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Lumos: Optimizing Live 360-degree Video Upstreaming via
Spatial-Temporal Integrated Neural Enhancement

Anonymous Authors

ABSTRACT
As VR devices become increasingly prevalent, live 360-degree video
has surged in popularity. However, current live 360-degree video
systems heavily rely on uplink bandwidth to deliver high-quality
live videos. Recent advancements in neural-enhanced streaming of-
fer a promising solution to this limitation by leveraging server-side
computation to conserve bandwidth. Nevertheless, these methods
have primarily concentrated on neural enhancement within a sin-
gle domain (either spatial or temporal), which may not adeptly
adapt to diverse video scenarios and fluctuating bandwidth condi-
tions. In this paper, we propose Lumos, a novel spatial-temporal
integrated neural-enhanced live 360-degree video streaming sys-
tem. To accommodate varied video scenarios, we devise a real-time
Neural-enhanced Quality Prediction (NQP) model to predict the
neural-enhanced quality for different video contents. To cope with
varying bandwidth conditions, we design a Content-aware Bitrate
Allocator, which dynamically allocates bitrates and selects an ap-
propriate neural enhancement configuration based on the current
bandwidth. Moreover, Lumos employs online learning to improve
prediction performance and adjust resource utilization to optimize
user quality of experience (QoE). Experimental results demonstrate
that Lumos surpasses state-of-the-art neural-enhanced systems
with an improvement of up to 0.022 in terms of SSIM, translating
to an 8.2%-8.5% enhancement in QoE for live stream viewers.

CCS CONCEPTS
• Information systems→Multimedia streaming; • Networks
→ Network resources allocation.

KEYWORDS
live streaming, 360-degree video, neural enhancement, quality of
experience
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1 INTRODUCTION
Live 360-degree video streaming has emerged as a significant por-
tion of Internet traffic [41], offering users an exceptionally immer-
sive experience [9]. Viewers can adjust their viewing angles freely,
enabling exploration of omni-directional video content during live
events. Recent market reports [29] indicate a consistent growth
in demand for live 360-degree video streaming. On the upstream
side, upload clients typically employ a 360-degree camera equipped
with multiple lenses to capture live video streams. These streams
are subsequently sliced into tiles, encoded using various codecs
[3, 5, 23, 31, 36], and transmitted through protocols like HTTP,
RTMP, as highlighted in [1, 25, 26], to the media server.

However, achieving high-quality live 360-degree video upstream-
ing encounters challenges due to constraints in uplink bandwidth
[46, 47] and the computational capacity of the upload client. Limited
uplink bandwidth necessitates the compression and transmission
of video at lower quality, leading to poor video quality. Moreover,
attaining high-quality live 360-degree video upstreaming mandates
real-time 360-degree video encoding, posing challenges for mobile
devices with limited computational capacity.

Recent advancements in neural-enhanced video streaming have
introduced a novel approach to enhance video quality by applying
neural computation to video frames [15, 16, 21]. The fundamen-
tal concept is to leverage the computational power of the media
server to offset the limitations of uplink bandwidth. Broadly, these
approaches can be categorized into two primary categories: one em-
ploys super-resolution (SR) techniques for live video enhancement
in the spatial domain [14, 35, 44], while the other utilizes frame-
interpolation (FI) techniques in the temporal domain [13, 24, 33].
However, downsampling in the spatial domain may compromise
image details [19, 42], especially in frames with intricate textures,
whereas downsampling in the temporal domain may adversely af-
fect motion information in high-action videos [6, 11]. Consequently,
relying solely on neural enhancement in either the spatial or tem-
poral domain has inherent drawbacks that may result in a subpar
user experience.

Nonetheless, the integration of spatial-temporal neural enhance-
ment in live 360-degree video upstreaming introduces several new
and non-trivial challenges. Firstly, the spatial-temporal combination
necessitates the upload client to explore optimal neural enhance-
ment configurations within an expanded solution space. However,
due to the limited computational power of the upload client, rapidly
searching for the optimal solution and performing neural enhance-
ment is challenging. Secondly, video tiles in a live 360-degree stream
exhibit different rate-distortions after encoding. Equally allocat-
ing bitrate among tiles would lead to inefficient bandwidth usage
and degrade the quality of transmitted videos. Estimating the re-
quired bandwidth for each tile to optimize the rate-distortion poses
a challenge. Thirdly, minimizing the degradation of user Quality
of Experience (QoE) over time is challenging, as dynamic video

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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scenes limit the effectiveness of historical data in improving system
performance. Moreover, constrained bandwidth makes it difficult
to refresh the dataset, intensifying the complexity of the problem.

