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Abstract. LiDAR sensors play a crucial role in various applications,
especially in autonomous driving. Current research primarily focuses on
optimizing perceptual models with point cloud data as input, while the
exploration of deeper cognitive intelligence remains relatively limited.
To address this challenge, parallel LiDARs have emerged as a novel
theoretical framework for the next-generation intelligent LiDAR sys-
tems, which tightly integrate physical, digital, and social systems. To
endow LiDAR systems with cognitive capabilities, we introduce the 3D
visual grounding task into parallel LiDARs and present a novel human-
LiDAR interaction paradigm for 3D scene understanding. We propose
Talk2LiDAR, a large-scale benchmark dataset for 3D visual grounding
in autonomous driving. Additionally, we present a two-stage baseline ap-
proach and an efficient one-stage method named BEVGrounding, which
significantly improves grounding accuracy by fusing coarse-grained sen-
tences and fine-grained word embeddings with visual features. Our ex-
periments on Talk2Car-3D and Talk2LiDAR datasets demonstrate the
superior performance of BEVGrounding, laying a foundation for further
research in this domain. We will release all datasets, code, and check-
points at https://github.com/liuyuhang2021/Talk2LiDAR.

Keywords: Autonomous Driving · Parallel LiDARs · 3D Scene Under-
standing · 3D Visual Grounding.

1 Introduction

Autonomous driving is experiencing rapid development, with high-performance
sensing systems being a critical step towards achieving L4 or L5 autonomous
driving [15]. LiDAR sensors play a crucial role in vehicular sensing systems,
which can collect point clouds with precise spatial information [29]. However,
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current LiDAR systems suffer from the separation of software and hardware de-
velopment, severely limiting the system’s intelligence. LiDAR manufacturers pri-
oritize hardware optimization, while autonomous driving companies focus solely
on software development. To redefine and build a new generation of intelligent
LiDAR systems, we propose the framework of parallel LiDARs as theoretical
guidance and have constructed a prototype based on the DAWN experimental
platform [17, 21]. It tightly couples physical and virtual spaces, enabling joint
optimization of sensing and perception links through virtual-real interaction.
Previous work has explored leveraging perceptual information to enhance data
utilization efficiency and found that it can significantly improve perceptual ac-
curacy [21]. However, a serious issue remains that these operating modes cannot
cognize and reason about the scene, for example, anticipating potentially dan-
gerous areas to avoid accidents. Therefore, this work introduces user instructions
to grant cognitive abilities of the LiDAR system and focuses on the 3D visual
grounding task in autonomous driving.

The 3D visual grounding task aims to identify the referred objects accord-
ing to textual descriptions. It takes point clouds and text instructions as input
and spits out 3D bounding boxes, which can be regarded as an image-based
2D visual grounding extension. Indoor 3D visual grounding has gained signif-
icant attention in recent years due to its promising applications in embodied
intelligence [24]. Several high-quality indoor datasets, such as ScanRefer [6] and
Sr3d [1], have been released to facilitate systematic research in this field. Follow-
ing that, various methods have been developed to enhance grounding accuracy
and they have already achieved notable progress [14, 25, 38]. However, existing
works primarily focus on indoor environments with dense point clouds captured
by RGBD sensors. They overlook outdoor scenarios with sparse LiDAR point
clouds, which are crucial for applications like autonomous driving. Thus, there is
an urgent need to investigate 3D visual grounding in the context of autonomous
driving, as illustrated in Fig. 1. This will pave the way for the development of
an interactive guidance paradigm for parallel LiDARs.

