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Abstract

The primary objective of room acoustics is to
model the intricate sound propagation dynamics
from any source to receiver position within en-
closed 3D spaces. These dynamics are encap-
sulated in the form of a 1D room impulse re-
sponse (RIR). Precisely measuring RIR is diffi-
cult due to the complexity of sound propagation
encompassing reflection, diffraction, and absorp-
tion. In this work, we propose to learn a contin-
uous neural room acoustics field that implicitly
encodes all essential sound propagation primi-
tives for each enclosed 3D space, so that we can
infer the RIR corresponding to arbitrary source-
receiver positions unseen in the training dataset.
Our framework, dubbed DeepNeRAP, is trained in
a self-supervised manner without requiring direct
access to RIR ground truth that is often needed
in prior methods. The key idea is to design two
cooperative acoustic agents to actively probe a 3D
space, one emitting and the other receiving sound
at various locations. Analyzing this sound helps
to inversely characterize the acoustic primitives.
Our framework is well-grounded in the funda-
mental physical principles of sound propagation,
including reciprocity and globality, and thus is
acoustically interpretable and meaningful. We
present experiments on both synthetic and real-
world datasets, demonstrating superior quality in
RIR estimation against closely related methods.

1. Introduction

Acoustically characterizing an enclosed room scene (Kut-
truff, 1979) demands estimating all the acoustic primi-
tives related to the physical space and is key in enabling a
wide range of applications, including architectural acous-
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tics (Long, 2014), audio-based virtual and augmented re-
ality (Verron et al., 2010; Brinkman et al., 2015) and geo-
metric room structure estimation from audio (Kuster, 2008).
One prominent primitive is to identify the sound propagation
dynamics underpinning the room that models the interaction
of sound waves with entities in the room during its propaga-
tion from a source position to a receiver position. Due to the
nature of sound waves, this interaction between sound and
the room is highly complex and is sensitive to: (i) the sound
source and receiver positions, (ii) room architecture, (iii)
geometric layout, including furniture placement, and (iv)
material properties. Further, sound waves undergo reflection,
scattering, and absorption, complicating their dynamics. All
of these challenges make quantifying and measuring sound
propagation primitives laborious and difficult, especially
using classical methods (Szoke et al., 2019).

The acoustic effects of a room scene can be well modeled
as a linear time-invariant (LTI) system (Gardner, 1998) and
thus the sound propagation primitive can be expressed as
a one dimensional room impulse response (RIR) function.
The received signal can then be obtained by convolving the
source sound with the RIR. Due to the complex nature of
sound propagation as described above, the RIR is extremely
nonsmooth and arbitrarily long in the time domain. Existing
RIR measurement methods either require one to physically
collect a discrete RIR in the room scene by sending an
impulse sound (e.g., starter pistol, balloon exploding, etc.)
or chirp sound at one position and recording the response
at another, or to approximate the RIR using geometry or
wave-based approaches (Savioja & Svensson, 2015; Bilbao
& Hamilton, 2017). While, the former approach based on
physical measurements is inefficient and unscalable (e.g., an
RIR is available only at the measured locations), the latter
approximation methods are computationally expensive and
require detailed knowledge of the room scene acoustics.
Recent works (Ratnarajah et al., 2022; Luo et al., 2022;
Steinmetz et al., 2021) propose to learn RIRs with deep
neural networks in a fully supervised manner, but assume
access to massive RIR datasets and evaluate in small room
scene (Straub et al., 2019) settings.

In this work, we take a fresh look at the sound propaga-
tion primitive estimation problem. Given the challenge in
directly deriving the sound propagation primitive, we pro-
pose an indirect framework for which data is much more
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Figure 1. DeepNeRAP Pipeline: To learn neural sound propagation primitive, we make two agents to actively probe the room scene
acoustically by emitting and receiving sounds at varied locations. Such a data collection strategy requires no prior knowledge of room
acoustic properties, instead needs only the agents’ position. The sound propagation primitive is implicit in the collected dataset. Our
DeepNeRAP takes as input two positions and outputs a neural RIR that encodes the primitive. Convolving this neural RIR with the source
sound gives the predicted receiver sound. The entire DeepNeRAP model is optimized by minimizing the discrepancy between the receiver
recorded sound and predicted neural RIR effected sound. During inference, the learned DeepNeRAP can predict the RIR for any source

and receiver positions.

readily accessible and is also agnostic to the room scene
acoustic characteristics. Our underlying insight is that, al-
though directly measuring the primitive governing sound
propagation is difficult, the effects of the primitive are more
easily accessible because it simply requires moving to a
room scene to receive sound after propagation. Thus, by
analyzing the source and receiver sounds appropriately, we
can inversely estimate the propagation primitive. Motivated
by this idea, we propose to use two cooperative agents that
are temporally synchronized, one serving as a sound source
agent and the other as sound receiver agent, to probe a
room scene by moving around independently. At arbitrary
agents’ locations, the source sends a sound signal, which
the receiver is assumed to receive. This active room scene
acoustic probing strategy can be easily executed in real sce-
narios because it requires no prior knowledge of room scene
acoustic properties and the agents’ position can be easily
obtained using existing and mature localization frameworks
such as SLAM (Khairuddin et al., 2015). Assuming the two
agents reach most of the traversable area in the scene, we
can easily obtain a probing dataset to inversely learn the
sound propagation primitive. We illustrate our approach in
Fig. 1.

With the probed dataset, we propose a novel framework,
called Deep Neural Room Acoustics Primitive (DeepN-
eRAP), to learn sound propagation implicitly in a self-
supervised manner. It takes as input two positions, viz.,
the source and the receiver agents’ positions, and predicts
the corresponding neural RIR that essentially captures the
sound propagation dynamics between the two positions.
During training, our neural RIR is convolved with the
source sound (using 1D convolutions) to predict the receiver
sound. DeepNeRAP is then optimized by minimizing the
discrepancy between the ground truth received sound and
the predicted receiver sound produced using the neural RIR.
The DeepNeRAP network design incorporates fundamental

room acoustics principles, including Globality, Reciprocity
and Superposition; adhering to these principles makes Deep-
NeRAP primitive closer towards capturing the physics of
sound propagation, while being acoustically explainable.

