
Published as a conference paper at ICLR 2023

GRAPH CONTRASTIVE LEARNING FOR SKELETON-
BASED ACTION RECOGNITION

Xiaohu Huang 1, 2∗ Hao Zhou 2 † Jian Wang 2 Haocheng Feng 2 Junyu Han 2

Errui Ding 2 Jingdong Wang 2 Xinggang Wang 1 Wenyu Liu 1 Bin Feng 1 †

1 School of EIC, Huazhong University of Science & Technology
2 Department of Computer Vision Technology (VIS), Baidu Inc., China
{huangxiaohu,xgwang,liuwy,fengbin}@hust.edu.cn
{zhouhao14,wangjian33,fenghaocheng,hanjunyu}@baidu.com
{dingerrui,wangjingdong}@baidu.com

ABSTRACT

In the field of skeleton-based action recognition, current top-performing graph
convolutional networks (GCNs) exploit intra-sequence context to construct adap-
tive graphs for feature aggregation. However, we argue that such context is still
local since the rich cross-sequence relations have not been explicitly investigated.
In this paper, we propose a graph contrastive learning framework for skeleton-
based action recognition (SkeletonGCL) to explore the global context across all
sequences. In specific, SkeletonGCL associates graph learning across sequences
by enforcing graphs to be class-discriminative, i.e., intra-class compact and inter-
class dispersed, which improves the GCN capacity to distinguish various action
patterns. Besides, two memory banks are designed to enrich cross-sequence con-
text from two complementary levels, i.e., instance and semantic levels, enabling
graph contrastive learning in multiple context scales. Consequently, SkeletonGCL
establishes a new training paradigm, and it can be seamlessly incorporated into
current GCNs. Without loss of generality, we combine SkeletonGCL with three
GCNs (2S-ACGN, CTR-GCN, and InfoGCN), and achieve consistent improve-
ments on NTU60, NTU120, and NW-UCLA benchmarks. The source code will
be available at https://github.com/OliverHxh/SkeletonGCL.

1 INTRODUCTION

Graph convolutional networks (GCNs) have been widely applied in skeleton-based action recogni-
tion since they can naturally process non-grid skeleton sequences. For GCN-based methods, how
to effectively learn the graphs remains a core and challenging problem. In particular, ST-GCN (Yan
et al., 2018) is a milestone work, using pre-defined graphs to extract the action patterns. However,
the pre-defined graphs only enable each joint to access the fixed neighboring joints but are hard to
capture long-range dependency adaptively. Therefore, a mainstream of subsequent works (Li et al.,
2019; Shi et al., 2019; Zhang et al., 2020b;a; Ye et al., 2020; Chen et al., 2021b; Chi et al., 2022)
take efforts to solve this issue by generating adaptive graphs. The adaptive graphs can dynamically
aggregate the features within each sequence and thus show significant advantages in performance
comparison.

Generally, adaptive graphs are constructed by using intra-sequence context. However, such context
will still be “local” when viewing the cross-sequence information as an available context. Therefore,
we wonder: Is it possible to involve the cross-sequence context in graph learning? To find out the
answer, in Fig. 1, we visualize the adaptive graphs learned from sequences of two easily confused
classes (“point to something” and “take a selfie”). The graphs are learned by a strong GCN, i.e.,

*Work done when Xiaohu Huang was an intern at Baidu VIS.
†Corresponding authors.

1

https://github.com/OliverHxh/SkeletonGCL

Published as a conference paper at ICLR 2023

Label: Point to something
Predict: Point to something √

Label: Take a selfie
Predict: Take a selfie √

Label: Point to something
Predict: Take a selfie ×

（a） （b） （c）

Figure 1: Graph visualization of sequences from two easily confused classes (“point to some-
thing” and “take a selfie”). The graphs are learned by CTR-GCN (Chen et al., 2021b). We take the
tip of the hand that does the action as the anchor. The size of the red circles and the width of the blue
lines both denote the strengths of connections between joints. For simplicity, only representative
frames are visualized. (a) Three sequences from class “point to something” are correctly classified,
where the graphs contain connections to the body joints. (b) Three sequences from class “take a
selfie” are correctly classified, where the graphs highly emphasize the connections to the hands,
while the connections to the body are suppressed. (c) A sequence from class “point to something”
is misclassified as “take a selfie”, whose graph resembles the graphs in (b), but is dissimilar from
graphs in (a). Hence, we realize that the class-ambiguous graph representations would make nega-
tive impacts on recognition performance.

CTR-GCN (Chen et al., 2021b). From the visualization, we find that (1) For sequences that are
correctly classified in Fig. 1 (a) and Fig. 1 (b), the learned graphs in the same class look similar,
while graphs in different classes have distinct differences. (2) For a misclassified sequence in Fig.
1 (c), the learned graph resembles the graphs from the misclassified class more than those from the
ground truth class. These observations remind us that graph learning in current adaptive GCNs can
implicitly learn class-specific graph representations to some extent. But without explicit constraints,
it leads to class-ambiguous representations in some cases, thereby affecting the GCN capacity to
discriminate classes (in Tab. 9 of Sec. 4.4, we provide quantitative results to further support our hy-
pothesis). Therefore, we speculate that if the cross-sequence semantic relations are incorporated as
guidance in graph learning, the class-ambiguity issue will be alleviated and the graph representations
will better express individual characteristics of actions.

In recent years, contrastive learning has achieved great success in self-supervised representation
learning (He et al., 2020; Chen et al., 2020; 2021a). It studies cross-sample relations in the dataset.
The essence of contrastive learning is “comparing”, which pulls together the feature embedding
from positive pairs and pushes away the feature embedding from negative pairs.

Based on the analysis above and the advances in contrastive learning, we propose a graph contrastive
learning framework for skeleton-based action recognition in the fully-supervised setting, dubbed
SkeletonGCL. Instead of just using the local information within each sequence, SkeletonGCL ex-
plores the cross-sequence global context to improve graph learning. The core idea is to pull together
the learned graphs from the same class while pushing away the learned graphs from different classes.
Since graphs can reveal the action patterns of sequences, enforcing graph consistency in the same
class and inconsistency among different classes helps the model understand various motion modes.
In addition, to enrich the cross-sequence context, we build memory banks to store the graphs from
historical sequences. In specific, an instance-level memory bank stores the sequence-wise graphs,
which hold the individual properties of each sequence. In contrast, a semantic-level memory bank
stores the aggregation of graphs from each class, which contains the class-level representation.
The two banks are complementary to each other, enabling us to leverage more samples. Skele-
tonGCL can be seamlessly combined with existing GCNs. Eventually, we combine SkeletonGCL
with three GCNs (2S-AGCN (Shi et al., 2019), CTR-GCN (Chen et al., 2021b), and InfoGCN (Chi
et al., 2022)), and conduct experiments on three popular datasets (NTU60 (Shahroudy et al., 2016),
NTU120 (Liu et al., 2019) and NW-UCLA (Wang et al., 2014)). SkeletonGCL achieves consistent
improvements with these models using different testing protocols (single-modal or multi-modal) on
all three datasets, which widely demonstrates the effectiveness of our design. Notably, SkeletonGCL
only introduces a small amount of training consumption but has no impact at the test stage.

