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Abstract

Graph-structured data is ubiquitous in practice and often processed using graph
neural networks (GNNs). With the adoption of recent laws ensuring the “right to be
forgotten”, the problem of graph data removal has become of significant importance.
To address the problem, we introduce the first known framework for certified graph
unlearning of GNNs. In contrast to standard machine unlearning, new analytical
and heuristic unlearning challenges arise when dealing with complex graph data.
First, three different types of unlearning requests need to be considered, including
node feature, edge and node unlearning. Second, to establish provable performance
guarantees, one needs to address challenges associated with feature mixing during
propagation. The underlying analysis is illustrated on the example of simple graph
convolutions (SGC) and their generalized PageRank (GPR) extensions, thereby
laying the theoretical foundation for certified unlearning of GNNs. Our empirical
studies on six benchmark datasets demonstrate excellent performance-complexity
trade-offs when compared to complete retraining methods and approaches that do
not leverage graph information. For example, when unlearning 20% of the nodes
on the Cora dataset, our approach suffers only a 0.1% loss in test accuracy while
offering a 4-fold speed-up compared to complete retraining. Our scheme also
outperforms unlearning methods that do not leverage graph information with a 12%
increase in test accuracy for comparable time complexity. Our implementation is
available online.2

1 Introduction

Machine learning algorithms are used in many application domains, including biology, computer
vision and natural language processing. Relevant models are often trained either on third-party
datasets, internal or customized subsets of publicly available user data. For example, many computer
vision models are trained on images of Flickr users [1, 2], while many natural language processing
(e.g., sentiment analysis) and recommender systems heavily rely on repositories such as IMDB [3].
Furthermore, numerous ML classifiers in computational biology are trained on data from the UK
Biobank [4], which represents a collection of genetic and medical records of roughly half a million
patients [5]. With recent demands for increased data privacy, the above referenced and many other
data repositories are facing increasing demands for data removal. Certain laws are already in place
guaranteeing the rights of certified data removal, including the European Union’s General Data
Protection Regulation (GDPR), the California Consumer Privacy Act (CCPA) and the Canadian
Consumer Privacy Protection Act (CPPA) [6].

Removing user data from a dataset is insufficient to guarantee the desired level of privacy, since
models trained on the original data may still contain information about their patterns and features.

∗Equal contribution.
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Figure 1: Illustration of three different types of certified graph unlearning problems and a comparison
with the case of unlearning without graph information [2]. The colors of the nodes capture properties
of node features, and the red frame indicates node embeddings affected by 1-hop propagation. When
no graph information is used, the node embeddings are uncorrelated. However, for the case of graph
unlearning problems, removing one node or edge can affect the node embeddings of the entire graph
for a large enough number of propagation steps.

This consideration gave rise to a new research direction in machine learning, referred to as machine
unlearning [7], in which the goal is to guarantee that the user data information is also removed from
the trained model. Naively, one can retrain the model from scratch to meet the privacy demand, yet
retraining comes at a high computational cost and is thus not practical when accommodating frequent
removal requests. To avoid complete retraining, various methods for machine unlearning have been
proposed, including exact approaches [5, 8] as well as approximate methods which often come with
performance guarantees and are therefore certified unlearners [2, 6].

At the same time, graph-centered machine learning has received significant interest from the learning
community due to the ubiquity of graph-structured data. Usually, the data contains two sources
of information: Node features and graph topology. Graph Neural Networks (GNN) leverage both
types of information simultaneously and achieve state-of-the-art performance in numerous real-world
applications, including Google Maps [9], various recommender system [10], self-driving cars [11]
and bioinformatics [12]. Clearly, user data is involved in training the underlying GNNs and it may
therefore be subject to removal. However, it is still unclear how to perform unlearning of GNNs.

We take the first step towards solving the approximate unlearning problem for graphs by performing a
nontrivial theoretical analysis of some simplified GNN architectures. Inspired by the unstructured data
certified removal procedure [2], we propose the first known approach for certified graph unlearning.
Our main contributions are as follows. First, we introduce three types of data removal requests for
graph unlearning: Node feature unlearning, edge unlearning and node unlearning (see Figure 1).
Second, we derive theoretical guarantees for certified graph unlearning mechanisms for all three
removal cases on SGCs [13] and their GPR generalizations. In particular, we analyze L2-regularized
graph models trained with differentiable convex loss functions. The analysis is challenging since
propagation on graphs “mixes” node features. Our analysis reveals the intuitive observation that the
degree of the unlearned node plays an important role in the unlearning process, while the number of
propagation steps may or may not be important for different unlearning scenarios. To the best of our
knowledge, the theoretical guarantees established in this work are the first provable certified removal
studies for graphs. Furthermore, the proposed analysis also encompasses node classification and node
regression problems. Third, our empirical investigation on frequently used datasets for GNN learning
shows that our method offers an excellent performance-complexity trade-off. For example, when
unlearning 20% nodes on the Cora dataset, our method achieves a 4-fold speedup with only a 0.1%
drop in test accuracy compared to complete retraining. We also test our model on datasets for which
removal requests are more likely to arise, including the Amazon co-purchase networks. All proofs
and detailed discussions of the results are relegated to the Appendix.

2 Related Works

Machine unlearning and certified data removal. The paper [7] introduced the concept of machine
unlearning and proposed distributed learners for exact unlearning, while [8] introduced sharding-
based methods for unlearning. The authors of [5] described unlearning approaches for k-means
clustering. All the aforementioned works focused on exact unlearning: The unlearned model is
required to perform identically to a completely retrained model. As an alternative, [2] introduced a
probabilistic definition of unlearning motivated by differential privacy [14] and proposed the study
of “approximate” unlearning. This work was followed by [6], which studied the generalization
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Figure 2: Difference between machine unlearning (as defined in [2]) and Differential Privacy (DP).

performance of machine unlearning methods, and [15], which proposed heuristic-based selective
forgetting in deep networks. None of these works addressed the machine unlearning problem for
graphs. To the best of our knowledge, the only work in this direction is the preprint [16]. However, the
strategy proposed therein is sharding, which only works for exact unlearning and is hence completely
different from our approximate approach. Also, the approach in [16] relies on partitioning the
graph using community detection methods. It therefore implicitly makes the assumption that the
graph is homophilic which is not warranted in practice [17, 18]. In contrast, our method works for
arbitrary graphs and allows for approximate unlearning while ensuring excellent trade-offs between
performance and complexity.

Differential privacy (DP) and DP-GNNs. Machine unlearning, especially the approximation version
described in [2], is closely related to differential privacy [14]. In fact, differential privacy is a sufficient
for machine unlearning. If a model is differentially private, then the adversary cannot distinguish
whether the model is trained on the original dataset or on a dataset in which one data point is removed.
Hence, even without model updating, a DP model will automatically unlearn the removed data point
(see also the explanation in [5, 6] and Figure 2). Although DP is sufficient for unlearning, it is not
necessary. Also, most of the DP models suffer from a significant degradation in performance even
when the privacy constraint is loose [19, 20]. Machine unlearning can therefore be viewed as a
means to trade-off between performance and computational cost, with complete retraining and DP on
two different ends of the spectrum [2]. Several recent works proposed DP-GNNs [21, 22, 23, 24] –
however, even for unlearning one single node or edge, these methods require a very high “privacy
budget” to learn with sufficient accuracy.

3 Preliminaries

Notation. We reserve bold-font capital letters such as S for matrices and bold-font lowercase letters
such as s for vectors. We use ei to denote the ith standard basis, so that eTi S and Sei represent the ith
row and column vector of S, respectively. The absolute value | · | is applied component-wise on both
matrices and vectors. We also use the symbols 1 for the all-one vector and I for the identity matrix.
Furthermore, we let G = (V, E) stand for an undirected graph with node set V = [n] of size n and
edge set E . The symbols A and D are used to denote the corresponding adjacency and node degree
matrix, respectively. The feature matrix is denoted by X ∈ Rn×F and the features have dimension
F ; For binary classification, the label are summarized in Y ∈ {−1, 1}n, while the nonbinary case is
discussed in Section 5. The relevant norms are ∥ · ∥, the l2 norm, and ∥ · ∥F , the Frobenius norm.
Note that we use ∥ · ∥ for both row and column vectors to simplify the notation. The matrices A and
D should not be confused with the symbols for an algorithm A and dataset D.

Certified removal. Let A be a (randomized) learning algorithm that trains on D, the set of data
points before removal, and outputs a model h ∈ H, where H represents a chosen space of models.
The removal of a subset of points from D results in D′. For instance, let D = (X,Y). Suppose we
want to remove a data point, (eTi X, eTi Y) from D, resulting in D′ = (X′,Y′). Here, X′,Y′ are
equal to X,Y, respectively, except that the row corresponding to the removed data point is deleted.
Given ϵ, δ > 0, an unlearning algorithm M applied to A(D) is said to guarantee an (ϵ, δ)-certified
removal for A, where X denotes the space of possible datasets, if ∀T ⊆ H,D ⊆ X , i ∈ [n],

P (M(A(D),D,D \ D′) ∈ T ) ≤ eϵP (A(D′) ∈ T ) + δ,

P (A(D′) ∈ T ) ≤ eϵP (M(A(D),D,D \ D′) ∈ T ) + δ. (1)

This definition is related to (ϵ, δ)-DP [14] except that we are allowed to update the model based on
the removed point (see Figure 2). An (ϵ, δ)-certified removal method guarantees that the updated
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model M(A(D),D,D \ D′) is “approximately” the same as the model A(D′) obtained by retraining
from scratch. Thus, any information about the removed data D \ D′ is “approximately” eliminated
from the model. Ideally, we would like to design M such that it satisfies equation (1) and has a
complexity that is significantly smaller than that of complete retraining.

4 Certified Graph Unlearning

Unlike standard machine unlearning, certified graph unlearning uses datasets that contain not only
node features X but also the graph topology A, and therefore require different data removal pro-
cedures. We focus on node classification, for which the training dataset equals D = (X,YTr

,A).
Here, YTr

is identical to Y on rows indexed by points of the training set Tr while the remaining
rows are all zeros. Wlog, we assume that the training set comprises the first m nodes (i.e. Tr = [m]),
where m ≤ n. An unlearning method M achieves (ϵ, δ)-certified graph unlearning with algorithm A
if (1) is satisfied for D = (X,YTr

,A) and D′, which differ based on the type of graph unlearning:
Node feature unlearning, edge unlearning, and node unlearning.

4.1 Unlearning SGC

SGC is a simplification of GCN obtained by removing all nonlinearities from the latter model. This
leads to the following update rule: PKXW ≜ ZW, where W denotes the matrix of learnable
weights, K ≥ 0 equals the number of propagation steps and P denotes the one-step propagation
matrix. The standard choice of the propagation matrix is the symmetric normalized adjacency matrix
with self-loops, P = D̃−1/2ÃD̃−1/2, where Ã = A+I and D̃ equals the degree matrix with respect
to Ã. We will work with the asymmetric normalized version of P, P = D̃−1Ã. This choice is made
purely for analytical purposes and our empirical results confirm that this normalization ensures the
competitive performance of our unlearning methods.

