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Figure 1: Overview of LayoutNUWA. We propose a Code Instruct Tuning (CIT) approach that
consists of three modules: 1) the Code Initialization (CI) module quantifies the numerical conditions
and initializes them as an HTML code with masks; 2) the Code Completion (CC) module utilizes
the knowledge of large language models to complete the masked portions within the HTML code; 3)
the Code Rendering (CR) module directly renders the completed code into the final graphic layout.

ABSTRACT

Graphic layout generation plays a significant role in user engagement and in-
formation perception. Existing methods primarily treat layout generation as a
numerical optimization task, focusing on quantitative aspects while overlook-
ing the semantic information of layout, such as the relationship between each
layout element. In this paper, we propose LayoutNUWA, the first model that
treats layout generation as a code generation task to enhance semantic informa-
tion and harnesses the hidden layout expertise of large language models (LLMs).
More concretely, we develop a Code Instruct Tuning (CIT) approach compris-
ing three interconnected modules: 1) the Code Initialization (CI) module quan-
tifies the numerical conditions and initializes them as HTML code with strategi-
cally placed masks; 2) the Code Completion (CC) module employs the format-
ting knowledge of LLMs to fill in the masked portions within the HTML code;
3) the Code Rendering (CR) module transforms the completed code into the fi-
nal layout output, ensuring a highly interpretable and transparent layout gener-
ation procedure that directly maps code to a visualized layout. We attain sig-
nificant state-of-the-art performance (even over 50% improvements) on multiple
datasets, showcasing the strong capabilities of LayoutNUWA. Our code is avail-
able at https://github.com/ProjectNUWA/LayoutNUWA.

∗Both authors contributed equally to this research. During Zecheng’s internship under the mentorship of Chenfei at MSRA.
†Corresponding author.
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1 INTRODUCTION

Graphic layout, which refers to the organization and positioning of design elements, significantly
influences the way users engage with and perceive the presented information (Lee et al., 2020). As
a growing research field, layout generation (Li et al., 2019; Yang et al., 2020) aims to create diverse
and realistic layouts that streamline the design process and cater to various applications, such as user
interfaces (Deka et al., 2017; Jiang et al., 2022), indoor scenes (Di & Yu, 2021; Feng et al., 2023),
document layouts (Zheng et al., 2019; Yamaguchi, 2021), presentation slides (Fu et al., 2022), etc.

Current approaches (Jyothi et al., 2019; Li et al., 2019; Arroyo et al., 2021; Zhang et al., 2023a)
regard each element in the layout as numerical tuples (c, x, y, w, h), in which c indicates the ele-
ment category, x and y represent coordinates, w and h correspond to width and height. For example,
autoregressive-based methods (Yang et al., 2020; Jiang et al., 2022) view the tuple as a sequence
and predict their values sequentially, while diffusion-based methods (Chai et al., 2023; Inoue et al.,
2023) consider the tuple as a whole and predict their values through a denoising approach. Despite
adopting different generative models, all of these methods fundamentally consider layout genera-
tion as a numerical tuple optimization task. However, representing layouts as numerical tuples has
its limitations, as it primarily focuses on capturing the quantitative aspects of the layout, such as
positions and sizes, while lacking semantic information, e.g., the attribute of each numerical value,
which may limit the model’s ability to capture more complex and rich layout information.

An insightful question emerges from the limitations of existing methods in layout generation: can
we integrate semantic information into the layout generation process to enrich the overall represen-
tation and enhance the quality of the generated layouts? Addressing this question brings forth two
major benefits: firstly, it bolsters the understanding of relationships among various layout elements,
and secondly, it enables us to tap into the semantic capabilities of LLMs (Tang et al., 2023), result-
ing in more intricate and contextually relevant layouts for a wide range of applications (Jiang et al.,
2022). Considering the inherent logical nature of layouts, which involve dependency relationships
among layout elements, and the fact that each graphic layout can be represented with a fixed struc-
ture sequence, code languages emerge as a promising alternative. Code languages can encompass
numerical and semantic information while possessing a strong logical foundation (Chen et al., 2022),
which can thus bridge the gap between existing methods and the desired enriched representation.

Based on the above observations, we propose LayoutNUWA, a groundbreaking model that revolu-
tionizes the layout generation task by treating it as a code generation task. Our innovative approach
is designed to not only enhance the semantic information within layouts but also seamlessly leverage
the expertise of LLMs in the layout generation process. To achieve this, we design a Code Instruct
Tuning (CIT) approach comprising three interconnected modules: 1) firstly, the Code Initialization
(CI) module quantifies the numerical conditions and initializes them as HTML code with strate-
gically placed masks, paving the way for more meaningful and coherent layouts; 2) secondly, the
Code Completion (CC) module employs the formatting knowledge of LLMs to fill in the masked
portions within the HTML code, thereby harnessing the power of LLMs to improve the accuracy
and consistency of the generated layouts; 3) lastly, the Code Rendering (CR) module transforms the
completed code into the final layout output, ensuring a highly interpretable and transparent layout
generation procedure that directly maps code to a visualized layout.

Experiments across a variety of conditional layout generation tasks on three datasets, i.e., Rico (Deka
et al., 2017), PubLayNet (Zhong et al., 2019) and Magazine (Zheng et al., 2019), highlight the
superiority of our method, in which LayoutNUWA can significantly outperform all the baselines and
shows comparable results with the task-specific models. Furthermore, LayoutNUWA can achieve at
least a 50% improvement in performance compared to the best baseline on the low-resource datasets,
e.g., the Magazine dataset. In a nutshell, our contributions can be outlined as follows:

• We introduce LayoutNUWA, the first model that treats the layout generation task as a code
generation task, effectively harnessing the hidden layout expertise of LLMs.

