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Abstract

Data imbalance remains a fundamental challenge
in real-world machine learning. However, most ex-
isting work has focused on classification, leaving
imbalanced regression underexplored despite its
importance in many applications. To address this
gap, we propose PRIME, a framework that lever-
ages learnable proxies to construct a balanced and
well-ordered feature space for imbalanced regres-
sion. At its core, PRIME arranges proxies to be
uniformly distributed in the feature space while
preserving the ordinal structure of regression tar-
gets, and then aligns each sample feature to its
corresponding proxy. By using proxies as refer-
ence points, PRIME induces the desired struc-
ture of learned representations, promoting better
generalization, especially in underrepresented tar-
get regions. Moreover, since proxy-based align-
ment resembles classification, PRIME enables
the seamless application of class imbalance tech-
niques to regression, facilitating more balanced
feature learning. Extensive experiments demon-
strate the effectiveness and broad applicability of
PRIME, achieving state-of-the-art performance
on four real-world regression benchmark datasets
across diverse target domains.

1. Introduction
Data imbalance is a prominent, yet long-standing challenge
in most real-world machine learning scenarios (Buda et al.,
2018), where certain target values are significantly underrep-
resented. This imbalance hinders deep models from effec-
tively generalizing to minority groups with limited training
samples, driving extensive research efforts to address this
challenge (Liu et al., 2019b; Tang et al., 2020; Menon et al.,
2021; Zhang et al., 2023b). However, most studies have
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Figure 1. An overview of PRIME. Given a sample, PRIME lever-
ages synthetic reference points, termed proxies, to facilitate feature
learning. These proxies provide global guidance for effective posi-
tioning in the feature space, even for minority samples, enabling
the model f to learn balanced and well-ordered representations.

primarily focused on classification setups, leaving deep im-
balanced regression (DIR) underexplored (Yang et al., 2021),
despite its significance in various applications.

Unlike classification, regression deals with continuous tar-
gets, making it challenging to apply the notion of class
imbalance directly. Early works on DIR adapted techniques
from imbalanced classification, such as re-weighting (Yang
et al., 2021; Steininger et al., 2021) or logit adjustment (Ren
et al., 2022), with minor modifications to handle continuous
targets. Although intuitive, these methods mainly focus on
adjusting loss functions for the final predictions without con-
sidering the underlying feature representations. As a result,
the learned representations are often fragmented (Zha et al.,
2023) and fail to reflect the ordinal relationships of target
values (Gong et al., 2022), limiting their effectiveness in
real-world applications (Zhang et al., 2023a).

To tackle these issues, recent studies (Gong et al., 2022;
Keramati et al., 2024) have explored representation learn-
ing approaches for DIR. Specifically, to better reflect the
continuous nature of regression targets, these methods im-
pose additional feature regularization terms that encourage
samples closer in target space to be positioned closer in fea-
ture space. While demonstrating promising results, previous
representation learning methods suffer from inherent limi-
tations, as they rely solely on sample relationships within
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individual batches. Due to data imbalance, batches predom-
inantly contain samples with majority targets, causing the
learned representations to be biased toward the majority
while overlooking or misrepresenting samples with minority
targets. Furthermore, representations of minority samples
often collapse into those of the majority, which hampers
generalization for minority targets. In short, existing repre-
sentation learning methods remain insufficient for mitigating
data imbalance in regression tasks.

In this paper, we propose Proxy-based Representation learn-
ing for IMbalanced rEgression (PRIME), a novel represen-
tation learning scheme for DIR that effectively addresses the
aforementioned limitations. Figure 1 provides an overview
of PRIME. Proxies (Movshovitz-Attias et al., 2017) are
learnable, synthetic features that serve as representatives
of the global feature distribution. The key idea of PRIME
is to use proxies as explicit anchors for the desired feature
distribution—balanced (i.e., preserving minority features)
and well-ordered (i.e., reflecting the ordinality of target
values)—and to align sample features with these proxies. To
this end, we propose two novel loss functions: proxy loss
(Lproxy) and alignment loss (Lalign). Specifically, Lproxy struc-
tures the proxies in the feature space to reflect the ordinal
relationships of the targets while maintaining sufficient sep-
aration to enhance their representative power. Meanwhile,
Lalign promotes feature alignment with the corresponding
proxy based on target similarity. Unlike prior representation
learning methods (Gong et al., 2022; Keramati et al., 2024),
PRIME leverages rich sample-proxy relationships to pro-
vide holistic supervision for effective feature positioning.
By using proxies as reference points, PRIME steers features
toward the intended structure for both majority and minority
targets, resulting in more generalizable representations.