To empirically validate the superiority of DeepNeRAP,
we conduct experiments on both synthetic and real-world
datasets. For the former, we use the large scale SoundSpaces
2.0 dataset (Chen et al., 2022; Chang et al., 2017) consisting
of indoor scenes with an average room area > 100m? and
enriched with room acoustics. For the latter, we use the
real-world MeshRIR dataset (Koyama et al., 2021). Our ex-
periments on these datasets demonstrate state-of-the-art RIR
estimation performances over closely related approaches.
Below, we summarize the main contributions of this paper:

* We present DeepNeRAP to implicitly encode sound prop-
agation primitives in a room scene. It is spatially continu-
ous, and capable of predicting a neural RIR for arbitrary
source and receiver positions.

* DeepNeRAP is trained in a self-supervised and data effi-
cient manner, requiring neither massive RIRs nor detailed
prior knowledge of room scene acoustic properties.

* The DeepNeRAP design is guided by fundamental room
acoustics physical principles, resulting in the learned prim-
itive being acoustically explainable and meaningful. We
show DeepNeRAP’s superiority on both synthesized large-
scale room scenes and a real-world dataset.

2. Related Work

Room Scene Acoustic Characterization. Compared with
vision based scene characterization that has received a signif-
icant attention in the recent years (Chang et al., 2017; Savva
et al., 2019; Straub et al., 2019), the corresponding field
of acoustic characterization has lagged behind. Existing
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acoustic characterization methods include localizing sound
sources (He et al., 2021; He & Markham, 2023) and relying
on the received reverberation for tasks such as speech en-
hancement (Zhao et al., 2017), room volume (Kuster, 2008)
and sound-involved virtual reality (Brinkman et al., 2015).
Closely related to DeepNeRAP, (Luo et al., 2022) propose
to learn an implicit neural acoustic field from massive RIR
data.

Room Acoustics models the sound propagation from one
position to another in an enclosed room scene. There are
primarily two classical approaches that both require ac-
cess to detailed prior knowledge about room scene acoustic
properties: wave-based (Bilbao & Hamilton, 2017) and
geometry-based (Savioja & Svensson, 2015). Geometry-
based methods rely on the wave equation, and thus the
derived RIR is of high accuracy, but needs large compute,
whereas geometry-based methods instead treat sound as be-
ing analogous to light rays and adopt approximation meth-
ods such as ray tracing (Krokstad et al., 1968), image source
method (Allen & Berkley, 1979), beam tracing (Funkhouser
et al., 2003), delay lines (De Sena et al., 2015), and acoustic
radiosity (Hodgson & Nosal, 2006; Nosal et al., 2004) to
compute RIRs with reduced accuracy and lower computa-
tional cost. Related to the problem of RIR interpolation (Das
et al., 2021), a few recent works (Ratnarajah et al., 2022;
2021bsa; Luo et al., 2022; Richard et al., 2022; Nossier et al.,
2020; Pepe et al., 2020; Ratnarajah et al., 2023; Majumder
et al., 2022) propose to directly learn RIRs to characterize
3D room scenes from RIR data with deep neural networks.
However, the assumption that massive RIR datasets are
available does not hold in real scenarios (as detailed in Ap-
pendix A.4). There are also recent works (Kim et al., 2017;
2019) that first use vision to explicitly reconstruct 3D room
scene geometry before predicting spatial audio.

Implicit Neural Representations are yet another very ac-
tive research area that has seen significant progress in the
recent times both in vision (Mildenhall et al., 2020; Miiller
et al., 2022) and in 3D shape modelling (Xu et al., 2022;
Park et al., 2019; Takikawa et al., 2021), and has made initial
explorations into spatial acoustics (Luo et al., 2022). Instead
of directly representing the object of interest, an implicit
representation tries to learn a continuous function parameter-
ized by neural networks that is capable of representing the
object at various resolutions. Our DeepNeRAP also learns
an implicit spatially continuous representation, however for
predicting sound propagation primitive at arbitrary source
and receiver positions.

Sound Synthesis. DeepNeRAP partially relates to prior
works in sound synthesis (Oord et al., 2016; Donahue et al.,
2019; Engel et al., 2019; Clarke et al., 2021; Prenger et al.,
2019). WaveNet (Oord et al., 2016) learns to predict fu-
ture sound based on previous waveform samples. Wave-

GAN (Donahue et al., 2019) and GANSynth (Engel et al.,
2019) adopt generative adversarial networks (Goodfellow
et al., 2014) to learn to generate sound. Different from pure
sound synthesis, we focus on learning a sound propagation
primitive that can bring sound with spatial effects.

3. Deep Neural Room Acoustics Primitive

Given an enclosed 3D room scene in R3L | that is assumed
to be a linear time invariant (LTI) system, our task is to learn
an implicit deep neural room acoustics field Fy that encodes
the sound propagation primitive underlying the scene. In
our case, the primitive is expressed as a one dimensional
neural RIR. Fy is spatially continuous so that it can predict
the neural RIR hA(t),,—p, for any arbitrary source position
ps and receiver position p,.. The received sound at p,. then
can be derived by convolving h(t),,—p, with the sound at
position p, and is entirely agnostic to the sound class, i.e.,

h(t)psapr = Te(psmr); Ps,Pr € P7 (1)
where P indicates all source or receiver (reachable) po-
sitions in the room scene, and 6§ represents the learnable
parameters of . Due to the high complexity of sound
propagation dynamics, the measured RIR A(t) is a highly
nonsmooth and long signal (usually more than 20k points),
making it difficult to collect RIR data directly to optimize
Fp. Alternatively, we propose to learn Fyp in a more readily
accessible way: we use two cooperative agents, one a source
agent carrying an omnidirectional loudspeaker and the other
a receiver agent carrying an omnidirectional microphone re-
ceiver, to actively probe the room scene independently (see
Fig. 1). At each step, the source agent emits a sound xz(t) at
one position p, and the receiver agent receives the response
sound y(t) at another position p, accordingly. This active
probing strategy is practical and easy to execute in real sce-
narios because it requires neither detailed prior knowledge
of room scene’s acoustic properties nor direct collection of
RIR data. Since the received sound y(t) implicitly carries
the room scene’s sound propagation primitive conditioned
on the two agents’ position, we can utilize it to inversely
estimate the sound propagation primitive (e.g., in our case
h(t)). That is, Fy is learned using N samples of active

probing data D = {py, py, z(t),y(t)}{L,.