In this paper, we propose Lumos, a novel live 360-degree video
streaming framework that integrates spatial and temporal domain
neural enhancement techniques. By considering different ratios of
downsampling in the spatial and temporal domains, Lumos gener-
ates a wide array of diverse neural enhancement configurations,
each corresponding to varying levels of neural-enhanced quality.
This enables Lumos to overcome the aforementioned limitations by
exploring the optimal neural enhancement configuration in a two-
dimensional solution space, a capability not feasible with existing
methods limited to a single dimension.

To address the aforementioned challenges, Lumos incorporates
several important innovative designs. Firstly, Lumos introduces
a lightweight Neural-enhanced Quality Prediction (NQP) model
trained using historical live 360-degree video data. This model
takes the low-level spatial-temporal features of tile videos as input
and generates upper and lower bounds of neural-enhanced quality
predictions for various spatial-temporal neural enhancement con-
figurations. This guidance aids in selecting optimal spatial-temporal
configurations, reducing the computational burden on the upload
client while enhancing the robustness of the configuration selec-
tion procedure. Secondly, based on our observation of a significant
correlation between the spatial-temporal complexity of different
tiles and their rate-distortions, Lumos adopts a dynamic bandwidth
allocation strategy. This strategy assigns available bandwidth to
each tile according to its specific spatial-temporal complexity. By
doing so, Lumos ensures efficient bandwidth utilization, thereby fa-
cilitating the transmission of higher-quality live 360-degree videos.
Finally, recognizing that even low-quality tiles can provide valuable
labels for updating the dataset, Lumos utilizes the remaining band-
width after transmitting 360-degree videos to send low-quality tiles
for updating the NQP model. This proactive approach mitigates
performance degradation and maintains user QoE.

In summary, our paper makes the following contributions:

• We conduct measurement experiments to explore the rela-
tionship between spatial-temporal complexity and tile rate-
distortion, and find a strong correlation between them. Addi-
tionally, we observe that low-quality tiles can also effectively
serve as training samples for updating neural models used
in system components to maintain system performance.
• We propose Lumos, the first spatial-temporal integrated live
360 video streaming framework to our knowledge. In Lumos,
we introduce a real-time NQP model to predict the neural-
enhanced quality for various video contents. Additionally,
we present a tile-level content-aware bitrate allocator that
dynamically allocates bandwidth and selects appropriate
neural enhancement configurations for tiles.
• We conduct extensive evaluations using real-world traces.
The experimental results demonstrate that Lumos outper-
forms state-of-the-art methods with up to 0.022 SSIM gain
and enhances user Quality of Experience (QoE) by 8.2%-8.5%.

The remainder of this paper is organized as follows. In Section
2, we survey previous works related to our research. In Section 3,
we conduct the measurement studies to understand the drawbacks

of one-dimension neural enhancement and discover the key obser-
vation inspiring our design. In Section 4, we introduce the detailed
design of Lumos. In Section 5, we demonstrate experiments results
of Lumos compared with other baselines. Finally, we conclude our
work in Section 6.

2 RELATEDWORK
2.1 360-Degree Live Video Streaming
Previous works on the optimisation of 360-degree video streaming
systems have been approached from various perspectives. Yi et al.
[45] conducted a detailed measurement study on the time consump-
tion of a live 360-degree video streaming system and discovered the
relationship between task time consumption and system latency.
Feng et al. [10] developed a viewport prediction scheme for live
360-degree video streaming systems using motion tracking and
user interest modelling. Ban et al. [2] proposed a multi-agent deep
reinforcement learning based 360-degree video streaming system
(MA360) to solve the multi-user streaming problem in edge caching
networks. Sun et al. [32] proposed the use of "flocking" to improve
viewport prediction and edge server caching for live 360-degree
video streaming. Xie et al. [37] proposed a dynamic co-rendering
solution for low-latency and high-quality mobile virtual reality.
Eltobgy et al. [8] proposed a solution for live 360-degree video
multicast to mobile users.

2.2 Neural-enhanced Video Streaming
Super-resolution Based Neural Enhanced Video Streaming
System. Recent advances in deep learning, especially in super-
resolution, offer opportunities to reduce bandwidth consumption
in video streaming applications. Dasari et al. [7] proposed a super-
resolution approach that significantly compresses the video on the
server side and enhances it to higher quality on the client side using
a neural network model. Kim et al. [14] introduced LiveNAS, a real-
time video ingestion framework that enhances the quality of the
original video stream by leveraging server-side computation. Live-
NAS applies neural enhancement to the original video stream and
uses online learning to maximize quality. Luo et al. [20] developed
CrowdSR, a real-time video ingestion method that converts low-
resolution video streams from weak devices into high-resolution
streams through super-resolution. Wang et al. [35] proposed Vaser,
a novel neural-enhanced 360-degree live video ingestion frame-
work considering viewport information. While these works focus
on the spatial domain, recovering original details and ensuring
video quality for frames with complex textures can be challenging.
Frame-interpolation Based Neural Enhanced Video Stream-
ing System. Some existing works optimize video transmission by
discarding packets or video frames. Yahia et al. [39] discard fixed
bitrate video frames in live video streams using HTTP/2. Stewart
et al. [30] modify the SCTP protocol to be partially reliable, allow-
ing for discarding some packets without considering video frame
characteristics. BETA [13] considers all B-frames as discardable,
while VOXEL [24] modifies P-frames and B-frames for unreliable
transmissions. Yang et al. [40] design an efficient end-to-end col-
laborative VR streaming system to increase the frame rate of VR
video, but it is not easily applicable to real-time video streaming
systems. Reparo [33] propose a new approach for real-time video
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streaming to improve QoE in low-rate networks, using a lightweight
prediction model to determine whether to drop an even frame and
recovering it through VFI at the media server. These works provide
inspiration for compressing video in the time domain, but none
of them handle video content with drastically changing scenes
effectively.

