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ABSTRACT

With the rapid improvement of large language models capabilities, there has been
increasing interest in challenging constrained text generation problems. However,
existing benchmarks for constrained generation usually focus on fixed constraint
types (e.g. generate a sentence containing certain words) that have proved to be
easy for state-of-the-art models like GPT-4. We present COLLIE, a grammar-
based framework that allows the specification of rich, compositional constraints
with diverse generation levels (word, sentence, paragraph, passage) and modeling
challenges (e.g.language understanding, logical reasoning, counting, semantic
planning). We also develop tools for automatic extraction of task instances given a
constraint structure and a raw text corpus. Using COLLIE, we compile the COLLIE-
v1 dataset with 2,080 instances comprising 13 constraint structures. We perform
systematic experiments across five state-of-the-art instruction-tuned language mod-
els and analyze their performances to reveal shortcomings. COLLIE is designed
to be extensible and lightweight, and we hope the community finds it useful to
develop more complex constraints and evaluations in the future.

1 INTRODUCTION

Large language models (LLMs) are increasingly capable of generating coherent and fluent text
when provided with high-level prompts (OpenAl, 2023a). Such capabilities have raised the bar for
automated text generation, allowing us to explore more nuanced ways of utilizing LMs. One such
line of inquiry is constrained text generation, whereby the LM is asked to adhere to a particular
topic (Keskar et al., 2019; |Dathathri et al.,[2020), or avoid using certain words (Lu et al., 2021} [2022).
However, these works scratch the surface of a broader phenomenon — LMs do not just generate
text, as evidenced by their use in more structured tasks like problem solving (Yao et al.,[2022), code
generation (Chen et al.|[2022b)) and even tool use through API calls (Schick et al.,[2023).

This raises a natural question — ‘what is the next iteration of text generation benchmarks that can
evaluate these advanced capabilities in LLMs’? We posit that one direction is incorporating logical
and compositional challenges via constrained text generation. Existing benchmarks for constrained
generation, however, focus only on particular constraint types, require tailored pipelines to collect
data and annotations, and/or can only evaluate a specific aspect of LM strengths (Lin et al., [2020;
Chen et al.|, |2022a). They also suffer from challenges in scalable dataset construction.

In this paper, we propose COLLIE, a grammar-based framework that enables systematic construction
of compositional constraints over diverse generation levels (e.g., words, sentences, paragraphs) and
semantic requirements (e.g., language understanding, logical reasoning, counting). Operationally,
COLLIE allows researchers to 1) easily specify constraint templates, and then automatically 2) extract
constraint values from language corpora, 3) render them into natural language instructions, and 4)
evaluate model generations against the constraint instructions.

Existing benchmarks for constrained generation focus only on particular constraint types and formats
(e.g., “generate a sentence with words...”). These limitations mean that benchmarks become quickly
obsolete as LLMs progress. In contrast, the modular and extensible design of COLLIE allows the
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Figure 1: Our COLLIE framework for constraint structure specification, ground truth extraction,
instruction rendering, and evaluation. First, the user specifies the constraint structure without a
specific target value (expressed in *). Second, the constraint structure is used to extract ground truth
examples from text corpora that contain the target values. Third, the constraint structure and target
values are rendered into a natural language instruction. Finally, the model’s generation is evaluated
against the constraint and the ground truth. The model (gpt—-3.5-turbo) violates the constraints
by exceeding word limits and leaving the word ‘mankind’ at the end instead of the specified position.

broader NLP community to contribute additional constraints that can co-evolve with LLM capabilities
over time, while also providing a convenient endpoint for users that only want to evaluate their model
without developing their own constraints. The flexibility of such a grammar-based framework may
not only be useful for evaluation, but also in practice (e.g. word constraints, words blacklist, etc.).