Fo — Fol{pa: vy, 2(t),y(O}11); {pa}, {py} € P (@)

In our setting, the source agent emits a sine sweep (Farina,
2020) sound so as to cover the whole frequency range. The
agents’ spatial position can be easily retrieved by either
SLAM systems (Khairuddin et al., 2015) or an inertial mea-
surement unit (IMU) with high accuracy. Our framework is
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“self-supervised” in the sense that Fy is learned using only
the data D we collected without involving any sort of data
annotation (especially the RIR data). Our self-supervision
cue lies in the difference between the emitted sound and
the received sound. By enforcing the predicted neural RIR
effected sound to be close to the receiver agent recorded
sound, we naturally encourage Fy to essentially approxi-
mate the room acoustics primitive of the room scene, that is,
0 is estimated as:

argmin Z d((h(pvay) ® ) (1), y(t))
O (pepya(t)y(t)eD (3)

where h(pz, py) = Fo(PzrDy),

where h is the Fy predicted neural RIR, @® is the 1D convo-
lution' indicating the RIR effect applied on the sound (in
our case, the source agent sound), and d(-) measures the
discrepancy between the Fy predicted neural RIR effect
and the ground truth observed effect (i.e., the receiver agent
recorded sound); in our case, we measure the discrepancy
in both frequency and time domain using the /5 loss.

3.1. LTI Room Acoustics Physical Principles

Before introducing DeepNeRAP, we present four funda-
mental room acoustics physical principles (Kuttruff, 1979;
Rayleigh & Lindsay, 1945) that will guide the DeepNeRAP
network design. In an LTI room scene, the measured RIR
has to satisfy the following principles.

Principle 1, Globality: Unlike in computer vision where
a camera captures a localized neighborhood, sound propa-
gation relates to an entire room scene. Once emitted at the
source position, sound waveform traverses isotropically?® to
interact with the whole scene before reaching the receiver
position. The recorded sound thus acoustically characterizes
the whole scene (Kuttruff, 1979).

Principle 2, Reciprocity: The reciprocity princi-
ple (Rayleigh & Lindsay, 1945; Samarasinghea & D. Ab-
hayapala, 2017) states that in an LTI system, the RIR cor-
responding to the source and receiver positions is exactly
the same in terms of both magnitude and phase should
the source and receiver positions be swapped. Therefore,
the DeepNeRAP needs to be source-receiver position per-
mutation invariant. For example, in Eqn. 1, h(t)p,p, =

h(t)p,—p.-

'In room acoustics, the received sound is obtained by con-
volving the source sound with the corresponding RIR in the time
domain. For example, in our case, y(t) = h(t) @® z(t).

2The isotropic assumption is made under the fact that the emit-
ter is not highly directional. If the orientation of a directional
emitter was also known, it would be possible to condition the
network on this orientation.

Principle 3, Superposition: The superposition principle
relating to room acoustics states that the RIR responses
caused by more than one sound source is simply the linear
combination of the response caused by each single sound
source individually. Under this principle, we only need to
model the neural RIR for one source and one receiver setting.
The polyphonic situation where multiple sound sources are
co-emitting sound can be easily derived by linearly adding
individual sounds convolved with their associated propaga-
tion dynamics (neural RIR) together.

Principle 4, Sound Independence: This principle encom-
passes two key aspects. Firstly, the room acoustics primitive
remains intrinsic to a room scene, irrespective of the spe-
cific sound used to probe the scene. Secondly, the neural
RIR is completely sound-class agnostic. It can be univer-
sally applied to any sound to accurately capture propagation
effects.

3.2. DeepNeRAP Neural Network Architecture

Following the aforementioned physical principles and the re-
cent advances in neural implicit representations, we present
the DeepNeRAP network architecture (also illustrated in
Fig. 2). DeepNeRAP takes as input two spatial positions and
outputs a neural RIR that implicitly encodes the sound prop-
agation primitive for this specific position pair. Specifically,
DeepNeRAP comprises five modules, which are detailed
below in the sequence of data processing flow.

1. A learnable room acoustic representation M, which is
represented by a 2D spatial grid representation covering
the whole room scene area. Each entry in the spatial grid
is registered to a physical position in the room scene and
associated with a learnable feature representation.

2. A source and receiver position pair feature extractor P
that emphasizes both each single position’s individuality
and the global interaction with the whole room scene
conditioned on single position.

3. An encoder £ that learns room acoustic primitives. In
our case, it is multi-layer perceptrons (MLP).

4. A neural primitive prediction decoder D that predicts
a multi-scale neural RIR in frequency domain, where
the neural RIR is represented by a complex 2D map at
multiple resolutions.

5. Aloss L that optimizes the whole neural network by min-
imizing the discrepancy between the neural RIR effected
sound and the receiver agent recorded sound.

Room Acoustic Representation. M is expressed as a
2D N x N x k spatial grid representation (rather than a
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Figure 2. DeepNeRAP Model: We construct a learnable spatial grid feature M so that the two agents’ positions can be registered to the
grid map. By querying features in a multi-scale manner (see Fig. 3), we relate the agent’s position to the whole room scene satisfying
the globality principle. The source and receiver position features are merged by a permutation-invariant operator add, satisfying the
reciprocity principle, and then fed to the primitive encoder £ for further refinement. The primitive decoder D then decodes the refined
primitive features into a multi-scale neural RIR expressed in the time-frequency domain. The inverse short-time Fourier transform (ISTFT)
is used to convert the neural RIR to the time domain. DeepNeRAP is optimized by minimizing the discrepancy between the neural RIR
effected receiver sound and the actual recorded sound without accessing RIR data.