• We propose Code Instruct Tuning, which empowers the model to adhere to instructions and
enriches the semantic information of layout, resulting in precise and standardized code.

• We attain significant state-of-the-art performance on multiple datasets, showcasing the ro-
bust capabilities of LayoutNUWA.
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2 RELATED WORK

2.1 LAYOUT GENERATION

Automatic layout generation, an important task for automatic graphical design for various scenarios
such as document layouts (Zheng et al., 2019; Zhong et al., 2019; Yamaguchi, 2021; Fu et al., 2022),
posters (Yang et al., 2016; Guo et al., 2021; Li et al., 2023) and user interface (Deka et al., 2017), has
been recently extensively researched. Early approaches for layout generation involve embedding de-
sign rules into manually-defined energy functions (O’Donovan et al., 2014; O’Donovan et al., 2015),
while other methods have explored generative models such as GANs and VAEs for generating nu-
merical graphic and scene layouts, including LayoutGAN (Li et al., 2019), LayoutVAE (Jyothi et al.,
2019), LayoutGAN++ (Kikuchi et al., 2021), NDN (Lee et al., 2020) and READ (Patil et al., 2020).
Apart from them, transformer-based approaches utilize self-attention mechanisms to learn numeri-
cal contextual relationships between elements and achieve layout completion based on partial layout
inputs (Yang et al., 2020; Kong et al., 2022; Feng et al., 2023). Recently, with the prevalence of
diffusion models, several works also adopted diffusion models to tackle a broader range of condi-
tional layout generation (Chai et al., 2023; Inoue et al., 2023; Zhang et al., 2023a; Hui et al., 2023;
Cheng et al., 2023). However, existing methods primarily treat layout generation as a numerical
optimization task, focusing on quantitative aspects while overlooking the semantic information of
layout, such as the relationship between each layout element. Different from previous works, we
convert the layout generation task into the code generation task to directly generate the layout in
code language and thus utilize the rich knowledge from LLMs, which can significantly improve the
FID by 50% in the Magazine dataset in § 4.2.

2.2 INSTRUCTION TUNING

Instruction tuning represents the process of fine-tuning LLMs on the instruction dataset in a super-
vised fashion, which narrows the gap between the next-word prediction manner of LLMs and the
users’ objective of having LLMs adhere to human instructions (Zhang et al., 2023c). Early attempts
on instruction tuning involve multi-task training with manually-written descriptions about differ-
ent tasks (Mishra et al., 2021; Wei et al., 2021; Sanh et al., 2021; Xu et al., 2022; Muennighoff
et al., 2022; Iyer et al., 2022) or automatically generated instructions (Wang et al., 2022; Gu et al.,
2022; Zhang et al., 2023b; Honovich et al., 2022a;b). Apart from controlling the LLMs through
input instruction, Nye et al. (2021) show that LLM can handle more complex tasks by generating
the intermediate steps and Wei et al. (2022) propose chain-of-thought technique by enriching the
instruction with intermediate reasoning step descriptions, which endows LLMs with better perfor-
mance (Wang et al., 2022; Zelikman et al., 2022; Wu et al., 2023; Xu et al., 2023). However, the
instruction tuning methods mentioned above are primarily intended for text generation tasks and not
ideal for layout generation tasks, which involve numerical optimization. Thus, we propose a code
instruction tuning method that is specially designed for the layout generation task. Experiments in
§ 5.1 indicate that the performance significantly drops if the code instruction tuning is not adopted.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

The layout generation task aims to generate a well-organized layout S = {si}Ni=1, with N repre-
senting the number of elements in the layout. Each element, si = (ci, xi, yi, wi, hi), consists of the
following components: ci is the category, xi, yi indicate the center location, and wi, hi represent
the width and height, respectively. In this study, we focus on the conditional layout generation task,
wherein partial components in si are masked with M , and the complete layout S should be predicted
by model fθ conditioned on the remaining components S\M :

S = fθ(S\M ) (1)

Previous works (Jyothi et al., 2019; Yang et al., 2020; Inoue et al., 2023) regard each element si
as a sequence of numerical values, e.g., (0, 10, 20, 25, 30), and train a model to directly generate
these values. However, this approach overlooks the semantic information of the components, thus
limiting the model’s understanding of the layout semantics. Based on this observation, we propose
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Figure 2: The training process of LayoutNUWA, which converts layout generation task to code
generation task and utilizes a code instruct tuning to leverage LLM’s capability for layout generation.

a new problem definition, where we convert the input S\M and output S into a code language and
view the layout generation task as a code generation task:

CODE(S) = fθ(CODE(S\M )) (2)

Eq. 2 has the following 3 advantages compared with Eq. 1:

• Semantic Insights: By converting the numerical values into code language, the model can
better capture the semantic relationships between different components of the layout.

• LLM Utilization: By using code language, the model can further leverage the knowledge
of Large Language Models (LLMs) and thus enhance the quality of the generated layouts.

• Model Scalability: The code language has a stronger expressive capability compared to
numerical values, which allows the addition of more attributes for layout elements.

