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ABSTRACT

Quadratic Assignment Problem (QAP) has attracted lasting attention for its wide
applications and computational challenge. Despite the rich literature in machine
learning for QAP, most works often address the problem in the setting of im-
age matching, whereby deep networks could play a vital role in extracting useful
features for the subsequent matching. While its power on pure numerical QAP
instances is limited in node embedding, often with a vanilla graph neural net-
work. This paper tries to tap the potential of deep nets for QAP, specifically by
modifying the input instance which is orthogonal to previous efforts. Specifically,
we develop a bi-level unsupervised framework, where the inner optimization in-
volves trying to solve the modified instance with entropic regularization that can
be solved iteratively using the Sinkhorn algorithm without affecting backpropa-
gation by truncating gradients during training. The outer minimization deals with
the quadratic objective function of the original QAP. In particular, seeing the in-
tractable scale of the most general form i.e. Lawler’s QAP and the practical utility
of the more efficient Koopmans-Beckmann QAP (KBQAP) form for solving other
graph and combinatorial problems like TSP and graph edit distance, we embody
our network on the KBQAP, and show its strong performance on various bench-
marks in our experiments. Source code will be made publicly available.

1 INTRODUCTION

The quadratic assignment problem (QAP) (Koopmans & Beckmann, 1957) is one of the fundamen-
tal combinatorial optimization problems known in general NP-hard and many classic problems can
be formulated in a QAP form such as facilities location problems (Owen & Daskin, 1998), graph
matching tasks (Livi & Rizzi, 2013), graph edit distance (Sanfeliu & Fu, 1983) and traveling sales-
man problems (Gutin & Punnen, 2006). The most general form of QAP is called Lawler’s QAP
(LLQAP) (Lawler, 1963):

max
X∈{0,1}n1×n2

J(X) = vec(X)TKvec(X), s.t. X1n2
= 1n1

,XT1n1
≤ 1n2

, n1 ≤ n2 (1)

where K ∈ Rn1n2×n1n2 represents the affinity matrix. One of the most popular applications of
LLQAP is graph matching (Yan et al., 2016), whereby the edge-wise similarity (stored in the off-
diagonal elements of K) and node-wise affinity (stored in the diagonal elements of K) are both
incorporated in the overall quadratic objective function for maximization. The marginal constraints
are often called permutation or matching constraints in graph matching literature. Despite its uni-
versality, one practical drawback is that the above LLQAP has to carry the burdensome affinity
matrix K which significantly restricts its applicability for modelling the real-world problems, usu-
ally only up to dozens of nodes. This circumstance compels researchers and practitioners to adopt a
more lightweight formulation regarding with the space complexity by avoiding explicitly storing K,
namely the well-known Koopmans-Beckmann QAP (KBQAP) (Koopmans & Beckmann, 1957):

max
X∈{0,1}n1×n2

J(X) = tr(XTF1XF2) + tr(KT
pX), s.t. X1n2

= 1n1
,XT1n1

≤ 1n2
, n1 ≤ n2 (2)

where F1 ∈ Rn1×n1 and F2 ∈ Rn2×n2 are weighted adjacency matrices for edges, and Kp ∈
Rn1×n2 is node-to-node affinity matrix. Many classic combinatorial problems, e.g. Graph Matching
(GM), TSP, and Graph Edit Distance (GED), can be readily rewritten by KBQAP.
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Along the emerging trend of machine learning for combinatorial optimization (Bengio et al., 2021),
this paper aims to develop a new learning paradigm to address this fundamental problem. In fact, a
widely used technique for handling the permutation constraints in Eq. 2 is the Sinkhorn layer that
enforces the given matrix to become a doubly-stochastic one, as such the final feasible solution could
be readily obtained via solving a linear assignment problem by e.g. the Hungarian method (Kuhn,
1955). In this way, solving the QAP problem either in LLQAP (Lawler, 1963) or KBQAP (Koop-
mans & Beckmann, 1957) form could be fulfilled by an inference step with a neural network to fully
utilize the parallel GPU computing resource. Moreover, the training could also be performed in an
end-to-end fashion either by supervised or unsupervised learning.

In our investigation of the most common graph matching approaches (Jiang et al., 2022; Wang
et al., 2023) in QAP, we discover that many of them conduct experiments on visual datasets like
Willow (Cho et al., 2013), where annotations are typically manually crafted as supervised data for
training Graph Neural Networks (GNNs) (Zhou et al., 2020) to learn the mapping. However, we
raise concerns regarding this practice since the ground-truth matching in supervised data may not
necessarily be the optimal solution in the context of QAP optimization. To illustrate this point, we
present an example in Fig. 1 where visually incorrect matches yield a better objective function in
Eq. 2. Consequently, visual graph matching may significantly differ from solving QAP in the field of
combinatorial optimization. This discrepancy often arises from a focus on image feature extraction
rather than addressing the core principles of combinatorial optimization.

Building upon the above reconsideration, this paper places a heightened focus on learning a better
QAP objective function based on the parameters outlined in Eq. 2, rather than being concerned with
whether nodes or edges are correctly matched visually. We aim to train a neural network-based
mapping that takes the QAP formula’s essential matrices (Kp, F1, F2) as input and produces the
corresponding optimal solution X that maximizes the objective function in Eq. 2. Consequently, our
model exhibits enhanced versatility, transcending the confines of a specific task, as it can be applied
to derive solutions as long as the task can extract the key matrices relevant to the QAP.

Different from previous works employing Sinkhorn layers to get the doubly stochastic matrix as
output, we introduce a novel framework called BiQAP with bi-level optimization, which maps the
original QAP formula to another new optimization one, specifically an entropic regularized QAP in
the inner optimization. Note a differentiable approximate solver known as the Gromov-Wasserstein
Sinkhorn (GW-Sinkhorn) (Peyré et al., 2016) algorithm is utilized as a layer to solve the entropic
regularized QAP optimization. Similar to existing QAP solvers, the GW-Sinkhorn algorithm is
susceptible to local optima. Therefore, during the training phase, we initialize the GW-Sinkhorn
algorithm with multiple Gumbel samples, compelling the outputs to yield solutions X that minimize
the original QAP objective function in the outer optimization. This approach aims to mitigate the
impact of local optima. The highlights of this work include:

1) We propose an efficient neural QAP framework called BiQAP under a bi-level optimization
paradigm. The outer optimization corresponds to the objective function of the original QAP, while
the inner minimization is conducted via an iteratively learned QAP with entropic regularization, in
which Gromov-Sinkhorn algorithm is adopted as the differential approximate QAP solver to ob-
tain the solution. In contrast to peer learning-based methods, our end-to-end approach is capable
of producing a high-quality solution without heavily relying on extensive random sampling tech-
niques (Wang et al., 2021a) or intricate post-processing algorithms (Piao et al., 2023).

2) Note our BiQAP focuses on optimizing the general form of QAP without requiring the explicit
input node/edge features as widely used and learned from existing learning of QAP works, which
typically formulate the problem as a graph matching task (Yan et al., 2020). In contrast, BiQAP is
concerned solely with the optimization formula without considering learning of the input features
which we believe to some extent distract the solving of QAP itself.

3) To neuralize the QAP, we present FormulaNet, where the crucial matrices of the optimization
formula serve as inputs and the crucial matrices of another optimization problem are generated as
outputs. Our FormulaNet can accommodate QAP problems of various sizes.

4) We conduct extensive experiments across five typical QAP-based tasks. Specifically, our method
achieves state-of-the-art performance in the Graph Matching, Large Random QAP optimization,
and Graph Edit Distance tasks, outperforming both learning-free and learning-based approaches.
Meanwhile, it delivers competitive results in the Traveling Salesman Problem and QAPLIB tasks.
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Figure 1: Graph matching test on an instance. The QAP instance is extracted by a pre-trained module
from Wang et al. (2021a). We calculate the objective for both the ground truth and the solution obtained
by Gurobi. The left shows the correct matching, while the right image displays the optimal solution found by
Gurobi. The visually incorrect matches on the right achieve a better objective value.

2 RELATED WORKS

QAP Solvers and Corresponding Tasks. Due to its significance, there is a wealth of work on the
QAP. Learning-free methods for LLQAP (Hahn et al., 1998; Leordeanu & Hebert, 2005; Leordeanu
et al., 2009; Cho et al., 2010; Wang et al., 2017) and KBQAP (Edwards, 1980; Erdoğan & Tansel,
2007; Kushinsky et al., 2019) typically search for a feasible solution based on specific settings.
In recent years, with the rise of neural networks, several learning-based methods have emerged,
mostly from the perspective of graph matching. KBQAP solvers (Nowak et al., 2018; Wang et al.,
2019; Yu et al., 2019) rely on structured graph inputs, limiting their ability to handle arbitrary QAP
instances. The LLQAP solver NGM (Wang et al., 2021a) extracts graph information into a matrix K
via convolutional layers, but its O(n4) complexity leads to significant memory and GPU limitations
on large-scale problems. In contrast, our learning-based BiQAP supports generalized inputs for any
QAP formulation and shows superior capability in handling large-scale instances due to its KBQAP
foundation. QAP-related tasks are diverse in previous research, including graph matching (Yan et al.,
2016), traveling salesman problem (Gutin & Punnen, 2006; Ye et al., 2023), and QAPLIB (Burkard
et al., 1997). Beyond these, we innovatively formulate the graph edit distance (Sanfeliu & Fu, 1983)
as a QAP problem, achieving state-of-the-art results, and construct an extremely large, randomly
generated dataset to evaluate the model’s ability to solve large-scale problems.