Furthermore, aligning each feature with its corresponding
proxy can be viewed as a classification task, where each
proxy serves as a class prototype. This perspective enables
PRIME to leverage advances in imbalanced classification to
promote balanced feature learning. Indeed, by integrating
class imbalance techniques, PRIME further enhances its
effectiveness in DIR, bridging the gap between imbalanced
regression and classification. To demonstrate its general
applicability, we incorporate three widely used methods
in imbalanced classification into PRIME: Proxy-wise Re-
Weighting (PRW) (Huang et al., 2016), Class-Balanced (CB)
loss (Cui et al., 2019), and Label-Distribution-Aware Margin
(LDAM) loss (Cao et al., 2019), all of which consistently
improve performance on minority targets.

In summary, our contributions are as follows: (i) We pro-
pose PRIME, a simple yet effective method for learning
balanced and well-ordered representations. To the best of
our knowledge, PRIME is the first to introduce proxies for
imbalanced regression. (ii) PRIME enables the application

of class imbalance techniques to regression setups, bridging
imbalanced regression and classification. (iii) We theoreti-
cally demonstrate that PRIME provides a bound on the gen-
eralization error under balanced test criteria. (iv) Extensive
experiments demonstrate the effectiveness and broad appli-
cability of PRIME, achieving up to 9.0%, 2.0%, 4.5%, and
3.7% lower regression error on minority targets compared to
state-of-the-art methods on AgeDB-DIR, IMDB-WIKI-DIR,
NYUD2-DIR, and STS-B-DIR, respectively.

2. Related Work
Imbalanced regression. Early studies (Yang et al., 2021;
Steininger et al., 2021) estimate effective label density using
kernel density estimation and re-weight samples accordingly.
Balanced MSE (Ren et al., 2022) modifies MSE in a man-
ner similar to logit adjustment, while VIR (Wang & Wang,
2023) introduces probabilistic re-weighting to capture pre-
diction uncertainty. However, these methods only focus on
the final predictions, which are complementary to our work.
RankSim (Gong et al., 2022) and ConR (Keramati et al.,
2024) regularize feature representations for imbalanced re-
gression, but are limited to intra-batch relationships, which
hinders effective learning of minority features. HCA (Xiong
& Yao, 2024) formulates regression as hierarchical classifi-
cation, incurring higher computational cost and quantization
errors. Recently, IM-Context (Nejjar et al., 2024) employs
in-context learning with large-scale models such as GPT to
handle data imbalance in regression tasks.

Representation learning for regression. Several stud-
ies have explored representations tailored for regression.
Rank-N-Contrast (Zha et al., 2023) ranks samples and con-
trasts them based on their relative rankings. Ordinal En-
tropy (Zhang et al., 2023a) promotes higher-entropy feature
space. In addition, contrastive learning approaches (Dufu-
mier et al., 2021a;b; Wang et al., 2022; Schneider et al.,
2023; Barbano et al., 2023) have been actively studied. How-
ever, these methods overlook the imbalanced target distri-
bution. In contrast, PRIME uses proxies to directly address
data imbalance and promote balanced representations.

Proxy learning. Proxies (or prototypes) have been widely
studied in deep metric learning (Movshovitz-Attias et al.,
2017; Kim et al., 2020; Teh et al., 2020; Lim et al., 2022)
and few-shot learning (Snell et al., 2017; Gao et al., 2019;
Pan et al., 2019), where each proxy serves as a class repre-
sentative. Similarly, learnable class centers (Cui et al., 2021;
Wang et al., 2021) have been proposed for imbalanced clas-
sification, but they do not extend naturally to regression,
where handling target-wise proxies is inherently complex.
While several studies (Mettes et al., 2019; Dufumier et al.,
2021a;b) have explored proxies for continuous values, these
methods rely on fixed proxies rather than learning adaptive
ones, which distinguishes our approach.