The resulting node embedding is used for node classification by choosing an appropriate loss (i.e.,
logistic loss) and minimizing the L2-regularized empirical risk. For binary classification, W can
be replaced by a vector w; the loss equals L(w,D) =

∑
i:eT

i YTr ̸=0

(
ℓ(eTi Zw, eTi YTr

) + λ
2 ∥w∥2

)
,

where ℓ(eTi Zw, eTi YTr
) is a convex loss function that is differentiable everywhere. We also write

w⋆ = A(D) = argminw L(w,D), where the optimizer is unique whenever λ > 0.

Motivated by the unlearning approach from [2] pertaining to unstructured data, we design an un-
learning mechanism M for graphs that changes the trained model w⋆ to w− which represents
an approximation of the unique optimizer of L(w,D′). Denote the Hessian of L(·,D′) at w⋆

by Hw⋆ = ∇2L(w⋆,D′). The authors of [2] propose the following unlearning mechanism
for unlearning the mth training point: w− = M(w⋆,D,D \ D′) = w⋆ + H−1

w⋆∆guo, where
∆guo = λw⋆ + ∇ℓ(eTmXw⋆, eTmYTr

). In order to address graph unlearning, we generalize this
unlearning mechanism by replacing ∆guo with ∆ = ∇L(w⋆,D) −∇L(w⋆,D′). More precisely,
we have

∆ = λw⋆ +∇ℓ(eTmZw⋆, eTmYTr ) +

m−1∑
i=1

[
∇ℓ(eTi Zw

⋆, eTi YTr )−∇ℓ(eTi Z
′w⋆, eTi YTr )

]
. (2)

Note that our generalized unlearning mechanism matches the one in [2] when no graph information is
involved. This can be seen by setting K = 0, which leads to Z = X and eTi Z = eTi Z

′ ∀i ∈ [m− 1].
Hence, the third term in equation (2) is zero and thus ∆ = ∆guo. Note that the third term in
equation (2) is not zero in general when graph information is involved. This also highlights the main
difficulty of directly applying the analysis of [2] to graphs, as we need to take care of the third term
in equation (2). More details can be found in Appendix 7.2.

When ∇L(w−,D′) = 0, w− is the unique optimizer of L(·,D′). If ∇L(w−,D′) ̸= 0, infor-
mation about the removed data point remains present. One can show that the gradient resid-
ual norm ∥∇L(w−,D′)∥ determines the error of w− when used to approximate the true min-
imizer of L(·,D′) [2]. Hence, upper bounds on ∥∇L(w−,D′)∥ can be used to establish cer-
tified removal/unlearning guarantees. More precisely, assume that we have ∥∇L(w−,D′)∥ ≤
ϵ′ for some ϵ′ > 0. Furthermore, consider training with the noisy loss Lb(w,D) =∑

i:eT
i YTr ̸=0

(
ℓ(eTi Zw, eTi YTr ) +

λ
2 ∥w∥2

)
+bTw, where b is drawn randomly according to some

distribution. Then one can leverage the following result.
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Theorem 4.1 (Theorem 3 from [2]). Let A be the learning algorithm that returns the unique optimum
of the loss Lb(w,D). Suppose that ∥∇L(w−,D′)∥ ≤ ϵ′ for some computable bound ϵ′ > 0,
independent of b and achieved by M . If b ∼ N (0, c0ϵ

′/ϵ · I) with c0 > 0, then M satisfies (1) with
(ϵ, δ) for algorithm A applied to D′, where δ = 1.5e−c20/2.

Hence, if we are able to prove that ∥∇L(w−,D′)∥ is appropriately bounded for our graph setting
as well, then M will ensure (ϵ, δ)-certified graph unlearning. Our main technical contribution is to
establish such bounds for all three types of unlearning methods for graphs. For the analysis, we need
the loss function ℓ to satisfy the following properties.
Assumption 4.2. For any D, i ∈ [n] and w ∈ RF : (1) ∥∇ℓ(eTi Zw, eTi Y)∥ ≤ c (i.e. the norm of
∇ℓ is c-bounded); (2) ℓ′′ is γ2-Lipschitz; (3) ∥eTi X∥ ≤ 1; (4) ℓ′ is γ1-Lipschitz; (5) ℓ′ is c1-bounded.

Assumptions (1)-(3) are also needed for unstructured unlearning of linear classifiers [2]. To account
for graph-structured data, we require the additional assumptions (4)-(5) to establish worst-case
bounds, which can be avoided when working with data-dependent bounds (Section 5).

In all subsequent derivations, we assume that the unlearned data point corresponds to the mth node
for node feature and node unlearning; for edge unlearning, we wish to unlearn the edge (1,m).
Generalizations for multiple unlearning requests are discussed in Section 5.

4.2 Node feature unlearning for SGC

We start with the simplest type of unlearning – node feature unlearning – for SGCs. In this case,
we remove the node feature and label of one node from D, resulting in D′ = (X′,Y′

Tr
,A). The

matrices X′,Y′
Tr

are identical to X,YTr , respectively, except for the mth row of the former being
set to zero. Note that in this case, the graph structure remains unchanged.
Theorem 4.3. Suppose that Assumption 4.2 holds. For the node feature unlearning scenario, and for
Z = PKX and P = D̃−1Ã, we have

∥∇L(w−,D′)∥ = ∥(Hwη
−Hw⋆)H−1

w⋆∆∥ ≤ γ2(2cλ+ (cγ1 + λc1)D̃mm)2

λ4(m− 1)
, (3)

where Hwη
denotes the Hessian of L(·,D′) at wη = w⋆ + ηH−1

w⋆∆, for some η ∈ [0, 1]. A similar
conclusion holds for the case when we wish to unlearn node features of a node that is not in Tr. In
this case we just replace D̃mm by the degree of the corresponding node. This result shows that the
norm bound is large if the unlearned node has a large degree, since a large-degree node will affect
the values of many rows in Z. Our result also demonstrates that the norm bound is independent of
K, due to the fact that P is right stochastic. We provide next a sketch of the proof to illustrate the
analytical challenges of graph unlearning compared to those of unstructured data unlearning.

Although for node feature unlearning the graph topology does not change, all rows of Z = PKX
may potentially change due to graph information propagation. Thus, the original analysis from [2],
which corresponds to the special case Z = X, cannot be applied directly. There are two particular
challenges. The first is to ensure that the norm of each row of Z is bounded by 1. We provide
Lemma 7.1 to guarantee this. It is critical to choose P = D̃−1Ã since all other choices of degree
normalization lead to worse bounds (see Appendix 7.9). The second and more difficult challenge is
to bound ∥∆∥. When Z = X, the third term in equation (2) is exactly zero, in accordance with [2].
Due to graph propagation, we have to further bound the norm of the third term, which is highly
nontrivial since the upper bound is not allowed to grow with m or n. We first focus on one of
the m − 1 terms in the sum. Using Assumption 4.2, one can bound this term by ∥eTi (Z − Z′)∥
(we suppressed the dependency on λ, c, c1 and γ1 for simplicity). The key analytical novelty is to
explore the sparsity of Z − Z′ = PK(X − X′). Note that X − X′ is an all-zero matrix except
for its mth row being equal to eTmX. Thus, we have ∥eTi (Z − Z′)∥ = ∥eTi PK(X − X′)∥ =
∥eTi PKemeTmX∥ ≤ eTi P

Kem, where the last bound follows from the Cauchy-Schwartz inequality,
(3) in Assumption 4.2 and the fact that PK is a (component-wise) nonnegative matrix. Thus,
summing over i ∈ [m − 1] leads to the upper bound 1TPKem, since m ≤ n. Next, observe that

1TPKem = 1TPKD̃−1D̃em = 1T
(
D̃−1Ã

)K
D̃−1emD̃mm = 1T D̃−1

(
ÃD̃−1

)K
emD̃mm.

Since ÃD̃−1 is a left stochastic matrix, ÃD̃−1p is a probability vector whenever p is a probability
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vector. Clearly, em is a probability vector. Hence, (ÃD̃−1)Kem is also a probability vector. Since
all diagonal entries of D̃−1 are nonnegative and upper bounded by 1 given the self-loops for all nodes,
1T D̃−1p ≤ 1Tp = 1 for any probability vector p. Hence, the term above is bounded by D̃mm. The
bound depends on D̃mm and does not increase with m or K. Although node feature unlearning is the
simplest case of graph unlearning, our sketch of the proof illustrates the difficulties associated with
bounding the third term in ∆. Similar, but more complicated approaches are needed for the analysis
of edge unlearning and node unlearning.

4.3 Edge and node unlearning for SGC and GPR extension

Edge unlearning for SGC. We describe next the bounds for edge unlearning and highlight the
technical issues arising in the analysis of this setting. Here, we remove one edge (1,m) from D,

resulting in D′ = (X,YTr ,A
′). The matrix A′ is identical to A except for Ã′

1m = Ã′
m1 = 0.

Furthermore, D̃′ is the degree matrix corresponding to Ã′. Note that the node features and labels
remain unchanged.
Theorem 4.4. Suppose that Assumption 4.2 holds. For the edge unlearning scenario, and for
P = D̃−1Ã and Z = PKX, we have

∥∇L(w−,D′)∥ = ∥(Hwη
−Hw⋆)H−1

w⋆∆∥ ≤ 16γ2K
2 (cγ1 + c1λ)

2

λ4m
. (4)

Node unlearning for SGC. We now discuss the most difficult case, node unlearning. In this case,
one node is entirely removed from D, including node features, labels and edges. This results in
D′ = (X′,Y′

Tr
,A′). The matrices X′,Y′

Tr
are defined similarly to those described for node feature

unlearning. The matrix A′ is obtained by replacing the mth row and column in A by all-zeros
(similar changes are introduced in Ã, with Ãmm = 0). For simplicity, we let D̃′

mm = 1 as this
assumption does not affect the propagation results.
Theorem 4.5. Suppose that Assumption 4.2 holds. For the node unlearning scenario, and for
Z = PKX and P = D̃−1Ã, we have

∥∇L(w−,D′)∥ = ∥(Hwη
−Hw⋆)H−1

w⋆∆∥ ≤
γ2

(
2cλ+K (cγ1 + c1λ)

(
2D̃mm − 1

))2
λ4(m− 1)

. (5)

The main challenge arising in the proofs of Theorem 4.4 and 4.5 is bounding ∥∆∥ appropriately.
Unlike for the node feature unlearning case, now both graph structure and node features can change
due to the unlearning request. We establish a series of lemmas to characterize the differences between
Z and Z′, which play an important role in our proofs (see Appendix 7.6 and 7.7 for complete proofs).

Certified graph unlearning in GPR-based model. Our analysis can be extended to Generalized
PageRank (GPR)-based models [25]. The definition of GPR is

∑K
k=0 θkP

kS, where S denotes a node
feature or node embedding. The learnable weights θk are called GPR weights and different choices
for the weights lead to different propagation rules [26, 27]. GPR-type propagations include SGC
and APPNP rules as special cases [17]. If we use linearly transformed features S = XW̄, for some
weight matrix W̄, the GPR rule can be rewritten as ZW = 1

K+1

[
X,PX,P2X, · · · ,PKX

]
W.

