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For generations, climate scientists have educated the public 
that ‘weather is not climate’, and climate change has been 
framed as the change in the distribution of weather that slowly 
emerges from large variability over decades1–7. However, 
weather when considered globally is now in uncharted terri-
tory. Here we show that on the basis of a single day of globally 
observed temperature and moisture, we detect the fingerprint 
of externally driven climate change, and conclude that Earth as 
a whole is warming. Our detection approach invokes statisti-
cal learning and climate model simulations to encapsulate the 
relationship between spatial patterns of daily temperature and 
humidity, and key climate change metrics such as annual global 
mean temperature or Earth’s energy imbalance. Observations 
are projected onto this relationship to detect climate change. 
The fingerprint of climate change is detected from any single 
day in the observed global record since early 2012, and since 
1999 on the basis of a year of data. Detection is robust even 
when ignoring the long-term global warming trend. This 
complements traditional climate change detection, but also 
opens broader perspectives for the communication of regional 
weather events, modifying the climate change narrative: while 
changes in weather locally are emerging over decades, global 
climate change is now detected instantaneously.

“Climate is what you expect, weather is what you get”8. This 
proverbial distinction between weather and climate has served for 
a long time in public and media discourse as a starting point for 
scientists to distinguish day-to-day weather variability against the 
long-term forced response of climate change. The ‘weather versus 
climate paradigm’ is therefore typically invoked to explain phenom-
ena that may be perceived as contradictory, such as cold winter days 
in a warming climate. However, Earth’s climate is in fact variable on 
a broad spectrum of timescales9. Variability on weather timescales 
integrates to produce internal variability on ‘climate’ timescales10. 
It is therefore well established that, locally or regionally, irreduc-
ible uncertainties related to internal climate variability might mask 
forced climate changes in temperature or hydro-meteorological 
variables even for decades to come5,6.

Detection and attribution (D&A) studies aim to identify exter-
nally forced signals in the observed climate record7 such as in 
surface air temperature4, humidity11,12 or the seasonal cycle of tem-
perature13. The confidence in the detection of a key climate change 
metric, that is the 40-yr trend in annual mean tropospheric tem-
perature, is very high and has exceeded a 5σ detection threshold 
recently14. Nonetheless, it is often argued that long-term trends are 
needed to detect a signal. Here we test whether externally forced 
climate change can be detected on shorter timescales, or even an 
arbitrary day in the observed record, if detection is based on a global 
spatial pattern.

We start with a simple example to illustrate the difference in 
warming experienced locally and globally (Fig. 1). The past decade 
(2009–2018) has been on average 0.7 °C warmer than an earlier 
period (1951–1980). Locally, deseasonalized daily temperature 
anomalies fluctuate due to internal weather-related variability with 
a magnitude of up to 30 °C (Fig. 1a,c), depending on region and 
season. This substantial variation implies that despite an overall 
warmer climate, cold anomalies or even cold records can still occur 
and are to be expected15. However, at the global scale, weather-
related variations tend to cancel out, and variations in deseasonal-
ized global daily temperature anomalies are substantially reduced 
(Fig. 1b,d). Consequently, mean warming of about 0.7 °C corre-
sponds to a change of about 2.0σ globally, but only to around 0.25σ 
locally. This difference is consistent with the occurrence of global 
heat records in recent years despite large variability regionally16. 
Overall, the example anticipates that ‘global weather’, even in the 
form of a naive average, carries important although not the optimal 
information about climate change.

Formal D&A of externally forced signals in Earth’s observed 
climate relies on spatial patterns, so-called ‘fingerprints’, that 
encapsulate expected physical climate responses to external forc-
ing7. We extend an established fingerprint detection method11,13,17 
by incorporating a regression method that improves the separa-
tion of signal and noise based on daily data (see Methods and 
Extended Data Fig. 1). First, we define two key climate change 
metrics, annual global mean temperature (AGMT) and a decadal 
average of Earth’s energy imbalance (EEI), that serve as target 
variables for detection. AGMT characterizes climate warming 
from a surface perspective, used in policy assessments18,19, while 
EEI characterizes the state of climate change from a more physi-
cally motivated energy balance perspective20,21. Second, we train 
regularized linear regression models, using ridge regression, 
that predict each of the two targets from daily spatial patterns of 
surface temperature and/or humidity for each month and based  
on model simulations in the Coupled Model Intercomparison 
Project Phase 5 (CMIP5) multi-model archive driven by external 
forcing. This step yields fingerprints as maps of regression coef-
ficients that encapsulate the relationship between global patterns 
of daily weather and each target metric while reducing ‘noise’ in 
regions with large internal variability or model disagreement. 
Finally, and similarly to established detection methods11,13,17, 
we project observations onto the model-derived fingerprints to 
obtain a prediction of each target metric. We then assess whether 
externally forced climate change is detected by testing against the 
null hypothesis that the predicted test statistic is indistinguishable 
from natural variability.