3D voxel grid, M € RV *N*¥) because the two horizon-
tal axes (topdown map) extent of most large room scenes
is much larger than the vertical extent. Each entry in the
grid M corresponds to a physical 2D position in the room
scene, and is associated with a learnable small feature of
size k. Such constructed grid representation is responsible
for learning the sound propagation related representation
underpinned by the room scene. Its grid-wise feature organi-
zation helps to learn the position-aware representation that
is vital for modeling sound propagation. It is worth noting
that, although M is geo-registered to the room scene, we
do not explicitly require knowledge of the precise room ge-
ometry. We simply need to ensure that the grid map covers
the whole room. Alternatively, we can construct a grid map
simply covering the two agents’ traversed area, obviating
knowing the prior room scene size information.

Multi-Scale Position-aware Feature Extraction. The fea-
ture extraction procedure for either source position p, or
receiver position p,, should be: 1) position-aware so that the
extracted features intrinsically reflect the position’s unique-
ness, and 2) related to the global room scene for the sake of
the globality principle. To this end, we propose a multi-scale
position-aware feature extraction strategy P. Specifically,
for the input position p (= {py,p,}), we retrieve L-scale
bounding boxes on the grid map that center at p but are of
different sizes. Given a scale resolution r, the [-th bounding
box’s size is [ - . By adjusting the scale resolution r and
scale number L, we can correspond p to the whole grid
map features. For the [-th scale bounding box, we take the
four farthest grid features within the bounding box to p and
further adopt bilinear interpolation to get the corresponding
feature for p at scale [. By concatenating the interpolated
features arising from L scales, we obtain the room acoustic
representation f(p) for position p,

Figure 3. Mulit-scale position-aware global grid feature extraction.
We just show three scales for clear visualization.

f(p) = fir(P) ® fus1)r(p)
fl~r(p) = ¢(fll-7"’ fl2»r7fl§r7flz%r);l =1,---,L—1,

where @ indicates the concatenation operation along feature
dimension. f} . indicates the i-th farthest grid feature in the
l-th scale bounding box (¢ = 1,2, 3,4). We visualize this
multi-scale feature extraction strategy in Fig. 3. To reduce
the computation overhead and storage cost without sacrific-
ing the expressiveness of M, we instantiate d with a small
value but obtain a much larger and complex representation
for p by concatenating small features arising from multiple
scales. Such multi-scale aggregation strategy relates p to
the whole room scene so it satisfies the globality principle.
In addition to just querying room acoustic features (Eqn. 4),
we explicitly add position encoding (Vaswani et al., 2017)
to both source and the receiver positions to capture each
position’s uniqueness.

f(pz) A f(px)+PE(px)§ f(py) — f(py)+PE(py)7 (5)

where PE(-) is the sine/cosine position encoding. It is worth
noting that the position’s individuality is encoded by both
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the position encoding PE(-) and the concatenation opera-
tion @ because the concatenation operation concatenates
the interpolated features from different scales in an order
decided by the position (from closest to farthest). Given
the two extracted features, we adopt a permutation-invariant
operation (element-wise add) to merge them to get the fused
feature representation so that the reciprocity principle is

satisfied, e.g., f(Pay) = f(pz) + f(py).

Primitive Encoder £. After obtaining f(p,,), we further
adopt a multiple layer perceptron (MLP) to further encode
the sound propagation essentials. In our case, the MLP
consists of 6 fully-connected layers with hidden unit size of
512, batch normalization, and ReLLU activation are used.

Primitive Decoder D takes as input the features learned
by &, and directly outputs a neural RIR. Due to the non-
smoothness and large dimensionality of neural RIRs in the
time domain, we propose to predict it in the time-frequency
domain. Unlike prior works that predicts magnitude and
phase maps (Luo et al., 2022) where the phase map is often
chaotic, we predict real and imaginary 2D maps because
the two maps are comparatively more smooth and easy
to predict (see Sec. A.3). By applying inverse short time
Fourier transform (ISTFT), we can convert the neural RIR
from frequency domain to time domain and the conversion
operation is differentiable. Specifically, D combines f(p,)
and position encoded row and column index [PE(7), PE(j)]
to predict the real and imaginary values indexed at [z, j],

h(t) = ISTFT(H(w)),

H@)li, 7] = D(f (o) + PEG) + PEG)),
where H(w) is the representation of A(t) in the time-
frequency domain, H(w) = [Real(w),Imag(w)], which
contains a real part map and an imaginary part map of shape
[w,h] (w = h = 128). Instead of just predicting H (w)
at one resolution, we propose to predict multiple H (w) to
express the same h(t) at multiple time-frequency resolu-
tions. We consecutively predict three h(t) representations
in frequency domain: [H(w), H(w)ax], H(w)4x]| by dou-
bling the time and frequency dimension. We adopt 2D
transposed convolution TransConv to 2x scale up (dou-
ble) H(w) resolution. H(w)4 = TransConv(H (w)ax),
H(w)ax = TransConv(H (w)). By adjusting the ISTFT
parameters such as hop length and window size, we get three
[R(t), h(t)2x, h(t)ax] from the three learned time-frequency
maps, respectively. During training, we deeply supervise
the three neural RIRs (He et al., 2023). In test, we merge
the three neural RIRs to obtain the final neural RIR.

Loss calculator £ computes the discrepancy between §(t)
and y(¢) in both time domain using the {5 loss) and fre-
quency domain (with multi-resolution time-frequency /o
loss) (Defossez et al., 2020).