2

Published as a conference paper at ICLR 2023

Though there exist some works that apply contrastive learning in skeleton-based action recognition
(Li et al., 2021; Guo et al., 2022; Mao et al., 2022), our method differs from them as follows:
(1) The previous methods took pooled feature vectors to conduct contrastive learning as in (He
et al., 2020; Chen et al., 2020), where the structural properties in skeletons are lost. In contrast,
SkeletonGCL uses graphs to contrast, which maintains the structure details of skeletons and offers
high-order connection information between joints. (2) The previous methods used memory banks
to store instance-level representations only. Differently, our memory banks store both instance-level
and semantic-level representations, allowing us to leverage context from individual sequences and
class-specific aggregations, which are complementary to each other. (3) The previous methods were
used in the pre-training stage, while SkeletonGCL is incorporated into the fully-supervised setting
without extra pre-training cost.

Summarily, the contribution of this paper can be concluded as follows:

• We present a new perspective for graph learning of GCN models in skeleton-based action
recognition. In specific, we propose to make use of the cross-sequence context to guide
graph learning, whose goal is to enforce graphs to be intra-class compact and inter-class
dispersed.

• Motivated by the advances in contrastive learning, we smoothly combine the ideas of con-
trastive learning and cross-sequence graph learning together, then propose a new training
paradigm for skeleton-based action recognition, called SkletonGCL. SkeletonGCL incor-
porates an instance-level and a semantic-level memory bank to enrich the cross-sequence
context comprehensively. Besides, it can be seamlessly incorporated into current GCNs.

• SkeletonGCL achieves consistent improvements combined with three GCNs (2S-AGCN,
CTR-GCN, and InfoGCN) on three popular benchmarks (NTU60, NTU120, NW-UCLA)
using both single-modal and multi-modal testing protocols. In addition, SkeletonGCL is
training-efficient and has no impact at the test stage.

2 RELATED WORKS

2.1 SKELETON-BASED ACTION RECOGNITION

Skeleton-based action recognition is to classify actions from sequences of estimated key points. The
early deep-learning methods applied convolution neural networks (CNNs) (Chéron et al., 2015; Liu
et al., 2017b) or recurrent neural networks (RNNs) (Du et al., 2015; Lev et al., 2016; Wang & Wang,
2017; Liu et al., 2017a) to model the skeletons, but they could not explicitly explore the topolog-
ical structure of skeletons, thus the performances were limited. Recently, PoseC3D (Duan et al.,
2022) revisited the CNN-based method by stacking the heatmaps as 3D volumes, which maintained
the spatial-temporal properties of skeletons and obtained marginal performance improvements. In
the past few years, the mainstream works in skeleton-based action recognition were GCN mod-
els. ST-GCN (Yan et al., 2018) was the first work that adopted GCN as the feature extractor, which
heuristically designed fixed graphs to model the skeletons. The follow-up methods proposed spatial-
temporal graphs (Liu et al., 2020), multi-scale graph convolutions (Chen et al., 2021c), channel-
decoupled graphs (Chen et al., 2021b; Cheng et al., 2020a) and adaptive graphs (Li et al., 2019; Shi
et al., 2019; Ye et al., 2020; Zhang et al., 2020b; Chen et al., 2021b; Chi et al., 2022) to improve the
capacity of GCNs. Tracking the development of GCN-based methods, we find that graph learning
has always been a core problem and now the adaptive GCNs are leading since they can model the
intrinsic topology of skeletons.

However, current adaptive GCNs generated the graphs based on the local context within each se-
quence, where the cross-sequence relations have been neglected. In contrast, we propose to explore
the cross-sequence global context to shape graph representations. In this way, the learned graphs
can not only describe the individual characteristics within each sequence but also emphasize the
similarity and dissimilarity of motion patterns across sequences.

2.2 CONTRASTIVE LEARNING

In recent years, numerous representation learning methods (Wu et al., 2018; Oord et al., 2018; He
et al., 2020; Chen et al., 2020; Wang et al., 2021) with contrastive learning have emerged, especially

3

Published as a conference paper at ICLR 2023

in self-supervised representation learning. The key idea is to pull together the positive pairs and
push away the negative pairs in the feature space. Generally, the features are vectors obtained from
feature extractors followed by a pooling layer. A standard approach to obtaining the positive pairs is
augmenting an original sample into two different views. The negative samples are selected randomly
or using hard mining strategies (Khosla et al., 2020; Robinson et al., 2020; Kalantidis et al., 2020).
To increase the capacity of negative samples, the memory bank mechanism was devised in (He et al.,
2020; Misra & Maaten, 2020) to store more negative instances. By contrasting positive pairs against
negative pairs, the model can learn to focus on semantic representations.

In the field of skeleton-based action recognition, prior works (Li et al., 2021; Mao et al., 2022; Guo
et al., 2022) proposed to apply contrastive learning in the pre-training stage by roughly following the
frameworks mentioned above. CrossCLR (Li et al., 2021) mined positive pairs in the data space and
explored the cross-modal distribution relationships. Further, CMD (Mao et al., 2022) transferred
the cross-modal knowledge in a distillation manner. And AimCLR (Guo et al., 2022) used extreme
augmentations to improve the representation universality.

Compared with the above methods, we use graph representations to contrast instead of using pooled
feature vectors. Meanwhile, we establish two different memory banks at complementary levels, i.e.,
instance and semantic levels, to enrich the context scales. Besides, the proposed method is used with
GCNs under the fully-supervised setting, which requires no pre-training procedure.

3 METHOD

3.1 PRELIMINARY

We denote a human skeleton as a vertex set V = {v1, v2, ..., vN}, where N denotes the number of
vertices. For each vertex vi, the feature dimension is set as C. Hence, a skeleton sequence with
T frames can be denoted as X ∈ RT×N×C . Graph topology is used to represent the correlations
between joints, formulated as g.