This work advances the research of 3D visual grounding in driving scenar-
ios, focusing on both dataset creation and method development. Concerning
the dataset aspect, Talk2Car [11] emerges as an outstanding dataset for 2D
visual grounding in autonomous driving, enabling the association of matching
point cloud data. However, its limited size, comprising 11,950 prompts across
7,818 frames, leads to poor generalizability. To address this issue, we propose
a novel large-scale 3D visual grounding dataset based on nuScenes [3], named
Talk2LiDAR. It consists of 59,207 prompts across 6,419 scenes considering the
diversity of viewpoint. To build our dataset cost-effectively, we introduce ad-
vanced MLLMs (Multimodal Large Language Models) [16] and LLMs (Large
Language Models) [32] for automatic text prompt generation, followed by man-
ual verification. In the method aspect, due to the scarcity of research in driving
scenarios, we first propose a baseline approach. It adopts a two-stage processing
pipeline based on the prevalent “detect-then-match” strategy. Then we introduce
BEVGrounding , a novel single-stage method that significantly boosts 3D vi-
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Fig. 1: Introduction for the visual grounding task in autonomous driving. 2D visual
grounding utilizes an image and language prompt as input (Fig.1a), while 3D visual
grounding utilizes multi-view images, point clouds, and prompts as input (Fig.1b).

sual grounding accuracy. Specifically, it utilizes a progressive fusion mechanism
to achieve fine-grained alignment among text, image, and point cloud data. Ex-
tensive experiments on Talk2Car-3D and Talk2LiDAR datasets effectively vali-
date the superior performance of our proposed BEVGrounding method, laying
a foundation for future research in this field. The main contribution of this work
can be summarized as follows:

– We innovatively introduce the 3D visual grounding task into parallel Li-
DARs, endowing LiDAR systems with cognitive capabilities through human-
LiDAR interaction.

– We propose Talk2LiDAR, a new large-scale benchmark for 3D visual ground-
ing in autonomous driving.

– We develop a two-stage baseline approach and an efficient one-stage method,
called BEVGrounding . It utilizes coarse-grained sentence and fine-grained
word embeddings to fuse visual and textual features.

2 Related Work

2.1 Parallel LiDARs

Parallel LiDAR emerges as a novel class of intelligent 3D sensors built upon
parallel intelligence which is capable of capturing both physical and semantic in-
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formation of 3D scenes [17, 19]. Parallel intelligence is an innovative theoretical
framework proposed by Prof. Wang in 2004 [33]. It integrates cyber, physical,
and social spaces for intelligent systems catering to biological humans, robots,
and digital humans [35]. Currently, it has garnered widespread attention and
found applications in various fields, such as autonomous driving [7, 34], sens-
ing [18, 31], and manufacturing [39]. To facilitate research on parallel sensing,
we have established a comprehensive experimental platform, DAWN, short for
Digital Artificial World for Natural. It supports exploration in various sub-
projects such as parallel LiDARs and parallel light fields. Parallel LiDAR was
originally proposed in [17] which consists of three main parts: descriptive, predic-
tive, and prescriptive LiDARs. Descriptive LiDARs focus on constructing digital
LiDAR representations; predictive LiDARs emphasize the importance of com-
putational experiments in cyberspace; while prescriptive LiDARs facilitate real-
time interaction between the physical and digital LiDAR systems. [21] proposed a
software-defined parallel LiDAR model and constructed a hardware prototype in
the DAWN platform. It allows for dynamic adjustment of laser beam distribution
to optimize the utilization of sensing resources. To provide more comprehensive
information, [20] presented a novel HPL-ViT method to enhance the perception
accuracy of heterogeneous parallel LiDARs in V2V. Furthermore, [22] discusses
accurate modeling of parallel LiDARs in adverse weather. This paper delves into
the 3D visual grounding task, aiming to further refine sensing resource allocation
through human-LiDAR interaction.