This constitutes a concatenation of the steps from 0 up to K. The learnable weight matrix W ∈
R(K+1)F×C combines θk and W̄. These represent linearizations of GPR-GNNs [17] and SIGNs [28],
simple yet useful models for learning on graphs. For simplicity, we only describe the results for node
feature unlearning and delegate the analysis of edge and node unlearning to Appendix 7.8.
Theorem 4.6. Suppose that Assumption 4.2 holds and considers the node feature unlearning case.
For Z = 1

K+1

[
X,PX,P2X, · · · ,PKX

]
and P = D̃−1Ã, we have

∥∇L(w−,D′)∥ = ∥(Hwη
−Hw⋆)H−1

w⋆∆∥ ≤ γ2(2cλ+ (cγ1 + λc1)D̃mm)2

λ4(m− 1)
. (6)

Note that the resulting bound is the same as the bound in Theorem 4.3. This is due to the fact that we
used the normalization factor 1

K+1 in Z. Hence, given the same noise level, the GPR-based models
are more sensitive when we trained on the noisy loss Lb. Whether the general high-level performance
of GPR can overcompensate this drawback depends on the actual datasets considered.
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5 Empirical Aspect of Certified Graph Unlearning

Logistic and least-squares regression on graphs. For binary logistic regression, the loss equals
ℓ(eTi Zw, eTi YTr

) = − log(σ(eTi YTr
eTi Zw)), where σ(x) = 1/(1+exp(−x)) denotes the sigmoid

function. As shown in [2], the assumptions (1)-(3) in 4.2 are satisfied with c = 1 and γ2 = 1/4. We
only need to show that (4) and (5) of 4.2 hold as well. By standard analysis, we show that our loss
satisfies (4) and (5) in 4.2 with γ1 = 1/4 and c1 = 1. For multi-class logistic regression, one can
adapt the “one-versus-all other-classes” strategy which leads to the same result. For least-square
regression, since the hessian is independent of w our approach offers (0, 0)-certified graph unlearning
even without loss perturbations. See Appendix 7.3 for the complete discussion and derivation.

Sequential unlearning. In practice, multiple users may request unlearning. Hence, it is desirable
to have a model that supports sequential unlearning of all types of data points. One can leverage
the same proof as in [2] (induction coupled with the triangle inequality) to show that the resulting
gradient residual norm bound equals Tϵ′ at the T th unlearning request, where ϵ′ is the bound for a
single instance of certified graph unlearning. We relegate the complete proof in Appendix 7.17 for
completeness.

Data-dependent bounds. The gradient residual norm bounds derived for different types of certified
graph unlearning contain a constant factor 1/λ4, and may be loose in practice. Following [2], we
also examined data-dependent bounds.
Corollary 5.1 (Application of Corollary 1 in [2]). For all three graph unlearning scenarios, we have
∥∇L(w−,D′)∥ ≤ γ2∥Z′∥op∥H−1

w⋆∆∥∥Z′H−1
w⋆∆∥.

Hence, there are two ways to accomplish certified graph unlearning. If we do not allow any retraining,
we have to leverage the worst-case bound in Section 4 based on the expected number of unlearning
requests. Importantly, we will also need to constrain the node degree of nodes to be unlearned (i.e.,
do not allow for unlearning hub nodes), for both node feature and node unlearning. Otherwise, we
can select the noise standard deviation α, ϵ and δ and compute the corresponding “privacy budget”
αϵ/
√
2 log(1.5/δ). Once the accumulated gradient residual norm exceeds this budget, we retrain the

model from scratch. Note that this still greatly reduces the time complexity compare to retraining the
model for every unlearning request (see Section 6). We provide the pseudo-code for our method that
leverages data-dependent bounds for sequential unlearning in Appendix 7.4.

6 Experiment

We test our certified graph unlearning methods by verifying theorems and via comparisons with
baseline methods on benchmark datasets.

Settings. We test our methods on benchmark datasets for graph learning, including Cora, Citseer,
Pubmed [29, 30, 31] and large-scale dataset ogbn-arxiv [32] and Amazon co-purchase networks
Computers and Photo [33, 34]. We either use the public splitting or random splitting based on similar
rules as public splitting and focus on node classification. Following [2], we use LBFGS as the
optimizer for all methods due to its high efficiency on strongly convex problems. Unless specified
otherwise, we fix K = 2, δ = 10−4, λ = 10−2, ϵ = 1, α = 0.1 for all experiments, and average the
results over 5 independent trails with random initializations. Our baseline methods include complete
retraining with graph information after each unlearning request (SGC Retraining), complete retraining
without graph information after each unlearning request (No Graph Retraining), and Algorithm 2
in [2]. Additional details can be found in Appendix 7.18.

Dependency on node degrees. While an upper bound does not necessarily capture the dependency
of each term correctly, we show in Figure 4 (a) and (b) that our Theorem 4.5 and 4.6 indeed do so.
Here, each point corresponds to unlearning one node. We test for all nodes in the training set and fix
λ = 10−4, α = 0. Our results show that unlearning a large-degree node is more expensive in terms
of the privacy budget (i.e., it induces a larger gradient residual norm). The node degree dependency
is unclear if one merely examines Corollary 5.1. For other datasets, refer to Appendix 7.18. The
worst-case bounds are looser than the data-dependent bounds, matching the observation from [2].

Performance of certified graph unlearning methods. The performance of our proposed certified
graph unlearning methods, including the time complexity of unlearning and test accuracy after
unlearning, is shown in Figures 3 and 4. It shows that: (1) Leveraging graph information is necessary
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Figure 3: Comparison of proposed SGC node feature unlearning (left column), edge unlearning
(middle column) and node unlearning (right column) with baseline methods. The shaded regions
in the first row represent the standard deviation of test accuracy. In the second row, we show the
accumulated unlearning time as a function of the number of unlearned points. The time needed for
each unlearning procedure is given in Appendix 7.18.

Figure 4: (a), (b) Simulation verification of the result in Theorem 4.5 and 4.6 pertaining to node
degrees. (c), (d) Accumulated unlearning time as a function of the number of removed points.
The unlearning time of Algorithm 2 from [2] is often higher than that of our proposed certified
graph unlearning algorithms, because the number of retraining steps needed may be larger. (e), (f)
Performance of certified graph unlearning methods on different datasets. We set α = 10, λ = 10−4

for Computers and λ = 10−4 for ogbn-arxiv. The number of repeated trails is 3 due to large amount
of removed data. (g), (h) Tradeoff between privacy ϵ and performance. To match the number of
retraining cycles, we set αϵ = 0.1.

when designing unlearning methods for node classification tasks. (2) Our method supports unlearning
a large proportion of data points with a small loss in test accuracy. (3) Our method is around 4×
faster than completely retraining the model after each unlearning request. (4) Our methods have
robust performance regardless of the scale of the datasets (see Appendix 7.18).

Trade-off amongst privacy, performance and time complexity. As indicated in Theorem 4.1, there
exists a trade-off amongst privacy, performance and time complexity parameters. Compared to exact
unlearning (i.e. SGC retraining), approximate unlearning offers 4× speedups in time complexity
with competitive performance (see Figure 3). Figure 4 (c)-(d) shows the need for certified graph
unlearning compared to unstructured unlearning, where we achieve higher accuracy with comparable
or lower unlearning time. Note that it is possible to have a lower unlearning time for SGC unlearning
compared to unstructured unlearning, as the latter may require more frequent retraining updates
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due to reaching the preset privacy budget. We further examine this trade-off by fixing λ and δ, in
which case the trade-off is controlled by ϵ and α. The results are shown in Figure 4 (g) and (h) for
Cora and Citeseer respectively, where we set αϵ = 0.1. The test accuracy increases when we relax
our constraints on ϵ, which agrees with our intuition. Remarkably, we can still obtain competitive
performance with SGC Retraining when we require ϵ to be as small as 1. In contrast, one needs at
least ϵ ≥ 5 to unlearn even one node or edge by leveraging state-of-the-art DP-GNNs [24, 21] for
reasonable performance, albeit our tested datasets are different. This shows the benefit of our certified
graph unlearning method as opposed to both retraining from scratch and DP-GNNs. The code for
DP-GNNs is not publicly available, which prevents us from testing them on our datasets in a unified
treatment.

7 Conclusion

We introduced the first known framework for certified graph unlearning. In this setting, new analytical
and heuristic unlearning challenges had to be addressed due to the presence of complex graph feature
and topology data. Our analytical contributions pertain to novel proof techniques for certified
graph unlearning, while our empirical studies on six benchmark datasets established fundamental
performance-complexity trade-offs between unlearning and complete retraining.
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Appendix

7.1 Limitations and future research directions

Batch unlearning. In practice, it is likely that we not only require sequential unlearning, but also
batch unlearning: A number of users may request their data to be unlearned within a certain (short)
time frame. The approach in [2] can ensure certified removal even in this scenario. The generalization
of our approach for batch unlearning is also possible, but will be discussed elsewhere.

Nonlinear models. Also akin to what was described in [2], we can leverage pre-trained (nonlinear)
feature extractors or special graph feature transforms to further improve the performance of the
overall model. For example, Chien et al. [35] proposed a node feature extraction method termed
GIANT-XRT that greatly improves the performance of simple network models such as MLP and SGC.
If a public dataset is never subjected to unlearning, one can pre-train GIANT-XRT on that dataset and
use it for subsequent certified graph unlearning. If such a public dataset is unavailable, we have to
make the node feature extractor DP. In this case, we can either design a DP version of GIANT-XRT
or leverage the DP-GNN model described in Section 2. By applying Theorem 5 of [2], the overall
model can be shown to guarantee certified graph unlearning, where the parameters ϵ and δ now also
depend on the DP guarantees of the node feature extractor. There is also another line of work on
Graph Scattering Transforms (GSTs) [36, 37] for use as feature extractors for graph information.
Since a GST is a predefined mathematical transform and hence does not require training, it can be
easily combined with our approach. The rigorous analysis is delegated to future work.

Societal impacts. The authors believe that for medical and biological sciences, the right to be
forgotten may significantly set back potentially life-saving discoveries due to the need to have access
to many diverse data samples. But current trends seem to favor privacy over discovery rates and
timings. Hence, a compromise between data availability and the right to be forgotten has to be
established in the near future.

One current limitation of our work is that the newly proposed proof-techniques do not apply to
general graph neural networks where nonlinear activation functions are used. Nevertheless, our work
is the first step towards developing certified graph unlearning approaches for general GNNs.

7.2 Intuition behind the model update rule

Our unlearning mechanism proposed in Section 4 is

w− = w⋆ +
[
∇2L(w⋆,D′)

]−1
[∇L(w⋆,D)−∇L(w⋆,D′)] ,
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and the intuition behind the approach is as follows. Our goal is to have ∇L(w−,D′) = 0 for the
updated model. Using Taylor series expansion we have

∇L(w−,D′) ≈ ∇L(w⋆,D′) +∇2L(w⋆,D′)(w− −w⋆) = 0.

Therefore,

w− −w⋆ =
[
∇2L(w⋆,D′)

]−1
[0−∇L(w⋆,D′)]

w− = w⋆ +
[
∇2L(w⋆,D′)

]−1
[∇L(w⋆,D)−∇L(w⋆,D′)] .