GCNs in Skeleton-Based Action Recognition. Generally, GCN models alternatively apply graph
convolutions and temporal convolutions to extract the spatial configuration and motion pattern of
skeletons, respectively. The graph g is vital for graph convolutions since it determines the message
passing among joints. In current adaptive GCNs, g is learned within each sequence and has different
sizes, e.g., g ∈ RKS×N×N in 2S-AGCN (Shi et al., 2019) and g ∈ RKS×C×N×N in CTR-GCN
(Chen et al., 2021b). The KS denotes the number of sub-graphs, normally set as 3. In general, the
graph convolution is defined as:

XS =

KS∑
k=1

gkXWk
S, (1)

where XS ∈ RT×N×C′
denotes the spatial extracted feature with C ′ channels, and WS ∈

RKS×C×C′
denotes the spatial feature transformation filters. Next, temporal convolutions are ap-

plied on XS, producing motion extracted feature XT ∈ RT×N×C′
. After stacking layers of graph

convolutions and temporal convolutions, a global average pooling (GAP) layer summarizes the
global features, then a classification head (fully-connected layer) followed by a Softmax activa-
tion function is applied to obtain the class prediction ŷ ∈ RCk , where Ck denotes the number of
classes. Finally, a cross-entropy loss LCE supervises the class prediction with the ground truth label
y as follows:

LCE = −
∑
i

yi log ŷi (2)

Self-Supervised Contrastive Learning. In the context of self-supervised contrastive learning, each
input sample is processed by data augmentations to produce a positive pair: I and I+. Through a
feature extraction network, I and I+ are transformed into feature vectors f ∈ RD and f+ ∈ RD.
As for the negative samples, they are selected from the dataset excluding I and I+, represented as a
negative set N−. Each negative in N− is denoted as f− ∈ RD. The similarity between two feature
vectors is calculated as sim(f+, f−) = f+f−

∥f+∥∥f−∥ . InfoNCE (Gutmann & Hyvärinen, 2010; Oord

4

Published as a conference paper at ICLR 2023

GCN

Encoder

f ℒCECross-Entropy Loss

…c1

…c2

…c3

…

Instance-level

Memory Bank ℳIns

Enqueue

Anchor

PositiveSample

Negative
Contrastive Loss ℒNCE

Ins

Input 𝑰

𝑻 × 𝑵× 𝑪

c1

c2

c3

…
Semantic-level

Memory Bank ℳSem

Momentum

Update

Sample

Positive

…
Negative

Contrastive Loss ℒNCE
Sem

𝑫

𝑲𝑺 × 𝑪 × 𝑵 × 𝑵

g
𝑲𝑺 × 𝑪 × 𝑵 ×𝑵

Average
Pool

𝑲𝑺 × 𝑵 ×𝑵

Flatten

𝑲𝑺𝑵
𝟐

g’
FC

v
𝑪𝒈

തg

g

Classification

Head

Graph Projection

Head

Figure 2: Overview of SkeletonGCL. An input skeleton sequence I is fed into a GCN encoder,
producing a feature vector f for classification and a learned graph g for graph contrastive learning.
The graph g is embedded into a vector by a projection head. And two memory banks are built to store
the embedded graphs. From the memory banks, we sample the positives and negatives according to
the labels, then perform contrastive loss. The memory banks are only used in the training stage but
will be removed during the testing stage.

et al., 2018) is widely adopted for contrastive learning, which is formulated as:

LNCE = − log
sim(f , f+)/τ

sim(f , f+)/τ +
∑

f−∈N− sim(f , f−)/τ
, (3)

where temperature τ > 0 is a hyper-parameter.

3.2 GRAPH CONTRASTIVE LEARNING

The proposed SkeletonGCL is illustrated in Fig. 2. The framework consists of two branches, where
the classification branch is parallel to the graph contrast branch. Taking a skeleton sequence I as
input, the GCN encoder outputs a feature vector f for classification and a graph g for graph contrast.

Graph Projection Head. In order to contrast the graphs in a common feature space, we embed the
graphs into vectors by a graph projection head. The projection heads for different GCNs are similar
(see App. 6.1 for details). In Fig. 2, taking the graph g ∈ RKS×C×N×N learned in CTR-GCN
(Chen et al., 2021b) as an example, we first squeeze g along the channel dimension by an average
pooling layer into g ∈ RKS×N×N . Then, we flatten graph g into a 1D vector as g′ ∈ RKSN2

and
project g′ into a vector v ∈ RCg by an FC layer WG ∈ RKSN2×Cg . Since different channels in
WG are specific to different vertices in the graph, the graph projection is vertex-aware and thus can
encode the structures of skeletons. Afterward, we update two memory banks with v. The memory
banks are illustrated in Fig. 2, and detailed next.

Memory Bank. To enrich the cross-sequence context, we build memory banks to store the cross-
batch graphs. In specific, two memory banks are constructed, i.e., an instance-level memory bank
MIns ∈ RCk×P×Cg and a semantic-level memory bankMSem ∈ RCk×Cg . P denotes the number
of instances stored for each class in MIns. Particularly, each element in MIns denotes a graph
instance from a class. In contrast, each element inMSem denotes the graph aggregation of a class.
Therefore, the two memory banks are on complementary levels, where the instance-level memory
bank emphasizes the instance discrimination of each sequence, while the semantic-level memory
bank covers the class properties across sequences.

We update MIns in a first-in-first-out manner, which maintains the number of instances for each
class as P . As for MSem, we use a momentum update strategy, which integrates the graphs of
the same class from the current timestamp and all previous timestamps, regarded as a long-term
representation. The momentum update is defined as follows:

mc∗
sem ← αmc∗

sem + (1− α)v, (4)

where mc∗
sem is the representation for class c∗, c∗ is the class label for the input I and 0<α<1 is a

hyper-parameter.

5

Published as a conference paper at ICLR 2023

Loss. To achieve the graph contrast, we sample positives and negatives from the memory banks
MIns and MSem. For MIns, vector v is set as the anchor, hence samples in the positive set N+

Ins
are with label c∗, and samples in the negative set N−

Ins are with different labels. Consequently, the
InfoNCE loss in Eq. 3 can be rewritten as:

LIns
NCE = −

∑
v+∈N+

Ins

log
sim(v,v+)/τ

sim(v,v+)/τ +
∑

v−∈N−
Ins
sim(v,v−)/τ

, (5)

LSem
NCE = −

∑
v+∈N+

Sem

log
sim(v,v+)/τ

sim(v,v+)/τ +
∑

v−∈N−
Sem

sim(v,v−)/τ
. (6)

LIns
NCE leverages multiple positives compared with Eq. 3 by using label information, which mines

more semantic-related samples. Similarly, we can define the InfoNCE loss LSem
NCE, which is specific

for the memory bankMSem. Summarily, the overall contrastive loss is written as follows:

LNCE = LIns
NCE + LSem

NCE. (7)
And the overall loss function is defined as follows:

L = LNCE + LCE. (8)
Hard Sampling. As the training continues, most samples become too easy, which contribute less
to the training. Therefore, methods in (Tabassum et al., 2022; Robinson et al., 2020; Kalantidis
et al., 2020; Wang et al., 2021) are proposed to use hard mining strategies to focus on informative
samples. In this paper, considering the massive number of instances inMIns, contrasting with all
these instances naturally leads to redundancy and hinders the training. To alleviate this issue, we
propose to mine hard examples inMIns. Specifically, we take the similarity calculation sim(v,v′)
as a criterion to evaluate hardness. Harder positives are with lower similarities, and harder negatives
are with higher similarities. In total, forMIns, we select K+

H hardest positive examples, K−
H hardest

negative examples, and K−
R random negative examples.