3 MEASUREMENT STUDY
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(a) Neural-enhanced Quality on
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Figure 1: The enhanced quality of different neural enhance-
ment configurations on different types of tiles.

Inherent drawbacks of one-dimension neural enhancement.
In a typical neural-enhanced live streaming video system, the video
is usually downsampled either spatially or temporally to further
compress its size, followed by neural enhancement using SR-DNN
and FI-DNN.

Figure 1a and Figure 1b illustrate the performance of different
neural enhancement configurations on different types of tiles. We
showcase the effects of neural enhancement using three different
neural enhancement configurations: (a) temporal downsampling
only (540P, 4fps), (b) spatial downsampling only (270P, 25fps), and
(c) spatial-temporal downsampling (270P, 4fps). CRF is an FFmpeg
encoding option used for bitrate control, where the larger the CRF,
the lower the bitrate of the encoded video. As shown in Figure
1a, the DNN-based SR model falls short of effectively enhancing
video tile with complex textures. Furthermore, simultaneous spatial-
temporal downsampling yields comparable neural enhancement
results with a smaller tile size. However, as shown in Figure 1b,
temporal downsampling does harm to video quality in scenarios
with strong dynamics, suggesting that neural enhancement in the
temporal dimension is not applicable to these tiles.

These results suggest that neural enhancement in either the spa-
tial or temporal domain has its own drawbacks, and an integration
of the two should be considered in practice to improve video quality.
Correlation between rate-distortion and spatial-temporal
complexity. In 360-degree video transmission systems, adaptive
bandwidth allocation for each tile is essential. As illustrated in
Figure 2a and 2b, the Tile 0 achieves remarkably high quality with
less bandwidth requirement, while the Tile 12 requires a higher
bandwidth allocation to achieve comparable quality, indicating
the rate-distortion varies across different tiles. What’s more, we
observed a strong correlation between the tile’s rate-distortion
and its spatial-temporal complexity, as depicted in Figure 2a. To
achieve satisfactory video quality, a tile with high spatial-temporal
complexity requires a much higher bitrate than a tile with low

SSIM Bitrates Spatio-temporal
 Complexity
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(a) The normalized values
of SSIM, bitrates and spatial-
temporal complexity.

Tile 0

Tile 12

(b) The corresponding tiles
in the 360-degree video corre-
sponds to the left outcome.

Figure 2: The video quality, bitrates and spatial-temporal
complexity for different tiles in the same chunk.

spatial-temporal complexity. This insight inspires us to estimate
the rate-distortion based on the spatial-temporal complexity of
tiles, enabling adaptive bandwidth allocation among tiles to achieve
rational utilization of bandwidth.
Effectiveness of low-quality training samples. Due to the lim-
ited remaining bandwidth after video transmission, it is not feasible
to transmit the original and complete video tiles for online updates
of the NQP model. In our observations, we find out that tiles that
are complete in resolution and frame rate but encoded at a very
low bitrate have the potential to be used as retraining samples for
the NQP model. As shown in Figure 3, except for the lower bound
(CRF33) of the configuration 540p, 12fps, the relative order of the
upper and lower bounds of other configurations is the same, in-
dicating their potentials as training labels. Moreover, the size of
the low-quality samples is small enough to be transmitted using
remaining bandwidth, showing their usefulness.
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Figure 3: The enhanced quality bounds of 5 neural enhance-
ment configurations on the origin tile frames (left) and low-
quality tile frames (right).

4 FRAMEWORK DESIGN OF LUMOS
4.1 System Overview
The core of Lumos is to utilize spatial-temporal integrated neural
enhancement techniques to make full use of constrained upload
bandwidth, to transmit higher-quality 360-degree videos. Figure 4
elucidates the architectural framework of Lumos, which consists of
an upload client and a media server.
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Figure 4: Lumos system overview, where NE cfg. denotes neural enhancement configuration.