Overall, we estimate AGMT from any given day with a root mean 
squared error (RMSE) of 0.09 °C (Pearson correlation > 0.99) across 
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the CMIP5 archive on models not used for training (Extended 
Data Fig. 2). The RMSE is about 44% lower than for the naive  
daily global average used above, and the error is comparable to 
one year in advance forecasts based on dynamical models22. It is 
important to highlight that model structural uncertainties imply 
differences in each model’s representation of the forced response 
and internal variability (fingerprint uncertainty analyses in 
Supplementary Text 2). However, the fingerprints discussed here 
are extracted via cross-validation to extrapolate well to other mod-
els. This yields fingerprints that are robust across the set of CMIP5 
models because regions of model disagreement receive small regres-
sion coefficients.

To understand the spatial signature of externally forced climate 
change in daily data, we discuss AGMT fingerprints and their sea-
sonal cycle, which reveals key climatological features (Fig. 2a,b). 
First, regression coefficients are positive throughout the globe, indi-
cating that the fingerprints pick up a global warming signal. Second, 
coefficients are larger over the oceans than over land, and larger over 
the tropics than over mid- or high latitudes. These features illustrate 
that signal-to-noise ratios of forced climate change in daily data 
are higher over the oceans than over land, and higher in the trop-
ics than over mid- or high-latitudes, consistent with our physical  
understanding of forced changes on longer timescales23,24. Polar 
regions do not receive much weight in the fingerprints despite very 

fast warming rates25, because of large internal variability. Further, 
interannual variability due to the El Niño/Southern Oscillation in 
the central and eastern tropical Pacific that is different and unin-
formative for long-term changes leaves a distinct imprint on the 
fingerprints in the form of low values of regression coefficients.  
In boreal summer, the fingerprints’ regression coefficients extend 
further north than in boreal winter (Fig. 2b), consistent with a 
reduced Equator-to-pole temperature gradient in summer and, 
consequently, reduced internal temperature variability in summer 
in the Northern Hemisphere.

Given the strong signal even in a single-day average (Fig. 1), the 
results so far mainly reflect the signal of long-term mean warm-
ing. However, D&A can be assessed in the absence of global mean 
changes, leading to confidence in detection based on spatial pat-
tern similarity alone13. Hence, we subtract global mean temperature, 
separately for each day, and extract a second set of fingerprints. The 
prediction error for daily global temperature increases substantially 
(RMSE = 0.40 °C), and therefore lends low statistical power for 
detection. However, climate change manifests itself not only in sur-
face air temperature change but also through changes in total atmo-
spheric heat content26, where latent heat in the form of atmospheric 
moisture plays an important role. Therefore, we add specific humid-
ity (that is, the moisture content of a given air parcel (restricted to 
land values due to coverage)) as a predictor. The joint temperature 
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Fig. 1 | Warming of daily temperatures experienced at the local and global scale. a–d, The distribution of local (a,c) and global (b,d) daily temperatures in 
the National Centers for Environmental Prediction (NCEP) 1 reanalysis dataset (a,b) and in the CMIP5 multi-model archive (c,d). The local histograms are 
area-weighted on the basis of temperature anomalies from all grid cells and all seasons relative to their respective 1979–2005 mean seasonal cycle.

NatuRE CliMatE ChaNgE | VOL 10 | JANuARy 2020 | 35–41 | www.nature.com/natureclimatechange36

http://www.nature.com/natureclimatechange


LettersNaTurE ClimaTE CHaNgE

and land humidity fingerprint (both mean-removed) reduces the 
prediction error of AGMT (RMSE = 0.22 °C). The mean-removed 
temperature fingerprint relies on a land–sea warming contrast at 
low and mid-latitudes, and fast warming at high latitudes in sum-
mer, both consistent with the physical understanding23,24 (Fig. 2c,d). 
Contrasting regression coefficients are particularly confined to 

geographically neighbouring land and sea regions that experience 
low but correlated internal variability. The mean-removed humid-
ity fingerprint relies on an Equator-to-pole gradient with positive 
coefficients over the tropics (corresponding to moistening trends 
that exceed global mean humidity changes) and negative coeffi-
cients at high latitudes (Fig. 2e,f; joint temperature and humidity  
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ocean/land grid cells (d), and land humidity (f). All fingerprints are extracted from the CMIP5 multi-model archive.
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fingerprints shown in Supplementary Text 2). Therefore, expected 
specific humidity increases are larger in warmer background climates 
than in cooler climates27, consistent with the Clausius–Clapeyron 
relationship suggesting an approximately linear percentage increase 