We construct the dataset COLLIE-v1 with 2,080 constraint instances across 13 different types, using
three different corpora: Wikipedia (Foundation, 2022), CC-News (Hamborg et al.,[2017), and Project
Gutenberg (Brooke et al.,|[2015). We perform zero-shot evaluations of five state-of-the-art LLMs
of varying sizes including GPT-4 (OpenAl, 2023a) and PaLM (Anil et al.| 2023). While GPT-4
comparatively performs the best, it still achieves an average constraint satisfaction rate of only 50.9%.
We find that challenges correlate with position — for instance, instructing models to begin a sentence
with a specific word leads to a 100% success rate for GPT-4, while asking models to end a sentence
with a particular word results in a success rate of 40%-60%. These insights can help us diagnose
LLMs, which in turn can improve LLM capabilities, and further advance the benchmark itself.

To summarize, we make the following contributions: (1) We introduce COLLIE, a framework for
systematic generation of compositional constraints, that is flexible and extensible. (2) We use
COLLIE to curate a new dataset COLLIE-v1 comprising of 13 constraint structures. (3) We perform a
comprehensive evaluation of five state-of-the-art LLMs of varying sizes and provide useful insights
for both model and benchmark development in the future.

2 RELATED WORK

Constrained text generation (CTG). Early work in controllable text generation used control codes to
steer the generation towards desired topics or to reduce undesirable content, by controlling for broad
attributes such as sentiment or toxicity (Hu et al., 2017; [Keskar et al.,|2019; Dathathri et al., 20205
Krause et al.,|2021). Other work on constrained decoding provides to the language model a collection
of lexical items as constraints to be included or excluded in the final generated text (Hokamp and Liu,
2017; Hasler et al.,[2018; Dinu et al.,[2019; Hu et al.| 2019; |Lin et al.,[2020; Lu et al., [2021;2022;
L1 et al.,|2022b). Recent advances in instruction tuning LLMs (Ouyang et al.,[2022) have brought
major improvements to controllability. These advancements have made it challenging to use existing
controllable generation datasets to fully assess the capabilities of modern LLMs. InstructCTG (Zhou
et al.,|2023) is a concurrent work that also constructed a dataset with text constraints. However, it
mainly focuses on synthesizing 5 types of simple CTG instructions for tuning small language models
such as T5-11B (Raffel et al.;2020), whereas COLLIE serves to construct much more challenging and
open-ended CTG tasks to evaluate and diagnose start-of-the-art LLMs like GPT-4 (OpenAl} |2023b).
Lastly, there is a line of work that sets up CTG in more practical downstream applications, such as
controllable summarization (Zhang et al.,|2023). The flexibility of COLLIE allows these “functional
constraints” to be incorporated for more usefulness, which we leave for future work.
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Grammar-based compositional tests. Building benchmarks with data synthesized from grammars
has been explored previously in the context of question answering (Weston et al.,|2015)), instruction
following (Chevalier-Boisvert et al., 20195 Ruis et al.,[2020)) and visual reasoning (Johnson et al.|
2017). These benchmarks showcased the utility of grammars to systematically generate a comprehen-
sive set of test cases or to specify some fixed constraints. In contrast, COLLIE aims to enable flexible,
and dynamic constraint construction that can co-evolve with models. Furthermore, previous datasets
were synthetic with limited linguistic diversity and practical applicability to real-world scenarios. In
contrast, since our COLLIE framework extracts values and examples from natural language corpora
to construct the constraints, it represents a more realistic challenge for modern LLMs.

Systematic and scalable language benchmarks. The emergence of increasingly powerful general-
purpose language models has created a need for scalable benchmarks that can systematically and
comprehensively evaluate them. A few recent examples include HELM (Liang et al.,[2022), BIG-
Bench (Srivastava et al.,2022), MMLU (Hendrycks et al.}|2020), TaskBench500 (L1 et al.,[2022a), and
Natural Instructions (Wang et al.,2022). However, building such benchmarks require considerable
human effort, and may become obsolete when stronger models enter the arena. We provide a
new perspective in this race between model capabilities and challenging benchmarks: leverage
compositionality to construct automatic and scalable benchmarks with minimal human effort that can
co-evolve with model capabilities to remain challenging and relevant.