2.2 Visual Grounding in Autonomous Driving

Visual grounding is crucial for autonomous driving, as it enhances the effi-
ciency of human-computer interaction between drivers and vehicles [10]. Cur-
rent research primarily focuses on 2D object detection and tracking based on
language references using images or videos. The Talk2Car dataset, built upon
nuScenes, serves as a pioneering benchmark that introduces the visual ground-
ing task within the context of autonomous driving [11]. Significant advancements
have been made in enhancing visual grounding accuracy, with notable progress
achieved [9,26,30]. [12] extended the Talk2Car dataset to Talk2Car-Destination,
enabling language-guided destination prediction, while [41] introduced a novel
3D visual grounding task utilizing a single image as input and established the
Mono3DRefer dataset for evaluation. However, these approaches are limited to
grounding individual objects, which falls short of capturing the complexities
of real-world environments. To address this limitation, [36] proposed the Refer-
KITTI dataset, enabling the grounding of multiple objects with a single prompt.
Building upon this work, [37] constructed the Nuprompt dataset and introduced
PromptTrack, a method that leverages multi-view images for 3D tracking of re-
ferred objects. Notably, MSSG [8] stands as the sole approach that incorporates
LiDAR point clouds for 3D visual grounding. Nevertheless, it suffers from limited
details on the experimental setup and evaluation metrics, hindering replication
by subsequent researchers. This work delves into both data and methodological
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aspects of the 3D visual grounding task in autonomous driving, establishing a
solid foundation for future research.

2.3 3D Visual Grounding

3D visual grounding aims to pinpoint objects according to the user’s textual
descriptions. Compared to complex outdoor environments, indoor settings have
received more research attention due to their simpler scene structures. Multiple
datasets like ScanRefer [6], Sr3d, and Nr3d [1] have been released to provide
robust evaluation benchmarks for indoor 3D visual grounding. Two-stage meth-
ods have dominated this landscape, achieving promising results in indoor scenes.
These methods typically utilize a pre-trained object detector to generate candi-
date regions and extract prompt embeddings through a frozen text encoder. The
second stage focuses on matching the proposals with textual features to iden-
tify the final referred object. [13, 43] employ self-attention and cross-attention
mechanisms for improved feature fusion, and [4,40] incorporate additional image
information. However, a crucial limitation lies in their inability to recover missed
objects during the initial stage. To address this issue, single-stage methods have
emerged and demonstrated competitive results on public datasets. 3D-SPS [25]
stands as the pioneer single-stage method, utilizing text features to progressively
guide key point selection. Similarly, BUTD-DETR [14] leverages a Transformer
decoder for referred object prediction. Recent advancements like EDA [38] intro-
duce a text decoupling module, enabling finer-grained alignment by decompos-
ing sentences into semantic components. While these methods hold significant
promise for indoor environments, they often overlook the vast potential of out-
door applications, particularly in autonomous driving. This work bridges this
gap by proposing BEVGrounding, a novel method specifically designed for 3D
visual grounding in autonomous driving.

3 Talk2LiDAR Dataset

In this section, we will first introduce the statistics of our proposed Talk2LiDAR
dataset. Then we present its construction process, highlighting the role of foun-
dation models in its development.

3.1 Dataset Statistics

The Talk2LiDAR dataset is the first large-scale dataset specifically designed
for LiDAR-based 3D visual grounding in autonomous driving. It’s built on the
nuScenes dataset, a classic autonomous driving dataset collected in Boston and
Singapore. Tab.1 presents a detailed comparison of Talk2LiDAR with other lead-
ing visual grounding datasets. Talk2LiDAR establishes itself as the largest bench-
mark for 3D visual grounding in autonomous driving. It features 59,207 language
prompts across 6,419 scenes, with an average of 9.2 prompts per scene. Notably,
Talk2LiDAR surpasses prior datasets confined to front-view images. Referred
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Fig. 2: Word cloud of language prompts in the Talk2LiDAR dataset.

objects are distributed around the ego vehicle, viewable from six distinct im-
age perspectives. It offers a more comprehensive and realistic representation of
real-world driving scenarios. Assisted by advanced foundation models [16, 32],
Talk2LiDAR boasts a diverse vocabulary within its language prompts, revealing
its rich incorporation of information regarding location, category, and color. Fig.
2 depicts the word cloud of language prompts in the Talk2LiDAR dataset.

Table 1: A comprehensive comparison of visual grounding datasets.

