequence) is the answer. We fine-tune the
pre-trained UNILM on the CoQA training set for 10 epochs. We set the batch size to 32, the mask
probability to 0.5, and the maximum length to 512. We also use label smoothing with rate of 0.1.
The other hyper-parameters are kept the same as pre-training. During decoding, we use beam search
with beam size of 3. The maximum length of input question and passage is 470. For passages that
are longer than the maximum length, we split the passage into several chunks with a sliding window
approach, and select a chunk with the highest word overlap over the question.

We compare our method with the generative question answering models Seq2Seq and PGNet as
described in [35]. The Seq2Seq baseline is a sequence-to-sequence model with an attention mech-
anism. The PGNet model augments Seq2Seq with a copy mechanism. As shown in Table 7, our
generative question answering model outperforms previous generative methods by a wide margin,
which significantly closes the gap between generative method and extractive method.

3.3 Question Generation

We conduct experiments for the answer-aware question generation task [52]. Given an input passage
and an answer span, our goal is to generate a question that asks for the answer. The SQuAD 1.1
dataset [33] is used for evaluation. Following [12], we split the original training set into training and
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BLEU-4 MTR RG-L

CorefNQG [11] 15.16 19.12 -
SemQG [50] 18.37 22.65 46.68
UNILM 22.12 25.06 51.07

MP-GSN [51] 16.38 20.25 44.48
SemQG [50] 20.76 24.20 48.91
UNILM 23.75 25.61 52.04

Table 8: Question generation results on SQuAD.
MTR is short for METEOR, and RG for ROUGE.
Results in the groups use different data splits.

EM F1

UNILM QA Model (Section 3.2) 80.5 83.4
+ UNILM Generated Questions 84.7 87.6

Table 9: Question generation based on UNILM
improves question answering results on the
SQuAD development set.

NIST-4 BLEU-4 METEOR Entropy-4 Div-1 Div-2 Avg len

Best System in DSTC7 Shared Task 2.523 1.83 8.07 9.030 0.109 0.325 15.133
UNILM 2.669 4.39 8.27 9.195 0.120 0.391 14.807

Human Performance 2.650 3.13 8.31 10.445 0.167 0.670 18.76

Table 10: Response generation results. Div-1 and Div-2 indicate diversity of unigrams and bigrams,
respectively.

test sets, and keep the original development set. We also conduct experiments following the data split
as in [51], which uses the reversed dev-test split.

The question generation task is formulated as a sequence-to-sequence problem. The first segment is
the concatenation of input passage and answer, while the second segment is the generated question.

We fine-tune UNILM on the training set for 10 epochs. We set batch size to 32, masking probability
to 0.7, and learning rate to 2e-5. The rate of label smoothing is 0.1. The other hyper-parameters are
the same as pre-training. During decoding, we truncate the input to 464 tokens by selecting a passage
chunk which contains the answer. The evaluation metrics BLEU-4, METEOR, and ROUGE-L are
computed by the same scripts as in [12].

The results3 are presented in Table 8. CorefNQG [11] is based on a sequence-to-sequence model with
attention and a feature-rich encoder. MP-GSN [51] uses an attention-based sequence-to-sequence
model with a gated self-attention encoder. SemQG [50] uses two semantics-enhanced rewards to
regularize the generation. UNILM outperforms previous models and achieves a new state-of-the-art
for question generation.

Generated Questions Improve QA The question generation model can automatically harvest a
large number of question-passage-answer examples from a text corpus. We show that the augmented
data generated by question generation improves the question answering model.

We generate five million answerable examples, and four million unanswerable examples by modifying
the answerable ones. We fine-tune our question answering model on the generated data for one epoch.
Then the model is fine-tuned on the SQuAD 2.0 data for two more epochs.

As shown in Table 9, the augmented data generated by UNILM improves question answering model
introduced in Section 3.2. Note that we use bidirectional masked language modeling as an auxiliary
task for both the generated and SQuAD 2.0 datasets during fine-tuning, which brings 2.3 absolute
improvement compared to directly using automatically generated examples. A possible reason is that
the auxiliary task alleviates catastrophic forgetting [49] when fine-tuning on augmented data.