The last equality holds due to the fact that w⋆ should be the unique optimizer for the strongly convex
loss L(w,D) over the entire dataset D.

7.3 Additional discussions

Details regarding Assumption 4.2. Assumptions (2), (4) and (5) in our model and that of [2] require
Lipschitz conditions with respect to the first argument of ℓ, but not the second. We also implicitly
assume that the second argument (corresponding to labels) does not effect the norm of gradients or
Hessians. One example that meets these constraints is the logistic loss: If ℓ(wTx, y) = ℓ(ywTx)
then all required assumptions hold.

Least-squares and logistic regression on graphs. Paralleling once again the results of [2], it is clear
that our certified graph unlearning mechanism can be used in conjunction with least-squares and
logistic regressions. For example, node classification can be performed using a logistic loss. The
node regression problem described in [38, 39] is related to least-squares regression. In particular,
least-squares regression uses the loss ℓ(eTi Zw, eTi YTr

) = (eTi Zw−eTi YTr
)2. Note that its Hessian

is of the form (eTi Z)
TeTi Z, which does not depend on w. Thus, based on the same arguments

presented in [2], our proposed unlearning method M offers (0, 0)-certified graph unlearning even
without loss perturbations.

For binary logistic regression, the loss equals ℓ(eTi Zw, eTi YTr
) = − log(σ(eTi YTr

eTi Zw)), where
σ(x) = 1/(1 + exp(−x)) denotes the sigmoid function. As shown in [2], the assumptions (1)-(3)
in 4.2 are satisfied with c = 1 and γ2 = 1/4. We only need to show that (4) and (5) of 4.2 hold as
well. Observe that ℓ′(x, eTi YTr ) =

(
σ(eTi YTrx)− 1

)
. Since the sigmoid function σ(·) is restricted

to lie in [0, 1], |ℓ′| is bounded by 1, which means that our loss satisfies (5) in 4.2 with c1 = 1. Based
on the Mean Value Theorem, one can show that σ(x) is maxx∈R |σ(x)′|-Lipschitz. Using some
simple algebra, one can also prove that σ(x)′ = σ(x)(1 − σ(x)) ⇒ maxx∈R |σ(x)′| = 1/4. Thus
our loss satisfies assumption (4) in 4.2 as well, with γ1 = 1/4. For multi-class logistic regression,
one can adapt the “one-versus-all other-classes” strategy which leads to the same result.

7.4 Algorithmic details

The pseudo-codes for training removal-enabled models and the removal procedure for the case of
binary classification are presented below. Note that this procedure is the same for all three types of
removal requests (node feature unlearning, edge unlearning and node unlearning). During training,
we add a random linear term to the training loss by sampling a Gaussian noise vector b. The choice
of standard deviation α is determined by the αϵ/

√
2 log(1.5/δ), as described in Section 5.

Algorithm 1 Training procedure
1: Input: Training data Z ∈ Rm×d, training labels Y ∈ Rm, loss ℓ, parameters α, λ > 0.
2: Sample the noise vector b ∼ N (0, α2Id).
3: w⋆ = argminw∈Rd

∑m
i=1

(
ℓ(zTi w, yi) +

λ
2 ∥w∥2

)
+ bTw.

4: return w⋆.

7.5 Proof of Theorem 4.3

Theorem. Under the node feature unlearning scenario, D = (X,YTr
,A) and D = (X′,Y′

Tr
,A).

Suppose Assumption 4.2 holds. For Z = PKX and P = D̃−1Ã, we have

∥∇L(w−,D′)∥ = ∥(Hwη −Hw⋆)H−1
w⋆∆∥ ≤ γ2(2cλ+ (cγ1 + λc1)D̃mm)2

λ4(m− 1)
. (7)
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Algorithm 2 Unlearning procedure
1: Input: Feature matrix X ∈ Rn×d, labels Y ∈ Rn, one-step propagation matrix P, loss ℓ, training

set indices Tr = {i1, i2, . . .}, sequence of removal requests Rm = {j1, j2, . . .}, parameters
K, ϵ, δ, γ2, α, λ > 0.

2: Compute node embedding after propagation Z = PKX.
3: Training set D = {zi, yi}i∈Tr .
4: Compute w using Algorithm 1 (D, ℓ, α, λ).
5: Accumulated gradient residual norm β = 0.
6: for j ∈ Rm do
7: Update the feature matrix X′ and propagation matrix P′ based on the removed point.
8: Compute new node embedding after propagation Z′ = P′KX′.
9: if j ∈ Tr then

10: Remove j from the training indices Tr = Tr \ {j}.
11: end if
12: Update the training set D′ = {z′i, yi}i∈Tr .
13: Compute ∆ = ∇L (w,D)−∇L (w,D′).
14: Compute H = ∇2L (w,D′).
15: Update the accumulated gradient residual norm β = β + γ2∥Z′∥op∥H−1∆∥∥Z′H−1∆∥.
16: if β > αϵ/

√
2 log(1.5/δ) then

17: Recompute w using Algorithm 1 (D′, ℓ, α, λ), β = 0.
18: else
19: w = w +H−1∆.
20: end if
21: end for
22: return w.

We need to ensure that the norm of each row of Z is bounded by 1. We state the following lemma in
support of this claim.
Lemma 7.1. Assume that ∥eTi S∥ ≤ 1, ∀i ∈ [n]. Then, ∀i ∈ [n],K ≥ 0, ∥eTi PKS∥ ≤ 1, where
P = D̃−1Ã.

Proof. Our proof is a nontrivial generalization and extension of the proof in [2]. For completeness,
we outline every step of the proof. We also emphasize novel approaches used to accommodate out
graph certified unlearning scenario.

Let G(w) = ∇L(w,D′). By the Taylor theorem, ∃η ∈ [0, 1] such that

G(w−) = G(w⋆ +H−1
w⋆∆) = G(w⋆) +∇G(w⋆ + ηH−1

w⋆∆)H−1
w⋆∆

(a)
= G(w⋆) +HwηH

−1
w⋆∆

= G(w⋆) + ∆ +Hwη
H−1

w⋆∆−∆

(b)
= 0 +Hwη

H−1
w⋆∆−∆

= HwηH
−1
w⋆∆−Hw⋆H−1

w⋆∆

= (Hwη
−Hw⋆)H−1

w⋆∆. (8)

In (a), we wrote Hwη
≜ ∇G(w⋆ + ηH−1

w⋆∆), corresponding to the Hessian at wη ≜ w⋆ + ηH−1
w⋆∆.

Equality (b) is due to our choice of ∆ = ∇L(w⋆,D) − ∇L(w⋆,D′) and the fact that w⋆ is the
minimizer of L(·,D). We would like to point out that our choice of ∆ is more general then that [2]:
Since unlearning one node may affect the entire node embedding Z, a generalization of ∆ is crucial.
When K = 0 (i.e., when no graph topology is included), one recovers ∆ from [2] as a special case of
our model. In the latter part of the proof, we will see how the graph setting makes the analysis more
intricate and complex.

By the Cauchy-Schwartz inequality, we have

∥G(w−)∥ ≤ ∥Hwη −Hw⋆∥∥H−1
w⋆∆∥. (9)
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Below we bound both norms on the right hand side separately. We start with the term ∥Hwη −Hw⋆∥.
Note that

∥∇2ℓ(eTi Z
′wη, e

T
i Y

′
Tr
)−∇2ℓ(eTi Z

′w⋆, e
T
i Y

′
Tr
)∥

= ∥
[
ℓ′′(eTi Z

′wη, e
T
i Y

′
Tr
)− ℓ′′(eTi Z

′w⋆, e
T
i Y

′
Tr
)
]
(eTi Z

′)TeTi Z
′∥

(a)

≤ γ2∥eTi Z′wη − eTi Z
′w⋆∥∥eTi Z′∥2

≤ γ2∥wη −w⋆∥∥eTi Z′∥3 = γ2∥ηH−1
w⋆∆∥∥eTi Z′∥3 ≤ γ2∥H−1

w⋆∆∥∥eTi Z′∥3. (10)

Here, (a) follows from the Cauchy-Schwartz inequality and the Lipschitz condition on ℓ′′ in Assump-
tion 4.2. Unlike the analysis in [2], we are faced with the problem of bounding the term ∥eTi Z′∥.
In [2] (where Z = X), a simple bound equals 1, which may be ontained via (3) in Assumption 4.2.
However, in our case, due to graph propagation this norm needs more careful examination and a
simple application of the Cauchy-Schwartz inequality does not suffice, as it would lead to a term
∥X∥op, where ∥ · ∥op denotes the operator norm. The simple worst case (i.e., when all rows of X are
identical) leads to a meaningless bound O(n).

By leveraging Lemma 7.1, we can further upper bound (10) according to

∥∇2ℓ(eTi Z
′wη, e

T
i Y

′
Tr
)−∇2ℓ(eTi Z

′w⋆, e
T
i Y

′
Tr
)∥ ≤ γ2∥H−1

w⋆∆∥∥eTi Z′∥3

(a)

≤ γ2∥H−1
w⋆∆∥, (11)

where (a) follows from Lemma 7.1.

As a result, we arrive at a bound for ∥Hwη
−Hw⋆∥ of the form

∥Hwη
−Hw⋆∥ ≤

m−1∑
i=1

∥∇2ℓ(eTi Z
′wη, e

T
i Y

′
Tr
)−∇2ℓ(eTi Z

′w⋆, e
T
i Y

′
Tr
)∥

≤ γ2(m− 1)∥H−1
w⋆∆∥. (12)

Next, we bound ∥H−1
w⋆∆∥. Since L(·,D′) is λ(m− 1)-strongly convex, we have ∥H−1

w⋆∥ ≤ 1
λ(m−1) .

For the norm ∥∆∥, we have

∆ = ∇L(w⋆,D)−∇L(w⋆,D′)

= λw⋆ +∇ℓ(eTmZw⋆, eTmYTr
) +

m−1∑
i=1

[
∇ℓ(eTi Zw

⋆, eTi YTr
)−∇ℓ(eTi Z

′w⋆, eTi YTr
)
]
. (13)

The third term does not appear in [2], since when K = 0, Z = X and Z′ = X′ are identical
except for the mth row. In the graph certified unlearning scenario, even removing one node feature
can make the entire node embedding matrix Z change in every row, which creates new analytical
challenges. For example, consider the case X = [x1, x2, x3]

T , where we have a graph with three
nodes, each with a 1-dimensional feature. Consider the fully connected graph (i.e., all entries in P set
to 1/3). Then, unlearning node 1 results in Z′ = [0, x2, x3]

T for unstructured unlearning. However,
Z′ = [(x2 + x3)/3, (x2 + x3)/3, (x2 + x3)/3]

T for the case of L = 1, which is completely different
from Z = [(x1 + x2 + x3)/3, (x1 + x2 + x3)/3, (x1 + x2 + x3)/3]

T . Hence, the analysis in [2]
cannot be directly applied to graphs, as Z′ changes in more than just one row compared to Z while
unlearning a node feature.