Gromov-Wasserstein Distance. The Wasserstein Distance (Le et al., 2019) is employed to com-
pare probability distributions, typically represented as histograms in finite-dimensional spaces for
optimal transport (Peyre & Cuturi, 2019; Shi et al., 2024b), either within the same ground space
or across pre-registered ground spaces. In contrast, the Gromov-Wasserstein Distance (Mémoli,
2014) extends the concept to cases where ground spaces are not pre-registered, necessitating a non-
convex quadratic program (Xia et al., 2015) to compute the transport, resulting in a soft registra-
tion between domains. Our algorithm is inspired by the computation of the Entropic Regularized
Gromov-Wasserstein Distance (Peyré et al., 2016), utilizing a mirror-descent scheme based on ma-
trix iterations to solve this problem. We account for the asymmetry present in Gromov-Wasserstein
Distance matrices and leverage this differentiable algorithm as a pivotal layer within the end-to-end
BiQAP framework.

Designing the loss via Bi-level Optimization. Bi-Level Optimization is originated from economic
game theory (Fortuny-Amat & McCarl, 1981) and then introduced into the optimization commu-
nity (Dempe, 2020), which handle problems with a hierarchical structure, involving two levels of
optimization tasks, where one task is nested inside the other. Despite the different motivations and
mechanisms in machine learning, a lot of complex problems, such as neural architecture search (Liu
et al., 2018), adversarial learning (Li et al., 2019) and deep reinforcement learning (Zhang et al.,
2020), actually all contain a series of closely related subproblms. In this paper, we mainly follow
(Shi et al., 2023) that understanding or designing the loss via bi-level optimization:

min
θ

KL(P̃ | Pθ) s.t. Pθ = arg min
P1=1

⟨Cθ,P⟩ − ϵH(P), (3)

where Cθ represents the cosine distance for features with parameters θ, and P̃ is the known super-
vision for learning. As proven in (Shi et al., 2023), H(P) = −⟨P, logP − 1⟩ is the entropic regu-
larization with coefficient ϵ. The inner optimization is exactly equivalent to the softmax activation,
while the outer optimization corresponds to cross-entropy. Thus, the entire bi-level optimization is
equivalent to the InfoNCE loss, with ϵ acting as the temperature in softmax. (Shi et al., 2023; 2024a)
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proposed modifying the inner optimization to define a new loss. In this paper, we follow these stud-
ies and use a bi-level optimization approach to design the loss for our BiQAP model, where the
outer optimization adopts the original QAP objective and the inner optimization uses the learned
entropic-regularized QAP.

3 METHODOLOGY

3.1 OVERVIEW: UNSUPERVISED LEARNING OF QAP WITH BI-LEVEL OPTIMIZATION

Solving the QAP problem has always been a challenge, especially for large instances. It is difficult
to obtain accurate solutions within a limited time due to the tendency of most algorithms to get
stuck in local optima. Traditional heuristic algorithms (Held & Karp, 1970; Riesen et al., 2007) are
mostly based on search methods, resulting in high time complexity, especially when dealing with
large-scale instances. Apart from search-based algorithms, the current trend leans towards GPU-
friendly learning-based algorithms based on neural networks (Wang et al., 2021a) or matrix iterative
algorithms (Kushinsky et al., 2019). These algorithms typically learn probability matching matri-
ces and obtain solutions through Hungarian post-processing (Kuhn, 1955). While these algorithms
may not match the precision of the former (i.e., search-based algorithms), they excel in batch com-
putations, offering a time advantage. In this paper, following the trend of the latter type of work
(Wang et al., 2021a), a new GPU-friendly QAP solver is proposed for solving KBQAP, which com-
bines the strengths of neural networks and matrix iterative algorithms. It has already shown strong
competitiveness over both heuristic and learning-based algorithms.

Diverging from previous works, to solve the QAP problem as given in Eq. 2, we introduce a new
concept that transforms the old problem into a new one less affected by local optima, allowing us to
obtain the solution to the original problem by solving the equivalent new problem. Specifically, we
propose BiQAP into the form of bi-level optimization:

min
θ

−tr
(
(Xθ)TF1X

θF2

)
− tr(KT

pX
θ)

s.t. Xθ =arg min
X1n2

=1n1
,XT1n1

≤1n2

−tr(XTFθ
1XFθ

2)− tr
(
(Kθ

p)
T
X
)
− ϵH(X)

(4)

where H(X) = −⟨X, logX− 1n1×n2⟩ is the entropic regularization with regularization coefficient
ϵ and (Fθ

1,F
θ
2,K

θ
p) = fθ(F1,F2,Kp) denotes the new QAP instance learned by neural network fθ.

In the above bi-level optimization, we transform the original QAP into a new entropy-regularized
QAP using the neural network fθ, and obtain the solution Xθ through a matrix iterative algorithm.
The neural network parameters θ are then optimized to minimize the original problem. One can
understand our QAP learning framework in Eq. 4 based on Eq. 3. Specifically, in the inner opti-
mization, we first input the original QAP parameters F1,F2, and Kp into the neural network fθ to
obtain a new entropic regularized QAP with parameters Fθ

1,F
θ
2, and Kθ

p. We then apply the ma-
trix iterative algorithm proposed in (Peyré et al., 2016) as a differentiable solver to solve the new
entropic regularized QAP and obtain the solution Xθ. Note that the differentiable solver acts as an
activation layer similar to softmax or sinkhorn, allowing gradient backpropagation. Finally, given
the calculated solution Xθ, we minimize the negative objective of the original QAP, which serves as
the loss function. The details are discussed in the next subsection.

3.2 UNSUPERVISED LEARNING FOR QUADRATIC ASSIGNMENT PROBLEMS

FormulaNet: Embedding the QAP Formula to Neural Networks. The overall framework is il-
lustrated in Fig. 2 and the algorithm is shown in Alg. 1. For the FormulaNet, various structures can
be employed to transform the original KBQAP instance into a new one, as long as they meet the
following criteria: 1) They can accept matrices of arbitrary shapes as input; 2) The output matrix
retains the same shape as the input. In our model, we utilize the Mamba architecture (Gu & Dao,
2023) as the FormulaNet, a structure that has gained recent attention (Zhu et al., 2024). Its key ad-
vantage of linear scaling with sequence length allows for improvements in efficiency while meeting
our requirements. In contrast, Attention-based models such as the Vision Transformer (ViT) (Doso-
vitskiy, 2020) have quadratic complexity, which leads to excessive computational and memory costs
when handling large-scale problems. Moreover, we do not adopt Graph Neural Networks (GNNs),
which are widely used in combinatorial optimization research (Wang et al., 2020a; 2021c), as GNNs
are better suited for structured inputs like graphs, whereas our input matrices lack clear structural

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: Structure of our proposed BiQAP. On the left, it learns an new QAP instance through the
learnable FormulaNet. On the right, the differentiable QAP solver leverages the Gromov-Sinkhorn
algorithm to approximately solve the new instance. We use an unsupervised loss to perform back-
propagation during the training stage.

patterns. Other architectures, such as Linear Attention (Wang et al., 2020b), can also serve as the
FormulaNet for BiQAP. In this paper, the use of Mamba is an initial choice, leaving room for future
exploration and refinement in the design of the FormulaNet. Additional details of the structure are
discussed in Appendix E. In BiQAP, each of the original KBQAP instances, F1, F2, and Kp, is
processed through this FormulaNet, resulting in new instance with its key matrices Fθ

1, Fθ
2, and Kθ

p.

Differentiable QAP Approximate Solver: Gromov-Sinkhorn. Now, given a new QAP instance
with parameters Fθ

1, Fθ
2, and Kθ

p, we need to solve the problem. However, using a heuristic al-
gorithm like A* search (Riesen et al., 2007) inhibits gradient backpropagation, making end-to-
end learning impossible and requiring methods like reinforcement learning to update parameters
θ, which is not conducive to learning a more generalized neural QAP solver. Even if backpropa-
gation were feasible, traditional heuristic algorithms tend to be time-inefficient, resulting in slow
model training. In this paper, we propose an efficient QAP solver as a large activation layer to en-
hance model training. We relax the original 0-1 constraints and modify the optimization equation
using entropy regularization:

min
X

−tr(XTFθ
1XFθ

2)− tr(Kθ
p

T
X)− ϵH(X), s.t. X1n2

= 1n1
,XT1n1

≤ 1n2
(5)

which is exactly the inner optimization in Eq. 4. To solve the above optimization, one can use
iteratively Sinkhorn algorithm to progressively compute a stationary point, as specified by:

X(l) = argmin
X

〈
C(l),X

〉
− ϵH(X), s.t. X1n2 = 1n1 ,X

T1n1 ≤ 1n2 ,

where C(l) = −Fθ
1X

(l−1)Fθ
2 − Fθ

1

T
X(l−1)Fθ

2

T −Kθ
p.

(6)

Algorithm 1: Training and Inference of BiQAP
1 Input: Original problem instance inputs F1, F2, Kp

2 Fθ
1,F

θ
2,K

θ
p = FormulaNet(F1,F2,Kp);

3 X(0) ∼ Gumbeln1×n2; // initialization
4 for l = 1, 2, . . . , L do
5 construct C(l) by Eq. 6; // stationary point
6 P = exp

(
−norm(C(l))/ϵ

)
;

7 repeat
8 P = diag

(
(P1n)

−1
)
P;

9 P = Pdiag
(
min

(
(PT1m)−1,1n

))
;

10 until convergence;
11 X(l) = P;
12 if training then
13 return X(L); // differentiable for calculating loss
14 else
15 return Hungarian(X(L));

By initializing X(0), we can compute
C(1), and then optimizing the entropic
regularized OT (Sinkhorn, 1964) (i.e.,
running the Sinkhorn algorithm) to ob-
tain X(1). Similarly, we iteratively com-
pute C(l) and X(l) alternately until con-
vergence. A detailed proof of Eq. 6
is provided in Appendix D. Next, we
will discuss how to make a new QAP
instance approximate the original one
and explore how our method helps the
obtained results escape local optima,
which is a challenge faced by all non-
convex or combinatorial optimizations.