3.4 Response Generation

We evaluate UNILM on the document-grounded dialog response generation task [30, 15]. Given a
multi-turn conversation history and a web document as the knowledge source, the system needs to

3Notice that if we directly use the tokenized references provided by Du et al. [2017], the results are (21.63
BLEU-4 / 25.04 METEOR / 51.09 ROUGE-L) on the original data split [12], and (23.08 BLEU-4 / 25.57
METEOR / 52.03 ROUGE-L) in the reversed dev-test setup [51].
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Model CoLA SST-2 MRPC STS-B QQP MNLI-m/mm QNLI RTE WNLI AX Score
MCC Acc F1 S Corr F1 Acc Acc Acc Acc Acc

GPT 45.4 91.3 82.3 80.0 70.3 82.1/81.4 87.4 56.0 53.4 29.8 72.8
BERTLARGE 60.5 94.9 89.3 86.5 72.1 86.7/85.9 92.7 70.1 65.1 39.6 80.5
UNILM 61.1 94.5 90.0 87.7 71.7 87.0/85.9 92.7 70.9 65.1 38.4 80.8

Table 11: GLUE test set results scored using the GLUE evaluation server.

generate a natural language response that is both conversationally appropriate and reflective of the
contents of the web document. We fine-tune UNILM to the task as a sequence-to-sequence model.
The first segment (input sequence) is the concatenation of the web document and the conversation
history. The second segment (output sequence) is the response. We fine-tune UNILM on the DSTC7
training data for 20 epochs, with batch size 64. The masking probability is set to 0.5. The maximum
length is 512. During decoding, we use beam search with size of 10. The maximum length of
generated response is set to 40. As shown in Table 10, UNILM outperforms the best system [41] in
the DSTC7 shared task [14] across all evaluation metrics.

3.5 GLUE Benchmark

We evaluate UNILM on the General Language Understanding Evaluation (GLUE) benchmark [45].
GLUE is a collection of nine language understanding tasks, including question answering [33],
linguistic acceptability [46], sentiment analysis [38], text similarity [5], paraphrase detection [10],
and natural language inference (NLI) [7, 2, 17, 3, 24, 47].

Our model is fine-tuned as a bidirectional LM. We use Adamax [21] as our optimizer with a learning
rate of 5e-5 and a batch size of 32. The maximum number of epochs is set to 5. A linear learning rate
decay schedule with warmup of 0.1 is used. The dropout rate of the last linear projection for each
task is set to 0.1, except 0.3 for MNLI and 0.05 for CoLA/SST-2. To avoid the gradient explosion
issue, the gradient norm was clipped within 1. We truncated the tokens no longer than 512.

Table 11 presents the GLUE test results obtained from the benchmark evaluation server. The
results show that UNILM obtains comparable performance on the GLUE tasks in comparison with
BERTLARGE.

4 Conclusion and Future Work

We propose a unified pre-training model, UNILM, which is jointly optimized for several LM
objectives with shared parameters. The unification of bidirectional, unidirectional, and sequence-
to-sequence LMs enables us to straightforwardly fine-tune the pre-trained UNILM for both NLU
and NLG tasks. Experimental results demonstrate that our model compares favorably with BERT
on the GLUE benchmark and two question answering datasets. In addition, UNILM outperforms
previous state-of-the-art models on five NLG datasets: CNN/DailyMail and Gigaword abstractive
summarization, SQuAD question generation, CoQA generative question answering, and DSTC7
dialog response generation.

The work can be advanced from the following perspectives:

• We will push the limit of the current method by training more epochs and larger models on web-
scale text corpora. At the same time, we will also conduct more experiments on end applications
as well as ablation experiments to investigate the model capability and the benefits of pre-training
multiple language modeling tasks with the same network.

• We are focusing on monolingual NLP tasks in our current experiments. We are also interested in
extending UNILM to support cross-lingual tasks [6].

• We will conduct multi-task fine-tuning on both NLU and NLG tasks, which is a natural extension
of Multi-Task Deep Neural Network (MT-DNN) [26].