Dataset Publication Scene Scene Num. Prompt Num. Basic Tasks Input Modality Views

ScanRefer [6] ECCV2020 Indoor 800 51583 3D Det PC -
Sr3d [1] ECCV2020 Indoor 1273 83572 3D Det PC -
Nr3d [1] ECCV2020 Indoor 707 41503 3D Det PC -

Multi3DRefer [42] ICCV2023 Indoor 800 61926 3D Det PC -
Talk2Car [11] EMNLP2019 Outdoor 7818 11959 2D Det Img 1

Refer-KITTI [36] CVPR2023 Outdoor 6650 818 2D MOT Img 1
Mono3DRefer [41] AAAI2024 Outdoor 2025 41140 3D Det Img 1

NuPrompt [37] arXiv2023 Outdoor 34149 35367 3D MOT Img 6
Talk2Car-3D - Outdoor 5534 8352 3D Det PC, Img 1
Talk2LiDAR - Outdoor 6419 59207 3D Det PC, Img 6

3.2 Dataset Construction

Prior visual grounding datasets relied heavily on the manual generation of lan-
guage prompts, leading to significant time consumption and labor costs. Addi-
tionally, manual annotation often led to an abundance of repetitive words, hin-
dering vocabulary diversity. To address these limitations, we introduce a novel
three-step data annotation pipeline assisted by powerful foundation models. By
leveraging the cognitive capabilities of these models, we significantly reduce the
workload associated with creating triplet data pairs (text, image, and point
cloud). Fig. 3 illustrates the overall construction workflow, followed by a de-
tailed discussion of each step. In total, we hired five interns to construct the
Talk2LiDAR dataset in a month.
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Fig. 3: The Talk2LiDAR dataset construction process.

Step 1: Although Talk2LiDAR focuses on LiDAR-based 3D visual ground-
ing, we describe referred objects using multi-view images, mirroring how drivers
perceive their environment. Since the nuScenes dataset contains multiple contin-
uous segments, we randomly sample 20% of all frames to eliminate redundancy.
Subsequently, we visualize the annotations on the images and manually filter out
ambiguous samples, such as one of a series of consecutively placed traffic cones.

Step 2: Following manual filtering, we utilize the advanced multimodal foun-
dation model LLaVA [16] to automatically generate initial textual descriptions.
We design the following prompt for LLaVA:

– Attention: only need to focus on the object in the bounding box. Please use
one or two sentences to describe the object in the red bounding box with
greater detail, including its precise location, type, and color characteristics.

We fed it along with images into LLaVA to generate object descriptions. How-
ever, we observed significant hallucinations in LLAVA’s outputs, which tend to
prioritize prominent objects in the image or macroscopic factors like weather con-
ditions. To address this issue, we manually verified the alignment between text
descriptions and referred objects, removing instances with clear hallucinations.

Step 3: We have obtained preliminary image-point cloud-text triplet data
pairs by step 2. However, foundation models often employ probabilistic token
prediction, leading to repetitive phrasings and a limited vocabulary in the gener-
ated prompts. To address this limitation, we utilize LLaMA2 [32] for refinement,
aiming to enhance the diversity of descriptions. We provide LLaMA2 with the
following prompts:

– Please help me paraphrase this sentence while keeping its meaning.
– Please help me reword a sentence with richer vocabulary but keep its meaning.
– Help me reword a sentence, you should describe it in a different way.

We can obtain descriptions with a richer vocabulary after prompt paraphras-
ing. Additionally, we integrate viewpoint information into the descriptions to
incorporate more comprehensive spatial information. Below are some examples
of the original (O) and paraphrased (P) prompts:

– O: A car is driving down the street at night.
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Fig. 4: The architecture of the two-stage baseline method.

– R: Be aware of the back right! A luxuriant automobile is navigating the boule-
vard under the cover of darkness.

– O: A woman in a black dress is standing in the middle of a street.
– R: Look out for the front! A statuesque woman in a sleek black gown stands

majestically in the bustling street, her poise and elegance commanding atten-
tion.

4 Methods

4.1 Problem Definition

LiDAR-based 3D visual grounding presents a novel and promising task in au-
tonomous driving. Given a textual instruction T , point cloud data P , and im-
ages I, the objective is to precisely localize the referred object B within the 3D
scene. T is a textual description consisting of L words, formally represented as
T = {w1, ..., wL}. P = {p1, . . . , pn} is a single frame of point cloud data. Each
point pi(i = 1, ..., n) is a 4-tuple (xi, yi, zi, ii), where xi, yi, zi specifies its spatial
coordinates and ii represents its intensity information. Image set I = {I1, . . . , I6}
comprises a collection of six images captured from different viewpoints surround-
ing the vehicle. The 3D bounding box B of the referred object is represented as
(x, y, z, l, w, h, α). Here, x, y, z denotes the center location of the bounding box,
l, w, h represents its dimensions, and α corresponds to its rotation angle.