3.2 CODE INSTRUCT TUNING

As shown in Fig. 1, we propose Code Instruct Tuning (CIT) with three modules: (1) Code Ini-
tialization module converts layout into masked code language with dynamic templates; (2) Code
Completion module inputs the masked code to LLMs to generate complete code; (3) Code Render-
ing module directly renders code to the final graphic layout. We illustrate these modules below.

3.2.1 CODE INITIALIZATION

Element Quantization We quantify the numerical values of i-th element position {xi, yi} and
size {wi, hi} in the layout with Adaptive Quantization method (Inoue et al., 2023) that applies
k-Means algorithm (MacQueen et al., 1967) to cluster the position and size information of each
element, addressing the highly imbalanced distribution of these values, e.g., elements may overlap
or cluster together. Different from the previous works (Chai et al., 2023; Zhang et al., 2023a; Inoue
et al., 2023), we use absolute position to represent the coordinates rather than relative positions. This
aligns with code language and allows direct rendering of layouts without necessitating coordinate
conversion, thereby preventing potential information loss. We maintain precision up to one decimal
place and directly convert the clustered results into strings.
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Template Construction The overview of template construction is shown in Fig. 2. We construct
the templates based on the most common web page layout code, HTML, which contains a wealth of
information and is easily accessed by LLMs during the pre-training process (Touvron et al., 2023;
Rozière et al., 2023). Specifically, in HTML code, each element is described with a tag that provides
information about the content or the element structure. Since the elements in the layout are regular
squares, we chose the <rect> tag as the content tag to describe each element:

<rect data-category={ci} x={xi} y={yi} width={wi} height={hi}>

where ci is the element category in textual format and {xi, yi, wi, hi} are the quantified position
and size of the i-th element. Then, to combine all the elements into a unified structure, we used an
opening tag and a closing tag to define the boundaries of each layout, which can be written as:

<html><body><svg width={W} height={H}> ... </svg></body></html>

where W and H are the background width and height of the layout.

In order to facilitate better learning of layout in various domains and tasks and leverage the
instruction-following capabilities of LLMs, we design the following prompts:

I want to generate layout in {Domain} style. Please generate the
layout according to the {Task Condition} I provide:

where the {domain} and the {Task Condition} will vary according to different domains and
tasks. For instance, for the RICO dataset, we set Domain as “mobile UI”, and for the layout
completion task, we set Task Condition as “remaining values”.

3.2.2 CODE COMPLETION

To construct the conditional input of the layout generation task, we utilize the mask tokens of LLMs
to represent the masked values M and let the model predict the masked values within the HTML
code. Different from previous works (Chai et al., 2023; Zhang et al., 2023a; Inoue et al., 2023) that
applied the customized numerical vocabulary, we employ the LLM’s token vocabulary directly. By
doing so, we can leverage the knowledge of the numerical tokens inherited in the LLMs. Considering
that almost all the LLMs follow auto-regressive generation manner that brings significant limitation
to the layout generation task since the model should predict the same layout under different element
orders, even if the layout doesn’t have a naturally defined order (Yang et al., 2020). Thus, we design
a self-consistency strategy that randomly permutes the order of the input elements in the layout
within a mini-batch. Meanwhile, in order to adapt LLMs to different conditional layout generation
tasks, we have performed multi-task modeling on the same layout, utilizing various conditions and
implementing a joint loss for these tasks. Given the permutation times K and task numbers T , the
joint loss, denoted as L(·), for each layout S can be written as:

L(S | θ) =
T∑

t=1

N∑
j=1

K∑
k=1

L(s
(k)
j \M (t)

j | θ), (3)

where θ is the model parameters and sj denote the j-th element in the layout S.

3.2.3 CODE RENDERING

Most existing works require the extra conversion step to render the graphic layouts (Yang et al.,
2020; Chai et al., 2023; Zhang et al., 2023a), e.g., converting the relative position to the absolute
position, causing the information loss. Different from previous work, LayoutNUWA allows for
immediate rendering as it generates the absolute position directly. Besides, considering the potential
output issues such as boundary overflow (Inoue et al., 2023) and format errors, we employ regular
expressions to remove mismatched formats and implement clipping operations for elements that
exceed the background size.
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4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Datasets We evaluate the model performance on three widely used public datasets. RICO (Deka
et al., 2017) is a user interface design dataset for mobile applications containing 25 element cat-
egories and 66K+ UI layouts. PubLayNet (Zhong et al., 2019) consists of 360K+ layouts for
documents with 5 element categories. Magazine (Zheng et al., 2019) is a low-resource magazine
layout dataset containing around 4K annotated layouts and 6 element categories. We follow Lay-
outDM (Inoue et al., 2023) to view the original validation data as the testing set and pre-process all
three datasets by discarding the layouts containing more than 25 elements as well as splitting the
filtered data into the training and new validation sets by 95% and 5%.

Evaluation Metrics We employ four metrics to evaluate the generation results comprehensively,
including Frechet Inception Distance (FID), Maximum Interaction over Union (mIoU), Alignment
(Align.), and Overlap. Among them, FID compares the distribution of generated and real layouts.
Similar to the previous work (Inoue et al., 2023), we utilize an enhanced feature extraction model
for layouts (Kikuchi et al., 2021) to compute the FID score. We measure the conditional similarity
between generated and real layouts using mIoU, which is done by calculating the maximum IoU
between bounding boxes of generated and real layouts with the same type set. Alignment and Over-
lap scores are calculated following the previous work (Li et al., 2019) to evaluate proper element
alignment and overlapping in a generated layout, and it is worth noting that we ignore normal over-
laps, e.g., elements on top of the background, and discard the layouts that failed to generate. For
reference, we show the evaluation results between the validation set and test set as Real data.