4. Experiments

Synthetic Dataset. We depend on SoundSpaces 2.0 (Chen
et al., 2022) supported Matterport3D (Chang et al., 2017)
dataset to collect the synthetic data. Matterport3D is a
large-scale 3D indoor environment dataset with multiple
rooms and complex furniture layout (with averaging size
> 100m?), so it contains sophisticated acoustic character-
istics. We collect the dataset from all the 54 indoor scenes
in the Matterport3D train set designed audio-visual naviga-
tion task (Chen et al., 2020). For each scene, we randomly
sample 100 navigable probing positions covering the whole
scene, these positions serve as the positions the two agents
can traverse to. By randomly pairing two positions (assume
the two agents stand on), we call SoundSpaces 2.0 to simu-
late the corresponding RIR. Convolving the RIR with sine
sweep sound gets the received reberverant sound. Finally,
we have obtained 4000 probing data which is further split
into 3000/1000 for train/test separately by guaranteeing no
position pair in the test set is close enough to any position
pair in the training set. More discussion data creation is
given in Sec. A.2 in Appendix.

Real-world Dataset. We adopt MeshRIR S32-M441
dataset (Koyama et al., 2021), which contains 32 source
positions and 441 receiver positions (14 k data points, with
10k/4k split for train/test). The data collecting room di-
mension is 7.0 m x 6.4 m x 2.7 m. The sampling rate is
48kHz and RIR length is 32768 points. For this dataset, we
create the sine sweep signal to match the 48 kHz sampling
frequency. We predict the same RIR map size but adjusting
ISTFT parameters to get longer RIR length in time domain.

4.1. Evaluation and Metrics

There are two main evaluation aspects for measuring the
quality of the estimated neural RIR, namely: (i) directly
comparing the predicted neural RIR with ground truth RIR,
which helps to understand how well the learned primitive
approximates the room acoustics primitive, and (ii) compar-
ing the neural RIR effected sound, which helps to test how
the learned primitive performs in a real acoustic environ-
ment. We adopt VCTK (Yamagishi et al., 2019) anechoic
speech dataset uttered by 110 English speakers with various
accents. By convolving RIR (either ground truth RIR or
learned neural RIR) with the anechoic speech, we get the
corresponding RIR effected (reverberant) speech sound.

Evaluation Metrics. For evaluating RIR, we incorporate
six metrics, three of which are evaluations on time domain
and the other three in the frequency domain. In time do-
main, we use: (i) t-MSE, measuring the difference of the
predicted neural RIR and ground truth RIR in time domain
with mean square error, (i) SDR (signal-to-distortion ratio)
in which, in accordance with the metric outlined in (Richard
et al., 2022), we also report SDR to appraise the fidelity of
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Table 1. Quantitative Result on Matterport3D Dataset. t-MSE: 107, f-MSE: 1072

Method Neural RIR Speech
MSE () SDR(T) __ Teo Brmor()) __FMSE()) ___PSNR(D SSIM (1) PSEQ (D
NAF (Luo et al.,, 2022) T0I£027 5.16£0.09  7.84£040 409 £000 1517£357 0996% 0.00 | 1.40 + 041
IR-MLP (Richard et al., 2022) 102+ 032 4.09+0.10 868+ 0.2  568+001  13.67+351 0994+ 001 | 1.40+0.14
S2IR-GAN (Ratnarajah etal., 2023) | 1094027  3.81£0.10  9.1940.02  6.55+0.12  12.98+3.46 0994+ 001 | 1.38+0.17
DeepNeRAP 093034 662+ 0.12  6.04£ 008  1.68+0.02 1895F3.02 0.998+ 0.00 | 153 F 0.41
the predicted neural RIR in comparison to the ground truth ~ Table I'V.

RIR, and (iii) Tgg Error, where T indicates the time to
decay by 60 dB; we measure the Tg( difference between
ground truth RIR and predicted neural RIR. In frequency
domain, we convert RIR to time-frequency 2D magnitude
map of size 256 x 256, and evaluate on the magnitude
map using: (i) f-MSE, we compute mean square error be-
tween ground truth magnitude map and predicted neural
magnitude map, (ii) PSNR (Peak Signal-to-Noise Ratio)
quantifying the quality of the magnitude map within the
frequency domain (and is widely recognized for its applica-
bility), and (iii) SSIM (structural similarity index measure),
a perception-based metric which offers insight into the per-
ceptual similarity between the magnitude map originating
from the ground truth RIR and that derived from the pre-
dicted neural RIR. For the evaluation of sound influenced
by RIR, we augment our assessment framework with the
PESQ (perceptual evaluation of speech quality (Rix et al.,
2001)) metric (using the speech convolved with the true
RIR as reference) to have a human-centric perspective on
perceptual similarity.

4.2. Comparison Methods

Currently there are no existing methods sharing exactly the
same problem setting with our framework. Although shar-
ing the same focus on neural RIR prediction, they largely
differ in three aspects: 1. if they require ground truth RIR
to train their model, 2. if they require extra prior knowledge
of the room scene acoustic properties to train their model,
and 3. the way to predict RIR (either in time domain or
frequency domain, RIR length). For meaningful compar-
ison, we compare with three spatial-position input based
methods with appropriate modifications so as to be suitable
for our setting. 1. NAF (Luo et al., 2022), a work that
is most similar to ours. The main difference is that NAF
requires access to massive RIR to train its model and it pre-
dicts binaural RIR for relatively small room scenes (Replica
Dataset (Straub et al., 2019)), ours instead simply requires
more readily accessible source and receiver sound. More-
over, we incorporate acoustic physical principles into our
framework. We modify NAF to accept two positions and
predict monoaural RIR. 2. IR-MLP (Richard et al., 2022),
we modify it to accept two positions as input and output the
neural RIR. 3. S2IR-GAN (Ratnarajah et al., 2023) which is
an encoder-decoder architecture, we also modify it to accept
two positions and output the neural RIR. More details are in

Implementation Details. We implement DeepNeRAP in
Pytorch. The detailed network architecture is illustrated
in Sec. A.5 in Appendix and the source code is given in
supplementary material. We train DeepNeRAP on A40
GPU with Adam optimizer (Kingma & Ba, 2015) with an
initial learning rate 0.0005 but decays at every 50 epochs
with decaying rate 0.5. We train all models for 300 epochs.
For the comparing prior methods, we adopt their proposed
training strategy. We train each model for each dataset three
times independently, and report the mean and variance.