4.2 Baseline

Given the nascent state of 3D visual grounding research in autonomous driving,
we establish a baseline method adhering to the dominant two-stage paradigm.
As illustrated in Fig. 4, the baseline method utilizes BEVFusion [23] for 3D
object detection in the first stage, generating candidate proposals along with
their extracted features. The second stage leverages a pre-trained language en-
coder to extract sentence-level embeddings from the textual description. We then
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introduce a lightweight matching network to identify the referred object. Specif-
ically, the object and language features are fed into separate MLPs for feature
alignment in the matching network. We then compute the final score using ma-
trix multiplication and select the candidate object with the highest score as the
text-referred one:

s = El(flang) ∗ Eo(fobj) (1)

El and Eo represent the MLPs for language and object features, each con-
sisting of two fully connected layers. ∗ denotes the matrix multiplication opera-
tion, and s represents the final score for each candidate object. During training,
the weights of the language encoder are frozen, while only the weights of the
lightweight matching network are updated. The cross-entropy loss function is
employed for optimization.

4.3 BEVGrounding

The baseline method adopts a common two-stage approach, while it poses chal-
lenges for practical applications due to its training and deployment complexities.
To address this issue, we propose BEVGrounding, a novel one-stage method de-
signed for 3D visual grounding in autonomous driving. The overall architecture
of BEVGrounding is shown in Fig. 5.

Unimodal Encoder BEVGrounding, being a multimodal method, leverages
images, point clouds, and text data as input. The point cloud branch employs a
grid-based encoder EP to address the high computational cost associated with
point-based encoders. We utilize sparse convolution to extract voxel features,
which are subsequently flattened to obtain fP

bev. The image branch utilizes a
Swin-Transformer architecture as the encoder EI to extract features from multi-
view images. These features are then projected onto the BEV (Bird’s-Eye View)
space, resulting in f I

bev. For the text instruction, we experiment with CLIP [28]
as the text encoder ET to learn both word-level and sentence-level embeddings,
facilitating a more fine-grained feature interaction between different modalities:

fP
bev = EP (P ); f I

bev = EI(I); fsen, fword = ET (T ) (2)

Trimodal BEV Encoder Following the extraction of individual modality fea-
tures, we design a trimodal BEV encoder for global feature fusion. Considering
the real-time requirements, our BEV encoder leverages a purely CNN architec-
ture, eschewing the use of a Transformer-based approach. We first perform a
preliminary fusion of fP

bev and f I
bev to obtain the initial fused representation, de-

noted as f
′

bev. Subsequently, fsen obtained from the text encoder is broadcasted
to match the spatial dimensions of the BEV feature maps and then concate-
nated with f

′

bev. To alleviate the computational burden, a 1x1 convolution layer
is employed to reduce the number of feature channels. Finally, we adopt a classic
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feature pyramid network to achieve a global coarse-grained fusion, resulting in
the representation f

′′

bev.

Grounding Decoder Guided by the heatmap scores, we select a subset of
proposals from f

′′

bev that exhibit a high likelihood of corresponding to the text-
referred objects. These selected proposal features are then fed into the ground-
ing decoder for further fine-grained feature fusion. Our proposed grounding de-
coder consists of four key blocks: two self-attention (SA) blocks, a spatial cross-
attention (SPCA) block, and a semantic cross-attention (SECA) block. Each
block consists of a multi-head attention layer and a FFN layer. The SA block
effectively captures the global dependencies within the proposal features. The
SPCA block fuses proposal features fpro and f

′′

bev, while SECA facilitates in-
teraction between fpro and the word-level embeddings fword, providing more
fine-grained textual features for candidate objects. The formulation of the at-
tention layer in each module is as follows:

SA(fpro) = σ(Q(fpro)K(fT
pro))V (fpro) (3)

SPCA(fpro, f
′′

bev) = σ(Q(fpro)K(f
′′

bev))V (f
′′

bev) (4)

SECA(fpro, fword) = σ(Q(fpro)K(fword))V (fword) (5)

Here, σ is the softmax function. Q, K, and V correspond to the query, key,
and value transformation layer, respectively. Finally, we utilize a standard detec-
tion head to predict the 3D bounding boxes of the referring objects [2]. During
the training phase, the loss function incorporates three key parts:

Lall = Lheatmap + Lcls + Lreg (6)

Consistent with prior work, Lheatmap leverages Gaussian focal loss for pro-
posal filtering, Lcls uses the focal classification loss, and Lref adopts a L1 loss
for bounding box regression. Furthermore, inspired by DETR [5], we incorporate
the Hungarian algorithm for bipartite matching during the training process

5 Experiments

5.1 Implementation Details

We conduct experiments on both the Talk2Car-3D and our proposed Talk2LiDAR
datasets. Talk2Car-3D is derived from the original Talk2Car through a three-
step preprocessing procedure. First, we categorize the referred objects into 10
standard categories according to common 3D object detection conventions. Sec-
ond, we constrain their positions, retaining only objects in the range requirement
of [-54, -54, -5] <[x, y, z] <[54, 54, 3], where [x, y, z] represent the center loca-
tion. Third, we filter objects based on the number of point clouds inside each
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Fig. 5: The architecture of our proposed one-stage BEVGrounding.

object, keeping only those with at least one point. The processed Talk2Car-3D
comprises 8,352 data frames. Following the original Talk2Car split, we utilize
7,332 frames for training and the remaining 1,020 frames for testing. To provide
additional context for referred objects, we define two attribute labels for each
sample: "unique" and "multiple". The “unique” label indicates that the referred
object is the only category-matched target in the frame, while “multiple” signifies
the presence of several objects in the same category. The training and testing
sets of Talk2Car-3D contain 836 and 106 frames with the “unique” attribute,
respectively. We apply similar processing steps to the Talk2LiDAR dataset. The
processed Talk2LiDAR training set comprises 48,813 frames, while the testing
set comprises 12,394 frames. Within its training and testing sets, 2,344 and 694
frames are labeled as "unique", respectively.

5.2 Quantitative Analysis

We design multiple two-stage methods to enable more fair evaluations and com-
pare them with our proposed BEVGrounding. GT-Rand randomly selects a
ground truth box as the prediction result, while Pred-Rand randomly selects
a predicted proposal as the referred object. Pred-Best chooses the candidate
with the highest confidence score among all detection boxes. Baseline is the
method we proposed in Sec. 4.2 and -L denotes that only point cloud data is
used.

Performance on Talk2Car-3D Tab.2 presents the accuracy of all methods
from BEV and 3D perspectives. The overall performance of GT-Rand and Pred-
Rand is poor, with accuracies below 10%, effectively demonstrating the diffi-
culty of the 3D visual grounding task. Although Pred-Best shows slight im-
provement, it still exhibits significant randomness due to the lack of textual
features. The baseline significantly enhances the accuracy metrics compared to
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Table 2: Comparasion with other methods on Talk2Car-3D.

Method Type Unique Multiple Overall
Acc@0.25 (%) Acc@0.5 (%) Acc@0.25 (%) Acc@0.5 (%) Acc@0.25 (%) Acc@0.5 (%)

BEV

GT-Rand Two-Stage 9.43 9.43 6.78 6.78 7.06 7.06
Pred-Rand Two-Stage 6.60 4.72 7.44 5.25 7.35 5.20
Pred-Best Two-Stage 0.94 0.94 14.33 12.91 12.94 11.67
Baseline-L Two-Stage 2.83 1.89 27.46 26.59 24.90 24.02
Baseline Two-Stage 13.21 9.43 30.53 27.35 28.73 25.49