Upload Client. At the upload client, Firstly, for each tile, the NQP
model takes the low-level spatial-temporal feature as input and
predicts the neural-enhanced quality of its corresponding neural
enhancement configuration. Afterward, the available bitrates are
dynamically allocated among tiles based on their spatial-temporal
complexity, followed by selecting the appropriate neural enhance-
ment configuration that satisfies the allocated bitrates. Then, the
tile is encoded with the selected configuration and transmitted. Fi-
nally, leveraging the rest bandwidth after transmitting 360-degree
videos, low-quality tiles, which are denoted as fragment sample in
our design, are selected and sent to the media server for the NQP
model updating.
Media Server. At the media server, firstly, the received 360-degree
tile videos are decoded, and applied the corresponding spatial-
temporal neural enhancement techniques for recovery. The en-
hanced tiles are then stitched and transcoded into multiple versions
waiting for viewer requests. Simultaneously, fragment training sam-
ples are decoded into tile frames. For each neural enhancement
configuration, the tile frames are downsampled, encoded, and de-
coded using the highest and lowest bitrate settings. After that, the
corresponding neural enhancement configuration is applied to en-
hance the tile frames to obtain the upper and lower bounds of
enhanced quality, serving as labels for re-training the NQP model.
Then, the NQP model is updated and sent back to the upload client
periodically.

4.2 Neural-enhanced Quality Prediction
The role of the Neural-enhanced Quality Predictor is to forecast
the highest and lowest restore quality for each neural enhancement
configuration.
Extracting spatial-temporal features of tiles. As depicted in
Figure 4, firstly, the Neural-enhanced Quality Predictor extracts
spatial-temporal features of each tile. Inspired by Reducto[17], the
Feature Extractor is designed to capture a range of low-level features
to construct the spatial-temporal feature for each tile, such as pixel
difference and area difference for the temporal domain and edge
difference and variance of pixel values after applying the Laplacian

operator [4] for the spatial domain. The spatial-temporal features
of tiles are then utilized for predicting neural-enhanced quality, as
well as for computing spatial-temporal complexity.
Predicting neural-enhanced quality. Based on the aforemen-
tioned steps, the NQPmodel is trained to predict the neural-enhanced
quality for its corresponding neural enhancement configuration.
This prediction serves as a guidance for the selection of the neural
enhancement configuration for each tile.

At time chunk 𝑖 , assume the spatial-temporal features of tile
𝑗 be denoted as 𝑓𝑖 𝑗 and NQP𝑘 denotes the NQP model of neural
enhancement configuration 𝑘 . For each configuration 𝑘 , we pre-
dict the neural-enhanced quality for each tile, denoted as 𝑞𝑘

𝑖 𝑗
. This

procedure could be established as follows:

𝑞𝑘𝑖 𝑗 = NQP𝑘 (𝑓𝑖 𝑗 ). (1)

To ensure the effectiveness of our NQP model predictions, we
propose two design strategies. First, for each neural enhancement
configuration, rather than predicting the neural-enhanced quality
under all CRF settings, we only forecast the upper and lower bounds
of the enhanced quality. That is the neural-enhanced quality of tile
videos which is encoded with corresponding neural enhancement
configuration and the highest and lowest CRF. This approach not
only reduces the number of prediction outputs to mitigate the risk
of wrong selections but also affords greater flexibility in selecting
spatial-temporal neural enhancement configurations, thereby en-
hancing the robustness of the proposed system. Furthermore, we
employ lightweight Multilayer Perceptron (MLP) as the NQPmodel,
which enables real-time inference under the constraint of limited
computational resources.

4.3 Content-aware Bitrate Allocation
After predicting the neural-enhanced quality for each neural en-
hancement configuration, we proceed to allocate bitrates to each
tile and select the appropriate configurations to downsample the
tiles.
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Measuring spatial-temporal complexity. Firstly, it is crucial
to measure the spatial-temporal complexity of each tile. We em-
ploy the spatial-temporal feature to calculate the spatial-temporal
complexity of each tile, as we aggregate all the low-level features
within the spatial-temporal feature of each tile to serve as its spatial-
temporal complexity.

Algorithm 1: ALLOCATE_BITRATES(𝐵𝑖 , 𝑧𝑖 𝑗 , 𝑁 )
input :Spatial-temporal complexity for tile 𝑗 in chunk 𝑖:

𝑧𝑖 𝑗 , avalible bitrates for chunk 𝑖: 𝐵𝑖 , the numbel of
tiles: 𝑁 .

output :Allocated bitrate for tile 𝑗 in chunk 𝑖: 𝐵𝑖 𝑗 .