4.3. Experimental Results

The quantitative results on the synthetic Matterport3D
dataset is given in Table 1 and on the real-world MeshRIR
dataset is given in Table 2. From the two tables, we can
clearly see that our proposed DeepNeRAP outperforms all
the comparison methods across all evaluation metrics sig-
nificantly and consistently. In direct neural RIR evaluation,
DeepNeRAP receives much higher scores in SDR, PSNR
and SSIM, and much lower score in t-MSE, f-MSE and
Tso error. In terms of the quality of the estimated neural
RIR when convolved with real-world speech, DeepNeRAP
has achieved higher PESQ scores than the three competing
methods. Although PESQ is an imperfect metric, as it was
originally developed for quantifying audio coding artifacts,
it provides evidence of the superiority of neural RIRs from
DeepNeRAP while including perceptual weighting. More-
over, we have noticed all methods have achieved slightly
better performance on MeshRIR dataset than on Matter-
port3D dataset. We hypothesize that this is due to the fact
the meshRIR dataset is collected in a much smaller and sim-
pler indoor environment and the data in MeshRIR dataset
is much more densely collected than the way we used to
collect on the Matterport3D dataset. Moreover, owing to
the dense sampling data collection strategy in MeshRIR,
we have more training data (10k) for MeshRIR than the
data (3k) in Matterport3D room scenes.

We further provide qualitative visualizations of the neural
predicted RIR across five room scenes in Fig. 4 (as well as
in Fig. IIT in the Appendix). From these figures, we can
see that DeepNeRAP is capable of predicting neural RIRs
that best match the ground truth RIRs, even under complex
room scenes and arbitrary source and receiver positions.
Comparing with the other three methods, we observe that
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Table 2. Quantitative Result on MeshRIR dataset. t-MSE: 10~8, f-MSE: 10~ 2.

Method Neural RIR Speech
t-MSE (]) SDR (1) Teso Error (]) f-MSE () PSNR (1) SSIM (1) PSEQ (1)
NAF (Luo et al., 2022) 221+ 0.17 536+ 0.12 7.44+ 0.31 401 4+0.02 16.19+ 127  0.996+ 0.00 1.54 £ 032
IR-MLP (Richard et al., 2022) 2324 0.12 4224 0.11 7.87+ 0.11 5.43+ 0.02 1439+ 241  0.995+ 0.01 1.51 +£0.20
S2IR-GAN (Ratnarajah et al., 2023) 2.554+0.10  4.274 0.07 8.214+ 0.11 6.32+0.09 13.88+3.17 0.994+ 0.01 1.41 £+ 0.09
DeepNeRAP 113+ 020 7.31+ 0.10 5.01+ 0.03 1.27+ 0.01 20.15+ 1.01  0.999+ 0.00 | 1.77 + 0.30
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Figure 4. Vis. of learned neural RIRs in time domain on one room scene. The source/receiver position is denoted by the red position logo.

DeepNeRAP better encodes important properties of rever-
beration, such as the correct time delay between the source
and receiver (alignment with the ground truth RIR), and the
diffuse reverberation tail, which contributes most to human
perception of reverberation (Traer & McDermott, 2016).
The ability of DeepNeRAP to more accurately model late
reflections, that contribute to diffuse tails, is confirmed by
the lower T§q errors in Tables 1 and 2.

T T T
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Figure 5. SDR variation against training sample (left) and noise
interference test (right).

4.4. Ablation Studies

We first want to figure out the performance under different
training samples or noise interference, which is important
to show the robustness of DeepNeRAP. To this end, we run
experiment on the scene 1 7DRP 5sb8fy by either varying
the training samples (1,000/2,000/3,000) or adding white
noise (the noise level is measured by signal-to-noise ratio,
SNR, in dB). We report the SDR variation in Fig. 5, from
which we can see that 1) while all methods have observed
performance drop with fewer training samples, DeepNeRAP
still far outperforms all other methods. It thus shows Deep-

NeRAP is capable of learning better neural room acoustics
primitive with less data. 2) adding noise leads to perfor-
mance drop, and DeepNeRAP suffers the least from the
noise by significantly outperforming all other methods.

We then do six ablations on the room scene with
id:1 7DRP5sb8fy and real-world MeshRIR data to assess
the necessity of each component in DeepNeRAP.

1. No Room Acoustic Feature M Learning. We validate
if involving a learnable grid feature is necessary; this variant
is denoted M (DNeRAP_noRF).

2. No Multi-Scale Feature Aggregation. In Eqn. 4, we
adopt a position-aware multi-scale feature aggregation to
relate a position to the global room scene. We test one
variant without multi-scale aggregation (DNeRAP_noMS).

3. Single resolution RIR Prediction. In Eqn. 6, we jointly
predict three neural RIR maps in frequency domain. To
understand the implications of this choice, we test a variant
by just predicting a single resolution (of size 128 x 128)
neural RIR map (DeepNeRAP_singR).

4. No Position Encoding. In Eqn. 5, we introduce position
encoding to emphasize each position’s individuality. We test
one variant without position encoding (DNeRAP _noPE).

The quantitative results are given in Table V for t-MSE,
SDR, and T§g,Tables VI and VII in Appendix. The tables
collectively reveal that all four ablations exhibit a decline
in performance. Specifically, DNeRAP_noRF shows the
a significant drop on both datasets, underscoring the need
to incorporate a learnable grid. DNeRAP_noMS leads to a
notable decrease highlighting the benefits of position-aware
multi-scale feature aggregation. Reduced performance is
also observed for DeRAP_singR and DNeRAP_noPE em-
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Figure 6. Three DeepNeRAP variants learned neural RIRs vis..

phasizing the necessity of multi-resolution neural RIR learn-
ing and position encoding. Visualizations of the neural
RIRs for these variants in Fig. 6, clearly demonstrating their
inferior quality. More results are in Appendix A.9.