By Minkowski’s triangle inequality, we only need to bound the norm of the three individual terms in
order to bound the norm of ∆. For ∥w⋆∥, since w⋆ is the global optimum of L(·,D), we have

0 = ∇L(w⋆,D) =

m∑
i=1

∇ℓ(eTi Zw
⋆, eTi YTr

) + λmw⋆. (14)

By (1) in Assumption 4.2, we have

∥w⋆∥ =
∥
∑m

i=1 ∇ℓ(eTi Zw
⋆, eTi YTr

)∥
λm

≤ c

λ
. (15)
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Once again, by (1) in Assumption 4.2, we have

∥∇ℓ(eTmZw⋆, eTmYTr
)∥ ≤ c. (16)

A bound for the last term is established in the last step, as described below.

∥
m−1∑
i=1

[
∇ℓ(eTi Zw

⋆, eTi YTr
)−∇ℓ(eTi Z

′w⋆, eTi YTr
)
]
∥

≤
m−1∑
i=1

∥∇ℓ(eTi Zw
⋆, eTi YTr

)−∇ℓ(eTi Z
′w⋆, eTi YTr

)∥

=

m−1∑
i=1

∥ℓ′(eTi Zw⋆, eTi YTr
)(eTi Z)

T − ℓ′(eTi Z
′w⋆, eTi YTr

)(eTi Z
′)T ∥. (17)

Observe that

∥ℓ′(eTi Zw⋆, eTi YTr
)(eTi Z)

T − ℓ′(eTi Z
′w⋆, eTi YTr

)(eTi Z
′)T ∥

≤ ∥ℓ′(eTi Zw⋆, eTi YTr
)(eTi Z)

T − ℓ′(eTi Z
′w⋆, eTi YTr

)(eTi Z)
T ∥

+ ∥ℓ′(eTi Z′w⋆, eTi YTr
)(eTi Z)

T − ℓ′(eTi Z
′w⋆, eTi YTr

)(eTi Z
′)T ∥ (18)

The first term can be bounded as

∥ℓ′(eTi Zw⋆, eTi YTr
)(eTi Z)

T − ℓ′(eTi Z
′w⋆, eTi YTr

)(eTi Z)
T ∥

≤
∣∣ℓ′(eTi Zw⋆, eTi YTr

)− ℓ′(eTi Z
′w⋆, eTi YTr

)
∣∣ ∥(eTi Z)T ∥

(a)

≤ γ1∥eTi Zw⋆ − eTi Z
′w⋆∥∥(eTi Z)T ∥

(b)

≤ γ1∥(eTi Z− eTi Z
′)T ∥∥w⋆∥

(c)

≤ cγ1
λ

∥(eTi Z− eTi Z
′)T ∥. (19)

Here, (a) is due to (4) in Assumption 4.2, while (b) follows from Lemma 7.1 and the Cauchy-Schwartz
inequality. Inequality (c) is a consequence of the bound for ∥w∥ that we previously derived.

The second term can be bounded as

∥ℓ′(eTi Z′w⋆, eTi YTr
)(eTi Z)

T − ℓ′(eTi Z
′w⋆, eTi YTr

)(eTi Z
′)T ∥

≤
∣∣ℓ′(eTi Z′w⋆, eTi YTr

)
∣∣ ∥(eTi Z)T − (eTi Z

′)T ∥
(a)

≤ c1∥(eTi Z)T − (eTi Z
′)T ∥. (20)
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For the inequality in (a), we used (5) from Assumption 4.2. Put together, we have

∥
m−1∑
i=1

[
∇ℓ(eTi Zw

⋆, eTi YTr
)−∇ℓ(eTi Z

′w⋆, eTi YTr
)
]
∥

≤
m−1∑
i=1

[(cγ1
λ

+ c1

)
∥(eTi Z)T − (eTi Z

′)T ∥
]

=
(cγ1

λ
+ c1

)m−1∑
i=1

∥eTi (Z− Z′)∥

=
(cγ1

λ
+ c1

)m−1∑
i=1

∥(eTi PK(X−X′))∥

=
(cγ1

λ
+ c1

)m−1∑
i=1

∥(eTi PKD̃−1D̃(X−X′))∥

(a)
=
(cγ1

λ
+ c1

)m−1∑
i=1

∥(eTi PKD̃−1D̃emeTmX)∥

(b)

≤
(cγ1

λ
+ c1

)m−1∑
i=1

∥eTi PKD̃−1D̃em∥∥eTmX∥

(c)

≤
(cγ1

λ
+ c1

)m−1∑
i=1

∥eTi PKD̃−1D̃em∥

=
(cγ1

λ
+ c1

)m−1∑
i=1

∥eTi PKD̃−1emD̃mm∥

(d)
=
(cγ1

λ
+ c1

)m−1∑
i=1

eTi P
KD̃−1emD̃mm

(e)

≤
(cγ1

λ
+ c1

)
1TPKD̃−1emD̃mm

(f)
=
(cγ1

λ
+ c1

)
1T D̃−1pD̃mm

(g)

≤
(cγ1

λ
+ c1

)
D̃mm. (21)

Inequality (a) follows from the fact that X′ is identical to X except for the last row and column, which
are set to all-zeros. Thus, X−X′ is a matrix with rows equal to zero-vectors, except for the mth which
equals the mth row of X. Inequality (b) follows from the Cauchy-Schwartz inequality. Inequality (c)
is a result of (3) in Assumption 4.2, while (d) is a consequence of the fact that eTi P

KD̃−1em is the
value in the ith row and mth column of the matrix PKD̃−1. Also, it is obvious that this matrix is
entry-wise nonnegative. Inequality (e) is due to the fact that PKD̃−1 is entry-wise nonnegative. In
(f), p stands for a probability vector and (f) holds since

PKD̃−1 =
(
D̃−1Ã

)K
D̃−1 = D̃−1(ÃD̃−1)K , (22)

and ÃD̃−1 is a left stochastic matrix. Inequality (g) is a consequence of the observation that the
maximum entry in D̃−1 is at most 1 and that the latter is a diagonal matrix. Hence, 1T D̃−1p ≤ 1Tp.
Also, 1Tp = 1 by the definition of the probability vector.

Combining the bounds, we obtain

∥∆∥ ≤ c+ c+
(cγ1

λ
+ c1

)
D̃mm =

2cλ+ (cγ1 + λc1)D̃mm

λ
. (23)
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Including the bound on ∥H−1
w⋆∥ and (12), we then obtain

∥G(w−)∥ ≤ γ2(m− 1)∥H−1
w⋆∆∥2 ≤ γ2(m− 1)

(
2cλ+(cγ1+λc1)D̃mm

λ

λ(m− 1)

)2

=
γ2(2cλ+ (cγ1 + λc1)D̃mm)2

λ4(m− 1)
. (24)

This completes the proof.

7.6 Proof of Theorem 4.4

Theorem. For the edge unlearning case, we have D = (X,YTr
,P) and D′ = (X,YTr

,P′). If
P = D̃−1Ã and Z = PKX, then we have

∥∇L(w−,D′)∥ = ∥(Hwη −Hw⋆)H−1
w⋆∆∥ ≤ 16γ2K

2 (cγ1 + c1λ)
2

λ4m
. (25)

Similar to what holds for the node feature unlearning case, Theorem 4.4 still holds when neither of the
two end nodes of the removed edge belongs to Tr. Since P ′ is a right stochastic matrix, Lemma 7.1
still applies. Thus, we only need to describe how to bound ∥∆∥. Following an approach similar to the
previously described one, we have ∥∆∥ ≤

(
cγ1

λ + c1
)∑m

i=1

∑n
j=1 ∥eTi (PK − P′K)ej∥. We also

need the following technical lemmas.

Lemma 7.2. For both edge and node unlearning, we have |eTi
[
PK − (P′)K

]
ej | ≤∑K

k=1 e
T
i (P

′)k−1 |P−P′|PK−kej , ∀i, j ∈ [n], K ≥ 1.

Lemma 7.3. For edge unlearning, we have 1TP′k−1|P−P′|PK−k1 ≤ 4, ∀k ∈ [K].

Combining the two lemmas and after some algebraic manipulation, we arrive at the desired result. It
is not hard to see that |P−P′| has only two nonzero rows, which correspond to the unlearned edge.
One can again construct a left stochastic matrix Ã′D̃′−1

and a right stochastic matrix P which lead
to the result of Lemma 7.3.

Proof. The theorem can be proved as follows. From the previous proof we have

∥G(w−)∥ ≤ ∥Hwη
−Hw⋆∥∥H−1

w⋆∥∥∆∥ ≤ γ2
∥∆∥2

λ2m
. (26)

Since the first term ∥Hwη
−Hw⋆∥ only involved the updated dataset, the upper bound for this term

proved for node feature unlearning still holds. The term ∥H−1
w⋆∥ can again be bounded using the fact

that L(·,D′) is λm-strongly convex. The main difference between node feature and edge unlearning
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lies in the bound for ∆. By definition,

∆ =∇L(w⋆,D)−∇L(w⋆,D′)

=

m∑
i=1

[
∇ℓ(eTi Zw

⋆, eTi YTr
)−∇ℓ(eTi Z

′w⋆, eTi YTr
)
]
, and

∥∆∥ ≤
(cγ1

λ
+ c1

) m∑
i=1

∥(Z− Z′)Tei∥

=
(cγ1

λ
+ c1

) m∑
i=1

∥(PKX−P′KX)Tei∥

=
(cγ1

λ
+ c1

) m∑
i=1

∥eTi (PK −P′K)X∥

=
(cγ1

λ
+ c1

) m∑
i=1

∥eTi (PK −P′K)

n∑
j=1

eje
T
j X∥

≤
(cγ1

λ
+ c1

) m∑
i=1

n∑
j=1

∥eTi (PK −P′K)eje
T
j X∥

≤
(cγ1

λ
+ c1

) m∑
i=1

n∑
j=1

∥eTi (PK −P′K)ej∥∥eTj X∥

≤
(cγ1

λ
+ c1

) m∑
i=1

n∑
j=1

∥eTi (PK −P′K)ej∥ (27)

By Lemma 7.2 we have(cγ1
λ

+ c1

) m∑
i=1

n∑
j=1

∥eTi (PK −P′K)ej∥

≤
(cγ1

λ
+ c1

) m∑
i=1

n∑
j=1

K∑
k=1

eTi P
′k−1|P−P′|PK−kej

≤
(cγ1

λ
+ c1

) K∑
k=1

1TP′k−1|P−P′|PK−k1. (28)

Using Lemma 7.3 we arrive at ∥∆∥ ≤
(
cγ1

λ + c1
)
4K. Plugging this expression into (26) completes

the proof.

7.7 Proof of Theorem 4.5

Theorem. Under the node unlearning scenario, we have D = (X,YTr ,P) and D = (X′,Y′
Tr
,P′).

Suppose also that Assumption 4.2 holds. For Z = PKX and P = D̃−1Ã, we have

∥∇L(w−,D′)∥ = ∥(Hwη
−Hw⋆)H−1

w⋆∆∥ ≤
γ2

(
2cλ+K (cγ1 + c1λ)

(
2D̃mm − 1

))2
λ4(m− 1)

. (29)

Again, the main challenge is to bound ∆. First we observe that (P′)KX′ = (P′)KX. This holds be-
cause node m is removed from the graph in D′, and thus its corresponding node features do not affect
Z′. Similarly to the proof Lemma 7.2, we first derive the bound

∑K
k=1 1

T (P′)k−1 |P−P′|PK−k1.
For each term, 1T (P′)k−1 |P−P′|PK−k1 =

∑n
l=1 1

T (P′)k−1ele
T
l |P−P′|PK−k1. To pro-

ceed, we need the following two lemmas.