3 COLLIE FRAMEWORK TO CONSTRUCT CONSTRAINED TEXT GENERATION

COLLIE allows researchers to easily 1) specify textual constraint structures via a grammar, then
automatically 2) extract constraint values from text corpora, 3) render constraints into natural language
instructions, and 4) evaluate generations with respect to constraints.

Grammar. Two observations about text constraints motivate a grammar characterization: 1) they
involve different levels of text, e.g. character, word, sentence, or paragraph; and 2) many of them
specify either the count or position at a certain text level (existence is equivalent to count > 0).

Let capitalized letters (S, M, C,T) denote non-terminal variables, and other symbols (¢, o, ®, v)
denote terminals. A full constraint specification within our grammar S (Eq.|1) consists of two
parts: a generation level (level(£) = {) specifying whether the generated text £ should be a
word, a sentence, a paragraph, or a document, and a multi-constraint M/ (Eq. Q), which is a log-
ical composition of one or more base-constraints C. A text T (Eq. E) within these constraints
can either be the full generated text £, or a part of it when qualified with a pos(+). For example,
pos(pos(¢, paragraph, 3), sentence, —1) means “the last sentence of the 3rd paragraph of the gener-
ated text”. For terminal variables, we define a level £ of a text (Eq.[5), a string or number relation o
or & (Eq. @), and a string or number value vy, or vyum (Eq. E]) A represents the logical ‘and’ operator,
and V represents the logical ‘or’. With these definitions, we construct the following grammar:

S = (level(§) =OAM (constraint specification) (1)
M—=C|CANM|CVM (multi-constraint) 2)
C — count(T, £, v | £) ® vnum | POoS(T, €, Vpum) © Vs (base-constraint) ?3)
T — & | pos(T, £, vnum) (text) 4)
¢ — char | word | sentence | paragraph | passage (level) (5)
o —=|# & —==|#>|<|<]> (relation) (6)
Vs € BF Unum € Z (value) @)

At the core of our grammar, we consider two (symmetrical) types of base-constraints C' (Eq.[3):

1. Count constraints. count (T, ¢, vy, ) @ Vyum constrains the occurrences of a particular level-¢
string vg,. For example, count (7', word, ‘happy’) < 3 means “T should contain the word ‘happy’
no more than 3 times”. In contrast, count (7, ¢,¢') ® vyum constrains the occurrences of level-¢
strings in each level-¢’ unit of text T. For example, count (T, char, sentence) = 50 means “each
sentence of text T should have exactly 50 characters”.

2. Position constraints. pos(T, ¢, vyum) © vy, Specifies that a particular part of the text T should
equal (or not equal) the given string vg,. For example, pos(7, word,3) = ‘happy’ means “the
3rd word should be ‘happy’ in text T”. We also allow negative indices for reverse counting,
e.g. pos(T,char, —1) = x means “the last letter should not be ‘x’ in text T”.
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Note that the grammar above can easily be extended to accommodate more types of base-constraints
(e.g. part of speech, sentiment) by implementing the corresponding semantic checks — we leave this
to future work. Also for convenience, we use constraint structure to refer to a family of constraint
specifications that only differ in their values (e.g. generate a sentence with exactly x words, x € N),
and constraint to refer to a particular constraint specification with concrete values (e.g. generate a

sentence with exactly 5 words).

Examples and conceptual challenges. Our grammar can express a wide range of constraints through
logical compositions of base-constraints across different text levels. Table[T]illustrates some structures
across generation levels, identified by names such as para01 for paragraph generation, etc.