4 EXPERIMENTS

4.1 DATASETS

NTU RGB+D. NTU RGB+D (NTU60) (Shahroudy et al., 2016) is a large-scale skeleton-based
action recognition dataset, which contains 60 action classes and 56,880 sequences. Each sequence
is annotated as skeletons with 25 joints. All the sequences are performed by 40 subjects and filmed
by 3 Kinect cameras from three different views. Generally, two protocols are used to evaluate the
performances: (1) cross-subject (X-Sub): train data are performed by 20 subjects, and test data are
performed by other 20 subjects. (2) cross-view (X-View): train data from cameras 2 and 3, and test
data from camera 1.

NTU RGB+D 120. NTU RGB+D 120 (NTU120) (Liu et al., 2019) is an extension of NTU RGB+D
dataset, which newly includes 57,367 skeletons of 60 extra classes. All the sequences are performed
by 106 subjects and filmed by three cameras from three different views. In addition, NTU RGB+D
120 has 32 setups, where each denotes a unique location. Generally, two protocols are used to
evaluate the performances: (1) cross-subject (X-Sub): train data are performed by 53 subjects, and
test data are performed by other 53 subjects. (2) cross-setup (X-Set): train data are samples with
even setup IDs, and test data are samples with odd setup IDs.

Northwestern-UCLA. Northwestern-UCLA (NW-UCLA) dataset (Wang et al., 2014) contains
1494 sequences from 10 action classes. Each sequence is annotated as skeletons with 20 joints. All
sequences are performed by 10 subjects and filmed by three Kinect cameras from different views.
We follow the official evaluation protocol: train data are captured by the first two cameras, and test
data are captured by the third camera.

4.2 IMPLEMENTATION DETAILS

To thoroughly validate SkeletonGCL, we take three GCNs (2S-AGCN (Shi et al., 2019), CTR-GCN
(Chen et al., 2021b), and InfoGCN (Chi et al., 2022)) as baseline models. For CTR-GCN and

6

Published as a conference paper at ICLR 2023

Table 1: Top-1 accuracy comparison (%) with the state-of-the-art methods on NTU 60 and NTU120
datasets. The numbers in gray indicate the results reported in their papers. * indicates that we retrain
the models using their officially released code. Particularly, 2S-AGCN is retrained using a stronger
train recipe from CTR-GCN.

Dataset NTU 60 NTU 120
Setting X-Sub X-View X-Sub X-Set

Method/Modality J B J+B 4S J B J+B 4S J B J+B 4S J B J+B 4S

SGCN (Zhang et al., 2020a) - - 89.0 - - - 94.5 - - - 79.2 - - - 81.5 -
ST-TR-GCN (Plizzari et al., 2021) 89.2 - 90.3 - 95.8 - 96.3 - 82.7 - 85.1 - 85.0 - 87.1 -
Shift-GCN (Cheng et al., 2020b) 87.8 - 89.7 90.7 95.1 - 96.0 96.5 80.9 - 85.3 85.9 83.2 - 86.6 87.6

DC-GCN+ADG (Cheng et al., 2020a) - - 90.8 - - - 96.6 - - - 86.5 - - - 88.1 -
Dynamic GCN (Ye et al., 2020) - - - 91.5 - - - 96.0 - - - 87.3 - - - 88.6

MS-G3D (Liu et al., 2020) 89.4 90.1 91.5 - 95.0 95.3 96.2 - - - 86.9 - - - 88.4 -
MST-GCN (Chen et al., 2021c) 89.0 89.5 91.1 91.5 95.1 95.2 96.4 96.6 82.8 84.8 87.0 87.5 84.5 86.3 88.3 88.8

2S-AGCN (Shi et al., 2019) - - 88.5 - 93.7 93.2 95.1 - - - - - - - - -
2S-AGCN* (Shi et al., 2019) 88.9 89.2 91.0 91.5 94.5 94.1 95.7 95.9 84.0 85.1 87.8 88.2 85.3 86.3 89.0 89.6
2S-AGCN* w/SkeletonGCL 89.9 90.0 91.6 92.2 95.0 94.4 96.1 96.4 84.7 86.0 88.4 88.7 86.1 86.8 89.7 90.2

CTR-GCN (Chen et al., 2021b) - - - 92.4 - - - 96.8 - 85.7 88.7 88.9 - 87.5 90.1 90.6
CTR-GCN* (Chen et al., 2021b) 89.8 90.2 92.0 92.4 94.8 94.8 96.3 96.8 84.9 85.7 88.7 88.9 86.7 87.5 90.1 90.5

CTR-GCN* w/SkeletonGCL 90.8 91.1 92.6 93.1 95.3 95.4 96.6 97.0 85.6 86.9 89.2 89.5 87.3 88.2 90.5 91.0
InfoGCN (Chi et al., 2022) 89.8 90.6 91.6 92.7 95.2 95.5 96.5 96.9 85.1 87.3 88.5 89.4 86.3 88.5 89.7 90.7
InfoGCN* (Chi et al., 2022) 89.4 90.6 91.3 92.3 95.2 95.4 96.2 96.7 84.2 86.9 88.2 89.2 86.3 88.5 89.4 90.7
InfoGCN* w/SkeletonGCL 90.1 91.0 91.9 92.8 95.5 95.7 96.6 97.1 85.2 87.4 88.8 89.8 87.2 88.7 90.0 91.2

InfoGCN, we follow their training recipes. Particularly, for 2S-AGCN, since its training recipe is
out of date, we borrow the training recipe from CTR-GCN, which effectively improves its baseline
performance. P , the number of stored instances for each class inMIns, is set as 684 on NTU60 and
NTU120, and 342 on NW-UCLA. The dimension of graph vector Cg is set to 256. For all datasets,
the number of sampling examples K+

H , K−
H , and K−

R are set as 128, 512, and 512, respectively. For
different models used in different modalities, we experiment with temperature τ of 0.5, 0.8, 1.0, and
1.5, and choose the best one. The hyper-parameter α for momentum updating is set as 0.85. Besides,
we fix the random seed to ensure experiment reproducibility. All experiments are conducted using a
single NVIDIA V100 GPU.