2



PRIME: Deep Imbalanced Regression with Proxies

3. Proposed Method
3.1. Problem Definition

We consider a regression problem that predicts the target
y ∈ Y based on the input x ∈ X , where the underlying
data distribution D is imbalanced. Specifically, we consider
the imbalanced training dataset S = {(xi,yi)}Ni=1 drawn
i.i.d. from D, where the target distribution p(y) significantly
deviates from uniformity. Given S , we aim to train a neural
network model h : X → Y composed of a feature encoder
f : X → Z and a predictor g : Z → Y , where Z represents
the feature space. We denote z = f(x) ∈ RF as the feature
of x and ŷ = g(z) ∈ RT as the prediction of y. Typically,
the encoder f and the predictor g are learned by minimizing
a regression loss (e.g., L1 loss) to ensure the prediction ŷ
aligns with the target y. However, the imbalanced target
distribution in S causes the predictions to be biased towards
the majority targets. Specifically, the features of minority
targets often collapse into those of the majority, leading to
higher test errors for minority targets (Yang et al., 2021).

To address this problem, we aim to construct well-ordered
feature representations, ensuring that samples closer in Y
are mapped closer in Z . Formally, we define the features
{zi}Ni=1 as well-ordered if the following condition holds
for all i, j, k ∈ [1, N ]: if dt(yi,yj) ≤ dt(yi,yk), then
df (zi, zj) ≤ df (zi, zk), where dt(·, ·) and df (·, ·) denote
distance metrics defined over Y and Z , respectively. By en-
couraging f to encode well-ordered features, we can prevent
the features of minority targets from collapsing into those
of the majority, enhancing the minority performance.

To this end, we propose PRIME, a simple and effective rep-
resentation learning scheme for imbalanced regression that
introduces synthetic reference points, referred to as prox-
ies (Movshovitz-Attias et al., 2017; Kim et al., 2020). At the
core of PRIME, we design proxies to represent a balanced
(i.e., uniform target distribution) and well-ordered feature
distribution, serving as anchors for representation learning
(§3.2). Then, we align features with proxies in accordance
with target similarity, providing global guidelines to struc-
ture the desired feature space (§3.3). Lastly, we demonstrate
that PRIME enables the application of class imbalance tech-
niques to imbalanced regression tasks (§3.4).

3.2. Proxy for Imbalanced Regression

We first introduce proxies, defined as synthetic data points in
the product space Z×Y . Concretely, we define C proxies as
P = {(zpi ,y

p
i )}

C
i=1, where zpi ∈ Z denotes a feature point

and yp
i ∈ Y its corresponding target. Our goal is to design P

to represent a balanced and well-ordered feature distribution.
To achieve this, we distribute {yp

i }
C
i=1 uniformly across the

target values. Specifically, for a scalar target, we compute
the minimum (ymin) and maximum (ymax) values of the tar-

gets from S and define {yp
i }

C
i=1 as the (C + 1)-quantiles

of the range [ymin, ymax]. For a multi-dimensional target, we
can employ K-means clustering to define {yp

i }
C
i=1 as the

cluster centers. Once {yp
i }

C
i=1 are determined, the corre-

sponding feature points {zpi }
C
i=1 are randomly initialized

and jointly learned as part of the model parameters.

Now, we formalize our proxy loss Lproxy, which ensures that
{zpi }

C
i=1 are well-ordered according to {yp

i }
C
i=1. Motivated

by stochastic neighbor embedding (Hinton & Roweis, 2002),
we define two probability distributions, P and Q, which
represent pairwise similarities among {yp

i }
C
i=1 and {zpi }

C
i=1,

respectively. We then optimize {zpi }
C
i=1 by aligning these

two distributions. Specifically, we define the probability
distribution P ∈ RC×C to represent pairwise similarities
within {yp

i }
C
i=1, with its (i, j)-th element defined as:

pij =
e−τtdt(y

p
i ,y

p
j )∑

k ̸=l e
−τtdt(y

p
k,y

p
l )
, (1)

where τt > 0 is the temperature hyperparameter, and we set
pii = 0. For nearby targets, pij is relatively high, while for
distant targets, pij is small. Similarly, we define the probabil-
ity distribution Q ∈ RC×C to represent pairwise similarities
within {zpi }

C
i=1, with its (i, j)-th element defined as:

qij =
e−τfdf (z

p
i ,z

p
j )∑

k ̸=l e
−τfdf (z

p
k,z

p
l )
. (2)