In addition to the generation levels, count and pos across
different levels introduce a variety of challenges. For exam-
ple, word01 and sent 01 challenge token-based language
models to count characters; pass01 requires high-level se-
mantic planning for models to generate a coherent passage
under constraints; sent 04 and para02 challenge mod-
els to generate text with presence or absence of particular
words; sent03, para03, and para04 require count-
ing at multiple levels; and word02, word03, sent02,
para0l5, and pass01 combine counting and positional
challenges at different levels, which can be considered most
demanding conceptually. We empirically assess the diffi-
culty of constraint structures in Section[5] Example COLLIE
usage is presented in Figure[2]

from collie.constraints import (
Constraint, TargetLevel,
Count, Relation

c = Constraint (
target_level=TargetLevel ('word’),
transformation=Count (),
relation=Relation (’'=="),

)

text = 'This is a good sentence.’

print (c.check (text, 5)) # True

Figure 2: Example COLLIE code for a
simple number of words constraint.

Table 1: List of all constraint structures used in COLLIE-v1, with (simplified) example values.

ID Example instruction

Multi-constraint M

word01 Generate a word with at least 15 letters.

count (&, char, word) > 15

word02 Generate a word with 10 letters, where
letter 1 is ‘s’, letter 3 is ‘r’, letter 9 is ‘e’.

count (&, char, word) = 10 A pos(&,char, 1) = ¢’
A pos(&,char,3) = ‘I° A pos(&,char,9) = ‘¢’

word03 Generate a word with at most 10 letters and
ends with “r".

count (¢, char, word) < 10 A
pos(&,char,—1) = 1’

sent01 Please generate a sentence with exactly 82 count (¢, char, sentence) = 82
characters. Include whitespace into your
character count.
sent02 Generate a sentence with 10 words, where count (¢, word, sentence) = 10 A
word 3 is “soft” and word 7 is “beach” and  pos(&, word, 3) = “soft" A
word 10 is “math”. pos(&,word, 7) = “beach” A
pos(&, word, 10) = “math”
sent03 Generate a sentence with at least 20 words,  count (£, word, sentence) > 20 A
and each word less than six characters. count (&, char, word) < 6
sent04 Generate a sentence but be sure to include count (&, word, ‘soft’) > 0 A
the words “soft”, “beach” and “math”. count (&, word, ‘beach’) > 0 A
count (£, word, ‘math’) > 0
para0l Generate a paragraph where each sentence  pos(pos(€, sentence, 1), word, 1) = ‘soft’ A
begins with the word “soft”. pos(pos(§, sentence, 2), word, 1) = ‘soft’ A ...
para02 Generate a paragraph with at least 4 count (&, sentence, paragraph) > 4 A
sentences, but do not use the words “the”, count (£, word, ‘the’) =0 A
“and” or “of”. count(§,word, ‘and’) = 0 A
count (&, word, ‘of”) = 0
para03 Generate a paragraph with exactly 4 count (¢, sentence, paragraph) = 4 A
sentences, each with between 10 and 15 count (¢, word, sentence) > 10 A
words. count (€, word, sentence) < 15
para04 Generate a paragraph with at least 3 count (¢, sentence, paragraph) > 3 A
sentences, each with at least 15 words. count (£, word, sentence) > 15
para05 Generate a paragraph with 2 sentences that  count (€, sentence, paragraph) = 2 A
end in “math” and “rock” respectively. pos(pos(§, sentence, 1), word, —1) = “math" A
pos(pos(§, sentence, 2), word, —1) = “rock”
passO1 Generate a passage with 2 paragraphs, each  count (&, paragraph, passage) = 2 A

ending in “I sit.” and “I cry.” respectively.

pos(pos(§, paragraph, 1), sentence, —1) = “I'sit." A
pos(pos(&, paragraph, 2), sentence, —1) = “I cry.”
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In conjunction with the grammar, we develop a set of compiling tools to help construct datasets with
minimal human efforts. Concretely, the pipeline of dataset construction involves 4 stages (Figure|T):

1. Specify constraint structures. Researchers can specify constraint structures (e.g. Table|1), and
optionally with a value range (e.g. “generate a sentence with z words”, and 5 < x < 10). This is the
only stage that involves manual effort.