Gumbel Sampling-based Unsuper-
vised Loss. Like original QAP instance,
the obtained new QAP instance in-
evitably involves the issue of local
optima dependence on initialization.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

How to reduce local optima and make the obtained solution approximate the original QAP
instance is the central challenge in our study. Given that the Gromov-Sinkhorn algorithm relies
on initialization, we perform multiple samplings of initializations, aiming for each sampled result
to approximate the optimal solution of the original problem. Consequently, during the inference
process, when presented with a testing QAP instance, we no longer need to seek a better initial-
ization or employ momentum to escape local optima. Due to the inherent difficulty of finding the
optimal solution for QAP itself, especially when dealing with large scales, we focus on optimizing
the objective of the original QAP instance:

L = Ez∼PG
− tr(XT

zF1XzF2)− tr(KT
pXz), (7)

where PG is the Gumbel distribution and Xz is the solution iterated by Eq. 6 given the Gumbel
sample z as initialization of X(0).

Inference Method. Then, given a new QAP formula, we can perform inference using the trained
neural networks (i.e., FormulaNet) and the QAP approximate Solver to obtain the doubly stochastic
matrix. Across various experimental tasks, the quality of its solutions is very high, and we can obtain
the final exact integer solution through a simple application of the Hungarian algorithm.

3.3 FURTHER DISCUSSIONS

Comparisons to NGM (Wang et al., 2021a) in our view. To the best of our knowledge,
NGM (Wang et al., 2021a) is the first work to utilize neural networks to solve QAP. However,
based on our experiments, NGM relies heavily on numerous Gumbel repeated samplings, and if
the number of samplings is reduced, its performance deteriorates significantly, which differs from
our BiQAP as shown in the experiments in Fig. 3. From the perspective of our optimization prob-
lem transformation, considering the implicit optimization problem in the Sinkhorn algorithm, NGM
actually transforms QAP into an entropic optimal transport problem, which is exactly a convex prob-
lem and may be not complex enough to fit a more complicated QAP. Thus, we cannot solely consider
the output of the constraints, but also consider their implicit optimization problem.

Difference to Other Graph-based Models. Here we want to emphasize the difference between
our work and other graph-based works in that we are no longer studying a specific task, e.g., graph
matching (Wang et al., 2020a), but rather aim to learn the mapping between different optimization
problems and their solutions. Thus, given different optimization formula, we can quickly obtain
corresponding solutions through neural networks instead of complex optimization algorithms, e.g.,
simplex method (Dantzig, 1951), interior point method (Karmarkar, 1984), etc. The success of
unsupervised learning in this work gives us confidence that we can extend our research to other
convex or non-convex problems, and we believe this will have a significant impact on combinatorial
optimization and operations research.

Further Discussion on Differentiable Approximate Solver. In fact, the differentiable approxi-
mate solver as a layer is a crucial component in our model that can optimize the objective function
of the new entropic QAP while satisfying constraints (doubly stochastic matrix). When we consider
solving other optimization problems, e.g., linear, quadratic, or other non-convex optimization prob-
lems, how to select a new transformed optimization problem to fit as many original optimization
problems as possible and solve them through matrix iteration is an area that needs to be explored
in the future. Besides, combining with traditional algorithms such as interior point methods may
further improve the prediction results.

4 EXPERIMENT

Experiments are conducted on a Linux workstation using an NVIDIA GeForce RTX 3090 GPU and
an Intel(R) Core(TM) i9-10920X CPU @ 3.50GHz, with programs implemented in PyTorch. We
evaluate Quadratic Assignment Problems (QAP) in five different tasks as case studies, along with
an ablation study, sampling experiments, and generalization tests.

4.1 CASE STUDY I: GRAPH MATCHING DATASET

Protocol setting. In this experiment, we follow (Wang et al., 2019; Ye et al., 2023) to generate ran-
dom point sets in a 2D plane to compare with other competitive methods. We first create 10K ground
truth points with coordinates sampled from U(0, 1) × U(0, 1), where U is a uniform distribution,

6
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and perturb them using random scaling from U(1 − δs, 1 + δs) and additive noise from Gaussian
N(0, σ2

n). These ground truth points form a target graph, while the distorted points, after randomly
permuting node order, form a reference graph. The original graph matching serves as the ground
truth solution, though it is often sub-optimal in the KBQAP formulation due to the randomness in-
troduced by the perturbations. We sample two configurations, GM-I and GM-II, with 2K graphs
for training and 0.2K for testing, using (δs, σn) values of (0.05, 0.02) and (0.3, 0.2), respectively.
Each graph contains 128 nodes. For the KBQAP formulation, similarity matrices are computed as
Ti,j = exp (−L2(c1, c2)), where c1 and c2 are node coordinates from the target or reference graph.
The matrix T can represent F1, F2, or Kp, where F1 and F2 are the intra-similarity matrices for
the target and reference graphs, and Kp is the inter-similarity matrix between the two graphs.

Baseline. Existing methods addressing the KBQAP problem (Nowak et al., 2018; Wang et al., 2019;
Yu et al., 2019) do not directly solve the KBQAP problem with three given matrices. Instead, they
process the input images or graphs from a graph matching perspective. Here we compare with an
efficient learning-free KBQAP method, ∆-Search, which employs the concept of 2OPT (Lin &
Kernighan, 1973). Additionally, since KBQAP can be transformed into LLQAP without consid-
ering computational complexity, we also compare with the LLQAP methods1: 1) SM (Leordeanu
& Hebert, 2005) considers graph matching as finding graph clusters using spectral numerical tech-
niques; 2) RRWM (Cho et al., 2010) adopts random-walk to match nodes in a graph pair with
reweighted jumps based on similarity; 3) IPFP (Leordeanu et al., 2009) iteratively explores the op-
timal matching based on integer projection; 4) Astar (Riesen et al., 2007) finds the optimal matching
between two graphs using priority search; 5) NGM (Wang et al., 2021a) uses graph convolution and
Sinkhorn embedding network for learning the graph matching.

Training Setup. We train the models with a batch size of 16. The number of outer and inner
iterations is set to 10 and 15 during training, and 20 and 25 during testing. For the Gumbel noise
sampling in the QAP solver, we set the sampling count to 16 during training to improve efficiency,
and fix it to 128 during testing. During training, we directly compute the unsupervised loss from the
model output for backpropagation. During testing, to convert the output float similarity matrix into
a strict 0-1 integer matching matrix, we use the Hungarian algorithm to obtain a solution that strictly
satisfies the constraints.

Table 1: Graph matching test with varying scaling level δs and noise
level σn. GT represents the objective given by the original ground truth
matching, which is sub-optimal due to perturbations.

ALGORITHM
GM-I (δs = 0.05, σn = 0.02) GM-II (δs = 0.3, σn = 0.2)
OBJ↑ GAP↓ TIME(S) OBJ↑ GAP↓ TIME(S)

GT 9216.74 0.00 - 8117.00 0.00 -
SM 9351.46 -134.72 119.1 8277.45 -160.45 124.1
RRWM 9275.63 -58.89 1024.1 8147.77 -30.78 1106.9
IPFP 9258.30 -41.56 235.5 8171.04 -54.04 268.6
ASTAR 9194.52 22.22 92355.7 8127.62 -10.62 87693.4
NGM 9219.79 -3.05 15.2 8145.27 -28.27 26.8
∆-SEARCH 9670.62 -453.88 82.7 8692.75 -575.75 84.4
BIQAP 9708.35 -491.61 13.7 8724.73 -607.73 11.4

Evaluation. We mainly use three metrics for
evaluation. Let the model’s output objective be
d and the objective provided in the dataset (op-
timal or sub-optimal) be d∗. 1) obj = d means
the average objective score d; 2) gap = d∗ − d
represents the average gap between d∗ and d;
3) Time(sec/100it) is the average time (in sec-
onds) taken to solve 100 instances.

Figure 3: Sampling tests on GM-I dataset. The objective values are re-
ported. Ours-k indicates sampling with Gumbel noise of size k, where
Ours-128 represents the sampling size we used.

Results. Performance across different meth-
ods on graph matching datasets is presented
in Table 1. Almost all methods achieve ob-
jectives better than the ground truth, due to
the scaling and noise perturbations added dur-
ing dataset construction. Compared to other
methods, BiQAP significantly outperforms in
both objective quality and time efficiency. This
demonstrates the effectiveness and efficiency of
BiQAP in solving QAP problems.

Sampling Tests. To evaluate the solution quality of BiQAP, we conduct sampling tests to analyze
the impact of different Gumbel sizes on performance. The visual results on GM-I dataset are shown
in Fig. 3. Even with a Gumbel size of 1, BiQAP achieves an objective higher than all other methods.
As the Gumbel size increases, the objective improves slightly, but the gains are minimal. This shows
that the high quality of the solutions is primarily due to the effectiveness of BiQAP’s design, rather
than an increased sampling size. Additionally, experiments are conducted on other datasets, and the
detailed results are provided in Appendix C.