1 Initialise𝑤𝑖 𝑗 ← 𝛼 for tile 𝑗 in chunk 𝑖 ;
2 𝑤𝑖 𝑗 ← 𝑤𝑖 𝑗 + 𝑧𝑖 𝑗 ,∀𝑗 ;
3 𝑤𝑖 𝑗 ←

𝑤𝑖 𝑗∑𝑁
𝑗=1 𝑤𝑖 𝑗

,∀𝑗 ;

4 𝑤
′
𝑖 𝑗
← TRUNCATE(𝑤𝑖 𝑗 ),∀𝑗 ;

5 𝑤
′
𝑖 𝑗
← 𝑤𝑖 𝑗∑𝑁

𝑗=1 𝑤
′
𝑖 𝑗

,∀𝑗 ;

6 𝐵𝑖 𝑗 ← 𝐵𝑖 ×𝑤
′
𝑖 𝑗
,∀𝑗 ;

7 return 𝐵𝑖 𝑗 ;

Allocating bitrate among tiles. Then, bitrate allocation among
tiles is conducted based on two considerations: first, tiles with lower
spatial-temporal complexity should get lower bitrates as they can
achieve satisfactory viewing quality with fewer bandwidth. More-
over, it is crucial not to allocate too much bandwidth to tiles with
higher spatial-temporal complexity, as this may excessively degrade
the quality of other tiles. Thus, a trade-off must be made between
these two types of tiles to ensure full utilization of bandwidth and
high-quality encoding of tiles.

We design a weight-based heuristic bitrate allocation algorithm
reflecting the proportion of total bitrates allocated to a specific tile
𝑗 in chunk 𝑖 . Initially, each tile is assigned an initial weight 𝛼 . Then,
the weight of each tile is incremented by its corresponding spatial-
temporal complexity 𝑧𝑖 𝑗 , i.e.,𝑤𝑖 𝑗 = 𝛼 + 𝑧𝑖 𝑗 , where𝑤𝑖 𝑗 is the weight
of tile 𝑗 in chunk 𝑖 . After that, the weight function is normalized
to ensure that the total weight across all tiles sums up to one. To
prevent the bitrate allocation from excessively favoring certain tiles
and hurting others’ quality, the normalized weights of each tile are
then truncated to predefined maximum and minimum thresholds.
Finally, the truncated weights are renormalized to obtain the bitrate
weight for each tile, which is then used to proportionally allocate
bitrates to each tile according to the formula in Algorithm 1.
Selecting spatial-temporal downsampling configurations.Given
the predicted quality of each neural enhancement configuration and
the allocated bitrates, we select the most suitable neural enhance-
ment configuration for each tile. For each neural enhancement
configuration, its upper and lower bounds of neural enhancement
performance correspond to an encoding bitrate, respectively. For
example, as shown in figure 5a, the upper and lower bounds of
enhancement qualities for configuration y correspond to bitrates
60kbps and 40bps, respectively. Therefore, we follow these steps to
select the neural enhancement configuration:

cfg. x upper (80kbps)

cfg. y upper (60kbps)

cfg. x upper (80kbps)

cfg. y lower (40kbps)

allocated
bitrate

(70kbps)

allocated
bitrate

(70kbps)

(a) Configurations selection ac-
cording to the upper bound.

cfg. x lower (70kbps)

cfg. y upper (60kbps)

cfg. x lower (70kbps)

cfg. y lower (40kbps)

allocated
bitrate

(65kbps)

allocated
bitrate

(65kbps)

(b) Configurations selection ac-
cording to the lower bound.

Figure 5: Selecting neural enhancement configurations based
on predicted quality and allocated bitrate, where the under-
lined neural enhancement configurations are the selected
ones in that case.

(1) First, we sort the predicted enhancement qualities (including
upper and lower bounds) of each configuration in descending
order.

(2) Second, we traverse through each configuration sequentially
until we find one with a bitrate lower than the allocated
bitrate for the tile (e.g. the configuration y in our examples).

(3) If the allocated bitrate lies between the upper bound of con-
figuration x and the upper (or lower) bound of configuration
y (where y can be any configuration, including x), we select
configuration x (e.g., the example in Figure 5a); otherwise, if
the allocated bitrate lies between the lower bound of config-
uration x and the upper (or lower) bound of configuration y
(where y can be any configuration except x since the upper
bound corresponds to a higher bitrate than the lower bound),
we choose configuration y (e.g., the example in Figure 5b).

The above strategy is based on two considerations: (1) If the
allocated bitrate falls between the upper bound of configuration x
and the upper (or lower) bound of configuration y, it indicates that
there exists a suitable CDF setting of configuration x that meets the
requirements of the allocated bitrate, and selecting configuration
x provides the opportunity for better neural-enhanced quality. (2)
If the allocated bitrate falls between the lower bound of config-
uration x and the upper (or lower) bound of configuration y, it
suggests that the allocated bitrate is not within the bitrate range of
configuration x. In this case, we choose configuration y and select
an appropriate CRF for tile encoding.
Encoding tiles with selected neural enhancement configura-
tion. For each tile, we downsampled it to the resolution and frame
rate corresponding to its selected neural enhancement configura-
tion. The remaining tile frames are then encoded using a CDF that
meets the allocated bitrate and transmitted to the media server side.