2. Extract constraint values from corpora. We design an automatic extraction algorithm that runs
through a given text corpus to find strings that fit a constraint structure with some value ranges. For
example, given the constraint structure count (£, word, ) = x with value range 5 < x < 10, the
extraction algorithm returns sentences in the corpus that have 5-10 words, with associated word
counts. This ensures each constraint has at least one natural solution. More details are in Section 4.1}

3. Render natural language instructions. Each constraint can be rendered into a natural language
instruction (Table|l) via ruled-based translation, thanks to the compositionality grammar of COLLIE.
For example, a constraint count (&, char, ‘v’) = 2 A count (¢, char, ‘') = 3 can be synthetically
rendered into the instruction “Please generate a word with exactly 2 character ‘v’ and exactly 3
character ‘i’.”. It is also possible to improve the instruction fluency or naturalness by adding additional
rules to the synthetic translation, or use LLMs to polish instructions. More details are in Section

4. Evaluate generations. Given text £ generated by a model, we use a parser to evaluate it against a
constraint specification S and derive a True/False value, indicating if £ satisfies S. We use an average
success rate as the main metric to evaluate constraint conformance. We can also compare the fluency
of ¢ against the corpus-extracted “groundtruth” text, and render more fine-grained natural language
feedback indicating which base-constraints are met and which not (see Section|A.2).

4 COLLIE-V1 DATASET

We construct COLLIE-v1 using constraints structures from Tablem which contains 2,080 constraint
instances from 13 constraint types, with 1,435 unique constraint prompts. The broader NLP commu-
nity can contribute to future dataset releases by adding additional constraints, metrics, data sources.
The curated constraint set can co-evolve with models to become more challenging and comprehensive
as model capabilities improve.

4.1 CONSTRAINT SPECIFICATION AND EXTRACTION

Constraint specification. We begin by defining 13 constraint structures. We chose these 13 structures
to span various generation levels (word, sentence, paragraph and passage generation) and challenges
(counting, position). In total, we have 3 word-level, 4 sentence-level, 5 paragraph-level, and 1
passage-level constraint structures. Of these 13 constraint structures, 5 are single-level and the
remaining 8 are multi-level constraints. See Table|l|for the exact constraint structures we use.

Constraint extraction. While constructing constraint structures is straightforward using our grammar,
choosing constraint targets is challenging for two reasons: (1) Not all targets will admit a conforming
natural language string. For instance, the constraint, “Generate a two word sentence beginning with
the word The.” has no grammatically acceptable answer. (2) Even if a constraint admits a possible
answer, it may not admit a plausible answer. For instance, “Generate a sentence with 1928 words” is
possible, but any such sentence is very unlikely to appear in regular discourse.

To address both challenges, we sample constraint target values from natural language corpora, which
we denote as the data source. Given a constraint structure C and documents D = {ds, ..., d, }, we
chunk each document into a series of strings d; = {s1, ..., i }, where each s; can be a sentence,
paragraph, or passage as required by C. Each string s; undergoes source-specific automated filtering
and post-processing to remove artifacts, which we detail in Section[B.4. Given C and s;, we extract
target values such that C is satisfied. In most cases, the satisfying target values can be directly
extracted using our provided utilities. For example, for constraints with structure “sentence with
words”, we can directly apply word tokenization and counting to the example string s;. In cases in
which direct extraction is not possible, (e.g. “do not include word w”), we specify a range of possible
targets (e.g. {the, and, of }) to sweep over. All in all, our approach ensures that (1) there exists a
natural language string that can satisfy each constraint and target pair, and (2) the targets follow a