1Methods 1 ∼ 4 are implemented by using Pygmtools (Wang et al., 2024).
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4.2 CASE STUDY II: LARGE RANDOM DATASET

Experiment Setting. To better evaluate the capability of BiQAP, we construct an extremely large
random dataset, generated by sampling from a uniform distribution U(−2, 2) to create the matrices
F1, F2, and Kp. We sample three configurations: L500, L750 and L1000, where L500 indicates
that the matrix sizes are n1 = n2 = 500. The problem sizes in this dataset are significantly larger
than those in typical datasets, where problem sizes generally lower than 150. Methods based on
LLQAP require computing the affinity matrix K. However, when the matrix size n (n = n1 = n2)
is 500, 750 and 1000, respectively, the memory required for K amounts to 232.8GB, 1178.7GB
and 3725.3GB. This makes LLQAP methods impractical for such large-scale QAP problems due to
their excessive memory requirements. Thus, we only compare our model with the KBQAP method
∆-Search. The evaluation metrics are the same as Sec. 4.1.

Table 2: Performance comparison on large random datasets.

ALGORITHM
L500 L750 L1000

OBJ↑ TIME(S) OBJ↑ TIME(S) OBJ↑ TIME(S)

∆-SEARCH 29783.6 981 43120.7 2331 54307.7 4902
BIQAP 33167.1 210 60785.4 462 91613.7 850

Results. From Table 2, our BiQAP sur-
passes ∆-Search in both objective score
and inference time. As the problem size
of the dataset increases, the gap between
BiQAP and ∆-Search widens, indicating
that our BiQAP exhibits stronger problem-solving capabilities for larger datasets. Furthermore,
BiQAP is significantly more time-efficient than ∆-Search when handling large-scale problems,
which is attributed to the efficient design of FormulaNet and our differentiable QAP solver.

4.3 CASE STUDY III: GRAPH EDIT DISTANCE

Background and Preliminaries. Computing the graph edit distance (GED) (Abu-Aisheh et al.,
2015) is a widely used similarity measure for graphs and is known to be NP-hard. GED is defined
as the minimum number of edit operations — adding/removing nodes/edges and change node labels
— needed to transform one graph G1 into another graph G2. The GED problem can be reformulated
as a KBQAP problem as shown in Eq. 8, which involves finding a matching matrix that represents
the node alignment between the two graphs (the edit path). Detailed explanation and proof of this
transformation are provided in Appendix F. Once the edit path is obtained, the GED can be easily
computed. We use three real GED datasets for evaluation: AIDS, Linux (both with graphs of up to 10
nodes), and IMDB (with graphs of up to 89 nodes). The AIDS dataset contains various node labels,
while the other two datasets lack node labels. Before evaluation, we preprocess these datasets to
convert them into the KBQAP format and verify the correctness of Eq. 8 based on the ground truth.

− GED(G1, G2) = max
X

J(X), J(X) = tr(XTF1XF2) + tr(KT
pX)− n2/4,

s.t. X ∈ {0, 1}n×n
,X1n = 1n,X

T1n = 1n, n = max(n1, n2) = n2

(8)

Recent efforts in deep graph similarity learning (Bai et al., 2019; Bai & Zhao, 2021; Bai et al.,
2020) use graph neural networks (Kipf & Welling, 2016; Scarselli et al., 2008) to directly regress
graph similarity scores without explicitly incorporating the intrinsic combinatorial nature of GED,
and thus fail to recover the edit path. As a result, the values predicted by these methods are often
infeasible and of limited practical use. In contrast, the graph edit path (the optimization variable X)
is often of central interest in many applications (Dijkman et al., 2009; Fürstenau & Lapata, 2009;
Chen et al., 2020), and most GED works (Neuhaus et al., 2006; Abu-Aisheh et al., 2015; Yang &
Zou, 2021; Wang et al., 2021b; Piao et al., 2023) still focus on finding the edit path itself. Therefore,
we aim to solve the edit path and compare our methods with other edit path-based approaches.

Baselines. In addition to the QAP baselines mentioned in Section 4.1, we compare our methods with
approaches designed for finding the graph edit path: 1) BeamSearch (Neuhaus et al., 2006), an A*-
beam search algorithm for GED; 2) DF-GED (Abu-Aisheh et al., 2015), an exact depth-first search
method (limited to 200 seconds per instance); 3) Noah (Yang & Zou, 2021), an A*-beam search
supervised by a GNN; 4) Greedy, using optimized settings for the Hungarian algorithm (Kuhn,
1955) and VJ algorithm (Jonker & Volgenant, 1988); 5) GEDGNN (Piao et al., 2023), the state-of-
the-art method for graph edit path search using a k-best framework, also supervised by a GNN.

Evaluations. As in the previous experiments, we use the gap and Time(sec/100it) as evaluation
metrics. Additionally, since the GED dataset includes ground truth, we introduce acc to represent
the fraction of cases where d ≥ d∗. In other words, acc measures the proportion of instances where
the objective score exceeds or matches the ground truth score provided by the dataset.

8
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Table 3: Performance on graph edit distance datasets.

ALGORITHM
AIDS LINUX IMDB

GAP↓ ACC(%)↑ TIME(S) GAP↓ ACC(%)↑ TIME(S) GAP↓ ACC(%)↑ TIME(S)

SM 10.492 1.16 0.87 5.778 5.28 0.45 36.447 49.20 5.11
RRWM 10.677 0.96 20.55 5.162 14.40 13.75 36.410 48.73 18.77
IPFP 9.962 2.80 7.72 5.984 6.48 2.79 36.175 49.92 6.24
ASTAR 9.744 2.65 208.01 4.111 24.92 36.72 35.751 49.47 18.44
NGM 2.859 13.27 42.15 1.383 45.58 25.37 22.047 64.60 28.62
∆-SEARCH 2.021 25.89 0.88 0.554 75.14 0.42 5.887 75.27 1.08

BEAMSEARCH 2.714 16.21 4.66 1.520 45.26 2.94 9.030 68.70 62.92
DF-GED 1.796 31.64 130.59 0.048 97.93 37.55 30.826 61.04 285.51
GREEDY 8.524 1.79 1.08 4.677 10.03 0.90 13.917 62.44 2.18
NOAH 3.078 6.34 168.39 1.747 8.71 77.24 10.172 52.29 5409.66
GEDGNN 1.515 42.60 73.34 0.224 91.18 24.62 3.133 81.35 132.54

BIQAP 0.053 94.99 4.62 0.055 97.92 4.21 0.228 96.94 9.28

Figure 4: Normalized objective score (lower is better) of our proposed method compared to other QAP solvers. Failed instances are plotted at
the top of the y-axis (greater than 4.0). The instances are first divided based on whether BiQAP outperforms Sinkhorn-JA (Kushinsky et al.,
2019), then sorted by the normalized score of BiQAP. NGM-G5k indicates the use of 5k Gumbel noise. BiQAP outperforms Sinkhorn-JA on
102 out of 134 instances and is able to solve all 134 instances, whereas both NGM-G5k and Sinkhorn-JA fail on some instances.

Results. The experimental results on Graph Edit Distance datasets are presented in Table 3. As
shown, QAP-based methods generally perform slightly worse than methods specifically designed for
GED. For example, on the AIDS dataset, the gap for all QAP-based methods is above 2.0. This may
be due to the increased difficulty when transforming the GED problem into the KBQAP form. How-
ever, despite being a KBQAP-based method, BiQAP performs exceptionally well, with gaps below
0.3 and accuracy above 94% on all three datasets, while also being highly time-efficient. BiQAP
not only outperforms all QAP-based methods but also significantly surpasses methods specifically
designed for GED. This shows the powerful capability of BiQAP in solving KBQAP problems.

Table 4: Generalization tests on graph edit distance dataset.
Our model is trained on three datasets, as depicted in the left-
most column. For each training setup, we evaluate our model
across all testing datasets listed in the top row.

TRAIN
TEST AIDS LINUX IMDB

GAP↓ ACC(%)↑ GAP↓ ACC(%)↑ GAP↓ ACC(%)↑
AIDS 0.053 94.99 0.008 99.62 2.001 93.08
LINUX 0.201 84.15 0.055 97.92 0.294 98.54
IMDB 0.131 89.69 0.081 96.04 0.228 96.94

Model Generalization. From Fig. 4, we
can find that our model performs very
well on the corresponding test set of its
own training set. Furthermore, it gen-
eralizes effectively to unseen datasets,
even those with varying problem sizes
and distinct data characteristics. No-
tably, the performance of the model
trained on the AIDS dataset and tested on Linux exceeds that of the model trained and tested on
Linux itself (both with problem sizes smaller than 10). This may be due to the higher quality of the
AIDS dataset and its inclusion of node labels, which likely enhance the model’s ability to generalize
across datasets with similar sizes but different characteristics. However, the performance drops sig-
nificantly when trained on AIDS and tested on IMDB, due to the problem size of the IMDB dataset
is much larger (up to 89), and the model trained on AIDS is unable to generalize well across datasets
with distinct problem sizes. In contrast, models trained on the Linux and IMDB datasets show a
more balanced generalization ability across both problem size and dataset characteristics.

4.4 CASE STUDY IV: QAPLIB

Experiment Setting. QAPLIB (Burkard et al., 1997) consists of 134 real-world QAP instances from
15 categories, including problems like hospital facility layout planning (Hahn & Krarup, 2001).
These problems are formulated as KBQAP (Eq. 2), but with Kp being a zero matrix. Since the
objective in QAPLIB is minimization, we negate the F1 matrix to align with our KBQAP formula-
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Table 5: Best-performing occurrence count across different categories.