in atmospheric moisture with warming. Seasonal variations in the 
humidity fingerprint indicate a northward shift of tropical regres-
sion coefficients in boreal summer, along with reduced absolute val-
ues of negative coefficients at high latitudes consistent with seasonal 
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Fig. 3 | agMt estimates from models, reanalyses and observations. a–f, Time series of AGMT (bold lines) for the CMIP5 multi-model mean (a,b), 
reanalysis datasets (c,d) and observations (e,f). Estimates of AGMT based on each single day (a–e, in e for daily observations that are experimental and 
shown for illustration alone, see Methods) and single months (e,f) are shown. All estimates are derived on the basis of the spatial pattern of daily/monthly 
temperatures with the mean signal included (a,c,e); and based on the spatial pattern of daily/monthly temperature and humidity with the mean signal 
removed (b,d,f). The boxplots show the 2.5th to 97.5th percentile of the distribution of the AGMT test statistic for the 1870–1950 historical period in 
CMIP5 with each model’s contribution weighted equally. avg., average; obs., observed; pred., predicted.
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variations in surface climate. We conclude that physically consistent 
forced climate signals can be picked up from the spatial pattern of 
daily surface temperature and humidity even if the global mean sig-
nal is removed.

We assess whether climate change is detected at short timescales 
by projecting in  situ observations, reanalyses output and CMIP5 
model simulations onto the fingerprints. This step yields a time 
series of the AGMT test statistic for each day in a given year (Fig. 3) 
that is assessed against a proxy of natural climate variability. Here 
we use the 2.5th–97.5th percentile range of the test statistic distri-
bution in CMIP5 models in 1870–1950. The proxy is conservative 
because of forced early twentieth-century warming28 and exceeds 
the ‘extremely likely’ 95% level in Intergovernmental Panel on 
Climate Change terminology29.

CMIP5 models predict that forced climate change can be 
detected at a daily basis from the early 2000s onwards, where the 
range of daily AGMT estimates emerges from natural variability 
(Fig. 3a,b). The reanalyses average indicates that since the end 
of 2001 the majority of days in any given year lies outside natu-
ral variability irrespective of whether the global mean trend sig-
nal has been removed or not (Fig. 3; 97.7% (‘mean included’) and 
83.6% (‘mean removed’) of days detected individually from 2001 
up to August 2019). Since late March 2012, every single day is 
detected individually (Fig. 4a, ‘mean included’), and all but 3.5% 
of days in the ‘mean removed’ case (Fig. 4b). In observations, every 
month individually is outside natural variability since 2001 with  
data available up to December 2018 (‘mean included’). In an  
experimental daily observational dataset, every day would be  
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individually detected since about 2008 (Fig. 3e, ‘mean included’). 
If the mean is removed, only six months (7.3% with humidity data 
available up to December 2017) fall within natural variability since 
the end of 2010 (Fig. 3f). As the test statistic varies characteristi-
cally across timescales, global climate change is probably detect-
able also at shorter subdaily or even instantaneous timescales 
(Extended Data Fig. 3). Overall, the conclusion that a forced cli-
mate change is detected with >97.5% confidence in any individ-
ual day or month since early 2012 is robust across any of the five 
reanalysis and observational datasets.

EEI is a second, and arguably more fundamental, key climate 
change metric that determines how the energy content of the cli-
mate system is changing20,21. Across the CMIP5 multi-model 
archive, given a historical forcing trajectory, reasonable decadal 
EEI estimates can be determined from a single day’s spatial pat-
tern of temperature and humidity (RMSETemp., mean-incl. = 0.18 W m−2, 
RMSETemp.+Hum(land), mean-rem. = 0.21 W m−2). Compared to AGMT, EEI 
fingerprints rely on a slightly narrower latitudinal band of regres-
sion coefficients over tropical oceans. This is probably related to 
optimally capturing the decadal EEI signal while minimizing the 
influence of interannual or short-term variations. The detection 
analysis reveals that decadal EEI estimates in models, reanalyses 
and observations in fact all show recent emergence from natu-
ral variability similar to AGMT-based detection (Supplementary 
Text 4). Although the exact baseline of EEI estimates is uncertain 
(Methods), EEI estimates of around +0.53 W m−2 on average from 
monthly observations over the last decade since 2009 (spanning 
+0.38 to +0.71 W m−2 overall; up from +10 W m−2 on average in 
1900–1950) are just slightly lower than direct observation-based 
EEI estimates20. Our results therefore indicate that the Earth has 
taken up energy continuously over the last decade, which will thus 
continue to drive climate change in the near future.