4.3 COMPARED WITH THE STATE-OF-THE-ART

In this section, we combine our method with three GCNs, and compare them with the state-of-the-
art (SoTA) methods. In Tab. 1 and Tab. 2, we list current SoTA methods in skeleton-based action
recognition except PoseC3D (Duan et al., 2022). PoseC3D is a promising CNN-based method, but
it uses non-official skeleton data and applies a multi-crop test protocol (GCN methods typically use
one crop), which are unfair for comparison here. In evaluation, four modalities are used: “joint
stream” (J) denotes the joint coordinates, “bone stream” (B) denotes the coordinate difference be-
tween spatially connected joints, “joint motion” (J-M) denotes the coordinate difference between
temporally adjacent frames, and “bone motion” (B-M) denotes the bone difference between tem-
porally adjacent frames. The 4-stream ensemble (4S) denotes using the four modalities together.
Following the widely-adopted protocol, we evaluate models using J , B, J +B, and 4S modalities.

NTU60 and NTU120. Tab. 1 lists the results on NTU60 and NTU120. From the results, we find
that: (1) Combined with SkeletonGCL, all three baseline models achieve solid improvements on
these two benchmarks over different settings and modalities. Taking the J modality on NTU60 X-
Sub as an example, 2S-AGCN improves by 1.0% (88.9% to 89.9%), CTR-GCN improves by 1.0%
(89.8% to 90.8 %), and InfoGCN improves by 0.7% (89.4% to 90.1%). Considering NTU60 is
an extensively-benchmarked dataset, such improvements are quite hard. (2) With SkeletonGCL,
CTR-GCN and InfoGCN can set new SoTA performance.

NW-UCLA. Tab. 2 lists the results on NW-UCLA. SkeletonGCL can still achieve consistent im-
provements based on the three models. And new state-of-the-art performances are achieved by
combining SkeletonGCL with CTR-GCN and InfoGCN.

7

Published as a conference paper at ICLR 2023

Table 2: Top-1 accuracy Comparison (%) with the state-of-the-art methods on the NW-UCLA
dataset. Numbers in gray denote the results reported in their papers. * indicates that we retrain
the models using their officially released codes. Particularly, 2S-AGCN is retrained using a stronger
train recipe from CTR-GCN.

Dataset NW-UCLA
Method/Modality J B J+B 4S

AGC-LSTM (Si et al., 2019) 93.3 - - -
DC-GCN+ADG (Cheng et al., 2020a) - - 95.3 -

Shift-GCN (Cheng et al., 2020b) 92.5 - 94.2 94.6

2S-AGCN (Shi et al., 2019) - - - -
2S-AGCN* (Shi et al., 2019) 92.0 92.2 95.0 95.5
2S-AGCN* w/SkeletonGCL 92.6 93.0 95.7 96.3

CTR-GCN (Chen et al., 2021b) - - - 96.5
CTR-GCN* (Chen et al., 2021b) 94.6 91.8 94.2 96.5

CTR-GCN* w/SkeletonGCL 95.1 95.0 95.9 96.8
InfoGCN (Chi et al., 2022) 94.0 95.3 96.3 96.6

InfoGCN* (Chi et al., 2022) 93.8 94.2 95.5 96.1
InfoGCN* w/SkeletonGCL 94.8 94.6 96.1 96.8

4.4 DIAGNOSTIC EXPERIMENTS

In this section, we conduct diagnostic experiments to verify the design of SkeletonGCL. Otherwise
stated, we use CTR-GCN as the GCN encoder to perform the experiments on the NTU60 dataset
under the X-Sub setting using the joint modality (J). See App. 6.2 for more diagnostic experiments.

Table 3: Comparison of intra-
batch and inter-batch contrast.

Model (CTR-GCN) Acc (%)

Baseline (w/o contrast) 89.8
Intra-batch Contrast (No Bank) 90.2

Inter-batch Contrast 90.8

Table 4: Comparison of feature
and graph contrast.

Model (CTR-GCN) Acc (%)

Baseline 89.8
Feature Contrast 90.2
Graph contrast 90.8

Table 5: Impact of memory
banks.

Model (CTR-GCN) Acc (%)

Baseline 89.8
Instance Memory 90.3
Semantic Memory 90.2

Instance + Semantic 90.8
Table 6: Impact of sampling
strategies. R: Random; H: Hard.

Sampling
Positive Negative Acc(%)

R
R 90.1
H 90.2

R+H 90.5

H
R 90.4
H 90.6

R+H 90.8
R + H R + H 90.3

Table 7: Comparison with
using triplet loss.

Model (CTR-GCN) Acc (%)

Baseline 89.8
Triplet loss 90.7

InfoNCE loss 90.8

Table 8: Training consumption on NTU60.

Model Time (hours)

2S-AGCN 3.4
2S-AGCN w/ours 3.5 ↑ 2.9%

CTR-GCN 11.4
CTR-GCN w/ours 11.7 ↑ 2.6%

InfoGCN 4.3
InfoGCN w/ours 4.6 ↑ 7.0%

Table 9: Graph Distance (dis.) comparison using Eu-
clidean distance (10−5).

Average dis. to Dis. to Dis. toSample all classes correct class misclassified class

Incorrectly-Classified 1.70 0.74 0.68Samples
Correctly-Classified 2.20 0.47 -Samples

Table 10: Performance (%) of samples with different
graph distance ranks to the correct class.

CTR CTR w/Ours +/-

rank1 97.2 97.4 +0.2
rank2-5 92.1 92.9 +0.8

rank6-10 88.3 89.3 +1.0
rank11-20 84.9 86.3 +1.4
rank21-40 83.2 84.8 +1.6
rank41-60 80.8 82.9 +2.1

Intra-batch vs. Inter-batch Graph Contrast. In Tab. 3, the effectiveness of introducing cross-
sequence context is investigated. We find that only contrasting the graphs within one batch can bring
improvement with 0.4% (89.8% to 90.2%), which owes to the cross-sequence relation mining. And
further exploring the inter-batch relations can bring more improvements to 1.0% (89.8% to 90.8%),
which explains that different batches provide richer context than a single batch.

Graph Contrast vs. Feature Contrast. In Tab. 4, the comparison of using features f to contrast and
using graphs g to contrast is investigated. We find that feature contrast can improve the performance
on the baseline with 0.4% (89.8% to 90.2%). But graph contrast can obviously outperform it by
0.6% (90.2% to 90.8%). The results suggest that, due to the high-order structural information in
graphs, graph contrast can better benefit graph convolution learning in GCNs.

8

Published as a conference paper at ICLR 2023

Memory Banks. In Tab. 5, the effectiveness of instance-level and semantic-level memory banks
is investigated. We find that both memory banks benefit the recognition, and using them together
achieves much higher performance, which proves their complementary properties.