5. Conclusions and Limitations

In this work, we propose a novel framework DeepNeRAP,
to learn a sound propagation primitive in a self-supervised
way using a data collection approach that is easy to execute.
Our approach circumvents the difficulty in modeling room
impulse response and we show its superiority on both syn-
thetic data and real-world data against prior methods. The
main limitation of our approach is that we assume the two
probing agents can actively explore to all areas in the room
within a limited step budget, which in real-world scenarios
may require implementing efficient exploration algorithms.

Impact Statement

This paper introduces a novel approach aimed at enhanc-
ing the modeling of room acoustics within enclosed spaces
through the collaborative exploration of two agents. No-
tably, our research poses no societal or ethical concerns, as
our experiments are conducted using publicly synthetic and
available datasets. The findings of this study hold promise
for significant advancements in the realm of augmented and
virtual reality (AR/VR) technologies.
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A. Appendix
A.1. Matterport3D Train/Test Data Distribution Visualization

We visualize the part of the train/test data positional
distribution in terms of the source and receiver posi-
tion in Fig. II, from which we can clearly see that the
source/receiver positions in the train and test dataset
largely vary. It thus ensures the the difference between
train and test dataset.

A.2. Matterport3D Data Synthesis Discussion

Based on SoundSpaces 2.0 (Chen et al., 2022), we can
simulate the ground truth RIR for two arbitrary positions
in any given Matterport3D room scene. We find that the
SoundSpaces 2.0 simulated RIR does not completely sat-
isfy Reciprocity principle, which means the simulated RIR
will change slightly if we swap the source and receiver
position. To guarantee the Reciprocity principle, we ex-
plicitly divide the added two RIRs, one is the RIR from ] train O———© test
source-receiver and the other from receiver-source, by 2 to

get the final RIR. TO geF the 100 probing positions for each Figure II. Train/Test position pair data distribution on top of room
room scene, we iteratively call SoundSpace 2.0 (Chen scene S9hNv5ga7GM topdown map. Grey color indicates traversible
et al., 2022) randomly sample navigable position API 100 area.

times, we find such 100 probing positions are enough
to cover the space’s whole navigable area. We use such
randomly sampled 100 probing positions to imitate the
two agents’ actively explored positions.

A.3. Discussion on neural RIR Representation in Frequency Domain

We represent neural RIR in frequency domain by directly predicting the real-part 2D map and imaginary-part 2D map. We
choose to do so because the alternative representation of magnitude 2D map and phase 2D map is much more non-smooth
and chaotic than its real- and imaginary- 2D map, resulting in the difficulty directly predicting magnitude and phase maps.
We show the mean and standard deviation comparison between them in Table II. We can clearly see that the phase map
has much larger standard deviation than the other three maps (high nonsmoothness). We thus choose to predict the real-part
map and imaginary-part map.

Table I1. Mean and standard deviation deviation comparison between the two ways representing neural RIR in frequency domain.

Metric \ Real Map  Imaginary Map \ Magnitude Map  Phase Map

Mean 0.000 0.000 0.002 0.012
Std. 0.005 0.005 0.007 1.763

A.4. DeepNeRAP Comparison with Existing RIR Prediction Methods

In this work, we formulate sound propagation primitive as neural RIR as we assume the room scene is linear time
invariant (LTT). We have noticed there are several existing deep neural network based RIR prediction methods (Ratnarajah
et al., 2022; Steinmetz et al., 2021; Ratnarajah et al., 2021b;a; De Sena et al., 2015; Ratnarajah et al., 2023; Luo et al., 2022).
However, these methods differ in either problem setting or basic assumption. For example, most of these methods assume
massive RIR data is accessible to train the neural network, which falls out of our assumption. We show the comparison
between our framework DeepNeRAP and those relevant methods in Table III, from which we can see that all of those
comparing methods require ground truth RIR data to train their own model. Some of them even require prior knowledge of
the room scene’s acoustic properties, such as room dimension and reverberation time. Our framework DeepNeRAP requires
no RIR and is parsimonious to room scene acoustic properties.
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Table III. Room acoustics modelling methods comparison. g.t. RIR means ground truth RIR, which can be either synthetic RIR or
real-world collected RIR.
Methods | Need RIR ? | Network Input | More Information

NAF (Luo et al., 2022) v g.t. RIR, Room Dimension Small Room Scene
Fast-RIR (Ratnarajah et al., 2022) v Position, Room Dimension; Reverb. Time None
IR-GAN (Ratnarajah et al., 2021b) v Real RIR RIR length = 16,384
GanSynth (Engel et al., 2019) v g.t. RIR None
FiNS (Steinmetz et al., 2021) v g.t. RIR, Reverb. Speech None
IR-MLP (Richard et al., 2022) v Position, Source Sound None
S2IR-GAN (Ratnarajah et al., 2023) v Reverb. Speech RIR length = 4,096
TS-RIRGAN (Ratnarajah et al., 2021a) v Synthetic RIR RIR length = 16,384
Few-ShotRIR (Majumder et al., 2022) v Synthetic RIR, RGB, Depth, Pose, Echo | RIR length = 16,000
Ours DeepNeRAP | X | Position Pairs | RIR length = 20,001

A.5. SoundNeRAP Neural Architecture Illustration

The learnable room acoustic representation M consists of 500 x 500 x 2, which means the grid number is 500 x 500, each
entry associates with a learnable feature of size 2. The scale number L = 256 and scale resolution » = 2.1. The aggregated
room acoustic feature representation for one position is 512.

The primitive encoder £ network consists of 6 multi-layer perceptron (MLP) layer, each of which consists of a fully-
connected layer, batch normalization layer and a ReLU activation layer. Each MLP layer’s hidden unit number is 512.