We have shown, using fingerprints of key climate change met-
rics, that observations, reanalyses and model simulations agree 
that climate change is detected now from global weather in a sin-
gle year, month or even a single day. This result is robust also if 
detection is based only on the spatial pattern of temperature and 
land humidity with any global mean signal removed. The afore-
mentioned is a remarkable physical consistency check between 
models and observations, and allows daily detection even if, for 
example, the global mean long-term trend is judged to be unreli-
able due to changes in observing systems. Daily global weather 
has therefore emerged from the background of natural variability, 
and the total energy content of the planet keeps increasing. As 
in other detection studies13, this result relies on the assumption 
that climate models do not severely underestimate low-frequency 
variability, but our results are robust to various combinations 
of CMIP5 models used to construct the reference distribution 
(Supplementary Text 3).

Broader implications for climate science include, first, that 
weather on global scales carries important climate information that 
may be exploited for short-term D&A. This may complement the 
study of long-term climate trends, which may be masked locally 
by internal climate variability5. Second, statistical learning offers 
opportunities to optimally combine multivariate spatiotemporal 
information to maximize a desired climate signal against internal 
variability or other factors30–32. Third, our approach opens a broader 
perspective and context for the communication of regional weather 
events against the backdrop of a warming climate. This allows one 
to overcome a disconnect between formal fingerprinting studies 
that rely on observed long-term trends, and event attribution (that 
is, the assessment of externally forced changes in the magnitude or 
frequency of short-term (extreme) weather events that interpret 
model simulations probabilistically33). Short-term detection may 
help to formally assess the role of external forcing on global or sub-
global ‘weather’ up to instantaneous timescales.
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Methods
Climate change detection method. D&A studies use fingerprints of external 
forcing and a formal comparison between model simulations and observations to 
assess whether the influence of external forcing can be detected in Earth’s climate7. 
We first briefly describe a standard and widely used detection method11,13,17,34 and 
then an extension of the method that incorporates statistical learning techniques 
based on regularized linear regression for daily climate change detection.  
The established method involves three key steps:

First, a fingerprint is extracted from model simulations that encapsulates 
the spatial (or, for example, vertical) pattern of the physical response to external 
forcing. For instance, previous D&A studies13,34 calculate the fingerprint as the 
leading empirical orthogonal function35 of the time-evolving multi-model average 
pattern of forced simulations. In a second step, observations are projected onto 
the fingerprint to assess whether there is increasing congruency between the 
observations and the expected response to external forcing (which yields a signal 
time series, denoted S(t) in previous studies11,13,17,34). In other words, this step 
measures the spatial covariance between the expected physical response to external 
forcing (determined purely from model simulations), and the observations. Third, 
statistical inference is based on a scalar signal-to-noise ratio, where it is tested 
whether the signal S(t), summarized as a trend of a given length L, exceeds that of 
the noise of L-length trends in long control simulations that feature only internal 
or natural variability (the null hypothesis). The gist of this detection approach 
is that a high-dimensional testing problem is reduced to a one-dimensional test 
statistic. The extraction of the fingerprint captures the expected signal in response 
to external forcing but disregards (through averaging) whether internal variability 
(‘climate noise’) in a given region is high or low.

Here, we incorporate a regularized linear regression model that separates signal 
and noise in the extraction of the fingerprint (see Extended Data Fig. 1 for an 
illustration). We use two key climate change metrics as target variables, AGMT  
(in the year y that corresponds to the day i at which climate change is to be 
detected) and EEI (as a decadal average in the years before y). These two metrics 
are key indicators of climate change (AGMT18,19; EEI20,21) and serve here as target 
variables (that is, the one-dimensional test statistic) for climate change detection 
at the daily timescale. The method is conceptually similar to a machine learning 
approach to fingerprint extraction used recently to determine emergence times 
of climate change based on yearly data30. In a first step, the fingerprint of external 
forcing is extracted from forced model simulations such that the p-dimensional 
spatial pattern of daily temperature or humidity is related linearly to one of the 
target metrics (denoted here, Ymod) in a regression setting (step (1) in Extended 
Data Fig. 1):

γ ε= ̂ +XY (1)mod mod

We store the model simulated spatial patterns of daily temperature and/or  
humidity in an n × p matrix Xmod, where n and p denote the number of 
training samples (that is, individual days) and the number of spatial predictors, 
respectively. The vector Ymod is of length n and denotes the defined target metric 
for each time step. The estimated fingerprint γ̂ is then a p-dimensional vector of 
spatial regression coefficients. Hence, the fingerprint extraction step maps the 
high-dimensional spatial patterns of temperature and/or humidity into a one-
dimensional test statistic via γ̂, and the fingerprint therefore encapsulates the 
physically expected response to external forcing. This step is analogous to the 
standard detection method described above11,13,17,34: instead of extracting empirical 
orthogonal functions from the time-evolving average across multiple models, we 
use regularized linear regression in equation (1). The regression problem can be 
solved, and thus the respective spatial fingerprints extracted, with ridge regression 
that optimizes the climate change signal while giving lower weight to regions with 
large internal climate variability at daily timescales. In a second step, we project  
the observations (Xobs, which are fully independent from γ̂) and model simulations 
of natural variability (denoted Xmod*, which are not used for fingerprint extraction, 
see the next paragraph) onto γ̂ to obtain an estimate of the target climate change 
metric for each individual time step that will be used as a test statistic (step (2) in 
Extended Data Fig. 1).