Published as a conference paper at ICLR 2024

Guten CC-News Wiki
(@) wordo1 |EEE—100 (b) (c)
word0?2 98 Passage JIN0T66) Para/Passage [ ———
word03 17 Paragraph [.0:20] Sents/Para{}—
sento? I 57e Sentence [10:24 Words/Sent T ———
sent02 I -
sent03 [N 108 Passage _IL Para/Passage J—
sent04 I 267  Paragraph{0:18 Sents/ParaJ}
para0l HEI36 Sentence {1 10:34) Words/Sent I }—— [23:10
para02 27 passage T 085
para03 286 |, gh Para/Passage {0
para04 NS5 aragrap! Sents/Para -
para05 [ 229 Sentence [[110:30) Words/Sent T — [24160)

pass01 228 000 025 050 0.75

Number Fraction Filtered 0 20 40

Mean Number

Figure 3: Data statistics. (a) Number of constraints from each constraint structure. (b) Fraction of
strings removed by automated filtering. (¢) Length statistics for different levels for each data source.

plausible distribution induced by natural language corpora. Our extraction system is extensible, and
can operate on new constraints and data sources with minimal modifications.

Extensibility Adding additional data sources to the extraction pipeline is similarly easy, requiring
a text delimiter, and optional string filtering and post-processing functions. As a case-study on the
extensibility of COLLIE, we demonstrate how to extend constraints to include POS-tags such as
“Generate a sentence with verbs”. Details are in section[B.3

4.2 DATA SOURCES

To adequately cover diverse styles and content, we extract constraint targets from three distinct data
sources: Wikipedia (Wiki) (Foundation, [2022), Common Crawl News (CC-News) (Hamborg et al.,
[2017), and the Project Gutenberg Corpus (Guten) (Brooke et all 2015). We provide an overview of
these data sources below and leave source-specific filtering and post-processing details to Section

Wiki. Wikipedia (Wiki) (Foundation,[2022) consists of over 6 million English Wikipedia articles.
We included this data source for the diverse subject matter present in the corpus.

CC-News. The Common Crawl News corpus (CC-News) (Hamborg et al.}[2017) consists of 708,241
English language news articles published between Jan 2017 and December 2019. We include
CC-News to include interview dialogues, as well as popular culture and current events.

Guten. The Project Gutenberg corpus (Guten) (Brooke et al.|[2015) consists of over 50,000 docu-
ments that include fiction, histories, biographies, and other works that are in the public domain in the
United States. We include this corpus for its variety in genres (e.g. non-fiction, fiction, plays, etc.)
and style from different time periods.

4.3 DATA VALIDATION AND STATISTICS

We extract constraints from 300 randomly sampled documents from each source. After extracting
the target values, we sample up to 100 targets for each constraint structure on each data source. We
remove any string targets by that begins or ends with any character that is not a letter or number.
We randomly sample 5 out of these 100 targets and their supporting examples to qualitatively verify
their validity. Since the extraction process is relatively fast, we modify filters and post-processors if
there are systemic issues and re-run the extraction phase. We provide statistics of the final number of
constraints from each constraint structure in Figure [3[(a). Some constraints (e.g. number of sentences
per paragraph) are tightly clustered around the mean, and thus do not induce many valid constraint
targets. The fraction of strings filtered for each data source and level is presented in Figure [3{b). The
automated filtering removes a large fraction of the strings in most cases, as high recall is important
to ensure quality. The high fraction of omitted passages is due to the removal of passages < 2
paragraphs in length. Mean lengths for each level and data source is presented in Figure 3|c).
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Figure 4: Model comparison. (a) Overall model performance summarized by weighted average
across all constraint groups. (b) -(f) Constraint satisfaction rates of generated texts by GPT-4, GPT-
3.5, PalLM, Vicuna-7B, and Alpaca-7B across various constraint groups. Error bars represent standard
error. Constraint group names are in Table H Sample sizes are reported in Figure H

5 RESULTS

Our main experiments in this paper focus on a zero-shot prompting setup with the following language
models (LMs): 1) larger and closed-source LMs such as OpenAl GPT (Brown et al., |[2020; |OpenAl,
2023b) (gpt—-3.5-turbo, gpt-4) and Google PaLM-2 (Anil et al.| 2023) (text-bison-001);
2) smaller and open-source LMs such as Alpaca-7B (Taori et al.,2023), Vicuna-7B (Chiang et al.|
2023). We performed additional one-shot prompting and find GPT performances similar to zero-shot
performance, see Section[C.1} By default, we use a sampling temperature of 0.7, and sample multiple
trials (20 for GPT/PaLLM, 5 for Alpaca/Vicuna). All experiments were run in July, 2023.