Sampling Strategy. In Tab. 6, we compare different sampling strategies for SkeletonGCL. We find
that selecting hard positive/negative examples can generally improve recognition. And also random
negative samples are meaningful to recognition, which allows the contrastive loss to involve more
negative samples.

InfoNCE Loss vs. Triplet Loss. In Tab. 7, we compare the performance of using another popular
metric learning loss, i.e., triplet loss (Schroff et al., 2015). We find that using triplet loss can achieve
similar performance compared to InfoNCE loss. The results indicate the generality of our idea that
it does not depend on a certain loss but can boost the performance using different losses.

Traning Comsumption. In Tab. 8, we report the training consumption on NTU60. With our
method, the training time only slightly increases with different baseline models, ranging from 2.6%
to 7.0%, which proves the efficiency of the design.

Quantitative Results about Graph Similarities. As shown in Tab. 9, we statistically calculate
the graph distances between each sample and all classes (detailed in App. 6.4). For incorrectly-
classified samples, we find that: (1) The graph distance to the misclassified class (0.68) is much
lower than the average distance (1.70) to all classes. (2) The graph distance to the misclassified
class (0.68) is indeed slightly lower than the distance to the correct class (0.74), which explains
that not learning class-specific graphs could truly degrade recognition performance. In addition, for
correctly-classified samples, we notice that: (1) The average graph distance (2.20) is higher than
that for the misclassified ones (1.70), which indicates that the inter-class graph representations are
more dispersed for the correctly-classified samples. (2) The distance to the correct class (0.47) is
lower than that for the misclassified ones (0.74), which reveals that the intra-class representations
are more compact for the correctly classified samples. To sum up, these quantitative results illustrate
the strong correlation between recognition performance and class-specific graph representation.

Performance vs. Graph Quality. In Tab. 10. we first calculate the graph distances between each
sample and all classes (detailed in App. 6.4) for CTR-GCN. Then, we rank the distances from low
to high. In Tab. 10, we report the recognition accuracies of samples according to their distance
ranks to the correct class. Here, higher ranks indicate that graphs are of higher quality (intra-class
compact and inter-class dispersed), while lower ranks indicate that graphs are of lower quality (intra-
class dispersed and inter-class aliasing). We note that: (1) Considering samples from lower ranks to
higher ranks, performances improve monotonically, revealing the significant correlations between
graph quality and recognition performance. (2) Combined with the proposed method, we improve
performances in all cases, where larger improvements are obtained on the samples with lower-quality
graphs. These results prove that our method can alleviate the problem caused by learning low-quality
graphs.

5 CONCLUSION

In this paper, we establish a new training paradigm for skeleton-based action recognition, called
SkeletonGCL, which explicitly explores the rich semantic context across sequences. Concretely,
SkeletonGCL contrasts the learned graphs among sequences, guiding the graph representations to
be class-associated, hence improving GCN capacity to recognize different actions. We improve the
current methods significantly to achieve SoTA on three benchmarks.
Limitation. In this paper, we push away the negative pairs from different classes in the same way
without considering their intrinsic relations. Therefore, a comprehensive contrasting manner may
be more suitable by delicately involving cross-class relations. We leave this for future work.

ACKNOWLEDGEMENTS

This research is supported by the NSFC (grants No. 61773176 and No. 61733007).

9

Published as a conference paper at ICLR 2023

REFERENCES

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International Conference on Machine Learning,
pp. 1597–1607. PMLR, 2020.

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision
transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
9640–9649, 2021a.

Yuxin Chen, Ziqi Zhang, Chunfeng Yuan, Bing Li, Ying Deng, and Weiming Hu. Channel-wise
topology refinement graph convolution for skeleton-based action recognition. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 13359–13368, 2021b.

Zhan Chen, Sicheng Li, Bing Yang, Qinghan Li, and Hong Liu. Multi-scale spatial temporal graph
convolutional network for skeleton-based action recognition. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 35, pp. 1113–1122, 2021c.

Ke Cheng, Yifan Zhang, Congqi Cao, Lei Shi, Jian Cheng, and Hanqing Lu. Decoupling gcn with
dropgraph module for skeleton-based action recognition. In European Conference on Computer
Vision, pp. 536–553. Springer, 2020a.

Ke Cheng, Yifan Zhang, Xiangyu He, Weihan Chen, Jian Cheng, and Hanqing Lu. Skeleton-based
action recognition with shift graph convolutional network. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 183–192, 2020b.

Guilhem Chéron, Ivan Laptev, and Cordelia Schmid. P-cnn: Pose-based cnn features for action
recognition. In Proceedings of the IEEE International Conference on Computer Vision, pp. 3218–
3226, 2015.

Hyung-gun Chi, Myoung Hoon Ha, Seunggeun Chi, Sang Wan Lee, Qixing Huang, and Karthik
Ramani. Infogcn: Representation learning for human skeleton-based action recognition. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20186–
20196, 2022.

Yong Du, Wei Wang, and Liang Wang. Hierarchical recurrent neural network for skeleton based
action recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1110–1118, 2015.

Haodong Duan, Yue Zhao, Kai Chen, Dahua Lin, and Bo Dai. Revisiting skeleton-based action
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 2969–2978, 2022.

Tianyu Guo, Hong Liu, Zhan Chen, Mengyuan Liu, Tao Wang, and Runwei Ding. Contrastive
learning from extremely augmented skeleton sequences for self-supervised action recognition. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 762–770, 2022.

Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation principle
for unnormalized statistical models. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 297–304. JMLR Workshop and Conference Proceedings,
2010.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9729–9738, 2020.

Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe Weinzaepfel, and Diane Larlus. Hard
negative mixing for contrastive learning. Advances in Neural Information Processing Systems,
33:21798–21809, 2020.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. Advances in Neural
Information Processing Systems, 33:18661–18673, 2020.

10

Published as a conference paper at ICLR 2023

Guy Lev, Gil Sadeh, Benjamin Klein, and Lior Wolf. Rnn fisher vectors for action recognition and
image annotation. In European Conference on Computer Vision, pp. 833–850. Springer, 2016.

Linguo Li, Minsi Wang, Bingbing Ni, Hang Wang, Jiancheng Yang, and Wenjun Zhang. 3d hu-
man action representation learning via cross-view consistency pursuit. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4741–4750, 2021.

Maosen Li, Siheng Chen, Xu Chen, Ya Zhang, Yanfeng Wang, and Qi Tian. Actional-structural
graph convolutional networks for skeleton-based action recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3595–3603, 2019.

Jun Liu, Gang Wang, Ping Hu, Ling-Yu Duan, and Alex C Kot. Global context-aware attention lstm
networks for 3d action recognition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1647–1656, 2017a.

Jun Liu, Amir Shahroudy, Mauricio Perez, Gang Wang, Ling-Yu Duan, and Alex C Kot. Ntu rgb+
d 120: A large-scale benchmark for 3d human activity understanding. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 42(10):2684–2701, 2019.