γ̂ = ̂XY (2)obs obs

γ̂ = ̂XY (3)mod* mod*

The fact that model simulations (Xmod) used for fingerprint extraction and model 
simulations (Xmod*) used for estimating the control distribution of the test statistic 
under natural variability are kept separate is important, because otherwise a bias 
may result as the training and application of the statistical model would not be 
independent. In fact, we use the CMIP5 multi-model archive36 for fingerprint 
extraction and to estimate the control distribution of the test statistic under natural 
variability, and we keep entire models (Xmod versus Xmod*) separate for these two 
tasks in a cross-validation setting (similar to an iterative ‘perfect-model’ approach, 
specified in detail in the next paragraph). In a final third step (step (3) in Extended 
Data Fig. 1), we assess whether external forcing can be detected in the observations 

by testing, separately for any single day, against the distribution of the test statistic 
under natural variability P Ŷ( [ ])mod* , using AGMT or EEI. The second and third 
steps of the outlined approach are again analogous to the standard detection 
method described above11,13,17,34.

The advantages of this approach include, first, that the spatial pattern response 
to external forcing is encapsulated in the fingerprint, but regions with large 
internal variability or where different climate models disagree with each other 
receive less weight in the fingerprint. In other words, ridge regression optimizes 
the climate signal against ‘climate noise’ (internal climate variability) at the daily 
timescale; a step that is consistent with signal-to-noise optimization in traditional 
D&A studies1,4. Second, estimates of the two key climate change metrics used here 
(AGMT and EEI), derived from observations and control simulations, serve the 
purpose of a test statistic, but retain their climatological interpretation. Third, the 
detection approach in a supervised regression setting (equation (1)) allows one to 
evaluate the expected prediction performance within an idealised model approach 
using classical error metrics such as RMSE (see main text).

Statistical learning technique. The linear model employed here to extract 
the fingerprints in equation (1) is required to solve a high-dimensional linear 
regression problem. Traditional methods may fail in a high-dimensional setting 
because regression coefficients are not well constrained37. Ridge regression, a 
statistical learning technique developed for such situations37,38, guards against 
overfitting by imposing a penalty on the complexity of the model via shrinkage of 
regression coefficients. Shrinkage of regression coefficients is based on the sum of 
squared regression coefficients (known as L2 regularization) and a ridge regression 
parameter λ that determines the absolute amount of shrinkage. This yields small 
but non-zero regression coefficients, and regression coefficients that are relatively 
smoothly distributed among correlated predictors38. As climate variables are 
typically correlated in space, this leads to regression coefficients that tend to be 
smooth in space (see, for example, Fig. 2) but without imposing any smoothness 
explicitly. However, the approach presented here is not necessarily confined 
to ridge regression for fingerprint extraction: full-blown machine learning 
techniques can be used for tasks analogous to this30, or constraints based on system 
understanding to target individual climate forcing agents specifically could be 
readily implemented39.

Data pre-processing and fingerprint extraction. Data processing and subsequent 
model training is set up as follows.

We extract model simulations from the CMIP5 multi-model archive36 for 
training. Simulations are extracted for 24 different models from 13 modelling 
centres that provide daily surface temperature and specific humidity (see 
Supplementary Table 1). The model data consist of in total 14,100 individual 
model years available for fingerprint extraction, where three days per month are 
chosen for training: the 5th, 15th and 25th day of each month (corresponding 
to 507,600 days). The 14,100 model years are made up of 45 simulations using 
the historical (1870–2005; that is, in total 6,120 model years) and Representative 
Concentration Pathway (RCP)8.5 scenario (2006–2100, 4,815 model years), 
and 39 simulations with the RCP2.6 scenario (2006–2100, 3,705 model years). 
We regrid all daily model data to a common, regular 5° × 5° spatial grid (that is, 
corresponding to p = 2,592 grid cells or spatial predictors). Next, we subtract the 
seasonal cycle from each day i, separately for each model and for each grid cell p, 
using a 31-d rolling mean seasonal cycle centred on the respective day. The 31-d 
rolling mean seasonal cycle is estimated from the 1979–2005 reference period. 
The 1979–2005 reference period is chosen to maximize the overlap between 
model simulations with historical forcing (that end in 2005) and observations 
(some of which start only in 1979, see next paragraph), and to ensure an identical 
processing and hence comparability between model simulations and observations. 
The target metrics are obtained similarly for each model. AGMT denotes the 
anomaly of the annual mean spatial average of surface temperatures (in the year 
that corresponds to day i), and is estimated separately for each model relative to its 
1979–2005 average. The second target metric, EEI, denotes the energy imbalance 
at the top of the atmosphere20, estimated as a decadal average in the decade before 
the year that corresponds to day i. Net top-of-atmosphere radiation is sensitive 
to drift in CMIP5 models40,41, but the drift is approximately constant in each 
model40,41. Therefore, we implement a standard mean drift correction of net top-of-
atmosphere radiation (corresponding to a linear drift in Earth’s energy content40) 
by estimating the mean drift in long-term control simulations in each model. 
Subsequently, we subtract the mean drift from each model’s EEI estimates.