Tasks and Baselines We evaluate LayoutNUWA on three conditional layout generation tasks1,
including the Category to Size and Position (C → S+P) task, the Category and Size to Position (C+S
→ P) task, and the Completion task. More concretely, the C → S+P task requires the model to
predict the position and size of the element based on its category. For the C+S → P task, the model
predicts the position of the element based on both its size and category. Finally, in the completion
task, the element’s size and position values are randomly masked up to 80%, and the model predicts
the entire layout using the remaining values. We compare LayoutNUWA with six strong baselines,
including LayoutTrans (Yang et al., 2020), BLT (Kong et al., 2022), LayoutGAN++ (Kikuchi et al.,
2021), MaskGIT (Chang et al., 2022), DiffusionLM (Li et al., 2022) and LayoutDM (Inoue et al.,
2023). For the above baselines, we implement them with the official code directly.

Implementation Details We implement LayoutNUWA with two 7B LLMs: LLaMA2 (L2) (Tou-
vron et al., 2023) and CodeLLaMA (CL) (Rozière et al., 2023). We train LayoutNUWA with two
settings: (1) Domain-Specific (DS) setting, where the model is trained on distinct datasets, and (2)
Domain-Agnostic (DA) setting, where the model is trained on all three datasets, including RICO,
PubLayNet, and Magazine. The default configuration for LayoutNUWA utilizes CodeLLaMA (CL)
and Domain-Agnostic (DA), i.e., LayoutNUWA-CL-DA. We set permutation times K = 10 and
task numbers T = 3. For model training, we use DeepSpeed Library (Rajbhandari et al., 2020) to
run all experiments on 64 NVIDIA V100 GPUs. We apply Top-p sampling (Holtzman et al., 2019)
for inference, where p = 0.9 and the temperature is 0.6. We set the maximum generation length as
1024 for each sample to ensure the completeness of the layout code.

4.2 QUANTITATIVE EVALUATION

We report the model performance on three datasets: the Magazine dataset in Tab. 1, RICO, and
PubLayNet datasets in Tab. 2. For the Magazine dataset, LayoutNUWA demonstrates a remark-
able performance by significantly surpassing all baseline measures across all tasks. Moreover, it
outperforms the strong baseline LayoutDM by more than 50% when assessed with the FID metric.

The significant improvements in Tab. 1 are due to three aspects: 1) previous approaches generated
numerical values, while LayoutNUWA generates code with labels, which greatly benefits the model

1We also report the model performance on three datasets under the unconditional generation setting in
Appendix E for space limitation.
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Model Layout
Format LLM Domain C → S + P C + S → P Completion

mIOU (↑) FID (↓) mIOU (↑) FID (↓) mIOU (↑) FID (↓)

LayoutTrans Numerical - Specific 0.116 36.207 0.153 33.931 0.228 25.804
BLT Numerical - Specific 0.087 65.372 0.126 41.089 0.103 97.142
LayoutGAN++ Numerical - Specific 0.259 16.952 0.293 11.569 - -
MaskGIT Numerical - Specific 0.059 140.94 0.100 78.226 0.024 152.591
DiffusionLM Numerical - Specific 0.151 32.114 0.144 24.370 0.138 33.172
LayoutDM Numerical - Specific 0.234 19.206 0.308 14.265 0.328 15.804

LayoutNUWA-L2-DS (ours) Code LLaMA2 Specific 0.260 9.741 0.358 6.682 0.418 8.257
LayoutNUWA-L2-DA (ours) Code LLaMA2 Agnostic 0.293 9.632 0.394 7.238 0.413 8.734
LayoutNUWA-CL-DS (ours) Code CodeLLaMA Specific 0.293 8.985 0.348 5.355 0.410 7.341
LayoutNUWA (ours) Code CodeLLaMA Agnostic 0.312 8.791 0.418 6.755 0.495 7.572

Real Data - - - 0.348 6.695 0.348 6.695 0.348 6.695

Table 1: Quantitative comparison on Magazine dataset, where the bold font denotes the best result
and underline represents the second-best performance.

Tasks Models RICO PubLayNet

mIoU (↑) Align. (→) Overlap (→) FID (↓) mIoU (↑) Align. (→) Overlap (→) FID (↓)

Condition
C → S + P

LayoutTrans 0.219 0.014 13.012 11.237 0.271 0.016 3.229 38.910
BLT 0.203 0.013 11.743 14.260 0.232 0.009 16.742 76.499
LayoutGAN++ 0.263 0.016 3.544 6.842 0.354 0.011 1.713 10.219
MaskGIT 0.267 0.001 26.865 27.470 0.320 0.004 1.857 16.898
DiffusionLM 0.299 0.018 17.655 31.644 0.262 0.027 3.532 20.021
LayoutDM 0.275 0.010 11.938 3.576 0.310 0.010 0.024 7.915

LayoutNUWA-L2-DS (ours) 0.351 0.009 10.190 3.728 0.337 0.009 0.058 6.986
LayoutNUWA-L2-DA (ours) 0.386 0.011 10.214 3.101 0.324 0.011 0.077 6.890
LayoutNUWA-CL-DS (ours) 0.377 0.009 10.263 3.706 0.376 0.008 0.053 6.715
LayoutNUWA (ours) 0.445 0.004 7.943 2.524 0.385 0.001 0.086 6.579