Acknowledgement We would like to acknowledge Shiyue Zhang for the helpful discussions about
the question generation experiments.
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Appendix A Long Text Generation: A Case Study

Our model can generate text samples using the left-to-right setting. We picked three text samples
sampled from left to right using our model, as shown in Table 12. We use the top-40 truncating
sampling strategy [32], and forbid duplicate 4-grams during generation. For each example, we
sampled 10 times from the same input and we hand-picked the best one; as such, these samples
should be considered to be better than the average model output. From the examples, we find that the
model can produce fluent output with somewhat consistent contents which fits the inputs’ genres and
topics. In the first example, given a modified excerpt from the novel “1984” as input, the model’s
output is like a short paragraph in an fantasy novel; for the other two with input from Wikipedia, the
model makes up “facts” with plausible names, time stamps and events written in the Wikipedia style.

Appendix B GLUE Benchmark

As shown in Table 13, we summarize the data size and the evaluation metrics used for the General
Language Understanding Evaluation (GLUE) benchmark.
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Input Output

Winston sat back. A
sense of complete
helplessness had
descended upon him.

Winston sat back. A sense of complete helplessness had descended
upon him. He was now helpless and unmoving. What would that
mean? To become a monk under her mother’s rule. What would it
mean for him to be put at the center of the most dangerous of all of
demons, the demon known as Azrael? He would never know exactly
what that was, or even how it would end, unless he could sense the
strength of Azrael’s mind and soul. It wasn’t only the existence of
his mother, it was all he knew, and every moment. He was trapped
within her embrace, a trapped, torn, battered, crippling presence he
only knew it would mean was eternity. And in the instant that he
was lost his life changed forever, when Azraelis’ spirit touched his
mind, he was engulfed in this dark and mystical, so enchanting and
beautiful force. (...)

Bert is a yellow
Muppet character
on the long running
children’s television
show, Sesame Street.

Bert is a yellow Muppet character on the long running children’s
television show, Sesame Street. He would typically appear as a
sidekick or as a villain in the show; he is usually portrayed as
a cowardly and untrustworthy figure that tends to intrude on the
normal life of the street, such as “The Story of the Mole” , “The
Story from the Side”, and “Bump the Bush”. His voice was provided
by Michael Combs. Bert was a regular cast member of Sesame
Street, and his appearance was always played throughout the series
by two of his regular cast members, Frank Laughner and Michael
Combs. (...)

Maurice Ravel (7
March 1875 - 28
December 1937) was
a French composer,
pianist and conductor.

Maurice Ravel (7 March 1875 - 28 December 1937) was a French
composer, pianist and conductor. He was born in Paris, and studied
piano with Eugene Massenet. In the early 1900s Ravel became
interested in the composition of music, and he composed much of
his early music for the piano. Ravel’s early work is marked by a
marked sense of lyricism, but in the later years of his career he
developed a strong preference for orchestral forms. His first work,
“le Grand Cours d’ Auvergne”, was composed in 1909 by Maurice
Ravel, a student of Jules Massenet, and was published by A.F.A.
in 1912. It was re-published in 1912 by the publisher J.S.D.M. de
l’Etablissement Musicale de la Musique Francaise. Ravel wrote
the piano concerto “la Tragedie et la Chanson Dans le Theatre des
Champs Elysees” in 1916. (...)

Table 12: Text samples generated by our model using left-to-right generation.

Corpus #Train/#Dev/#Test Metrics

Single-Sentence Classification
CoLA (Acceptability) 8.5k/1k/1k Matthews corr
SST-2 (Sentiment) 67k/872/1.8k Accuracy

Pairwise Text Classification
MNLI (NLI) 393k/20k/20k Accuracy
RTE (NLI) 2.5k/276/3k Accuracy
QNLI (NLI) 108k/5.7k/5.7k Accuracy
WNLI (NLI) 634/71/146 Accuracy
QQP (Paraphrase) 364k/40k/391k F1 score
MRPC (Paraphrase) 3.7k/408/1.7k F1 score

Text Similarity
STS-B (Similarity) 7k/1.5k/1.4k Spearman corr

Table 13: Summary of the GLUE benchmark.
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