Lemma 7.4. For node unlearning and ∀k ∈ [K] and ∀l ∈ [n], 1T (P′)k−1(D̃′)−1el ≤ 1.
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Lemma 7.5. For node unlearning and ∀k ∈ [K],
∑n

l=1 e
T
l D̃

′ |P−P′|PK−k1 ≤ 2D̃mm − 1.

These two lemmas give rise to the term K(2D̃mm − 1) in the bound of Theorem 4.5 and the rest of
the analysis is similar to that of the previous cases. Lemma 7.5 is rather technical, and relies on the
following proposition that exploits the structure of |P−P′|.

Proposition 7.6. For node unlearning and ∀i, j ̸= m, eTi |P−P′| ej = eTi (P′ −P) ej . For i =
m or j = m, eTi |P−P′| ej = eTi Pej .

Proof. The proof is similar to the proof of Theorem 4.3, although several parts need modifications.

First, the result of Lemma 7.1 needs to be replaced by the following claim.

Lemma 7.7. Assume that ∥eTi S∥ ≤ 1, ∀i ̸= m and that eTmS = 0T . Then ∀i ∈ [n], K ≥ 0, we
have ∥eTi (P′)KS∥ ≤ 1, where P = D̃−1Ã and P′ = (D̃′)−1Ã′.

Next we have to modify the proof regarding the bound of ∥∆∥. Following a proof similar to that of
Theorem 4.3, we have

∥∆∥ ≤ 2c+
(cγ1

λ
+ c1

)m−1∑
i=1

∥(Z− Z′)Tei∥. (30)

Plugging in the expressions for Z and Z′ leads to

m−1∑
i=1

∥(Z− Z′)Tei∥ =

m−1∑
i=1

∥(PKX− (P′)KX′)Tei∥

(a)
=

m−1∑
i=1

∥(PKX− (P′)KX)Tei∥ =

m−1∑
i=1

∥(
[
PK − (P′)K

]
X)Tei∥

(b)
=

m−1∑
i=1

∥eTi
[
PK − (P′)K

] n∑
j=1

eje
T
j X∥

(c)

≤
m−1∑
i=1

n∑
j=1

∥eTi
[
PK − (P′)K

]
eje

T
j X∥

(d)

≤
m−1∑
i=1

n∑
j=1

∥eTi
[
PK − (P′)K

]
ej∥∥eTj X∥

(e)

≤
m−1∑
i=1

n∑
j=1

∥eTi
[
PK − (P′)K

]
ej∥. (31)

The equality (a) is due to the fact that (P′)KX′ = (P′)KX, as the mth row and column of (P′)K

are all-zeros. Thus, changing the last row of X′ makes no difference of (P′)KX′. Equation
(b) is a consequence of the fact that I =

∑n
j=1 eje

T
j . Inequality (c) follows from Minkowski’s

inequality, while (d) follows from the Cauchy-Schwartz inequality. Inequality (e) holds based on (3)
in Assumption 4.2.
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By Lemma 7.2, we can proceed with our analysis as follows:

m−1∑
i=1

∥(Z− Z′)Tei∥

≤
m−1∑
i=1

n∑
j=1

∥eTi
[
PK − (P′)K

]
ej∥

(a)

≤
m−1∑
i=1

n∑
j=1

K∑
k=1

eTi (P
′)k−1 |P−P′|PK−kej

≤
K∑

k=1

1T (P′)k−1 |P−P′|PK−k1, (32)

where (a) is due to Lemma 7.2 and the fact that eTi Pej is a scalar, equal to the ith row jth column of
the matrix P.

Next, we bound each term 1T (P′)k−1 |P−P′|PK−k1 separately. For k ∈ [K], we have

1T (P′)k−1 |P−P′|PK−k1

= 1T (P′)k−1(D̃′)−1D̃′ |P−P′|PK−k1

= 1T (P′)k−1(D̃′)−1
n∑

l=1

ele
T
l D̃

′ |P−P′|PK−k1

=

n∑
l=1

(
1T (P′)k−1(D̃′)−1el

)(
eTl D̃

′ |P−P′|PK−k1
)
. (33)

Note that for each index l, the corresponding term in the sum is just a product of two scalars. Let first
analyze 1T (P′)k−1(D̃′)−1el. This term can be bounded as

1T (P′)k−1 |P−P′|PK−k1

=

n∑
j=1

(
1T (P′)k−1(D̃′)−1ej

)(
eTj D̃

′ |P−P′|PK−k1
)

(a)

≤
n∑

j=1

eTj D̃
′ |P−P′|PK−k1. (34)

where (a) follows from Lemma 7.4.

We now turn our attention to the term eTl D̃
′ |P−P′|PK−k1, which can be bounded by Lemma 7.5

as

1T (P′)k−1 |P−P′|PK−k1

≤
n∑

l=1

eTl D̃
′ |P−P′|PK−k1

≤ 2D̃mm − 1. (35)
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Using these two bounds in (32) gives

m−1∑
i=1

∥(Z− Z′)Tei∥

≤
m−1∑
i=1

n∑
j=1

∥eTi
[
PK − (P′)K

]
ej∥

≤
K∑

k=1

1T (P′)k−1 |P−P′|PK−k1

≤
K∑

k=1

(2D̃mm + 1) = K(2D̃mm − 1). (36)

Using this bound in the expression for ∥∆∥ we obtain

∥∆∥ ≤ 2c+
(cγ1

λ
+ c1

)m−1∑
i=1

∥(Z− Z′)Tei∥

≤ 2c+
(cγ1

λ
+ c1

)
K
(
2D̃mm − 1

)
⇒ ∥G(w−)∥ ≤ ∥Hwη

−Hw⋆∥∥H−1
w⋆∆∥

≤ γ2(m− 1)∥H−1
w⋆∆∥2

≤ γ2(m− 1)

2c+
(
cγ1

λ + c1
)
K
(
2D̃mm − 1

)
λ(m− 1)

2

=
γ2

(
2cλ+K (cγ1 + c1λ)

(
2D̃mm − 1

))2
λ4(m− 1)

. (37)

This completes the proof.

7.8 Proof of Theorem 4.6

Theorem. In the node feature unlearning scenario, we are given D = (X,YTr
,A) and D =

(X′,Y′
Tr
,A). Suppose that Assumption 4.2 holds. For Z = 1

K+1

[
X,PX,P2X, · · · ,PKX

]
and

P = D̃−1Ã, we have

∥∇L(w−,D′)∥ = ∥(Hwη
−Hw⋆)H−1

w⋆∆∥ ≤ γ2(2cλ+ (cγ1 + λc1)D̃mm)2

λ4(m− 1)
. (38)

Proof. The proof is almost identical to the proof of Theorem 4.3. We only need to bound the norms
of the terms in Z. We start by modifying Lemma 7.1 for the GPR case.

Lemma 7.8. Assume that ∥eTi S∥ ≤ 1, ∀i ∈ [n]. Then ∀i ∈ [n], K ≥ 0, we have
∥ 1√

K+1
eTi
[
S,PS,P2S, · · · ,PKS

]
∥ ≤ 1, where P = D̃−1Ã.

Another part of the proof that needs to be changed is to establish a bound on

m−1∑
i=1

[
∇ℓ(eTi Zw

⋆, eTi YTr
)−∇ℓ(eTi Z

′w⋆, eTi YTr
)
]
. (39)
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Following a proof similar to that of Theorem 4.3, we have

∥
m−1∑
i=1

[
∇ℓ(eTi Zw

⋆, eTi YTr )−∇ℓ(eTi Z
′w⋆, eTi YTr )

]
∥

≤
m−1∑
i=1

[(cγ1
λ

+ c1

)
∥(eTi Z)T − (eTi Z

′)T ∥
]

=
(cγ1

λ
+ c1

)m−1∑
i=1

∥(Z− Z′)Tei∥

=
(cγ1

λ
+ c1

)m−1∑
i=1

∥( 1

K + 1

[
X−X′,P(X−X′), · · · ,PK(X−X′)

]
)Tei∥

=
(cγ1

λ
+ c1

)m−1∑
i=1

∥( 1

K + 1

[
emeTmX,PemeTmX, · · · ,PKemeTmX

]
)Tei∥

=
(cγ1

λ
+ c1

)m−1∑
i=1

∥ 1

K + 1

[
eTi emeTmX, eTi PemeTmX, · · · , eTi PKemeTmX

]T ∥

≤
(cγ1

λ
+ c1

)m−1∑
i=1

∥ 1

K + 1

[
eTi em, eTi Pem, · · · , eTi PKem

]T ∥∥(eTmX)T ∥

≤
(cγ1

λ
+ c1

)m−1∑
i=1

∥ 1

K + 1

[
eTi em, eTi Pem, · · · , eTi PKem

]T ∥

(a)

≤
(cγ1

λ
+ c1

)m−1∑
i=1

1

K + 1

K∑
k=1

eTi P
kem

≤
cγ1

λ + c1

K + 1

K∑
k=1

1TPkem =
cγ1

λ + c1

K + 1

K∑
k=1

1TPkD̃−1D̃em =
cγ1

λ + c1

K + 1

K∑
k=1

1TPkD̃−1emD̃mm

(b)
=

cγ1

λ + c1

K + 1

K∑
k=1

1T D̃−1p(k)D̃mm

≤
cγ1

λ + c1

K + 1

K∑
k=1

1Tp(k) ˜Dmm =
cγ1

λ + c1

K + 1
×KD̃mm

≤ (
cγ1
λ

+ c1)D̃mm, (40)

where (a) is due to the fact that the ℓ1 norm is an upper bound for the ℓ2 norm. Also note that
eTi em = 0,∀i ̸= m. In (b), ∀k ∈ [K], p(k) are probability vectors. This completes the proof.

Remark. Note that the GPR extension for the edge and node unlearning cases can be derived through
a similar analysis. One can also see that the key step is inequality (a), which still holds for the edge
and node unlearning cases. The results are similar to Theorem 4.4 and Theorem 4.5, except that the
definition of Z is replaced by one corresponding to the GPR case, as in Theorem 4.6.

7.9 Proof of Lemma 7.1

Lemma. Assume that ∥eTi S∥ ≤ 1, ∀i ∈ [n]. Then ∀i ∈ [n], K ≥ 0, we have ∥eTi PKS∥ ≤ 1,
where P = D̃−1Ã.

Proof. We prove this lemma by induction. Let Z(k) = PkS. For the base case k = 0 it is true by
assumption that ∥eTi S∥ ≤ 1 ∀i ∈ [n]. Assume next that the claim is true for the case k = K − 1.
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Then we have

∥eTi PKS∥ = ∥eTi PZ(K−1)∥ = ∥ 1

D̃ii

∑
j:Ãij=1

eTj Z
(K−1)∥ ≤ 1

D̃ii

∑
j:Ãij=1

∥eTj Z(K−1)∥

(a)

≤ 1

D̃ii

∑
j:Ãij=1

1 =
1

D̃ii

× D̃ii = 1, (41)

where (a) is based on the induction hypothesis for k = K − 1.