Condition
C + S → P

LayoutTrans 0.311 0.011 11.902 9.368 0.315 0.013 2.531 31.627
BLT 0.341 0.008 13.470 4.487 0.356 0.006 5.469 8.831
LayoutGAN++ 0.349 0.011 9.628 6.219 0.346 0.008 2.746 9.936
MaskGIT 0.331 0.003 26.390 12.898 0.384 0.005 1.950 5.453
DiffusionLM 0.278 0.020 11.884 15.931 0.324 0.014 3.990 16.407
LayoutDM 0.391 0.009 12.072 2.288 0.381 0.010 2.041 4.175

LayoutNUWA-L2-DS (ours) 0.462 0.008 10.436 3.035 0.426 0.010 1.752 4.105
LayoutNUWA-L2-DA (ours) 0.464 0.007 10.117 2.973 0.464 0.009 1.984 3.993
LayoutNUWA-CL-DS (ours) 0.469 0.007 9.856 2.984 0.466 0.009 1.610 4.012
LayoutNUWA (ours) 0.564 0.007 7.968 2.870 0.483 0.002 0.108 3.697

Completion

LayoutTrans 0.561 0.008 10.080 3.733 0.439 0.012 2.053 8.689
BLT† 0.471 0.007 53.658 121.110 0.157 0.002 109.483 155.157
MaskGIT 0.537 0.024 9.242 33.463 0.349 0.011 4.768 12.013
DiffusionLM 0.218 0.021 8.681 22.220 0.332 0.012 4.436 16.576
LayoutDM 0.580 0.009 15.676 9.224 0.377 0.011 1.891 7.570

LayoutNUWA-L2-DS (ours) 0.610 0.009 7.239 8.875 0.407 0.010 1.337 7.337
LayoutNUWA-L2-DA (ours) 0.624 0.007 10.457 8.724 0.477 0.012 1.383 7.169
LayoutNUWA-CL-DS (ours) 0.641 0.007 7.529 8.734 0.473 0.012 1.311 7.233
LayoutNUWA (ours) 0.616 0.007 8.123 7.542 0.481 0.009 1.292 6.929

Real Data - 0.438 0.004 8.706 6.250 0.691 0.001 0.039 1.850

Table 2: Quantitative comparison on the RICO and PubLayNet Datasets. For Align. and Overlap
metrics, the closer to the real data, the better performance is (indicated by →).

by utilizing the semantic information of layout attributes such as width, height, position, and cate-
gory; 2) none of the previous methods used LLMs. However, we have introduced LLMs for the first
time, which has resulted in significant performance enhancements, i.e., performance has improved
from 19.206 to 9.741. Furthermore, when we use CodeLLaMA, which is tuned on code language,
the performance improves even further to 8.985; 3) since different domains require distinct layout
formats, early numerical-based methods could only be trained in a domain-specific manner. How-
ever, LayoutNUWA is based on code structure, which can be trained in a domain-agnostic manner,
allowing for complementary among data from various domains, thus further improving FID to 8.791.

We have also conducted extensive experiments on two other datasets: RICO and PubLayNet, as
shown in Tab. 2. The LayoutNUWA notably surpasses all baseline methods in the majority of
tasks. Although it does not achieve the best performance in two specific tasks, it still secures at
least the second-highest performance in those instances. This shows the strong generalization of the
LayoutNUWA. It is worth mentioning that our model also achieves closer Align. and Overlap scores
to the Real Data compared to the baselines. Although previous work has suggested that refinement
and discriminator processes can contribute to improving the Align. and Overlap (Inoue et al., 2023;
Li et al., 2019) scores, our method attains better results without employing these steps.
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Figure 3: Samples generated by LayoutNUWA on the PubLayNet dataset.

Task Models Tuning Method mIoU (↑) Align. (→) Overlap (→) FID (↓) Fail (↓)

Condition
C → S + P

LayoutNUWA-L2-DS CTT 0.260 0.021 2.898 9.741 0.000 %
w/o template Instruct Tuning (DS) 0.124 0.049 3.221 16.324 1.020 %
w/o template Instruct Tuning (DA) - - - - 0.000 %
w/o template&instruct Numerical Tuning 0.126 0.053 3.581 17.982 3.571 %

Condition
C + S → P

LayoutNUWA-L2-DS CIT 0.358 0.020 2.483 4.682 0.000 %
w/o template Instruct Tuning (DS) 0.182 0.021 2.673 12.432 0.000 %
w/o template Instruct Tuning (DA) - - - - 0.000 %
w/o template&instruct Numerical Tuning 0.189 0.024 2.892 14.326 0.000 %

Completion

LayoutNUWA-L2-DS CIT 0.418 0.020 2.309 7.257 0.253 %
w/o template Instruct Tuning (DS) 0.206 0.017 2.882 15.732 5.102 %
w/o template Instruct Tuning (DA) - - - - 6.633 %
w/o template&instruct Numerical Tuning 0.214 0.020 3.003 16.243 6.122 %

Real Data - - 0.348 0.016 1.521 6.695 -

Table 3: Comparison among different tuning methods, where “Fail” is the failure ratio of generation.