Next, we train the regularized linear model to extract the respective 
fingerprints. For this purpose, an individual statistical model (that is, fingerprint) is 
trained for each month, because the expected physical response to external forcing 
changes with the seasonal cycle13 (for example, Fig. 2). To increase the sample size 
for training of each individual month, samples from the previous and subsequent 
month are included in the training step. We implement a standard cross-validation 
scheme to determine the ridge regression parameter (λ) and to extract the final 
fingerprints. Cross-validation is standard practice in statistical learning and 
ensures, by splitting the raw dataset into separate partitions, that model fitting and 
model validation and selection are performed on different data (to avoid a biased 
performance evaluation). From a climate science perspective, cross-validation as 
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implemented here with a ‘leave-one-model-out’ strategy can be seen as an iterative 
perfect model approach. First, in an outer loop, we run 13 simulations (k = 13) 
for which each individual climate model is iteratively left out as an unseen test 
set. Second, we determine the ridge regression parameter λ in an inner loop by 
k − 1-fold cross-validation. That is, each of the 13 training simulations uses data 
from k − 1 = 12 climate models (that is, one model left out iteratively), where each 
model is put in a separate fold (‘leave-one-model-out cross-validation’). This 
step ensures that the fingerprints extrapolate well to an unseen model (that is, 
fingerprints that are robust across the CMIP5 multi-model archive). In cases where 
modelling centres provide separate variants of a particular model (Supplementary 
Table 1), these model variants are treated as part of the same model and hence put 
in the same fold. We ensure that each model used in the training step receives the 
same weight by subsampling the number of individual days used for training.  
The tuning parameter λ is then selected in the cross-validation as the most 
regularized model within one standard error of the minimum mean squared 
error on the out-of-fold data. This yields a fingerprint (γ̂k) as a set of regression 
coefficients. Third, for each of the 13 simulations (that is, iteratively for each test 
set model not used in the inner loop), we predict the respective target metric 
for any given day i. These independent estimates of the target metric are used to 
estimate prediction errors (that is, the RMSEs discussed in the main text) and 
1870–1950 predictions are used as a reference distribution of the test statistic  
under ‘natural variability’. The choice of the 1870–1950 period for the control 
distribution is conservative, because some of the early-twentieth-century warming 
may have been externally forced28 in addition to internal variability. Last, the final 
fingerprint (γ̂, shown in Fig. 2), for any given month, is obtained by averaging  
over the 13 separate fingerprints (γ̂k) of the outer loop.

This set-up is repeated for both climate change target metrics (AGMT and 
EEI), and for different sets of predictors. The different sets of predictors include  
the daily spatial pattern of (1) temperature (‘Temp.’); (2) temperature, where  
the global mean temperature of each day is removed from each grid cell  
(‘Temp.’, mean removed); (3) specific humidity, using the mask of an observational 
dataset42 available over land (‘Hum. (land)’); (4) specific humidity over land areas 
with the global mean removed at each time step (‘Hum. (land), mean removed’); 
and (5) combined mean-removed temperature and land-only humidity  
(‘Temp. + Hum. (land), mean removed’; that is, (2) and (4) combined). 
Supplementary Table 2 and Supplementary Table 4 provide an overview of 
the prediction performance for all sets of predictions for AGMT and EEI 
prediction, respectively. As the number of available model runs differs by model 
(Supplementary Table 1), all multi-model quantities from CMIP5 shown in the 
paper (for example, 1850–1950 reference distribution of ‘natural variability’,  
2.5th to 97.5th percentile range of daily CMIP5 predictions) are weighted such 
that each model receives equal weight. The prediction error metrics (RMSE) 
are evaluated separately for each model and season, and subsequently averaged. 
Training of statistical models was conducted in R (version 3.4.3)43 using the 
‘glmnet’ package (version 2.0-16)44.