Remark: Note that if we choose another propagation matrix P compared to the one used in the SGC
analysis, the above expression for K = 1 becomes

∥eTi PS∥ = ∥ 1√
D̃ii

∑
j:Ãij=1

eTj S√
D̃jj

∥ ≤ 1√
D̃ii

∑
j:Ãij=1

∥eTj S∥√
D̃jj

≤ 1√
D̃ii

∑
j:Ãij=1

1√
D̃jj

. (42)

We cannot easily simplify the sum
∑

j:Ãij=1
1√
D̃jj

. One way to approach the problem is to simply

use the fact that the degree of a node is at least 1 and can thusbe further upper bounded by D̃ii. This
leads to the bound

∥eTi PS∥ ≤
√

Dii. (43)
Obviously, this bound is worse than the one in Lemma 7.1 even when K = 1. For general K, there
will be an additional exponent K/2 for the maximal degree, which is undesirable. Nevertheless, our
bound is tight since for the worst case of a star graph with a center at node i, so that Djj = 2 for
all j ̸= i. The same argument applies for other degree normalizations. Thus it is critical to choose
P = D̃−1Ã to obtained the desired bound in Lemma 7.1.

7.10 Proof of Lemma 7.2

Lemma. For either the edge or node unlearning case, and ∀i, j ∈ [n], K ≥ 1, we have

|eTi
[
PK − (P′)K

]
ej | ≤

K∑
k=1

eTi (P
′)k−1 |P−P′|PK−kej . (44)

Proof. The proof consist of two parts. We first show that

PK − (P′)K =

K∑
k=1

(P′)k−1 (P−P′)PK−k.

Then we proceed to analyze the absolute values of all terms in the sum.

The proof of the first part follows from a telescoping property for the sum,
K∑

k=1

(P′)k−1 (P−P′)PK−k =

K∑
k=1

(P′)k−1PK−k+1 − (P′)kPK−k

= (P′)0PK − (P′)1PK−1 + (P′)1PK−1 − (P′)2PK−2 + · · ·+ (P′)K−1P1 − (P′)KP0

= PK − (P′)K . (45)

Next, note that both P′ and P are nonnegative matrices, and the same is true of their kth powers,
k ≥ 2. Thus, ∣∣eTi [PK − (P′)K

]
ej
∣∣ = ∣∣∣∣∣

K∑
k=1

eTi (P
′)k−1 (P−P′)PK−kej

∣∣∣∣∣
≤

K∑
k=1

eTi (P
′)k−1 |P−P′|PK−kej . (46)

This completes the proof.
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7.11 Proof of Lemma 7.3

Lemma. For the edge unlearning scenario, and ∀k ∈ [K], we have

1TP′k−1|P−P′|PK−k1 ≤ 4. (47)

Proof. Let us start by analyzing the matrix |P−P′| = |D̃−1Ã− D̃′−1
Ã′|. Note that all its rows

are zeros except for the 1st and mth row. The first row of the matrix equals

eT1 |P−P′|

=

[(
1

d1 − 1
− 1

d1

)
Ã11, . . . ,

(
1

d1 − 1
− 1

d1

)
Ã1(m−1),

1

d1
,

(
1

d1 − 1
− 1

d1

)
Ã1(m+1), . . .

]
=

[(
1

d1(d1 − 1)

)
Ã11, . . . ,

(
1

d1(d1 − 1)

)
Ã1(m−1),

1

d1
,

(
1

d1(d1 − 1)

)
Ã1(m+1), . . .

]
=

[(
1

d1(d1 − 1)

)
Ã11, . . . ,

(
1

d1(d1 − 1)

)
Ã1(m−1),

1

d1(d1 − 1)
,

(
1

d1(d1 − 1)

)
Ã1(m+1), . . .

]
+

d1 − 2

d1(d1 − 1)
eTm = eT1 D̃

′−1
D̃−1Ã+

d1 − 2

d1(d1 − 1)
eTm, (48)

where the last equality holds since Ã1m = 1. Similar arguments apply for the mth row, for which
we have

eTm|P−P′| = eTmD̃′−1
D̃−1Ã+

dm − 2

dm(dm − 1)
eT1 . (49)

For a fixed k ∈ [K],

1TP′k−1|P−P′|PK−k1 = 1TP′k−1
e1e

T
1 D̃

′−1
D̃−1ÃPK−k1

+ 1TP′k−1 d1 − 2

d1(d1 − 1)
e1e

T
mPK−k1

+ 1TP′k−1
emeTmD̃′−1

D̃−1ÃPK−k1

+ 1TP′k−1 dm − 2

dm(dm − 1)
emeT1 P

K−k1. (50)

We analyze these four terms separately. For the first term, we have

1TP′k−1
e1e

T
1 D̃

′−1
D̃−1ÃPK−k1

= 1TP′k−1
D̃′−1

e1e
T
1 D̃

−1ÃPK−k1

= 1TP′k−1
D̃′−1

e1e
T
1 P

K−k+11 (51)

By the same argument as used in the proof for node feature unlearning, 1TP′k−1
D̃′−1

e1 =

1T D̃′−1
p ≤ 1, for some probability vector p. Also, eT1 P

K−k+11 ≤ 1, which holds due to
the fact that P is a right-stochastic matrix. We have hence shown that the first term in (51) is bounded
by 1. For the second term, note that d1−2

d1(d1−1) ≤
1

(d1−1) . Hence,

1TP′k−1 d1 − 2

d1(d1 − 1)
e1e

T
mPK−k1

≤ 1TP′k−1 1

d1 − 1
e1e

T
mPK−k1

= 1TP′k−1
D̃′−1

e1e
T
mPK−k1 ≤ 1, (52)

where the final inequality follows the same argument as the one used for bounding the first term. For
the third and fourth term, the analysis is similar to these two cases and both terms can be shown to be
bounded by 1. Hence, we have

1TP′k−1|P−P′|PK−k1 ≤ 4. (53)

This completes the proof.
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7.12 Proof of Lemma 7.4

Lemma. For all k ∈ [K] and l ∈ [n],

1T (P′)k−1(D̃′)−1el ≤ 1. (54)

Proof. For k = 1, the claim is obviously true for all l ∈ [n], as the largest entry in D̃−1 is upper
bounded by 1. For k ≥ 2 and l ̸= m we have

1T (P′)k−1(D̃′)−1el = 1T ((D̃′)−1Ã′)k−1(D̃′)−1el

= 1T (D̃′)−1(Ã′(D̃′)−1)k−1el
(a)
= 1T (D̃′)−1p ≤ 1. (55)

In (a), p stands for a probability vector and the result follows since Ã′(D̃′)−1 is a left-stochastic
matrix if one ignores the node m. For l = m, it is easy to see that Ã′D̃′em = 0 by the fact that the
mth row and column of Ã′ are all-zeros. This completes the proof.

7.13 Proof of Lemma 7.5

Lemma. For node unlearning, and ∀k ∈ [K],
∑n

l=1 e
T
l D̃

′ |P−P′|PK−k1 ≤ 2D̃mm − 1.

Proof. First, note that
n∑

l=1

eTl D̃
′ |P−P′| =

n∑
l=1

eTl D̃
′ |P−P′|

n∑
r=1

ere
T
r =

n∑
r=1

n∑
l=1

eTl D̃
′ |P−P′| ereTr . (56)

Then for i, j ̸= m, by Proposition 7.6, we have

eTl D̃
′ |P−P′| ereTr

(a)
= eTl D̃

′ (P′ −P) ere
T
r

= eTl

(
Ã′ − D̃′D̃−1Ã

)
ere

T
r

=

(
Ã′

lr −
D̃′

ll

D̃ll

Ãlr

)
eTr

(b)
=

(
Ãlr −

D̃′
ll

D̃ll

Ãlr

)
eTr (57)

We used Proposition 7.6 in (a) since eTl D̃
′ = D̃′

lle
T
l . The equality (b) is due to the fact that for

i, j ̸= m, Ã′
lr = Ãlr. Recall that Ã′ and Ã only differ in the mth row and column.

We consider next the only two possible scenarios, (1) l is a neighbor of m; (2) l is not a neighbor of
m. For (1), we know that D̃′

ll = D̃ll − 1 ≥ 1. This leads to

Ãlr −
D̃′

ll

D̃ll

Ãlr = Ãlr

(
1− D̃′

ll

D̃ll

)
= Ãlr

(
1− D̃ll − 1

D̃ll

)
=

Ãlr

D̃ll

. (58)

For (2), we know that D̃′
rr = D̃rr. Thus, Ãlr − D̃′

ll

D̃ll
Ãlr = 0.

Next, we consider the case l ̸= m, r = m. Again, by Proposition 7.6, we have

eTl D̃
′ |P−P′| emeTm = eTl D̃

′PemeTm =
D̃′

ll

D̃ll

ÃlmeTm. (59)

Now, for case (1), we have Ãlm = 1 and D̃′
ll = D̃ll − 1 ≥ 1. This leads to

eTl D̃
′ |P−P′| emeTm =

D̃′
ll

D̃ll

ÃlmeTm =
D̃ll − 1

D̃ll

eTm. (60)
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For case (2), we clearly have eTl D̃
′ |P−P′| emeTm = 0 as Ãlm = 0.

Hence, for each j ̸= m and under the setting in case (1), eTl D̃
′ |P−P′| equals the row vector[

Ãl1

D̃ll

,
Ãl2

D̃ll

, · · · ,
Ãl(m−1)

D̃ll

, 0,
Ãl(m+1)

D̃ll

, · · ·

]
+

[
0, · · · , 0, D̃ll − 1

D̃ll

, 0, · · ·

]
, (61)

where the mth entry of the first row vector equals 0 and the second row vector is all-zeros except for
the mth entry. Note that the first row vector times D̃ll

D̃ll−1
> 1 is a probability vector. Hence, by the

property of PK−k being a right-stochastic matrix, we have[
Ãl1

D̃ll

,
Ãl2

D̃ll

, · · · ,
Ãl(m−1)

D̃ll

, 0,
Ãl(m+1)

D̃ll

, · · ·

]
PK−k1 ≤ 1. (62)

Since D̃ll−1

D̃ll
< 1, we also have[

0, · · · , 0, D̃jj − 1

D̃jj

, 0, · · ·

]
PK−k1 ≤ 1. (63)

Together, this shows that for each j ̸= m and for the case (1), one has

eTl D̃
′ |P−P′|PK−k1 ≤ 2. (64)

For case (2), note that eTl D̃
′ |P−P′| is an all-zero row vector. Note also that, excluding self-loops,

there are at most D̃mm − 1 neighbors l of m (case (1)). Thus,∑
l ̸=m

eTl D̃
′ |P−P′|PK−k1 ≤ 2D̃mm − 2. (65)

To conclude the proof, we analyze the term l = m. For any i ∈ [n], by Proposition 7.6 we have

eTmD̃′ |P−P′| ereTr

= eTmD̃′Pere
T
r =

D̃′
mm

D̃mm

Ãmre
T
r

(a)
=

Ãmr

D̃mm

eTr = eTmD̃−1Ãere
T
r = eTmPere

T
r (66)

where (a) holds by definition, and since D̃′
mm = 1. Thus,

eTmD̃′ |P−P′|PK−k1 = eTmPPK−k1 = pT1 = 1, (67)

for some probability vector p. We have hence shown that for any k ∈ [K],

n∑
j=1

eTj D̃
′ |P−P′|PK−k1 ≤ 2D̃mm − 2 + 1 = 2D̃mm − 1. (68)

This completes the proof.