4.3 QUALITATIVE EVALUATION

We render the generated layout code with the Code Rendering (CR) method, and Fig. 3 shows the
sampled rendering results of the PubLayNet dataset. By comparing with other baselines, we can
observe that the layouts generated by LayoutNUWA exhibit excellent element alignment, and the
proportion of overlap between elements is minimal. Additionally, our results are the most consistent
with the Real Design data, i.e., the size and position of the generated element are essentially consis-
tent with the real design, indicating that by treating the layout generation task as a code generation
task, LayoutNUWA has successfully learned the distribution of document layouts, thus result in
more precise and realistic layouts. More generated cases can be referred to Fig. 11 in the appendix.

5 ABLATION STUDY

We investigate the effectiveness of the CIT tuning method in Sec. 5.1 and compare the impact of
different output formats and fine-tuning in Sec. 5.2. More concretely, we set the LayoutNUWA-L2-
DS model as the basic setting and conduct the ablation studies on the Magazine dataset.

8



Published as a conference paper at ICLR 2024

Task Model Layout
Format mIoU (↑) Align. (→) Overlap (→) FID (↓) Fail (↓)

Condition
C → S + P

LayoutNUWA-N Numerical 0.000 0.000 0.867 - 78.030 %
LayoutNUWA-L2-DS Code 0.260 0.021 2.898 9.741 0.000 %

Condition
C + S → P

LayoutNUWA-N Numerical 0.000 0.000 24.959 349.231 21.717 %
LayoutNUWA-L2-DS Code 0.358 0.020 2.483 4.682 0.000 %

Completion LayoutNUWA-N Numerical 0.000 0.000 16.602 - 29.293 %
LayoutNUWA-L2-DS Code 0.418 0.020 2.309 7.257 0.253 %

Real Data - - 0.348 0.016 1.521 6.695 -

Table 4: Comparison among different output formats.

5.1 EFFECT OF TUNING METHODS

We progressively reduce the modules in CIT and fine-tune the model using the corresponding con-
structed data. Specifically, we first exclude the code template and directly convert the element
information into an ordered sequence S with a task instruction before it, i.e., the instruction tuning
method. Then, we further remove the task instruction and directly fine-tune the model using data
from different tasks separately, i.e., the numerical tuning method. As shown in Tab. 3, we can ob-
serve that the model performance has declined significantly without the code template, and it can
only work in the DS setting since the model can simply generate repetitive and out-of-order results
that are inconsistent with the element sequence in the DA setting. Furthermore, the numerical tuning
method can only support the DS setting as there is no task instruction for the model to distinguish
between different tasks, and the model performance is far inferior compared to those of the CIT as
such an approach overlooks the rich semantic information among the elements and can not calibrate
the prior code knowledge of LLMs.

5.2 EFFECT OF OUTPUT FORMAT AND FINETUNING

Model C → S + P C + S → P Completion

Fail (↓) Fail (↓) Fail (↓)

LLaMA2 (Zero-Shot) 100.0 % 100.0 % 100.0 %
CodeLLaMA (Zero-shot) 100.0 % 100.0 % 100.0 %
GPT-4 (Zero-Shot) 34.2 % 28.8 % 28.5 %
LayoutNUWA 0.0 % 0.0 % 0.3 %

Table 5: Comparison with LLMs.

We compared the effects of the model out-
put in code format and numerical format.
For the numerical output format, we de-
signed a Code Infilling task, which in-
volves making the LLM predict only the
masked values rather than predicting the
entire code sequence. As shown in Tab. 4,
we can find that generating in numerical
format will increase the failure ratio of
model generations, e.g., the model will
generate repetitive results, and significantly decrease the model performance. This is because the
layout generated by the conditional layout generation task should be logical, while only predicting
the masked parts can lead to discrete values that lack logic. Besides, Due to the influence of the
autoregressive manner, where the content generated in the next step depends on the previous history,
this phenomenon may result in a higher failure probability of model generation when predicting
layouts with more masked values. We also conduct a comparison between LayoutNUWA and GPT-
4 (Bubeck et al., 2023). Specifically, we allow GPT-4 to perform inference by constructing the input
using the CIT method. Tab. 5 shows code instruct tuning for LLM is necessary, as using LLM in a
zero-shot manner leads to a high fail rate (100% fail rate of LLaMA2 and around 30% for GPT-4).

6 CONCLUSION

In this paper, we propose LayoutNUWA, a groundbreaking approach that treats layout generation
as a code generation task, effectively enriching the semantic information of layouts and leveraging
the hidden expertise of LLMs. Extensive experiments on multiple datasets have demonstrated the
superiority of our method. This research has the potential to revolutionize the field of layout genera-
tion and pave the way for further exploration and development of semantic-aware layout generation
approaches in various applications.
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A LIMITATIONS

Since LayoutNUWA employs the autoregressive (AR) LLMs as the backbone, our method naturally
inherits the shortcomings of the AR models:

• The generation speed is slower than the non-autoregressive models (Chang et al., 2022).

• It suffers from the error propagation problem (Wu et al., 2018), i.e., as shown in Fig. 4,
especially when training is insufficient, where the content generated later in the sequence
may be negatively affected by the errors in the content generated earlier.

Additionally, the model may suffer from the domain confusion issue Long et al. (2022) to some
extent under the Domain-Agnostic setting as illustrated in Appendix F. In our future work, we will
address these challenges and make improvements to generate better graphic layouts.

<html>
<body>

<svg width="100" height="150">
<rect data-category="title",x=15,y=10,width=70,height=20/>
<rect data-category="table",x=10,y=40,width=80,height=40/>
<rect data-category="text", x=10,y=90,width=90,height=80/>

</svg>
</body>

</html>

Code Generation Process (w/o Error Propagation)

Text

Title

TableCode
Rendering

(CR)

<html>
<body>

<svg width="100" height="150">
<rect data-category="title",x=15,y=10,width=70,height=50/>
[Remain to generate. . .]