CATEGORY BUR CHR ELS ESC HAD KRA LIPA NUG ROU SCR SKO STE TAI THO WIL TOTAL

#INSTANCES 8 14 1 19 5 3 16 15 3 3 13 3 26 3 2 134

SM 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
RRWM 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2
SINKHORN-JA 0 10 1 0 0 0 15 1 0 0 0 0 3 0 1 31
NGM-G5K 0 0 0 3 2 0 0 2 0 0 0 0 1 0 0 8
BIQAP 8 4 0 13 3 3 1 12 3 3 13 3 22 3 1 92

tion. Due to structural similarities in each category, we train one network per category. Our method
is fairly compared with RRWM, SM, NGM, and Sinkhorn-JA (Kushinsky et al., 2019), a heuristic
method designed for QAPLIB based on the QAP formulation. NGM reports results using 5k Gum-
bel noise. Given the large variation across instances in QAPLIB, we report the normalized score
for each instance, which is computed using the upper bound provided by the dataset, and further
normalized by the baseline solver, spectral matching (SM) (Leordeanu & Hebert, 2005):

norm score =
solved score− upper bound

SM score− upper bound
(9)

Figure 5: Inference time(sec) vs problem size n, with a
base-10 log-scale y-axis. Each point represents the time
to solve an instance.

Results. Detailed scores and timing results
are available in Appendix H. The visualiza-
tion for each instance is shown in Fig. 4. We
observe that our method outperforms learning-
free methods SM, RRWM, and the learning-
based method NGM, while being comparable
to and even superior to Sinkhorn-JA. It is im-
portant to note that due to the high complexity
of LLQAP, NGM fails to solve the tai256c
instance (requiring 275GB of GPU memory for
intermediate computations). Additionally, for
problem instances not reported in (Kushinsky
et al., 2019), we assume Sinkhorn-JA fails to
find any feasible solution, as the original pa-
per provides no explanation for the missing in-
stances. Compared to NGM, with our Gumbel
size set to 128 versus NGM-G5k’s Gumbel size
of 5k, our method outperforms it on the majority of instances and successfully solves tai256c,
which NGM fails to solve. Against Sinkhorn-JA, BiQAP outperforms it on 102 out of 134 instances.

Further evaluation is presented in Table 5 and Fig. 5. Our BiQAP finds the best solution in 92 out
of 134 instances, while the learning-based NGM-G5k and learning-free Sinkhorn-JA outperform
on 8 and 31 instances, respectively. This indicates that BiQAP can solve a wider range of problems
compared to traditional solvers. More importantly, it performs inference much faster than both NGM
and Sinkhorn-JA, achieving strong results in both solution quality and computational efficiency.

4.5 ADDITIONAL EXPERIMENTS

We conduct additional important experiments, detailed in the appendix. The case study on the
Traveling Salesman Problem (TSP) (Appendix A) shows that our BiQAP is competitive with other
QAP-based methods. The ablation study (Appendix B) strongly highlights the effectiveness of our
FormulaNet and Gromov-Sinkhorn QAP solver, both of which are essential components. The sam-
pling tests (Appendix C) indicates that the high quality of the solutions primarily results from the
effectiveness of BiQAP’s design, rather than the increased sampling size.

5 CONCLUSION

We have presented a time-efficient bi-level framework, BiQAP, to solve the Koopmans-Beckmann
QAP problem. The outer level optimize the original objective, while the inner minimization lever-
ages FormulaNet to learn a new QAP and solve it by the differentiable Gromov-Sinkhorn QAP
solver capable of producing high-quality solutions. To the best of our knowledge, this is the first
end-to-end QAP neural framework that does not heavily rely on random sampling techniques or
complex search algorithms. Extensive experimental results across five tasks show its superiority in
both effectiveness and efficiency compared to learning-free and learning-based methods.
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A CASE STUDY V: TRAVELING SALESMAN PROBLEM

Background and Preliminary. The Traveling Salesman Problem (TSP) is a well-known problem
in combinatorial optimization: given a set of cities and the distances between each pair of cities, the
objective is to find the shortest possible route that visits each city exactly once and return the first
city. TSP can be formulated as a permutation-based QAP (Goh et al., 2022), but this formulation is
not consistent with KBQAP. We adopt a new formulation to represent TSP as a KBQAP. Specifically,
the variable Xv,j is an indicator of whether city v is the j-th city to be visited. Here, F1 ∈ Rn×n

represents an indicator matrix, F2 ∈ Rn×n is the distance matrix, and Kp is a zero matrix, where
n = n1 = n2 is the number of cities. The construction of F1 is shown in Eq. 10. F2;u,v denotes the
distance between city u and city v. Detailed proof of this formulation is provided in Appendix G.

F1;i,j =

{
−0.5, if |i− j| = 1 or |i− j| = n− 1
0, otherwise. (10)

Dataset and Baselines. In this experiment, we focus on 2D Euclidean TSP. For each instance, we
generate 50 points from U(0, 1) × U(0, 1) (TSP-50), where U denotes a uniform distribution. We
use the Concorde TSP solver (David et al., 2006) to obtain ground-truth optimal solutions. A total
of 128K instances are sampled for training, and 1.28K instances for testing. The evaluation metrics
include objective (obj), gap, and Time (sec/100it), where gap is the difference between the optimal
objective and the obtained objective. Similar to previous experiments, we compare our method with
QAP-based methods such as SM, RRWM, IPFP, Astar, NGM, and ∆-Search.

Notably, for many tasks, obtaining exact ground-truth solutions can be extremely difficult, or even
infeasible, such as the Graph Matching in Sec. 4.1. Therefore, we employ an unsupervised loss,
which does not rely on ground-truth data, making our method widely applicable. However, since
Concorde provides optimal solutions for TSP-50, we use these solutions as ground truth. To further
evaluate the effectiveness of our framework, we utilize a variant, “BiQAP-s,” where we replace the
unsupervised loss with the supervised Binary Cross-Entropy (BCE) loss. This allows us to assess
the performance of our framework in a supervised setting as well.

Table 6: Results on TSP-50. “BIQAP-S” refers
to BiQAP trained by supervised loss.

ALGORITHM OBJ↑ GAP↓ TIME(S)

CONCORDE -5.69 0.00 5.13

SM -26.06 20.38 7730.5
RRWM -26.03 20.34 8543.6
IPFP -26.03 20.34 105.5
ASTAR -26.05 20.36 22274.6
NGM -21.02 15.34 36.0
∆-SEARCH -9.01 3.32 27.2
BIQAP-S -7.38 1.70 10.4
BIQAP -8.53 2.84 11.5

Results. Performance on the TSP-50 is shown in
Table 6. Compared to the Concorde solver, which
is specifically designed for solving TSP, the gap for
QAP-based methods is relatively large. This is be-
cause the KBQAP formulation of the TSP problem
is more complex. During the transformation process,
some crucial information may be obscured. This may
increases the likelihood of local optima, making the
problem more difficult to solve. In other words, TSP
may be easy for classical heuristics designed for rout-
ing problems but becomes more challenging when
translated into the QAP formulation. It is worth not-
ing that SM, RRWM, IPFP, and Astar exhibit low and
similar objective values, likely because these QAP-based methods struggle to capture the problem
characteristics in the KBQAP format for this dataset. However, despite this complexity, both BiQAP
and BiQAP-s outperform other QAP-based methods in terms of both effectiveness and efficiency.
Notably, BiQAP-s delivers superior performance, indicating that for the TSP task, using supervised
data often leads to better results.

B ABLATION STUDY

We validate the effectiveness of FormulaNet and our QAP solver in Table 7 on both graph match-
ing datasets and large random datasets. We compare several settings of BiQAP with ∆-Search,
exploring FormulaNet’s ability to learn a new instance and the impact of the number of outer/inner
iterations of our QAP solver on performance.

From the results of “BiQAP w/o FN,” it is evident that removing FormulaNet significantly degrades
overall performance, with the objective score notably lower than both ∆-Search and other BiQAP
settings that retain FormulaNet, especially on the L500, L750 and L1000 datasets. This suggests
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Table 7: Ablation study on graph matching datasets (GM-I and GM-II) and large random datasets (L500, L750
and L1000). “BiQAP w/o FN” denotes our method without FormulaNet, where our QAP solver takes the
original instance as input. “BiQAP-10/15” indicates that the number of outer and inner iterations of our QAP
solver during the inference stage is 10 and 15, respectively. Similarly, “BiQAP-20/25” and “BiQAP-30/35”
follow the same notation, with “BiQAP-20/25” being the setting used in our main experiments.

ALGORITHM
GM-I GM-II L500 L750 L1000

OBJ↑ TIME(S) OBJ↑ TIME(S) OBJ↑ TIME(S) OBJ↑ TIME(S) OBJ↑ TIME(S)

∆-SEARCH 9670.6 82.7 8692.8 84.4 29783.6 981.0 43120.7 2331.0 54307.7 4902.2
BIQAP W/O FN 9396.4 12.1 8357.1 10.9 3048.8 182.6 4375.3 372.4 5784.4 781.1
BIQAP-10/15 9708.5 9.3 8724.5 11.2 31429.6 183.9 58745.9 394.2 89809.0 763.9
BIQAP-20/25(OURS) 9708.4 13.7 8724.7 11.4 33167.1 210.0 60785.4 462.4 91613.7 850.2
BIQAP-30/35 9707.7 18.0 8724.8 20.7 32068.3 282.6 57547.3 625.6 86379.4 1204.2

that FormulaNet effectively learns a simpler new instance for the QAP solver, enabling the model to
achieve better results.

Regarding the number of outer/inner iterations of the QAP solver, “BiQAP-10/15” performs best on
the GM-I dataset and “BiQAP-30/35” yields the best results on the GM-II dataset. However, the
differences between these iteration settings are not substantial, and all configurations outperform
∆-Search. This indicates that, for graph matching datasets, the number of outer/inner iterations
has a limited impact on model performance within a reasonable range, highlighting the robustness
of our method to hyperparameter variations. On the L500, L750, and L1000 datasets, “BiQAP-
20/25” achieves the best performance, with other iteration settings performing slightly worse but
still outperforming ∆-Search.