BEVGrounding-L One-Stage 32.08 (+18.87) 16.98 (+7.55) 43.76 (+13.23) 28.12 (+0.77) 42.55 (+13.82) 26.96 (+1.47)
BEVGrounding One-Stage 33.02 (+19.81) 17.92 (+8.49) 45.30 (+14.77) 29.76 (+2.41) 44.02 (+15.29) 28.53 (+3.04)

3D

GT-Rand Two-Stage 9.43 9.43 6.78 6.78 7.06 7.06
Pred-Rand Two-Stage 6.60 1.89 7.11 3.94 7.06 3.73
Pred-Best Two-Stage 0.94 0.94 14.11 12.69 12.75 11.47
Baseline-L Two-Stage 2.83 0.94 25.38 21.77 23.04 19.61
Baseline Two-Stage 13.26 7.55 28.01 26.48 26.37 24.51

BEVGrounding-L One-Stage 24.53 (+11.27) 7.55 (-) 36.32 (+8.31) 18.38 (-) 35.10 (+8.73) 17.25 (-)
BEVGrounding One-Stage 25.57 (+12.31) 8.49 (-) 37.64 (+9.63) 20.90 (-) 36.37 (+10.00) 19.61 (-)

the aforementioned methods. BEVGrounding outperforms all other methods on
almost all metrics, except for the 3D Acc@0.5. Notably, it achieves 44.02% on
BEV Acc@0.25, exceeding the second-best method by 15.29%. BEVGrounding-
L, which utilizes only point cloud data as input, significantly outperforms the
multimodal fusion baseline, demonstrating the superiority of our single-stage ar-
chitecture. However, it experiences a slight decrease in 3D Acc@0.5. We speculate
that it could be attributed to BEVGrounding’s emphasis on semantic alignment
without fully considering fine-grained geometric features, leading to negative
effects at higher IoU thresholds. Furthermore, we observe an anomaly where
samples labeled as “unique”, intuitively simpler, exhibit lower accuracy. We con-
ducted a statistical analysis of the category distribution and found a significant
bias between these two attribute labels. Cars are the most common objects in
the dataset, yet they don’t appear in “unique” samples. Additionally, we find
that the average distance for “unique” samples is 24.8 meters, higher than the
21.6 meters for “multiple” samples. These factors pose greater challenges for the
former, resulting in decreased model accuracy.

Table 3: Comparasion with other methods on Talk2LiDAR.

Method Type Unique Multiple Overall
Acc@0.25 (%) Acc@0.5 (%) Acc@0.25 (%) Acc@0.5 (%) Acc@0.25 (%) Acc@0.5 (%)

BEV

GT-Rand Two-Stage 6.20 6.20 3.79 3.79 3.88 3.88
Pred-Rand Two-Stage 5.48 4.47 4.44 3.85 4.49 3.89
Pred-Best Two-Stage 2.88 2.59 6.95 6.79 6.72 6.55
Baseline-L Two-Stage 4.76 4.32 8.42 8.17 8.21 7.96
Baseline Two-Stage 9.22 8.07 10.68 10.32 10.61 10.20

BEVGrounding-L One-Stage 14.12 (+4.90) 12.97 (+4.90) 16.39 (+5.71) 11.97 (+1.65) 16.27 (+5.66) 12.02 (+1.82)
BEVGrounding One-Stage 15.99 (+6.77) 14.99 (+6.92) 18.19 (+7.51) 13.39 (+3.07) 18.07 (+7.46) 13.48 (+3.28)

3D

GT-Rand Two-Stage 6.20 6.20 3.79 3.79 3.88 3.88
Pred-Rand Two-Stage 5.48 3.31 4.28 3.35 4.35 3.35
Pred-Best Two-Stage 2.88 2.31 6.91 6.48 6.68 6.24
Baseline-L Two-Stage 4.76 3.46 8.34 7.94 8.62 7.69
Baseline Two-Stage 8.65 7.35 10.05 9.67 9.97 9.54

BEVGrounding-L One-Stage 13.83 (+5.18) 6.77 (-) 16.13 (+6.08) 7.68 (-) 16.00 (+6.03) 7.63 (-)
BEVGrounding One-Stage 15.27 (+6.62) 8.65 (+1.30) 17.49 (+7.44) 8.72 (-) 17.36 (+7.39) 8.71 (-)
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Fig. 6: Visualization results of the two-stage baseline and one-stage BEVGrounding
method. Red, green, and blue boxes denote the ground truth, predicted boxes by the
baseline, and predicted boxes by BEVGrounding, respectively.