Code Generation Process (w/ Error Propagation)
Title

Code
Rendering

(CR)

<html>
<body>

<svg width="100" height="150">
<rect data-category="title",x=15,y=10,width=70,height=50/>
<rect data-category="table",x=10,y=55,width=80,height=90/>
[Remain to generate. . .]

Code Generation Process (w/ Error Propagation) Title
Code

Rendering

(CR) Table

<html>
<body>

<svg width="100" height="150">
<rect data-category="title",x=15,y=10,width=70,height=50/>
<rect data-category="table",x=10,y=55,width=80,height=90/>
<rect data-category="text", x=10,y=45,width=90,height=80/>

</svg>
</body>

</html>

Code Generation Process (w/ Error Propagation)
Title

Code
Rendering

(CR) Table

Text

No space for Text Element
à Overlapping of Elements

Too high of Title Element
à Lower Table Element’s Position
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B COMPARISON WITH GPT-4

We utilize the GPT-4 model with the commercial API and strictly follow the usage policy 2. We
report the detailed performance of the GPT-4 model in Tab. 6 and show several rendered graphic
layouts in Fig. 10. We can observe that the content generated by GPT-4 in the zero-shot setting
primarily follows the layout design rule, which further confirms the potential capability of LLMs in
generating layouts when guided by the CIT approach. However, when compared to LayoutNUWA,
there are several issues with the results generated by GPT-4: 1) the distribution of elements is uneven,
with elements tending to be concentrated in certain areas, such as the left side of the canvas; 2) the
element sizes are inconsistent, for instance, in some graphic layouts, there might be one or two large
elements, which results in the high scores of the mIOU and Overlap metrics for some tasks; 3) there
is a significant discrepancy between the data distribution of generated content and the real data.

Task Model mIOU (↓) Align. (→) Overlap (→) FID (↓) Fail (↓)

Condition
C → S + P

GPT-4 (Zero-Shot) 0.264 0.006 0.165 - 34.184 %
LayoutNUWA-L2-DS 0.260 0.021 2.898 9.741 0.000 %

Condition
C + S → P

GPT-4 (Zero-Shot) 0.330 0.011 1.149 - 28.788 %
LayoutNUWA-L2-DS 0.358 0.020 2.483 4.682 0.000 %

Completion GPT-4 (Zero-Shot) 0.362 0.044 0.728 - 28.535 %
LayoutNUWA-L2-DS 0.418 0.020 2.309 7.257 0.253 %

Real Data - 0.348 0.016 1.521 6.695 -

Table 6: Detailed performance of GPT4 on the Magazine dataset. It is worth noting that due to the
significant difference between the results generated by GPT-4 and the real data, the FID score cannot
be calculated.

C HUMAN EVALUATION

We conduct the human evaluation for the model performance on the RICO and PubLayNet datasets.
Specifically, We compare LayoutNUWA with two other strong baselines, including LayoutDM (In-
oue et al., 2023) and LayoutTransformer (Yang et al., 2020), and randomly sample 25 graphic lay-
outs generated from each model. We invite the annotators to choose which model performs better
according to two evaluation settings: 1) quality evaluation based on the detail depiction, overlapping
degree, and layout rationality in each layout; 2) diversity evaluation based on the diversity of the
element arrangement in each layout. We hire 10 annotators to give their preferences, and the results
are shown in Fig. 5(a) and Fig. 5(b). We can observe that layoutNUWA significantly outperforms
the other two strong baselines, i.e., LayoutDM and LayoutTransformer, in terms of both generation
quality and generation diversity. More generated cases can be referred to Fig. 10 (Magazine dataset)
and Fig. 11 (RICO and PubLayNet datasets).
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(a) Human evaluation on the RICO dataset.
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(b) Human evaluation on the PubLayNet dataset.

2https://openai.com/policies/terms-of-use
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D SAMPLED TRAINING-TESTING PAIRS WITH SIMILAR LAYOUT
DISTRIBUTION

Considering that the qualitative generation results of LayoutNUWA look very similar to the actual
design (Fig. 3), in order to further verify the fairness and rationality of our experiment, and to prove
that the model is not overfitting on some specific training data, we used DocSim to select content
from the training dataset that is similar to the Layout distribution of the test dataset. We can observe
that the layout distribution between the test data and some of the training data has some similarities.
For example, in the PubLayNet dataset, the Title Element appears at the top of the overall layout,
but it is not entirely consistent.

Testing Case Training Case 1 Training Case 2 Testing Case Training Case 1 Training Case 2 Testing Case Training Case 1 Training Case 2

R I C OMagazine PubLayNet

Figure 5: Sampled Training-Testing pairs by DocSim metric.

E MODEL PERFORMANCE UNDER UNCONDITIONAL SETTING

For unconditional generation, models generate 1,200 samples with the random seed. For
LayoutNUWA-CL-DS, we randomly provide the empty templates without any prior information,
e.g., category name, positions, etc.3 However, since LayoutNUWA-CL-DA is trained under the
domain-agnostic setting, we must provide it with the domain prompt, e.g., “I want to generate lay-
out in mobile UI style” for the RICO dataset. We report Align. and FID score of generation results
in Tab. 7, where we can observe that LayoutNUWA-CL-DS can obtain the best results on all FID
scores and also achieve the best/comparable performance in Align. Score. As for the LayoutNUWA-
CL-DA model, although the performance is not as good as the CL-DS setting, the results are still
better than the baseline (some indicators are comparable to the baseline). We hypothesize that this
may be due to potential domain confusion, i.e., the model has learned common features from previ-
ous datasets, which may have a negative effect on a specific domain. Stronger prior information is
required to guide the model to generate layouts that are more consistent with a certain domain, such
as element categories, etc.