Fingerprint uncertainty analysis. A detailed fingerprint uncertainty analysis 
is provided in Supplementary Text 2. The analysis includes an assessment of 
signal-to-noise improvement provided by ridge regression over the simple ‘daily 
global average fingerprint’ example provided in the main text (Supplementary 
Text 2.1), an analysis of AGMT prediction performance depending on season 
(Supplementary Text 2.2) and an assessment of climate model uncertainty in 
fingerprint extraction (Supplementary Text 2.3). Last, we analyse how taking into 
account the spatial correlation structure in daily surface climate variables through 
ridge regression changes the resulting spatial patterns of regression coefficients 
(Supplementary Text 2.4).

Data from reanalyses and observations. To assess short-term detection 
beyond climate models, we project three daily reanalysis datasets, three monthly 
observational datasets and one daily observational dataset onto γ̂ to estimate our 
test statistic. As outlined above, the projection is performed separately for both 
target metrics (AGMT and EEI), for each set of predictors and for each day i using 
the fingerprint of the respective month.

The reanalyses include ERA-Interim45, the NCEP/NCAR Reanalysis 146 and  
the 20th Century Reanalysis version 2c47. Spatial coverage of the reanalysis datasets 
is global, and with daily temporal coverage. The temporal coverage spans all 
datasets with a combined 168-yr period (that is, 1979–2018, 1948–2018,  
and 1851–2012, respectively).

In addition, we use monthly gridded temperature and specific humidity 
observations. Three monthly temperature datasets are available with near-global 
spatial coverage and in monthly temporal resolution. These datasets include: the 
Berkeley Earth Surface Temperatures48 (BEST), the Cowtan and Way temperature 
reconstruction49 (CW14) based on HadCRUT450 and the National Aeronautics and 
Space Administration’s GISS Surface Temperature Analysis51 (GISTEMP, version 
3). All three datasets have global (CW14, 1850–2018) and near-global coverage 
(>99.4% in space after regridding to a 5° × 5° regular grid, BEST, 1956–2018,  
and GISTEMP v3, 1957–2018) obtained through a statistical reconstruction to 
infill observational gaps48,49,51 from station-based land temperatures blended  
with sea surface temperature measurements. Note that sea surface temperatures 

show slightly less warming than air temperatures above the sea52 (for example,  
a difference of around 0.031 °C in the 2009–2013 period relative to 1961–199052). 
This might imply very small differences compared with natural variability 
estimates from CMIP5 that are based on air temperatures and that the increase in 
the test statistic derived from blended observations is slightly too conservative.  
The fact that results based on observations and reanalyses are so similar suggests 
that the effect is small. For specific humidity, gridded observations are available 
only for land areas27. We use the Met Office HadISDH gridded global land surface 
humidity dataset42 (spanning 1973–2017), which features a reasonable coverage 
of global land areas. We mask the dataset to all grid cells that have a coverage of at 
least 95% in time. This yields a land humidity dataset with a maximum of 3% gaps 
in space at any particular time step, which still samples all major land regions of 
the globe (Fig. 2e), and where in fact 519 out of 540 time steps (96.1%) have less 
than 1.5% gaps in space (after regridding to a 5° × 5° regular grid; which yields 
520 grid cells with data). This mask is used also for fingerprint extraction where 
‘land humidity’ is included as a predictor. The small number of remaining gaps in 
the temperature and humidity gridded observations were filled with zeros (that is, 
corresponding to the monthly mean of the 1979–2005 reference period).

The processing of reanalysis and observational datasets follows exactly the 
processing of CMIP5 models. That is, all data are regridded to a regular 5° × 5° 
grid and the seasonal cycle (31-day rolling mean for daily reanalysis datasets, and 
monthly mean seasonal cycle for monthly gridded observations), estimated from 
the 1979–2005 period, is subtracted from each grid cell before further analysis.

In addition to monthly observations, we construct a daily observational 
dataset that spans 1981–2018 by combining a daily sea surface temperature dataset 
(OISST-AVHRR53) with daily observational land data (Berkeley Earth Gridded 
Daily Data48). Daily observations should be considered as experimental and are 
shown only for illustration purposes, because Berkeley Earth daily land data are 
still in development. All details regarding dataset generation and discussion of 
potential caveats are described in Supplementary Text 1.

Robustness analysis of AGMT detection statements. We assess the robustness 
of detection statements in Supplementary Text 3. This includes a detection and 
emergence analysis equivalent to Figs. 3 and 4 but for all datasets individually 
(Supplementary Text 3.1), an assessment of the robustness of detection statements 
against individual CMIP5 models used to construct natural variability estimates 
(Supplementary Text 3.2) and an analysis of the influence of low-frequency 
variability on the distribution of the test statistic (Supplementary Text 3.3).  
In addition, we show how detection results depend on the timescale of analysis  
in Extended Data Fig. 3.