As before, τf > 0 is the temperature hyperparameter, and
we set qii = 0. Then, we minimize the Kullback-Leibler
divergence between P and Q:

DKL(P ∥ Q) =
∑
i̸=j

pij log
pij
qij

. (3)

By minimizing (3), {zpi }
C
i=1 are positioned to reflect sim-

ilarity orders of {yp
i }

C
i=1. However, since Z typically has

higher dimensions than Y , trivial solutions (e.g., appending
zeros to {yp

i }
C
i=1) may arise. To prevent trivial solutions and

promote diversity in {zpi }
C
i=1, we introduce a regularization

term that encourages features to spread apart. Specifically,
we increase the cosine distance between zpi and zpj propor-
tionally to dt(y

p
i ,y

p
j ). Hence, Lproxy is defined as:

Lproxy =
∑
i ̸=j

{
pij log

pij
qij

− wij(1− cos θzp
i ,z

p
j
)2
}
, (4)

where wij = αdt(y
p
i ,y

p
j ) with α > 0. In Lproxy, the first

term ensures that proxies are well-ordered, while the second
term promotes feature space uniformity (Wang & Isola,
2020), encouraging expressive representations that fully
utilize the entire feature space.
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3.3. Proxy-based Representation Learning

We leverage the proxy set P = {(zpi ,y
p
i )}

C
i=1 as explicit

anchors to provide informative associations during rep-
resentation learning. Concretely, given a training sample
(x,y) ∈ S, its feature z is associated with {zpi }

C
i=1. These

feature associations are represented by the association vector
A ∈ RC , where the j-th element is defined as:

Aj =
e−τfdf (z,z

p
j )∑C

k=1 e
−τfdf (z,z

p
k)
. (5)

Here, Aj quantifies the association between z and zpj , repre-
senting the likelihood that z would select zpj as its neighbor
based on feature similarity. We aim to ensure that such as-
sociations are stronger for proxies closer in Y and weaker
for those farther away. To this end, we define T ∈ RC to
represent the target associations between y and {yp

i }
C
i=1,

where the j-th element is defined as:

Tj =
e−τtdt(y,y

p
j )∑C

k=1 e
−τtdt(y,y

p
k)
. (6)

To align the feature associations A with the target associa-
tions T, we formalize our alignment loss Lalign. Specifically,
Lalign is defined as the cross-entropy between A and T:

Lalign = −
C∑

j=1

Tj logAj . (7)

In essence, Lalign aligns the sample feature with proxies
by pulling z closer to proxies with similar targets while
pushing it away from proxies with dissimilar targets. Since
{yp

i }
C
i=1 balance the target distribution and {zpi }

C
i=1 are

well-ordered with maximal representative power, the proxies
serve as global guidelines for structuring the desired feature
space, enabling the encoder f to learn more generalizable
representations for imbalanced regression.

Finally, the overall loss function LPRIME is defined as:

LPRIME(x,y;h,P) = Lreg + λpLproxy + λaLalign, (8)

where Lreg is the task-specific regression loss, and λp > 0
and λa > 0 are trade-off hyperparameters for Lproxy and
Lalign, respectively. Note that the model parameters of h and
the proxy features {zpi }

C
i=1 are jointly optimized by mini-

mizing LPRIME. Furthermore, our PRIME is orthogonal to
other imbalanced regression methods and can be seamlessly
integrated with existing approaches by simply adding Lproxy
and Lalign to the respective regression loss Lreg.

3.4. Leveraging Class Imbalance Techniques

Although proxies represent a balanced feature distribution,
the alignment process in (7) still faces challenges due to sam-
ple imbalance. Minority samples, occurring less frequently,

often struggle to align properly with their proxies, leading
to suboptimal feature representations. Notably, we tackle
this issue by leveraging class imbalance techniques.

Attentive readers may notice that PRIME naturally aligns
with classification, where each proxy acts as a class center,
and Lalign in (7) functions as a classification loss. Hence,
any loss-based class imbalance techniques can be seam-
lessly integrated into our framework. Here, we showcase
the application of three widely used techniques, Proxy-wise
Re-Weighting (PRW) (Huang et al., 2016), Class-Balanced
(CB) loss (Cui et al., 2019), and Label-Distribution-Aware
Margin (LDAM) loss (Cao et al., 2019), into PRIME.