4.4 Fragment Sample Selection
The purpose of the Fragment Sample Selector is to effectively uti-
lize the remaining bandwidth for transmitting as many fragment
samples as possible for the online training of the NQP model. There-
fore, we base the selection procedure on the following principles:
(1) Regionalization: Adjacent tiles in a 360-degree video exhibit
similar characteristics. (2) Importance: Tiles should be sorted by
spatial-temporal complexity. (3) Balance: Uniform sampling is neces-
sary while considering Importance. Therefore, samples with lower
spatial-temporal complexity should also be collected.
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Transmit as many fragment samples as possible in sorted order

Tile Encoder

Figure 6: Fragment sample transmission process, where large
numbers represent regions and small numbers indicate the
sorted order.

We present the designed fragment sample selection procedure.
Firstly, as illustrated in Figure 6, the 360-degree video is divided
into six regions, labeled 1 to 6. Subsequently, tiles within regions 1
to 4 are sorted in descending order of spatial-temporal complexity,
while tiles in regions 5 to 6 are sorted in ascending order. It is worth
noting that due to the wrapping-around property of 360-degree
video ERP projection, there is no left or right distinction in the video.
Finally, following the sequence of regions 1 to 6, tiles are selected
from each region according to the sorted order and encoded in
low quality to become a fragment sample. These samples are then
transmitted to the server side utilizing the remaining bandwidth
until it is depleted.

4.5 Neural-enhanced Processing
The Neural-enhanced processor’s role is to enhance the received
downsampled 360-degree video tiles, restoring their original res-
olution and frame rate, and then stitching them together to form
complete 360-degree video chunks.
Enhancing received tiles with DNNs. For tiles with reduced
spatial resolution, we use SR-DNN to recover the resolution, while
for tiles with reduced frame rate only, we use FI-DNN to recover the
frame rate. When both the resolution and frame rate of the tile are
degraded, we first use SR-DNN to recover the resolution and then
apply FI-DNN to recover the frame rate. With the above process,
we achieve spatial-temporal integrated neural enhancement for all
360-degree video tiles.

Subsequently, the neural-enhanced tiles are stitched together to
form complete 360-degree video chunks and transcoded into ver-
sions of varying bitrates, awaiting download requests from viewers.

4.6 NQP Model Retraining
As the similarity between historical and current live 360-degree
videos diminishes over time, it becomes necessary to conduct online
training for the NQP model, enabling it to adapt to upcoming video
content.
Extracting training dataset. Figure 4 illustrates the process of
acquiring a dataset. For a fragment sample, we apply each neural
enhancement configuration to it for spatial-temporal downsam-
pling, and the downsampled tile frames are encoded using the
maximum and minimum CRF settings. Then, the encoded tile is
decoded and neural enhancement is applied accordingly to restore
it to its original resolution and frame rate. Afterward, the restored
tile is compared with the unprocessed tile to calculate the upper
and lower bounds of the quality of the neural enhancement, which

are used as training labels for this neural enhancement configu-
ration. It is worth noting that the SSIM values computed on the
fragment sample may be different from those computed on the orig-
inal tile frame, but we are only concerned with the relative order
of the upper and lower enhanced quality bounds of the different
neural enhancement configurations, which the fragment sample
can provide.

The inputs corresponding to the extracted labels are the spatial-
temporal features of the fragment sample tiles, which are merely
floating-point numbers and directly transmitted from the upload
client, occupying negligible bandwidth.
Updating the NQPmodel. Employing the described approach, the
media server continuously updates the training dataset and periodi-
cally retrains the NQPmodel using the extracted data. Subsequently,
it forwards the updated model to the upload client, replacing the
obsolete NQP model.

5 EVALUATION
In this section, we evaluate Lumos with a series of experiments and
in-depth analysis to answer the following questions:

(1) How much is the video quality enhancement of the proposed
Lumos compared with other state-of-the-art systems that only
consider a single dimension?

(2) Does Lumos offer improved Quality of Experience (QoE) for
end users?

(3) Does the implementation of the Content-aware Bitrate Allo-
cator and Fragment Sample Selector genuinely lead to perfor-
mance improvement?