C EXPERIMENTS ON SAMPLING SIZE

To better explore the effect of sampling size on model performance, we conduct the sample size
study on the GM-I dataset from Graph Matching, the AIDS dataset from GED, and the L500 dataset
from the Large Random Datasets. Furthermore, we compare the results with some baseline methods.
Table 8 shows the experimental results for these three datasets. From the experimental results,

Table 8: Sampling size tests on three datasets against prominent base-
lines. GEDGNN (Piao et al., 2023) is tailored for the AIDS dataset, while
NGM (Wang et al., 2021a) cannot handle large instances such as L500 due to
modeling constraints. “Ours-k” denotes our model with a sample size of k.

METHOD GM-I OBJ↑ L500 OBJ↑ AIDS GAP↓ AIDS ACC(%)↑
GEDGNN - - 1.515 42.6
NGM 9219.79 - 2.859 13.27
∆-SEARCH 9670.62 29783.6 2.021 25.89

OURS-1 9685.68 29036.4 1.214 46.76
OURS-2 9693.83 29945.1 0.897 58.14
OURS-4 9700.50 30781.7 0.489 73.39
OURS-8 9704.76 31261.0 0.275 80.91
OURS-16 9706.79 31826.5 0.137 87.84
OURS-32 9707.54 32349.2 0.087 92.17
OURS-64 9708.14 32848.6 0.065 93.84
OURS-128 9708.35 33167.1 0.053 94.99

we observe that as the sample size increases, the model’s performance improves. However, when
the sample size reaches around 64 to 128, the improvement becomes less significant, indicating
diminishing returns.

Moreover, compared to the AIDS dataset, the performance improvements from increasing the sam-
ple size are less pronounced on the GM-I and L500 datasets. We believe that this is because the
instances in the GED dataset are much smaller than those in the Graph Matching and Large Random
datasets. As a result, increasing the sample size allows for better exploration of the solution space,
making it easier to find the optimal solution. For larger datasets, although increasing the sample
size explores a larger portion of the solution space, the search space is so vast that the performance
gains are not as noticeable. It is also worth noting that even with a sample size of 1, our method still
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shows significant performance advantages over the baselines across all three datasets. Only on the
L500 dataset does the objective with sample size 1 slightly lag behind ∆-Search, but as the sample
size increases, our model surpasses it.

In conclusion, the increase in the number of samples does have an impact on performance, which
depends on the characteristics of the dataset. But even with a sample size of 1, our model consistently
outperforms other baselines. This indicates that the high quality of the solutions primarily results
from the effectiveness of BiQAP’s design, rather than the increased sampling size.

D DETAILED PROOF OF EQ. 6

Here we give a simple proof of Eq. 6. We use Lagrangian multipliers:

L = −tr(XTF1XF2)− tr(KT
pX)− ϵH(X)− ⟨α,X1− 1⟩ −

〈
β,XT1− 1

〉
(11)

Next, we need to find the stationary points of the Lagrangian multiplier. We take first-order deriva-
tives to L:

∂L
∂X

= −∂tr(XTF1XF2)

∂X
−

∂tr(KT
pX)

∂X
− ϵ

∂H(X)

∂X
− α− β

= −F1XF2 − FT
1XFT

2 −Kp + ϵ logX− α− β = 0

(12)

We further simplify the equation of Lagrangian into the following term:

X = diag(eα/ϵ)e(F1XF2+FT
1XFT

2+Kp)/ϵdiag(eβ/ϵ) (13)

Therefore, we can directly interpret the problem as an optimal transport problem, with the cost
matrices computed using X. Through an iterative process, we calculate X as follows:

X = Sinkhorn(C, ϵ), where C = −F1XF2 − FT
1XFT

2 −Kp. (14)

E FORMULANET

The block design of the Mamba-based FormulaNet is illustrated in Fig. 6. Given an input matrix
M ∈ Rn1×n2 , we first flatten the matrix into a vector and use a projection layer to map this vector
into a d-dimensional space, resulting in a sequence of size n1n2 × d.

Figure 6: Architecture of our proposed Mamba-based FormulaNet. Various structures can be em-
ployed as FormulaNet, as long as they are capable of accepting arbitrary shapes as input, and the
matrix size of both the input and output is n1 × n2.

Then, we utilize a series of State Space Blocks. Within each State Space Block, to prevent training
instability, the input sequence passes through a layer normalization (LN) layer at the beginning
and the end of the block. Sometimes, using only one layer normalization yields better results,
depending on the characteristics of the dataset. In the middle, we employ a State Space Model
(SSM) based on the Mamba architecture to capture the long-term spatial dependencies. Since the
input sequence does not have a strict order, we feed it into the SSM in both forward and reverse
directions. The SSM follows the structure proposed in (Gu & Dao, 2023). After passing through
the final layer normalization, the outputs of the sequences from both directions are merged, and a
residual connection is applied to produce the output of the State Space Block.
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After processing through a series of State Space Blocks, the sequence is fed into a final projec-
tion layer, which maps the sequence back from the d-dimensional space to a 1-dimensional vector,
restoring the original matrix shape of n1 × n2. Finally, we add a residual connection to obtain the
output.

F KBQAP FORMULA OF GRAPH EDIT DISTANCE

F.1 DEFINITION AND EXPLANATION

Here is a brief explanation of Eq. 8. Consider two given graphs G1 and G2. Without loss of
generality, assume:

n1 = |G1|, n2 = |G2|, n1 ≤ n2, n = max(n1, n2) = n2. (15)

Let A1 ∈ Rn1×n1 and A2 ∈ Rn2×n2 denote the adjacency matrices of the two graphs, and L1 ∈
Zn1×d and L2 ∈ Zn2×d denote the node label matrices, where each row is a one-hot vector of
dimension d. We introduce a padding operation pad(A, n, k), which pads a matrix A (where A ∈
Rm1×m2 , m1 ≤ n, m2 ≤ n) to size n× n, filling the padded elements with a value k.

From adjacency matrices A1 and A2, we define F̂1 ∈ Rn1×n1 and F̂2 ∈ Rn2×n2 as follows:

F̂i,j =

{
−0.5, if Ai,j = 0 or i = j
0.5, otherwise. (16)

For the KBQAP formulation, we have:

F1 = pad(F̂1, n,−0.5) ∈ Rn×n, (17)

F2 = F̂2 ∈ Rn×n, (18)

Kp = pad(L1L
T
2 − 1n1×n2 , n2,−1) ∈ Rn×n. (19)

Given that GED(G1, G2) represents the graph edit distance between G1 and G2, the KBQAP for-
mulation is:

− GED(G1, G2) = max
X

J(X), J(X) = tr(XTF1XF2) + tr(KT
pX)− n2

4
,

s.t. X ∈ {0, 1}n×n
, X1n = 1n, XT1n = 1n, n = max(n1, n2) = n2.

(20)

F.2 PROOF

In our KBQAP formulation for the graph edit distance problem (Eq. 20), the three matrices F1,
F2, and Kp are all of size n × n, with F1 and F2 being symmetric matrices. Therefore, using the
properties of the trace of matrices, we have:

J(X) = tr(XTF1XF2) + tr(KT
pX)

= ⟨F1XF2,X⟩F + ⟨Kp,X⟩F
=

∑
i,j

F1;i,jF2;h(j),h(i) +
∑
i

Kp;i,h(i)

(21)

where ⟨·, ·⟩ denotes the Frobenius inner product, and h(i) = argmaxXi is the index of the column
where the i-th row of X has a value of 1. From Eq. 21 and Eqs. 17, 18, and 19, we can derive:∑

i,j

F1;i,jF2;h(j),h(i) =
∑
i,j

F1;i,jF2;h(i),h(j)

= 2
∑
i<j

F1;i,jF2;h(i),h(j) +

n∑
i=1

F1;i,iF2;h(i),h(i)

= 2
∑
i<j

F1;i,jF2;h(i),h(j) +
n

4

(22)
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Given the definition of the function h(i), the corresponding matching matrix X is determined, which
gives the node matching permutation between G1 and G2. Since n1 ≤ n2, we add n2 − n1 isolated
nodes to G1 to obtain G′

1, so that both G′
1 and G2 are graphs with n nodes (n = n2). For a

permutation function h, let e1;i,j represent the edge between nodes i and j in G′
1, and e2;h(i),h(j)

represent the corresponding edge between nodes h(i) and h(j) in G2. We define condition function:

δC =

{
1, if condition C is satisfied
0, if condition C is not satisfied (23)

And we define these conditions:

C1
i,j : both e1;i,j and e2;h(i),h(j) either exist or do not exist

C2
i,j : exactly one of e1;i,j or e2;h(i),h(j) exists

Using Eqs. 16, 17, and 18, we obtain:

2
∑
i<j

F1;i,jF2;h(i),h(j) =
1

2

∑
i<j

(δC1
i,j

− δC2
i,j
)

=
1

2

∑
i<j

(δC1
i,j

− δC2
i,j

− 1) +
1

4
n(n− 1) =

∑
i<j

(−δC2
i,j
) +

1

4
n(n− 1)

(24)

Therefore, according to Eqs. 22 and 24, the first term of J(X) in the KBQAP formula Eq. 20 is:

tr(XTF1XF2) = 2
∑
i<j

F1;i,jF2;h(i),h(j) +
n

4
=

∑
i<j

(−δC2
i,j
) +

n2

4 (25)

Next, given that each row of the node label matrices L1 and L2 is a one-hot vector, we define the
conditions:

C3
i,j : the label of node i in G1 matches the label of node j in G2

C4
i,j : the label of node i in G′

1 does not match the label of node j in G2

Thus we have:

(L1L
T
2 )i,j = δC3

i,j
=

{
1, if L1;i = L2;j

0, otherwise (26)

From the previous content, we know that G′
1 is formed by adding n2 − n1 isolated nodes to G1.