For qualitative evaluation, we render the generation results in Fig. 9. We can observe that the graphic
layouts generated by LayoutNUWA are more compact, with a lower failure rate, and their distribu-
tion is closer to that of real data. This can be attributed to the given template which defines the
output format of the model and the utilization of the prior code knowledge from LLMs.

3This process is similar to the fixed length provided by the previous works.
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Models RICO PubLayNet Magazine

Align. (→) FID (↓) Align. (→) FID (↓) Align. (→) FID (↓)

LayoutTrans 0.008 12.286 0.015 33.416 0.043 32.083
MaskGIT 0.003 60.724 0.004 28.836 0.003 157.560
DiffusionLM 0.019 23.997 0.016 18.720 0.043 37.951
LayoutDM 0.010 6.456 0.011 13.437 0.037 59.507

LayoutNUWA-CL-DS (ours) 0.008 5.674 0.007 8.914 0.092 24.108
LayoutNUWA-CL-DA (ours) 0.014 6.932 0.013 9.208 0.073 28.930

Real Data 0.004 6.250 0.001 1.850 1.693 6.695

Table 7: Model Performance on three testing sets under the Unconditional Generation setting.
(Ours)

LayoutNUWA LayoutDMLayoutTrans MaskGIT Real Design

Figure 7: PubLayNet Dataset

(Ours)
LayoutNUWA LayoutDMLayoutTrans MaskGIT Real Design

Figure 8: RICO Dataset

(Ours)
LayoutNUWA LayoutDMLayoutTrans MaskGIT Real Design

Figure 9: Magazine Dataset

Figure 9: Cases generated by LayoutNUWA under the Unconditional Generation setting. We
suggest zooming in on the monitor for better viewing.

F MODEL PERFORMANCE UNDER MIXED DOMAIN SETTING

Considering the impressiveness of the domain-agnostic model, we also take into account the issue of
domain confusion (Long et al., 2022), that is, the data from one domain may affect another domain.
Here, we design a toy experiment with the mixed domain setting, that is, applying the domain
conditions of Magazine and RICO separately as prefixes as well as the code template behind using
data from another domain. For example, we can utilize the below instruction to induce model
generation under the Magazine → RICO mixed domain:

I want to generate layout in magazine style. Please generate the layout according to the
{Task Condition} I provide: {RICO code template}

As shown in Tab. 8, we can observe that when given more prior layout information, such as in the C
+ S → P setting, the model is less affected by domain confusion as the model tends to “resist” such
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domain confusion, i.e., The performance of LayoutNUWA is much worse when domain confusion
setting is applied compared to when it is not used. However, when there is a lack of layout prior
conditions, such as in the C → S + P or Completion setting, the model is greatly affected by the
domain confusion as such issue simply causes minor disturbances to the results, i.e., the model
“yields to” the domain confusion under such circumstance. On one hand, this toy experiment reflects
the significant impact of prior knowledge of code templates brought to the model, which can make
LLM resist such domain confusion. On the other hand, the knowledge of the code template may
have overwhelmed some of the information provided by the domain condition, which can lead to
the generated content being weakly associated with the domain condition when there is insufficient
code template information.

In future work, especially when adapting the LLMs to multiple layout distributions simultaneously,
more attention needs to be paid to how to make models distinguish different domains by designing
stronger constraints.

Tasks RICO → Magazine Magazine → RICO

Align. (→) FID (↓) Align. (→) FID (↓)

C + S → P - - 0.001 8.027
w/o Domain-Confusion 0.472 6.755 0.007 2.870

C → S + P 0.196 10.623 0.014 4.569
w/o Domain-Confusion 0.359 8.791 0.004 2.524

Completion 0.217 9.283 0.013 9.756
w/o Domain-Confusion 0.416 7.572 0.007 7.542

Real Data 1.693 6.695 0.004 6.250

Table 8: Model Performance under the Mixed Domain setting, where A → B indicates using A
domain condition plus the B layout template. “-” denotes the failed generation.

G MORE TRAINING DETAILS

We deployed and trained the model based on the open-source LLM training framework LLaMA-X4

and HuggingFace5. We optimized the training using DeepSpeed Zero3 technology (Rajbhandari
et al., 2020). For the DS settings, we set the learning rate to 5e-5. For the DA settings, we set the
learning rate to 5e-6 to prevent model explosion. We trained on 128 V100 units until the loss on
the development set converged, at which point we stopped the training. We will open-source all the
training details of this article after the anonymization period.

4https://github.com/AetherCortex/Llama-X
5https://huggingface.co/

18



Published as a conference paper at ICLR 2024

LayoutNUWA

GPT-4

Golden

C + S à
P

LayoutNUWA

GPT-4

Golden

C à
S + P

LayoutNUWA

GPT-4

Golden

Com
pletion

Figure 10: Comparison of rendered graphic layouts between GPT4 and LayoutNUWA on the Mag-
azine dataset.
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Figure 11: Cases generated by LayoutNUWA on the RICO and PubLayNet dataset.
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