The primitive decoder D network consists of one fully-connected layer, which fuses real/imaginary map row and column
index position encoded feature (via sine/cosine position encoding) to construct an initial 2D feature map of shape 256 x
128 x 128 (a 2D convolution is added to reduce the channel dimension from 512 to 256). Two learnable 3 x 3 2D Transposed
Convolution consecutively applied to get larger 2D feature maps: one is 256 x 256 x 256 and the other is 256 x 512 x 512.
Given the three 2D maps, another real/imaginary map prediction head neural network is used to predict multi-resolution
neural RIR maps. The prediction head consists of two 3 x 3 2D convolutions that gradually reduce the dimension from 256
to 128, and finally to 2.

The loss calculator £ computes the /5 loss between neural RIR effected sound and receiver agent recorded sound at both
time domain and frequency domain. In frequency domain, we adopt multi-scale (in our case, three scales) frequency loss
calculation strategy by converting the sound waveform to frequency domain with various sizes (by adjusting the STFT
parameters appropriately).

A.6. Evaluation Metrics Definition

Given a predicted neural RIR A(¢) and the corresponding ground truth RIR A(¢), the signal-to-distortion ratio (SDR (Richard
et al., 2022)) can be defined as,

SDR(h(t), h(t)) = 10loglo(M)

(N
[A(t) = h(D)I]?

A.7. More Discussion on Comparing Method

The trainable parameter number of various comparing methods is given in Table

Table 1V. Comparing Methods Trainable Parameter Number Comparison

NAF (Luo et al., 2022) 12.77TM
IR-MLP (Richard et al., 2022) 437TM
S2IR-GAN (Ratnarajah et al., 2023) | 12.78 M
DeepNeRAP 471 M
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Table V. Ablation study on Matterport3D 1 7DRP5sb8fy (t-MSE: 1077, -MSE: 10~2) room scene and real-world MeshRIR data (t-

MSE: 1078, f-MSE: 1072).

Matterport3D 1 7DRP5sb8fy room scene MeshRIR Dataset
Variants Neural RIR Speech Neural RIR Speech
t-MSE(])  SDR(f) Tgo Error () | PESQ(T) | tMSE(]) SDR(f) Teo Error (}) | PESQ (T)
DNeRAP_noRF 1.02 3.10 7.89 1.32 2.54 4.01 8.12 1.43
DNeRAP_noMS 1.01 3.14 7.90 1.36 2.50 4.00 8.13 1.40
DNeRAP_singR 0.94 478 723 1.51 2.10 5.21 6.33 1.52
DNeRAP_noPE 0.96 4.98 7.45 1.48 2.08 5.24 6.30 1.49
DeepNeRAP 0.90 7.13 6.41 1.63 113 7.31 5.01 1.77

Table VI. Ablation study on Matterport3D 17DRP5sb8fy room scene. t-MSE: 107, f-MSE: 102

Method Neural RIR Speech
tMSE (1) SDR (1) Too Error () £MSE (}) PSNR (1) SSIM (1) PSEQ (1)
NDeRAP_noRF 1.02+ 0.12 3.104+ 0.05 7.89+ 0.20 6.85 +0.01 1433+ 1.22  0.993+ 0.01 1.31 £ 0.21
NDeRAP_noMS 1.01+0.32 3.144 0.11 7.90+ 0.09 6.50+ 0.02 1501+ 1.14  0.994+ 0.01 1.32 + 0.21
NDeRAP_singR 094+ 020  4.784+ 0.08 7.231 0.00 3.01 £0.09 17.90+222  0.995+ 0.01 1.49 +0.14
NDeRAP_noPE 096+ 0.17 4984+ 0.11 7.45+ 0.02 3.29 £0.13 18.18+2.41  0.995+ 0.01 1.51 +0.20
DeepNeRAP 090 +0.12  7.13+ 0.11 6.41+ 0.0 1.70+ 0.03  20.33+2.01  0.998+ 0.01 | 1.67 + 0.21
A.8. More Ablations

The detailed quantitative ablation study result on both Matterport3D and MeshRIR dataset are given in Table VI and

Table VII respectively.

A.9. More Qualitative Result

We provide more qualitative visualization in Fig. IIIl. We also provide bad case visualization in Fig. IV. From those bad
cases, we can see that in some cases all methods inevitably predict inaccurate neural RIR, which shows designing more
robust and generalized neural RIR prediction framework remains as a future challenge.
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Table VII. Ablation study on MeshRIR dataset. t-MSE: 10~%, f-MSE: 1072,

Method Neural RIR Speech
©MSE () SDR (1) Teo Error () EMSE (D) PSNR (D) SSIM (D) PSEQ (1)
NDeRAP_noRF 2.54+ 0.12 4.01+£ 0.11 8.13+ 0.22 6.65 + 0.01 14.014+ 2.11 0.993+4 0.01 1.43 +£0.17

NDeRAP_noMS 2.504+0.07  4.00% 0.10 8.13+ 0.09 6.33+ 0.02 1412+ 1.89  0.994+ 0.01 1.40 + 0.12
NDeRAP_singR 2.10+ 0.12 5.21+0.02 6.334+ 0.07 434+0.04 18.01£2.21  0.996+ 0.00 1.52 4+ 0.12
NDeRAP_noPE 2.084 0.09 5.24+ 0.03 6.304 0.10 4124006 17.11+1.22  0.996+ 0.01 1.49 +0.03
DeepNeRAP 113+ 020  7.31+ 0.10 5.01+ 0.03 1.27+£0.01 2015+ 1.01  0.999+ 0.00 | 1.77 &+ 0.30
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IR-MLP

S2R-GAN —fH——————————— i A

Figure I1I. Qualitative Result Visualization on room scene SN83YJsR3w2 (top) and 1 7DRP5sb8fy bottom. The source and receiver
position are labelled by the “red position” indicator on the room scene topdown map.
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Figure IV. Qualitative Bad Case Visualization on room scene 1 7DRP5sb8fy (left) and r47D5H71a5s (right). The source and receiver
position are labelled by the “red position” indicator on the room scene topdown map.
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