Performance on Talk2LiDAR Tab.3 illustrates the results of all methods on
the Talk2LiDAR dataset. Compared to their performance on Talk2Car-3D, all
methods show a significant drop in accuracy. This decline can be attributed to the
increased complexity of language prompts and object locations in Talk2LiDAR,
indicating that there is substantial room for improvement in future research.
Among all the methods, BEVGrounding stands out by achieving SOTA per-
formance on most evaluation metrics, with an average improvement of 5%-7%.
However, it also demonstrates a slight decrease in 3D Acc@0.5, consistent with
the trend observed on Talk2Car-3D.

Ablation Studies

– Text Encoder: We use CLIP as the language encoder in our experiments.
However, prior research often utilizes a GRU-based language encoder with
GloVE embeddings [27]. To investigate the impact of different text encoders,
we conduct ablation experiments on Talk2Car-3D and present the results
in Tab.4. Our findings indicate that CLIP achieves superior performance,
surpassing the GloVE-based approach by an average of 5%.

– Module Components: To assess the contribution of each module in BEV-
Grounding, we conduct ablation studies, and the results are detailed in
Tab.5. It reveals that the encoder module exerts the most significant in-
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Table 4: Ablation studies on text encoder.

Text Encoder Unique Multiple Overall
Acc@0.25 (%) Acc@0.5 (%) Acc@0.25 (%) Acc@0.5 (%) Acc@0.25 (%) Acc@0.5 (%)

BEV

GloVe-50b 16.98 8.49 28.99 22.65 27.75 21.18
GloVe-100b 27.36 12.26 32.82 23.96 32.25 22.75
GloVe-200b 25.47 8.49 37.20 25.93 35.98 24.12

CLIP 33.02 17.92 45.30 29.76 44.02 28.53

3D

GloVe-50b 16.04 2.83 27.24 15.75 26.08 14.41
GloVe-100b 16.98 3.77 28.56 16.63 27.32 15.29
GloVe-200b 16.04 3.77 33.48 18.71 31.67 17.16

CLIP 25.41 8.49 37.64 20.90 36.37 19.61

Table 5: Ablation studies on BEVGrounding’s module.

EN SPCA SECA Overall@BEV Overall@3D
Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

31.86 20.10 27.65 15.00
✓ 38.43 25.49 33.43 17.06
✓ ✓ 37.84 24.90 31.37 16.96
✓ ✓ ✓ 44.02 28.53 36.37 19.61

fluence on the model’s performance, leading to a 12.16% accuracy improve-
ment. Interestingly, SPCA and SECA modules exhibit comparable impacts,
suggesting that both spatial and semantic feature interactions are crucial for
crucial for accurate object grounding.

5.3 Qualitative Analysis

Fig. 6 illustrates the visualization results for both the baseline method and our
proposed BEVGrounding approach. We can observe that one-stage BEVGround-
ing can generate more accurate 3D bounding boxes for the referred objects com-
pared to the two-stage baseline. It stems from BEVGrounding’s capability to
effectively extract and integrate richer semantic information about the scene.
However, both methods still encounter numerous failures during testing, indi-
cating significant room for improvement in 3D visual grounding for autonomous
driving.

6 Conclusions

This work introduces the 3D visual grounding task into parallel LiDARs, aim-
ing to equip sensors with a degree of cognitive capability. It provides a novel
human-machine interaction approach for LiDAR-based 3D scene understand-
ing. We establish the Talk2LiDAR dataset, a large-scale benchmark for 3D vi-
sual grounding, and propose BEVGrounding, a novel one-stage method that
demonstrates promising results. Our future work will further explore integrating
MLLMs to elevate the cognitive intelligence of parallel LiDAR systems.
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