Mengyuan Liu, Hong Liu, and Chen Chen. Enhanced skeleton visualization for view invariant
human action recognition. Pattern Recognition, 68:346–362, 2017b.

Ziyu Liu, Hongwen Zhang, Zhenghao Chen, Zhiyong Wang, and Wanli Ouyang. Disentangling
and unifying graph convolutions for skeleton-based action recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 143–152, 2020.

Yunyao Mao, Wengang Zhou, Zhenbo Lu, Jiajun Deng, and Houqiang Li. Cmd: Self-
supervised 3d action representation learning with cross-modal mutual distillation. arXiv preprint
arXiv:2208.12448, 2022.

Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-invariant representa-
tions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 6707–6717, 2020.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Chiara Plizzari, Marco Cannici, and Matteo Matteucci. Skeleton-based action recognition via spatial
and temporal transformer networks. Computer Vision and Image Understanding, 208:103219,
2021.

Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. Contrastive learning with
hard negative samples. arXiv preprint arXiv:2010.04592, 2020.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
recognition and clustering. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 815–823, 2015.

Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang. Ntu rgb+ d: A large scale dataset for 3d
human activity analysis. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1010–1019, 2016.

Lei Shi, Yifan Zhang, Jian Cheng, and Hanqing Lu. Two-stream adaptive graph convolutional
networks for skeleton-based action recognition. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 12026–12035, 2019.

Chenyang Si, Wentao Chen, Wei Wang, Liang Wang, and Tieniu Tan. An attention enhanced
graph convolutional lstm network for skeleton-based action recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1227–1236, 2019.

Afrina Tabassum, Muntasir Wahed, Hoda Eldardiry, and Ismini Lourentzou. Hard negative sampling
strategies for contrastive representation learning. arXiv preprint arXiv:2206.01197, 2022.

11

Published as a conference paper at ICLR 2023

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Hongsong Wang and Liang Wang. Modeling temporal dynamics and spatial configurations of ac-
tions using two-stream recurrent neural networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 499–508, 2017.

Jiang Wang, Xiaohan Nie, Yin Xia, Ying Wu, and Song-Chun Zhu. Cross-view action modeling,
learning and recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2649–2656, 2014.

Wenguan Wang, Tianfei Zhou, Fisher Yu, Jifeng Dai, Ender Konukoglu, and Luc Van Gool. Ex-
ploring cross-image pixel contrast for semantic segmentation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 7303–7313, 2021.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3733–3742, 2018.

Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial temporal graph convolutional networks for
skeleton-based action recognition. In Thirty-second AAAI Conference on Artificial Intelligence,
2018.

Fanfan Ye, Shiliang Pu, Qiaoyong Zhong, Chao Li, Di Xie, and Huiming Tang. Dynamic gcn:
Context-enriched topology learning for skeleton-based action recognition. In Proceedings of the
28th ACM International Conference on Multimedia, pp. 55–63, 2020.

Pengfei Zhang, Cuiling Lan, Wenjun Zeng, Junliang Xing, Jianru Xue, and Nanning Zheng.
Semantics-guided neural networks for efficient skeleton-based human action recognition. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1112–
1121, 2020a.

Xikun Zhang, Chang Xu, and Dacheng Tao. Context aware graph convolution for skeleton-based
action recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14333–14342, 2020b.

6 APPENDIX

6.1 IMPLEMENTATIONS OF GRAPH PROJECTION HEADS FOR GCNS.

g
𝑻𝑻 × 𝑲𝑲𝑺𝑺 × 𝑵𝑵 × 𝑵𝑵

Average
Pool

𝑲𝑲𝑺𝑺 × 𝑵𝑵 × 𝑵𝑵

Flatten

𝑲𝑲𝑺𝑺𝑵𝑵𝟐𝟐

g’
FC

v�g
𝑪𝑪𝒈𝒈

g
𝑲𝑲𝑺𝑺 × 𝑪𝑪 × 𝑵𝑵 × 𝑵𝑵

Average
Pool

𝑲𝑲𝑺𝑺 × 𝑵𝑵 × 𝑵𝑵

Flatten

𝑲𝑲𝑺𝑺𝑵𝑵𝟐𝟐

g’
FC

v�g
𝑪𝑪𝒈𝒈

(a) CTR-GCN

g
𝑲𝑲𝑺𝑺 × 𝑵𝑵 × 𝑵𝑵

Flatten

𝑲𝑲𝑺𝑺𝑵𝑵𝟐𝟐

g’
FC

v
𝑪𝑪𝒈𝒈

(b) 2S-AGCN (c) InfoGCN

Figure 3: Illustration of graph projection heads for GCNs.

In Fig. 3, we illustrate the implementation details of graph projection heads for different GCNs.
Particularly, for CTR-GCN and InfoGCN, we first apply an average pooling layer to summarize the
information along the channel and temporal dimensions, respectively. Then, the same as 2S-AGCN,
we flatten the graphs and embed them with an FC layer.

12

Published as a conference paper at ICLR 2023

6.2 MORE DIAGNOSTIC EXPERIMENTS.

Table 11: Comparison of using cross-entropy loss
to supervise graph learning.

Model (CTR-GCN) Acc (%)
Baseline 89.8

w/Cross-entropy loss 89.7
w/SkeletonGCL 90.8

Table 12: Impact of the FC layer in graph projection
head.

Model (CTR-GCN) Acc (%)

Baseline 89.8
Graph Projection wo/FC 90.1
Graph Projection w/FC 90.8

Graph Projection w/MLP 90.6

Table 13: Apply graph contrast
on different layers.

Model (CTR-GCN) Acc (%)

Baseline 89.8
7th layer 89.8
8th layer 90.0
9th layer 90.4
10th layer 90.8

Table 14: Impact of the size of
MIns.

P Acc (%)

128 90.3
342 90.5
684 90.8
1368 90.4
2736 90.0

Table 15: Performance compari-
son with different Cg .

Cg Acc (%)

64 90.4
128 90.6
256 90.8
512 90.5

Table 16: Impact of τ .

τ Acc (%)

0.5 90.4
0.8 90.6
1.0 90.8
1.5 90.5

Table 17: Impact of α.

α Acc (%)

0.75 90.6
0.80 90.7
0.85 90.8
0.9 90.6

Table 18: Performance compari-
son with different K+

H .

K+
H Acc (%)

64 90.6
128 90.8
256 90.6
512 90.5

Table 19: Performance comparison with different
K−

H .

K−
H Acc (%)

128 90.5
256 90.7
512 90.8
1024 90.5

Table 20: Performance comparison with different
K−

R .