Zero-shot performance comparison. As evidenced in Figures 4(a), GPT-4 consistently surpassed
other models in zero-shot constrained text generation performances, achieving more than twice the
constraint satisfaction rate than other non-GPT models. The overarching performance trend observed
shows GPT-4 leading the pack, followed by GPT-3.5 and PalLM with a large gap, and then followed
closely by the smaller models, Vicuna-7B and Alpaca-7B.

Constraints all models can follow. Certain tasks, specifically word01 (generating a word with at
least a letters), sent 04 (generating a sentence containing words X, Y, Z), and para01 (generating
a paragraph with each sentence starting with the word X), posed minimal challenge to the majority of
contemporary language models. These tasks demonstrate the proficiency of current models at simple
constraints ensuring existence, as depicted in Figure 9ff).

Constraints partially solved by GPT-4 only. However, a notable distinction arose when tasks
incorporated more counting/position constraints and requested longer generations. Tasks such as
word03, para04, para05, and pass01 were only partially addressed by GPT-4, with constraint
satisfaction rates ranging between 40% and 70%. Despite GPT-4’s partial success in these tasks,
other models failed to deliver any satisfactory performance.

Constraints remaining very challenging. Furthermore, some tasks proved challenging across all
models. Tasks word02, sent01, sent02, and para03 present challenges in terms of arbitrary
position constraints and mixed counting levels (see Section[5.1 for detailed analysis), indicating areas
that necessitate further advancements in language model technology. Moreover, the average pass @20
rate of GPT-4 was above 63% across all constraints, significantly higher than the 32% achieved by
GPT-3.5, as depicted in Figure[5] Although GPT-4 demonstrated a significant performance advantage,
its constraint satisfaction rate of 63% is far from perfect. This suggests considerable scope for
improvement in controllable text generation with language models. These findings underscore the
opportunities and challenges in the continued evolution of language models.
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Task wordO1 sets a minimum word length of a. Task sent 01 requires exactly a characters in a
sentence. Task sent 03 asks a sentence to contain at least b words, with each word no longer than a
letters. Task para04 asks a paragraph to consist of at least b sentences, each containing a minimum
of a words. Task para03 further imposes an upper limit on the number of words per sentence.

5.1 ANALYSIS

Performance consistency across data sources. We observe a high degree of consistency in the
performance of models on a given constraint structure, regardless of the data source. This uniformity
is evident across all models, as highlighted in Figure[9](g). This indicates that the ability of a language
model to adhere to the logic of constraints takes precedence over the specific target values or the
distribution of the data.

Position effect. As depicted in FigureEI, the pos(&, level, ¢) function, constraining the i-th sub-string
(letter, word, or sentence), exhibits varying levels of difficulty depending on the value of :. Models
generally perform well when the positional constraint is applied to the first sub-string (¢ = 1, task
para01l). However, only GPT-4 displays partial success with the last positional constraints (¢ = —1,
tasks word03, para05, pass01). Notably, all models encounter difficulties when generating text
that satisfies positional constraints at arbitrary positions ¢. Additionally, we find that the position
effect exhibits a lower sensitivity to constraint levels.