Detection analysis based on EEI. An in-depth analysis and discussion of EEI-
based detection results is shown in Supplementary Text 4. The analysis includes a 
short description of the EEI target metric and its characteristics (Supplementary 
Text 4.1), additional description of EEI fingerprint extraction, analysis of 
fingerprints and EEI prediction errors (Supplementary Text 4.2), and a discussion 
and presentation of EEI-based detection results (Supplementary Text 4.3).

Data availability
All original CMIP5 data, reanalyses and observations used in this study are  
publicly available under the following URLs. CMIP5 model data: https://esgf-node. 
llnl.gov/projects/cmip5/; reanalysis: ERA-Interim (https://www.ecmwf.int/en/
forecasts/datasets/reanalysis-datasets/era-interim), NCEP/NCAR Reanalysis 
1 (https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html), 
NCEP/NCAR Reanalysis 2 (https://www.esrl.noaa.gov/psd/data/gridded/data.
ncep.reanalysis2.html), Twentieth Century Reanalysis (https://www.esrl.noaa.
gov/psd/data/20thC_Rean/); observations (monthly): GISTEMP temperature 
dataset, version 3 (https://data.giss.nasa.gov/gistemp/), Cowtan and Way (2014) 
temperature dataset, version 2 (https://www-users.york.ac.uk/~kdc3/papers/
coverage2013/series.html), Berkeley Earth Monthly Land+Ocean temperature 
dataset (http://berkeleyearth.org/data/), Met Office gridded land surface humidity 
dataset (HadISDH), version 4.0.0.2017f (https://www.metoffice.gov.uk/hadobs/
hadisdh/); observations (daily): Berkeley Earth Daily Land temperature dataset 
(Experimental, http://berkeleyearth.org/data/), NOAA Optimum Interpolation 
Sea Surface Temperature (OISST), AVHRR-Only (https://www.ncdc.noaa.gov/
oisst). All intermediate and derived data from these products (extracted CMIP5 
fingerprints and daily/monthly time series of the test statistic (that is, obtained 
by projecting CMIP5 models, reanalyses and observations individually onto 
the fingerprints)) are available at https://data.iac.ethz.ch/Sippel_et_al_2019_
DailyDetection/.

Code availability
All computer code to reproduce the main results and all figures and Extended Data 
figures is available at https://data.iac.ethz.ch/Sippel_et_al_2019_DailyDetection/.
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LettersNaTurE ClimaTE CHaNgE

Extended Data Fig. 1 | illustration of daily climate change detection method based on statistical learning. Statistical detection of externally forced 
climate change involves three steps. (1) A fingerprint ̂γ of external forcing on climate is extracted, using regularized linear regression, that relates model 
simulated spatial patterns of daily temperatures (Xmod) and a defined univariate target variable used as test statistic (denoted YYmod in the figure: for 
example annual global mean temperature, AGMT, or decadal-scale Earth’s Energy Imbalance). (2) Spatial patterns of daily temperatures (Xobs) are 
projected onto the fingerprint ̂γ to predict the target variable (denoted YŶobs). (3) A statistical significance test is used to infer whether external forcing 
on the climate system can be detected from the observed daily temperature pattern against the distribution of the test statistic under natural variability 
(denoted here P YŶ[ ]mod* ).
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Letters NaTurE ClimaTE CHaNgE

Extended Data Fig. 2 | Evaluation of annual global Mean temperature prediction performance. Evaluation of prediction performance for the Annual 
Global Mean Temperature (AGMT) target metric across the multi-model CMIP5 archive from (a) any individual day’s global temperature pattern  
(‘Mean Included’) and (b) the daily pattern of combined temperature and land humidity with the mean removed (‘Mean Removed’).
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LettersNaTurE ClimaTE CHaNgE

Extended Data Fig. 3 | time scale dependence of climate change detection. (a) Dependence of overall minimum of the test statistic on the time scale 
of aggregation, shown over different time periods (coloured dots and lines) for the reanalysis time series. Dashed lines show statistical fits of a linear 
model in log-log space to each period and its extrapolation to sub-daily time scales. The different time scales of aggregation are obtained by successively 
aggregating the daily test statistics to longer time scales. The CMIP5 1870-1950 distribution of the daily test statistic is shown for comparison. (b) The 
year of emergence (that is ‘detection’ at any time) of global climate as a function of time scale. The figure is derived by finding, for each time scale and 
backwards in time from 2018, the first year in which any point does not exceed the 97.5th percentile of the CMIP5 1870-1950 reference distribution  
of the daily test statistic from (a). Over the last 20 years, climate change would have been detectable in any individual 365-day period, whereas over the 
last 10 years any 180-day period was detectable in reanalyses and observations. Over the last seven years, detection was possible for any individual day, 
and would have likely been possible even for shorter time periods. Detection in the experimental daily observational dataset (OISST+BEST) occurs slightly 
earlier than in daily reanalyses.
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