7.14 Proof of Lemma 7.7

Lemma. Assume that ∥eTi S∥ ≤ 1, ∀i ̸= m and that eTmS = 0T . Then ∀i ∈ [n], K ≥ 0, we have
∥eTi (P′)KS∥ ≤ 1, where P = D̃−1Ã and P′ = (D̃′)−1Ã′.

Proof. The proof is similar to the proof of Lemma 7.1, and based on induction. The base case
k = 0 is obviously true by assumption. Now, assume that the claim is true for k = K − 1 and let
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Z(K−1) = (P′)(K−1)S. Then, ∀i ̸= m,

∥eTi (P′)KS∥ = ∥eTi P′Z(K−1)∥ = ∥ 1

D̃ii
′

∑
j:Ã′

ij=1

eTj Z
(K−1)∥

≤ 1

D̃ii
′

∑
j:Ã′

ij=1

∥eTj Z(K−1)∥

(a)

≤ 1

D̃ii
′

∑
j:Ã′

ij=1

1

≤ 1

D̃ii
′

∑
j:Ã′

ij=1

1 =
1

D̃ii
′ D̃ii

′
= 1. (69)

Here, (a) is due to our hypothesis for k = K − 1. For i = m, note that Ã′
mj = 0, ∀j ∈ [n]. Thus,

∥eTm(P′)KS∥ = 0 ≤ 1. This completes the proof.

7.15 Proof of Lemma 7.8

Lemma. Assume that ∥eTi S∥ ≤ 1, ∀i ∈ [n]. Then, ∀i ∈ [n], K ≥ 0, we have
∥ 1√

K+1
eTi
[
S,PS,P2S, · · · ,PKS

]
∥ ≤ 1, where P = D̃−1Ã.

Proof. By Lemma 7.1, we have ∥eTi PkS∥ ≤ 1, ∀k ∈ [K]. Thus,

∥ 1√
K + 1

eTi
[
S,PS,P2S, · · · ,PKS

]
∥2 =

1

K + 1

(
K∑

k=0

∥eTi PkS∥2
)

≤ 1, (70)

which complete the proof.

Remark. Using the normalization 1
K+1 also leads to a norm bounded by 1. Hence, the norm of each

row of Z is bounded by 1. We need the normalization 1
K+1 instead of 1√

K+1
to accommodate another

claim in the proof.

7.16 Proof of Proposition 7.6

Proposition. We have eTi |P−P′| ej = eTi (P′ −P) ej , ∀i, j ̸= m. For i = m or j = m,
eTi |P−P′| ej = eTi Pej .

Proof. For the first case when ∀i, j ̸= m,

eTi (P−P′) ej =
Ãij

D̃ii

−
Ã′

ij

D̃′
ii

. (71)

Recall that by definition, in this case we have Ãij = Ã′
ij . Now, there are two cases to consider: (1) i

is a neighbor of m; (2) i is not a neighbor of m. For (1), we know that D̃′
ii = D̃ii − 1 ≥ 1. As a

result,

Ãij

D̃ii

−
Ã′

ij

D̃′
ii

=
Ãij

D̃ii

− Ãij

D̃ii − 1
< 0. (72)

This directly implies eTi |P−P′| ej = eTi (P′ −P) ej . For (2), we know that D̃′
ii = D̃ii and thus

eTi |P−P′| ej = 0 = eTi (P′ −P) ej . These claims complete the proof for the first part. For the
case that i = m or j = m, note that since both the mth row and column are all-zeros for P′, we
simply have eTi |P−P′| ej = eTi Pej . Note that in establishing the claim we also used the fact that
P is nonnegative. This completes the proof.
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7.17 Proof of sequential unlearning

The proof is nearly identical to those presented in [2]. We include it here for completeness. The proof
is basically induction with triangle inequality.

Let the original training dataset be D(0) and let D(t) be the training dataset after tth unlearning
request of any kinds. Suppose the weight after T ≥ 1 unlearning requests is w(T ) and the gradient
residual is uT = ∇L(w(T ),D(T )). Our goal is to prove that

∥uT ∥ ≤ Tϵ′, (73)

where ϵ′ is the gradient residual norm bound for a single unlearning request.

First we note that our update rule of w(t) is

w(t+1) = w(t) +
[
H

(t)

w(t)

]−1

∆(t),

where ∆(t) = ∇L(w(t),D(t))−∇L(w(t),D(t+1)) and H
(t)

w(t) = ∇2L(w(t),D(t+1)).

Also note that w(0) = argminL(w,D(0)), which is the unique minimizer of L(w,D(0)) due to
strong convexity.

For base case T = 1 it is trivially true based on our definition of ϵ′.

Assume that (73) is true for step T . Consider the modified loss function

L(T )(w,D) = L(w,D)− uT
Tw. (74)

Then w(T ) is the exact solution of L(T )(w,D(T )). Now, consider the update of

w̄(T+1) = w(T ) +
[
∇2L(T )(w(T ),D(T+1))

]−1 (
∇L(T )(w(T ),D(T ))−∇L(T )(w(T ),D(T+1))

)
Since w(T ) is the exact solution of L(T )(w,D(T )), the same analysis of gradient residual norm bound
we have applies for ∇L(T )(w̄(T+1),D(T+1)), which means

∥∇L(T )(w̄(T+1),D(T+1))∥ ≤ ϵ′. (75)

Next, we show that w̄(T+1) = w(T+1). By simple algebra, we have

∇2L(T )(w(T ),D(T+1)) = ∇2L(w,D(T+1))−∇2uT
Tw
∣∣∣
w=w(T )

= ∇2L(w(T ),D(T+1)) = H
(T )

w(T ) .

On the other hand, it is trivial to see that

∇L(T )(w(T ),D(T ))−∇L(T )(w(T ),D(T+1)) = ∇L(w(T ),D(T ))−∇(w(T ),D(T+1)) = ∆(T ).

Thus we have

w̄(T+1) = w(T ) +
[
∇2L(T )(w(T ),D(T+1))

]−1 (
∇L(T )(w(T ),D(T ))−∇L(T )(w(T ),D(T+1))

)
= w(T ) +

[
H

(T )

w(T )

]−1

∆(T ) = w(T+1). (76)

Then (75) becomes

∥∇L(T )(w(T+1),D(T+1))∥ ≤ ϵ′. (77)

Finally, by the definition of L(T ) we have

∇L(T )(w(T+1),D(T+1)) = ∇
(
L(w,D(T+1))− uT

Tw
)∣∣∣

w=w(T+1)

= ∇L(w(T+1),D(T+1))− uT

⇒ uT+1 = ∇L(w(T+1),D(T+1)) = ∇L(T )(w(T+1),D(T+1)) + uT .

⇒ ∥uT+1∥ ≤ ∥∇L(T )(w(T+1),D(T+1))∥+ ∥uT ∥ ≤ ϵ′ + Tϵ′ = (T + 1)ϵ′.
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By induction, we have proved that indeed (73) is true and our sequential unlearning is valid.

Remark. Note that the analysis above holds for both unstructured unlearning and graph unlearning
scenarios. Once we have the one step results as in Theorem 4.5, 4.3, 4.4 or 4.6, we have the explicit
form of ϵ′ in (73). It is also worth pointing out that our proposed update rule works for both cases
where the underlying loss is L(T ) or L. This is due to the fact that our update rule is invariant to
the linear shift of aTw for any vector a, since the update rule only involves Hessian and gradient
difference ∆, both of which are apparently invariant to the linear shift of the form aTw. One can
also notice that the entire analysis still holds for the noisy training loss Lb, as it also just introduces
the linear shift bTw.

7.18 Additional experimental details

Table 1: Statistics of benchmark datasets.

Name #nodes #edges #features #classes train/val/test
Cora 2,708 10,556 1,433 7 1,208/500/1,000

Citeseer 3,327 9,104 3,703 6 1,827/500/1,000
PubMed 19,717 88,648 500 3 18,217/500/1,000

Computers 13,752 491,722 767 10 12,252/500/1,000
Photo 7,650 238,162 745 8 6,150/500/1,000

ogbn-arxiv 169,343 1,166,243 128 40 90,941/29,799/48,603

All our experiments were executed on a Linux machine with 48 cores, 376GB of system memory,
and two NVIDIA Tesla P100 GPUs with 12GB of GPU memory each. Information about all datasets
can be found in Table 1. The data split is public and obtained from PyTorch Geometric [31]. We used
the “full” split option for Cora, Citeseer and Pubmed. Since there is no public split for Computers
and Photo, we adopted a similar setting as for the citation networks via random splits (i.e., 500 nodes
in the validation set and 1, 000 nodes in the test set). The data split for ogbn-arxiv is the public split
provided by the Open Graph Benchmark [32].

Dependency on the node degree. We verified our Theorem 4.5 and Theorem 4.6 for node degree
dependencies on Photo, Cora, Citeseer and Pubmed. The results are presented in Figure 5.

Figure 5: Additional examination of the degree dependency result from Theorem 4.5 (top) and
Theorem 4.6 (bottom).

Nonaccumulative time for each of the unlearning procedures. Figure 6 shows the average time
complexity for each unlearning step on the Cora dataset. The spikes for certified graph unlearning
methods and Algorithm 2 in [2] correspond to retraining after a removal.

Additional experiments. The performance of our proposed certified graph unlearning methods
on three datasets, including Citeseer, Pubmed and Amazon Photo, is shown in Figure 7. It is
worth pointing out that our bound on the gradient residual norm in Section 4 does not guarantee
the generalization ability of the updated model. Therefore, It could happen that the test accuracy
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Figure 6: Nonaccumulative time for each removal step on the Cora dataset. The setting is the same as
in Figure 3.

increases as we remove information from the training set, as shown in the second row of Figure 7, or
that the performance is not very stable, as seen in the third row of Figure 7.

We also performed additional experiments on the Cora dataset, with results shown in Figure 8. The
first row shows the average performance over 10 repeated trails with random splitting, and the
conclusion is the same as the one stated in Section 6. The second row shows the performance on
GPR-based models. Note that when the number of removal requests becomes large, the performance
of GPR-based models degrades much faster than that of SGC-based models. This observation is
consistent with our discussion of GPR-based models. None of the retraining methods involves noise.
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Figure 7: Performance of certified graph unlearning methods on different datasets. First Row: We
removed up to 55% of the training data in Citeseer. Second Row: We removed up to 50% of the
training data in Pubmed. Third Row: We set α = 10, λ = 10−4, and removed up to 30% of the
training data in Amazon Photo.
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Figure 8: Performance of certified graph unlearning methods on Cora. First Row: The reported
results are based on averaging over 10 repeated trails with random splitting. Second Row: GPR-based
models are used to obtain node embeddings. All other settings are the same as in Figure 3.
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