Clearly, when computing the graph edit distance, the number of these newly added nodes needs to
be accounted for in the distance. To keep the distance unchanged, instead of explicitly considering
the distance for adding these n2 − n1 nodes, we use a change in node labels as a substitute for
adding these nodes. Therefore, the labels of these newly added nodes must not match any existing
node labels in the original graph. Based on Eq. 19, we can further express Kp as follows:

Kp;i,j =

{
δC3

i,j
− 1, if i ≤ n1 and j ≤ n2

−1, if n1 < i ≤ n2
= −δC4

i,j
. (27)

According to Eqs. 21 and 27, the second term of J(X) in the KBQAP formula Eq. 20 is:

tr(KT
pX) =

∑
i

Kp;i,h(i) =
∑
i

(−δC4
i,h(i)

) (28)

Thus, KBQAP formula Eq. 20 is:

J(X) = tr(XTF1XF2) + tr(KT
pX)− n2

4

=
∑
i<j

(−δC2
i,j
) +

n2

4
+

∑
i

(−δC4
i,h(i)

)− n2

4

= −

∑
i<j

δC2
i,j

+
∑
i

δC4
i,h(i)


(29)
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Given a permutation function h, the distance computed using this permutation is denoted as
GEDh(G1, G2). In Eq. 29,

∑
i<j δC2

i,j
represents the number of added or removed edges for the

given permutation function h, while
∑

i δC4
i,h(i)

denotes the number of changed labels (including
the n2 − n1 nodes added to G1). Therefore, we have:

J(X) = −

∑
i<j

δC2
i,j

+
∑
i

δC4
i,h(i)

 = −GEDh(G1, G2) (30)

Thus, we have:

max
X

J(X) ⇐⇒ max
h

−GEDh(G1, G2) ⇐⇒ min
h

GEDh(G1, G2) ⇐⇒ GED(G1, G2)

(31)

G KBQAP FORMULA OF TRAVELING SALESMAN PROBLEM

Here we provide a proof for the construction of the KBQAP-formulated TSP instance as discussed
in section A. The matrix F1 ∈ Rn×n is constructed according to Eq. 32. The matrix F2 ∈ Rn×n

represents the distance matrix, where F2;u,v denotes the distance between city u and city v. The
matrix Kp is a zero matrix. This formulation enables us to express the TSP as a KBQAP instance
(Eq. 2).

F1;i,j =

{
−0.5, if |i− j| = 1 or |i− j| = n− 1
0, otherwise. (32)

From Eq. 21, using the definitions of F1, F2, and Kp, we have:

J(X) =
∑
i,j

F1;i,jF2;h(j),h(i) +
∑
i

Kp;i,h(i) =
∑
i,j

F1;i,jF2;h(i),h(j)

= 2
∑
i<j

F1;i,jF2;h(i),h(j) +

n∑
i=1

F1;i,iF2;h(i),h(i) = 2
∑
i<j

F1;i,jF2;h(i),h(j)

= 2

n∑
i=1

−0.5× F2;h(i),h(mod(i,n)+1) = −
n∑

i=1

dh(i),h(mod(i,n)+1)

(33)

where du,v represents the distance between city u and city v. Note that F1 and F2 are symmetric
matrices. In

∑n
i=1 dh(i),h(mod(i,n)+1), h(1) denotes the first city, h(i) represents the i-th city, and

dh(n),h(mod(n,n)+1) = dh(n),h(1) corresponds to the distance from the n-th city back to the first city.
Therefore, J(X) =

∑n
i=1 dh(i),h(mod(i,n)+1) represents the total distance of visiting the cities in the

order specified by the rows of X and returning to the starting city. Let TSP (h) represent the route
distance based on the permutation function h. Thus, we have:

max
X

J(X) ⇐⇒ max
h

−TSP (h) ⇐⇒ min
h

TSP (h) (34)
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H DETAILED PER-INSTANCE RESULTS ON QAPLIB

Table 9: Detailed per-instance results of solved scores and inference times on the QAPLIB dataset. A ’-’
indicates that the instance could not be solved by the method.

instance Score Time(Sec)
Upper SM RRWM Sinkhorn-JA NGM-G5k Ours SM RRWM Sinkhorn-JA NGM-G5k Ours

bur26a 5426670 6533340 6663181 5688893 5621774 5547613 0.02 0.15 309.90 19.34 1.64
bur26b 3817852 4690772 4741283 4053243 3927943 3910002 0.01 0.15 191.70 19.21 0.85
bur26c 5426795 6537412 6474996 5639665 5608065 5571621 0.01 0.15 136.90 18.74 0.78
bur26d 3821225 4649645 4678974 3985052 3962317 3924012 0.02 0.16 276.60 18.78 0.81
bur26e 5386879 6711029 6619788 5539241 5536142 5522832 0.01 0.16 52.90 18.62 0.80
bur26f 3782044 4723824 4814298 3979071 3949711 3885136 0.01 0.15 173.60 18.59 0.80
bur26g 10117172 12168111 12336830 10624776 10433439 10361552 0.01 0.15 292.80 18.55 0.78
bur26h 7098658 8753694 8772077 7453329 7348866 7287865 0.01 0.15 330.40 18.64 0.78
chr12a 9552 50732 43624 9552 14940 13332 0.01 0.14 75.70 11.26 0.56
chr12b 9742 46386 73860 9742 14984 13502 0.01 0.14 75.10 11.34 0.57
chr12c 11156 57404 50130 11156 16346 13690 0.01 0.14 97.90 11.20 0.56
chr15a 9896 77094 90870 11616 20442 16006 0.01 0.14 683.60 12.60 0.59
chr15b 7990 77430 115556 7990 22048 20354 0.01 0.14 461.90 12.61 0.59
chr15c 9504 64198 70738 9504 24190 16410 0.01 0.14 214.10 12.59 0.59
chr18a 11098 94806 115328 11948 33124 23986 0.01 0.14 781.50 14.00 0.63
chr18b 1534 4054 3852 2690 2504 1622 0.01 0.14 52.10 13.97 0.64
chr20a 2192 11154 13970 4624 5178 4504 0.02 0.14 1285.80 15.02 0.70
chr20b 2298 9664 14168 3400 5766 3682 0.02 0.14 911.30 14.96 0.66
chr20c 14142 112406 195572 40464 49770 39276 0.02 0.14 945.00 14.93 0.70
chr22a 6156 16732 15892 9258 9348 8726 0.02 0.14 1488.40 16.88 0.76
chr22b 6194 13294 13658 6634 9006 8416 0.02 0.14 1005.30 16.10 0.73
chr25a 3796 21526 32060 5152 11648 10478 0.03 0.15 2553.20 17.93 0.77

els19 17212548 33807116 74662642 18041490 27029748 24558642 0.01 0.14 700.00 14.49 0.65
esc16a 68 98 80 100 78 68 0.00 0.14 12.80 13.00 0.65
esc16b 292 318 294 304 292 292 0.00 0.14 4.60 12.97 0.65
esc16c 160 276 204 266 174 160 0.01 0.14 7.70 13.00 0.66
esc16d 16 48 44 58 20 18 0.01 0.14 14.60 12.95 0.66
esc16e 28 52 50 44 32 28 0.00 0.14 13.50 13.00 0.63
esc16f 0 0 0 0 0 0 0.00 0.14 0.90 12.98 0.64
esc16g 26 44 52 52 32 26 0.00 0.14 17.10 13.04 0.61
esc16h 996 1292 1002 1282 1004 996 0.00 0.14 15.10 12.95 0.60
esc16i 14 54 28 36 18 14 0.02 0.14 5625.60 12.97 0.62
esc16j 8 22 18 18 8 8 0.01 0.14 13.00 13.04 0.61
esc32a 130 426 240 456 298 182 0.01 0.15 91.80 22.91 0.82
esc32b 168 460 400 416 368 188 0.00 0.15 28.90 22.87 0.80
esc32c 642 770 650 886 754 642 0.00 0.15 112.40 22.95 0.85
esc32d 200 360 224 356 284 218 0.00 0.14 68.40 22.84 0.88
esc32e 2 68 6 46 2 2 0.02 0.15 9661.40 22.88 0.85
esc32g 6 36 10 46 10 6 0.01 0.15 52135.20 22.82 0.85
esc32h 438 602 506 - 534 454 0.00 0.15 - 22.79 0.81
esc64a 116 254 124 276 200 134 0.01 0.20 225.80 61.55 2.06
esc128 64 202 78 - 242 192 0.08 1.34 - 297.84 7.34
had12 1652 1894 2090 - 1700 1722 0.01 0.14 - 11.28 0.62
had14 2724 3310 3494 2916 2866 2782 0.01 0.14 102.20 12.13 0.60
had16 3720 4390 4646 3978 3902 3826 0.01 0.14 56.70 12.88 0.63
had18 5358 6172 6540 5736 5558 5558 0.01 0.15 271.40 13.90 0.65
had20 6922 8154 8550 7464 7300 7204 0.01 0.14 328.40 14.97 0.68

kra30a 88900 148690 136830 125290 114410 110490 0.01 0.14 491.60 21.36 1.01
kra30b 91420 150760 141550 126980 118130 111240 0.01 0.14 489.90 21.35 1.00
kra32 88700 145310 148730 128120 120930 112370 0.01 0.15 479.60 22.96 0.90

lipa20a 3683 3956 3940 3683 3853 3824 0.01 0.14 271.10 14.89 0.68
lipa20b 27076 36502 38236 27076 33125 32408 0.01 0.14 73.30 15.04 0.67
lipa30a 13178 13861 13786 13178 13631 13576 0.01 0.15 191.90 21.18 0.86
lipa30b 151426 198434 201775 151426 187607 185425 0.03 0.15 160.50 21.35 0.86
lipa40a 31538 32736 32686 31538 32454 32381 0.01 0.14 183.20 30.09 1.04
lipa40b 476581 628272 647295 476581 601848 596653 0.04 0.17 369.30 30.10 1.07
lipa50a 62093 64070 64162 62642 63671 63531 0.01 0.16 275.20 41.04 1.38
lipa50b 1210244 1589128 1591109 1210244 1523856 1512221 0.08 0.20 763.50 41.25 1.39
lipa60a 107218 109861 110468 108456 109595 109445 0.03 0.17 551.50 54.70 2.22
lipa60b 2520135 3303961 3300291 2520135 3208501 3187208 0.10 0.22 1796.20 55.37 2.19
lipa70a 169755 173649 173569 172504 173220 172948 0.01 0.17 565.80 72.61 2.73
lipa70b 4603200 6055613 6063182 4603200 5890161 5860517 0.15 0.25 3592.80 72.90 2.93
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Table 10: Continued detailed per-instance results of solved scores and inference times on the QAPLIB dataset.
A ’-’ indicates that the instance could not be solved by the method.