5.1 Experiment Settings
Evaluation Setup. The Lumos framework is implemented us-
ing Python, and a testbed is established for the data generation
and evaluation process. Our pipeline operates on Intel(R) Xeon(R)
CPU E5-2640 v4 @ 2.40GHz processors, complemented by NVIDIA
GeForce RTX 3090 Super GPUs. For DNN training, both SR-DNN
and FI-DNN are pre-trained on 360-degree videos from Gaze360
[38] that are not used for testing. We utilize the EDSR [18] model
for spatial-domain neural enhancement and the RIFE [12] model
for temporal-domain neural enhancement. These models are not
updated online due to their acceptable generalization capabilities.
In terms of low-level features, we choose four low-level features:
pixel difference, area difference, edge difference, and the variance
of pixel values after applying the Laplacian operator. Considering
the NQP model, for each neural enhancement configuration, we
train a simple MLP with three hidden layers of sizes 40, 20, and
2. The total size of the NQP model corresponding to all neural en-
hancement configurations is 31.79 KB, and it takes only 3 ms for
inference on PICO4 [27], a VR headset with mobile-grade chips.
Regarding the neural enhancement configurations, for each tile,
spatially, we applied downsampling factors of [540P, 270P, 180P],
and temporally, we applied downsampling factors of [25fps, 13fps,
7fps, 4fps]. It is important to note that for a fair comparison, we
excluded the configuration [540P, 25fps] which does not undergo
any neural enhancement operations, resulting in a total of 11 neural
enhancement configurations.
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Figure 7: Video quality improvement of Lumos in two datasets.

Evaluation Videos. We conducted experiments using nine 360-
degree videos from Gaze360 [38] and four 360-degree videos from
SalientVR [34]. The original resolution of the 360-degree videos is
4K and the frame rate is 25fps. The videos are divided into 24 (4
rows x 6 columns) separate tiles, with each tile having an original
resolution of 540P. The first 30 seconds of the videos are allocated
for training the NQP model, while the remaining duration is used
for video streaming simulation. For each tile, the videos are encoded
using 11 CRF (Constant Rate Factor) values ranging from 23 to 33.
Finally, the buffer length is set to 10s for the experiments.
Network Traces. To better evaluate the performance, we use real
4G network traces [28], containing 135 traces. In our experiments,
we filter out the traces whose average bandwidth is higher than
10Mbps to model a bandwidth-constrained environment just like
previous works [14, 33]. As a result, the network bandwidth ranged
from 4 to 10 Mbps.
QoE Calculation. To assess the Quality of Experience (QoE), we
utilize the linear QoE model introduced by Pensieve [22]:

𝑄𝑜𝐸 =

𝑁∑︁
𝑛=1

𝑞(𝑅𝑛) − 𝜇
𝑁∑︁
𝑛=1

𝑇𝑛 −
𝑁−1∑︁
𝑛=1
|𝑞(𝑅𝑛+1 − 𝑞(𝑅𝑛)) |, (2)

where 𝜇 is set to 4.3 like Pensieve, and the increase of SSIM is
computed using its effective bitrate function, generated through
linear interpolation similar to NAS [43].
Baselines. To demonstrate that Lumos can improve video quality
and enhance users’ QoE, we conduct comparisons between Lumos
and two state-of-the-art neural-enhanced baseline methods:
• LiveNAS-360 [14], which primarily emphasizes spatial neural
enhancement. In this approach, the upload client adjusts the
resolution of tiles based on the available uplink bandwidth,
and the media server restores the resolution of these tiles
using SR-DNN, which is the same as the SR-DNN used by
Lumos. It is worth noting that LiveNAS performs online
training on SR-DNNs while we do not, which is orthogonal
to our work.
• Reparo-360 [33], which emphasizes temporal neural enhance-
ment. In this approach, the upload client utilizes the VFD
model’s prediction to discard even frames of tiles, and the
media server restores the frame rate of these tiles using FI-
DNN, which is the same as the FI-DNN used by Lumos. The
VFD model is periodically updated on the server side and
sent back to the client.

5.2 Experiment Results
Video Quality Improvement. Figures 7a and 7b present the aver-
age SSIM values of all video chunks from Gaze360 and SalientVR
generated by Lumos and other baseline methods at four different
bitrate levels. We have two main observations: Firstly, compared
to LiveNAS-360 and Reparo-360, Lumos surpasses them in both
datasets across all bitrate levels, with SSIM gains up to 0.012 and
0.005 on Gaze360 and up to 0.022 and 0.013 on SalientVR. Secondly,
in our experiments, Reparo-360 performs poorly under low band-
width conditions, while LiveNAS-360 exhibits subpar performance
when bandwidth is relatively abundant. This suggests that relying
solely on single-domain neural enhancement is not able to ade-
quately adapt to a wide range of bandwidth variations. In contrast,
our approach considers the combination of both temporal and spa-
tial domains, thereby possessing greater bandwidth adaptability
and outperforming both baselines at all bitrate levels.

C1 C2 C3 C4 C5 C6 C7 C8 C9 D1 D2 D3 D4
Video Types

4
3
2
1
0
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5
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7

10
0 

* 
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IM
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ai
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Lumos vs LiveNAS-360
Lumos vs Reparo-360

Figure 8: SSIM gain of video types.