K−
R Acc (%)

128 90.6
256 90.7
512 90.8
1024 90.6

Comparison of using cross-entropy loss. Since cross-entropy loss is a widely used classification
loss in learning class-discriminative representations, in Tab. 11, we investigate its performance
to supervise graph learning. We find that directly using cross-entropy loss for graph learning has
negligible effects on the performance (89.8% to 89.7%), which indicates that it is impractical to
learn favorable class-discriminative graphs by naively using a classification loss. In this paper, we
find a practical way to achieve this goal by introducing the cross-sequence context for guiding graph
learning.

Impact of FC in Projection Head. In Tab. 12, the effectiveness of transformation layer (FC layer)
in the graph projection head is investigated. We find that the model achieves obvious improvement
(90.1% to 90.8%) equipped with the FC layer, which proves the importance of vertex-aware graph
encoding. In addition, we find that using an MLP achieves a similar but lower accuracy, hence we
use a simple FC in the framework.

Which Layer to Contrast Graphs? In Tab. 13, we apply graph contrast on different layers. We find
that contrasting graphs on deeper layers outperform on shallower layers. One possible explanation
is that deeper layers can provide higher-level semantics that is relevant to recognition.

Impact of the size ofMIns. In Tab. 14, the impact of the size ofMIns is investigated, where we use
different values of P to control the size. We find that appropriately increasing the size can effectively
expand the cross-sequence context, and improve recognition performance. However, an over large
memory bank stores old samples from a few batches ago, which hinders representation learning.

Impact of dimension Cg . In Tab. 15, the influences of the dimension of graph vector Cg are
investigated. For pursuing the best performance, we set Cg as 256.

Impact of temperature τ . In Tab. 16, the influences of the temperature τ are investigated. For
pursuing the best performance, we set τ as 1.0.

Impact of α. In Tab. 17, the influences of the momentum updating hyper-parameter α are investi-
gated. For pursuing the best performance, we set α as 0.85.

13

Published as a conference paper at ICLR 2023

Impact of the number of sampling examples. In Tab. 18, the impact of selecting K+
H hardest

positive examples is investigated. In Tab. 19, the impact of selecting K−
H hardest negative examples

is investigated. In Tab. 20, the impact of selecting K−
R random negative examples is investigated.

For pursuing the best performance, we set K+
H , K−

H , and K−
R to 128, 512 and 512, respectively.

The quantitative analysis of accuracy improvement. In Tab. 21, the recognition accuracies of the
top-10 hardest classes for CTR-GCN on NTU-60 are presented. The improvements in four classes
(i.e., “reading”, “typing on a keyboard”, “headache” and “point to something”) are over 4%. Though
performances in three classes decrease, they are relatively small (−1.5% on “writing”, −1.0% on
“take off a shoe”, and−2.5% on ”sneeze/cough”) vs. others’ increase. Overall, we obtain an average
improvement in the 10 classes of 2.7%.

In Tab. 22, the recognition accuracies of top-10 improved classes for CTR-GCN on NTU-60 are
presented. The accuracy of the above 10 classes shows an average gain of 4.6%.

Table 21: Performance (%) on top 10 hardest classes
for CTR-GCN.

classes CTR-GCN CTR-GCN w/GCL +/-

reading 58.2 67.8 +9.6
type on a keyboard 66.5 70.9 +4.4
writing 67.3 65.8 -1.5
play with phone/tablet 68.0 70.9 +2.9
eat meal 71.6 75.3 +3.7
take off a shoe 75.5 74.5 -1.0
headache 78.3 83.0 +4.7
point to something 81.9 85.9 +4.0
clapping 82.1 85.7 +3.6
sneeze/cough 82.2 79.7 -2.5

Average 73.2 75.9 +2.7

Table 22: Performance (%) on top 10 improved classes
for CTR-GCN.

classes CTR-GCN CTR-GCN w/GCL +/-

reading 58.2 67.8 +9.6
headache 78.3 83.0 +4.7
rub two hands 87.3 92.0 +4.7
punch/slap 89.4 93.8 +4.4
type on a keyboard 66.6 70.9 +4.3
point to something 81.9 85.9 +4.0
clapping 82.1 85.7 +3.6
reach into pocket 82.5 86.1 +3.6
eat meal 71.6 75.2 +3.6
neck pain 88.0 91.3 +3.3

Average 78.6 83.2 +4.6

6.3 QUALITATIVE RESULTS

In Fig. 4, we visualize the t-SNE distribution of graph and feature representations of sequences from
six classes, illustrating the impact of SkeletonGCL. As shown in Fig. 4(a), SkeletonGCL can shape
the graph representation structure, where the graphs from the same class get together and graphs
from different classes spread out. Consequently, in Fig. 4(b), with SkeletonGCL, the features from
different classes become more distinguishable, which indicates that graph contrast indeed improves
the feature extraction capacity.

CTR-GCN CTR-GCN w/SkeletonGCL

(a) t-SNE visualization of graph representation. CTR-GCN CTR-GCN w/ours

Feature Representation t-SNE

(b) t-SNE visualization of feature representation.

Figure 4: t-SNE visualization. t-SNE (Van der Maaten & Hinton, 2008) visualization of graph and
feature representations from sequences in the test set of NTU 60. Each color denotes a certain class.
Best viewed with zoom in.

6.4 THE CALCULATION DETAILS OF GRAPH DISTANCE

In Tab. 9, the statistics of graph distance for all samples are investigated. In CTR-GCN, the graph
g ∈ RKS×C×N×N is learned for graph convolution. For the convenience of calculation, we use
an average pooling to squeeze g and reshape it into g = g ∈ R1×N2

as the graph embedding to
conduct distance measurement.

14

Published as a conference paper at ICLR 2023

To acquire the graph embedding for each class c∗, we first calculate the centroid vector s as follows,

sc∗ =
1

Nc∗

Nc∗∑
i=1

gi (9)

where Nc∗ denotes the number of samples which belongs to class c∗. To effectively reveal the rela-
tion between graph quality and classification accuracy, we introduce three types of graph distance,
i.e., dall, dcor and dmis. dall measures the average distance to all classes. dcor measures the distance to
the correct class c∗. dmis measures the distance to the misclassified class cmis.

dall =
1

K

K∑
k=1

||g − sck ||2 (10)

dcor = ||g − sc∗ ||2, (11)

dmis = ||g − scmis ||2, (12)

where K denotes the number of classes in the dataset.

15

	Introduction
	Related Works
	Skeleton-based Action Recognition
	Contrastive Learning

	Method
	Preliminary
	Graph Contrastive Learning

	Experiments
	Datasets
	Implementation Details
	Compared with the state-of-the-art
	Diagnostic Experiments

	Conclusion
	Appendix
	Implementations of graph projection heads for GCNs.
	More diagnostic experiments.
	Qualitative Results
	The calculation details of graph distance