instance Score Time(Sec)
Upper SM RRWM Sinkhorn-JA NGM-G5k Ours SM RRWM Sinkhorn-JA NGM-G5k Ours

lipa80a 253195 258345 258608 257395 257663 257524 0.01 0.17 1023.40 94.93 3.66
lipa80b 7763962 10231797 10223697 7763962 9983040 9957201 0.20 0.27 4158.00 95.20 3.71
lipa90a 360630 367384 367370 366649 366508 366295 0.08 0.24 1889.50 122.14 4.06
lipa90b 12490441 16291267 16514577 12490441 16076956 16027722 0.26 0.33 5544.50 122.29 4.09
nug12 578 886 1038 682 634 626 0.01 0.14 11.40 11.29 0.61
nug14 1014 1450 1720 - 1156 1088 0.01 0.14 - 12.10 0.65
nug15 1150 1668 2004 1448 1318 1238 0.01 0.14 69.60 12.56 0.63

nug16a 1610 2224 2626 1940 1836 1768 0.01 0.14 118.70 13.01 0.61
nug16b 1240 1862 2192 1492 1396 1386 0.01 0.15 66.80 12.96 0.63

nug17 1732 2452 2934 2010 1980 1892 0.01 0.14 181.60 13.44 0.65
nug18 1930 2688 3188 2192 2242 2136 0.01 0.15 155.20 13.88 0.65
nug20 2570 3450 4174 3254 2936 2816 0.01 0.15 146.70 14.87 0.67
nug21 2438 3702 4228 3064 2916 2732 0.01 0.14 256.80 15.52 0.69
nug22 3596 5896 6382 3988 4298 4098 0.01 0.14 382.60 16.09 0.81
nug24 3488 4928 5720 4424 4234 3952 0.01 0.14 202.60 17.34 0.77
nug25 3744 5332 5712 4302 4420 4266 0.01 0.14 478.70 17.95 0.81
nug27 5234 7802 8626 6244 6208 6262 0.01 0.14 360.30 19.34 0.80
nug28 5166 7418 8324 6298 6128 6140 0.01 0.14 339.60 19.96 0.79
nug30 6124 8956 10034 7242 7294 7006 0.01 0.14 330.70 21.28 0.89
rou12 235528 325404 377168 276446 264898 246942 0.01 0.14 41.90 11.35 0.56
rou15 354210 489350 546526 390810 403872 386744 0.01 0.14 66.20 12.49 0.60
rou20 725522 950018 1010554 823298 817776 810398 0.01 0.14 115.10 14.97 0.66
scr12 31410 71392 95134 45334 36292 35896 0.01 0.14 20.80 11.33 0.58
scr15 51140 104308 101714 74632 68768 61910 0.02 0.14 117.10 12.62 0.59
scr20 110030 263058 350528 171260 154636 145130 0.01 0.14 220.80 14.96 0.65
sko42 15812 20770 23612 19058 18716 18220 0.03 0.18 1342.50 32.01 1.33
sko49 23386 29616 34548 27160 27554 26726 0.03 0.17 1849.20 39.80 1.64
sko56 34458 44594 49650 40954 40684 39668 0.05 0.19 3318.10 48.94 2.38
sko64 48498 60878 65540 55738 56222 55016 0.06 0.21 4533.60 61.82 2.90
sko72 66256 82156 89264 76332 76870 75490 0.09 0.22 8845.20 77.14 3.37
sko81 90998 112838 118372 105246 104710 102670 0.10 0.28 15863.80 97.28 4.46
sko90 115534 140840 148784 133818 132942 131066 0.16 0.32 16796.60 122.47 5.56

sko100a 152002 185738 184854 176626 172810 170726 0.18 0.33 18370.80 155.41 6.68
sko100b 153890 185366 189502 177398 175588 173428 0.17 0.33 15432.10 155.32 6.74
sko100c 147862 178710 188756 169566 169806 167492 0.17 0.38 13000.40 155.69 7.13
sko100d 149576 181328 186086 170648 170816 168410 0.17 0.33 17350.90 155.58 7.07
sko100e 149150 180062 192342 171656 170958 168652 0.17 0.37 16240.40 155.24 6.81
sko100f 149036 177518 189284 171296 169986 167710 0.17 0.37 19155.60 155.17 7.41

ste36a 9526 30030 33294 17938 16768 11602 0.02 0.15 2415.20 26.21 0.97
ste36b 15852 176526 193046 47616 43248 25474 0.02 0.16 3718.00 26.32 0.98
ste36c 8239110 24530792 28908062 14212212 12988352 9683098 0.02 0.15 1312.10 26.42 0.98
tai12a 224416 318032 392004 245012 255158 254566 0.01 0.14 27.10 11.38 0.56
tai12b 39464925 96190153 124497790 81727424 47252044 45642400 0.01 0.14 225.10 11.35 0.56
tai15a 388214 514304 571952 471272 436968 426198 0.01 0.14 28.20 12.51 0.58
tai15b 51765268 702925159 702292926 52585356 52871608 52441320 0.01 0.14 29.00 12.56 0.59
tai17a 491812 669712 738566 598716 544754 543196 0.01 0.14 52.40 13.94 0.63
tai20a 703482 976236 1012228 849082 806382 787724 0.01 0.14 82.60 14.91 0.65
tai20b 122455319 394836310 602903767 220470588 140704160 157404704 0.02 0.15 489.90 14.89 0.69
tai25a 1167256 1485502 1536172 1341104 1352912 1314338 0.02 0.14 116.00 18.03 0.76
tai25b 344355646 764920942 1253946482 798113083 518647040 495104384 0.02 0.14 1040.00 17.95 0.77
tai30a 1818146 2210304 2305048 2072218 2065706 2045994 0.03 0.15 175.30 21.35 0.85
tai30b 637117113 1008164383 1766978330 1114514832 896379008 862257600 0.03 0.15 3464.20 21.32 0.90
tai35a 2422002 3030184 3100748 2820060 2786748 2755974 0.03 0.15 221.10 25.35 0.95
tai35b 283315445 454981851 574511546 446783959 377687744 357131136 0.03 0.15 3440.60 25.36 1.19
tai40a 3139370 3825396 3985684 3547918 3610604 3559256 0.04 0.16 1121.60 30.20 1.14
tai40b 637250948 1165811212 1423772477 1019672934 917498816 831085824 0.04 0.15 6646.70 29.92 1.24
tai50a 4938796 6078426 6203546 5569952 5677282 5633704 0.07 0.19 1418.50 41.38 1.52
tai50b 458821517 796553600 790688128 696556852 614638528 574294144 0.08 0.18 12552.00 41.11 1.55
tai60a 7205962 8614998 8731620 8243624 8281996 8192368 0.11 0.21 3121.10 55.35 3.07
tai60b 608215054 1089964672 1279537664 978843717 862969152 801760000 0.12 0.20 18385.70 55.34 2.57
tai64c 1855928 5893540 6363888 3189566 2133738 1986866 0.01 0.21 373.40 61.70 2.84
tai80a 13499184 15665790 16069786 15352662 15283138 15141412 0.20 0.28 4745.20 95.09 3.55
tai80b 818415043 1338090880 1410723456 1215586531 1120577408 1048145664 0.25 0.24 35995.40 94.92 3.91

tai100a 21052466 24176962 24446982 23787764 23644528 23526762 0.34 0.39 5447.50 156.06 5.16
tai100b 1185996137 1990209280 2192130048 1589275900 1612020992 1571683072 0.54 0.34 130312.50 156.20 6.41
tai150b 498896643 662657408 755505920 - 628349568 601300864 1.35 1.60 - 433.41 19.51
tai256c 44759294 77548512 77161352 - - 49431412 8.76 12.61 - - 99.14

tho30 149936 230828 267194 202844 185622 181272 0.01 0.14 739.10 21.38 0.91
tho40 240516 375154 440146 314070 304878 295214 0.02 0.15 1407.00 30.18 1.29

tho150 8133398 10000616 10689758 9508422 9557766 9455292 0.68 0.82 99778.20 443.22 19.39
wil50 48816 56588 60420 54030 53418 52632 0.04 0.18 1867.00 42.11 1.60

wil100 273038 305030 307258 292118 294172 292308 0.17 0.34 12315.50 154.60 7.28
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