Figure 7c and Figure 7d show the SSIM CDF curves for all video
blocks on Gaze360 and SalientVR. We see that the majority of
the Lumos curves lie below the other curves, which demonstrates
the superiority of spatial-temporal integrated neural enhancement
approach over those that only consider either the temporal or spatial
domain. To further elucidate the effectiveness of Lumos, the chunk-
level ssim gain compared to LiveNAS-360 and Reparo-360 on 13
types videos from the two datasets is shown in Figure 8, in which
C1-C9 refers to 9 video types in Gaze360 and D1-D4 refers to 4
video types in SalientVR. Overall, Lumos has SSIM gain on the vast
majority of video types, illustrating the robustness of our system.
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Figure 9: QoE comparison of different methods.

Quality of Experience. To assess the QoE, we conducted tests on
four types of videos from SalientVR using real network traces. Fig-
ure 9a illustrates the comparison of QoE between Lumos and two
other baselines. The findings demonstrate that Lumos surpasses the
other baselines, achieving the highest QoE, with an improvement
of 8.2% on LiveNAS-360 and 8.5% on Reparo-360. To better under-
stand QoE gains obtained by Lumos, we analyze its performance
on each term for the QoE objective (see Eq. 2), which includes bi-
trate utility, smoothness penalty, and rebuffer penalty. For a clearer
visualization, we multiply the rebuffer penalty by a factor of 20
while maintaining the original values for other components. As
depicted in Figure 9a, Lumos exhibits the highest bitrate utility,
with an increase of 19.1% on LiveNAS-360 and 11.1% on Reparo-
360. Additionally, considering that Reparo-360 can discard no more
than half of the frames which limits its adaptability to dynamic
bandwidth, its rebuffer penalty is 2.67 times higher than that of
Lumos. Since Lumos explores a significantly larger spatial-temporal
neural enhancement configuration space, it suffers a little more
smoothness penalty. Figure 9b presents the CDF curves of QoE
for all video chunks of our four 360-degree videos. Overall, the
majority curve of Lumos which corresponds to higher QoE value is
below the other two baselines, suggesting that the spatial-temporal
integrated neural enhancement paradigm is effective in improving
QoE. Besides, there are small portions of the curve corresponding
to lower QoE values above the other two baselines. This aligns
with the smoothness penalty results shown in Figure 9a and will
be addressed as part of our future work.
Ablation Study.To validate the effectiveness of the CBA and online
training of the NQP model, we conducted an ablation study on two
bitrate levels using four types of videos from SalientVR. Each video
is sampled for 1 minute. As demonstrated in Table 1, online training
of the NQP model leads to improvements in video quality at both
bitrate levels, indicating the effectiveness of employing fragment
samples for online training. Furthermore, substituting the CBA
with the uniform distribution of bitrates hurts video quality. This
underscores the necessity of dynamically allocating bitrates based
on the spatial-temporal complexity of tiles, further emphasizing
the effectiveness of the CBA.
Case study of Content-aware Bitrate Allocator. To further investigate
the effectiveness of the CBA, we present the CDF curves of per-
tile SSIM with and without CBA in Figure 10a. According to the
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Figure 10: Case study of the Content-aware Bitrate Allocator
and the online training of the NQP model.

results, employing CBA reduces the number of low-quality tiles
while minimally affecting the quantity of high-quality tiles. This
demonstrates the benefits of content-aware bitrate allocation based
on spatial-temporal complexity.
Case study of the online training of the NQP model. Figure 10b dis-
plays the prediction accuracy of the NQP model with and without
online training on video D2. We train the NQP model every 10
seconds and compare the SSIM ranking order of each neural en-
hancement configuration output by NQP with that on raw video
frames. As depicted in figure 10b, over time, the retrained NQP
model shows an improvement in accuracy of up to 14.65%, indicat-
ing the efficacy of our proposed online training method.

Methods/Bitrates 6Mpbs 8Mpbs

w/o RT, w/o CBA 0.9136 0.9275
w/o RT, w/ CBA 0.9215 0.9344
w/ RT, w/o CBA 0.9146 0.9284
w/ RT, w/ CBA 0.9233 0.9364

Table 1: Ablation study of Lumos, where CBA denotes the
Content-aware Bitrate Allocator, and RT denotes the online
training of the NQP model using fragment samples.

6 CONCLUSION
In this paper, we introduce Lumos, a novel live 360-degree video
streaming system equipped with spatial and temporal integrated
neural enhancement techniques to improve live 360-degree video
quality under limited upload bandwidth. Lumos applies the real-
time NQP model to forecast the enhanced quality for each neural
enhancement configurations, dealingwith the computational power
bottleneck of upload client. The Content-aware Bitrate Allocator
assigns bitrates to each tile and selects the appropriate neural en-
hancement configuration to improve overall 360-degree video qual-
ity. Besides, fragment samples are utilized to improve the prediction
performance, preventing system performance from decreasing over
time. Compared to the baselines using either spatial or temporal
neural enhancement, Lumos achieves up to 0.022 SSIM gain and
produces significant (8.2%-8.5%) QoE improvement for live viewers.
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