Counting level effect. Counting characters within a word is easier than within a sentence for models,
as illustrated in Figure[7. Furthermore, tasks demanding exact equality (task sent 01) prove more



Published as a conference paper at ICLR 2024

(a) Constraint satisfaction rate (b) GPT-4 interactive generation
- GPT-4 (4th round) 70 66.0%
— 65.0% o0
word01 NN 100.0% Les I i
word02 EH 8.2% 3 61.7%
word03 NI 100.0% = |
sent01 = g 60
sent02 0.7% &
sent03 INEEE-  86.1% £55 51.39%
sent04 NN 99.6% @ o
para0l I 100.0% £ 50 I
para02 NN 100.0% b=
para03 — 5
para04 — © 45
para05 IR 88.2%
pass01 Lol 40
1st round 2nd round 3rd round 4th round

Figure 8: GPT-4 interactive generation performance. (a) Constraint satisfaction rate of GPT-4
generated texts in the 4th round across various constraint groups. (b) GPT-4 overall performance in
different feedback rounds. The 1st round is zero-shot, and the 2nd - 4th rounds are with feedback.

challenging than those requiring a range (task para03), and are considerably more difficult than
tasks specifying just an upper or lower bound (tasks word01, sent03, para04).

Increased difficulty with logical composition. The incorporation of logical compositions into
constraints considerably increases their difficulty. Task sent 03 serves as an example of this, adding
an extra constraint at the sentence level compared to task word01. Despite the assumption that
the added constraint should be manageable for all models, performance on task sent 03 uniformly
trails behind that on task word01, as shown in Figure[7] This highlights the intricacy and challenge
introduced by logical compositions within constraints.

Performance enhancement through feedback and interaction. We utilize COLLIE to generate
automated natural language feedback (e.g., “Your task is to generate a word with exactly 2 character
‘v’ and exactly 3 character ‘i’. However, you generate a word with 3 character ‘v’ and 4 character
‘i), and engage LLMs in a generation-feedback dialogue. In Figure [§, we observe a significant
20% improvement in GPT-4 performance after the second round of feedback. However, the model’s
performance plateaus at 66% even after three additional rounds of feedback, comparable to pass@5
using i.i.d. sampling. The extent of performance improvement varies across tasks, with word03’s
constraint satisfaction rate increasing from 62.1% to 10%. Conversely, word02, sent01, and
sent 02 tasks remain challenging for the model. These findings suggest that there is still room for
improvement, highlighting the difficulty of our dataset, and emphasizing the need for further research
on better ways to incorporate natural language feedback.

6 CONCLUSION

In this work, we present COLLIE, a grammar-based framework for specifying textual constraints.
CoLLIE simplifies the process of creating constrained-generation datasets by enabling researchers to
focus on specifying high level constraint structures, while COLLIE automatically extracts constraint
values, renders natural language instructions, and assesses model performance. To demonstrate the
utility of the COLLIE framework, we construct COLLIE-v1 with 1,132 constraints from 13 different
types, extracted from 3 different data sources. We evaluate five state-of-the-art LLMs of various sizes
on COLLIE-v1, and find that it provides fine-grained insights into model capabilities and shortcomings.
We hope that model developers can use COLLIE-v1 to develop more capable models, while future
releases of COLLIE can continue to adapt to the capabilities and needs of future models and users.

LIMITATIONS AND SOCIETAL IMPACTS

Although care was taken to design the filtering and processing functions, such automated approaches
are never perfect and remaining artifacts in corpora might lead to unnatural reference texts or con-
straints. Further filtering (e.g., by grammar checkers, parsers, or humans) could improve the dataset
quality. Our representative constraint structures were selected to encompass diverse constrained
generation challenges, but as with all generation benchmarks, they cannot capture all dimensions
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and nuances of model capabilities. Benchmarks are highly influential in shaping model develop-
ment, the capabilities and limitations of which may disproportionately impact different communities.
Our benchmark is no exception. However, by providing an extensible, easy-to-use framework for
constraint development, we hope COLLIE will enable diverse stakeholders to engage with dataset
building, helping ensure that future model capabilities serve diverse interests and needs.
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