PRIME + PRW. Re-weighting (Huang et al., 2016; Wang
et al., 2017), which assigns adaptive weights to different
classes inversely proportional to their frequency, is the most
fundamental approach to addressing class imbalance. PRW
adapts this to the proxy setting. Specifically, for each batch,
we define the scaling variable sj for the j-th proxy as
sj = C

Nb

∑Nb

i=1 Tj |y=yi , where Nb denotes the batch size.
Intuitively, sj represents the proxy frequency, i.e., the num-
ber of samples in the batch associated with the j-th proxy.
Consequently, the alignment loss with PRW is defined as:

Lalign-PRW = −
C∑

j=1

1

ŝj
Tj logAj , (9)

where ŝj = max(sj , δmin), with δmin > 0 as a hyperparame-
ter to truncate excessively small sj for stable training.

PRIME + CB. CB loss(Cui et al., 2019) is another seminal
work on class imbalance that introduces re-weighting based
on the inverse effective number of samples. The alignment
loss with CB is given as follows:

Lalign-CB = −
C∑

j=1

1− β

1− βnj
Tj logAj , (10)

where β ∈ [0, 1) denotes the effective number parameter
and nj represents the total number of samples belonging to
the j-th proxy. We compute nj by assigning each training
sample to the proxy with the closest target. Following (Cui
et al., 2019), we set β = 0.99 for all experiments.

PRIME + LDAM. Margin-based loss functions have also
been extensively studied for class imbalance. As the feature
association in (5) corresponds to the classification logit,
margin-based losses can also be applied without algorithmic
changes. LDAM loss (Cao et al., 2019) is one of the most
popular margin-based losses, encouraging larger margins
for minority classes. The alignment loss formulated with
LDAM is defined as follows:

Lalign-LDAM = −
C∑

j=1

Tj log
efj−∆j

efj−∆j +
∑

k ̸=j e
fk
, (11)
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where fj = −τfdf (z, z
p
j ), and ∆j = M/n

1/4
j , with M as

a hyperparameter, denotes the margin for the j-th proxy.

Remark. The use of class imbalance techniques ensures
that minority samples receive sufficient alignment focus,
ultimately leading to more balanced feature learning. Impor-
tantly, PRIME is generalizable and facilitates the use of a
wide range of class imbalance techniques, which lays the
foundation for future research exploring additional methods.
Further discussion is provided in Appendix C.4.

4. Theoretical Analysis
In imbalanced regression, the ultimate goal is to learn a
model h = g◦f that minimizes the expected regression error
(or risk) under balanced test criteria, denoted as Rbal(h). In
this section, we prove that optimizing our loss function
LPRIME in (8) bounds the balanced risk Rbal(h), supporting
the effectiveness of our PRIME.

The balanced risk associated with LPRIME is defined as:

RL
bal(h) = Ebal

[
LPRIME(x,y;h,P)

]
, (12)

where Ebal[·] represents the expectation over the balanced
distribution. Note that, as LPRIME accounts for both the re-
gression error and the feature alignment error, it is straight-
forward to show that Rbal(h) ≤ RL

bal(h). Unfortunately,
since the balanced distribution is unknown, we can only
minimize the empirical risk based on the imbalanced train-
ing set S. The empirical risk R̂S(h) is defined as:

R̂S(h) =
1

N

N∑
i=1

LPRIME(xi,yi;h,P). (13)

Let ξ : Ω → {1, . . . , C} be a random variable representing
the index of proxy. Note that ξ is a hypothetical random
variable with the probability distribution is defined as:

p(ξ) =

∫
q(ξ|y)p(y)dy, (14)

where q(ξ|y) represents our probabilistic model for p(ξ|y),
and the target association Tj in (6) offers a natural way to
define q(ξ = j|y). We then formalize the skewness of the
underlying distribution D, as follows:

CD = max

{
sup
y

pbal(y)

p(y)
,max

j

pbal(ξ = j)

p(ξ = j)

}
, (15)

where pbal(y) and pbal(ξ) denote the balanced distributions
(i.e., uniform distributions) over y and ξ, respectively. The
term CD ≥ 1 quantifies the imbalance in D, taking larger
values as the imbalance becomes more severe, and equals 1
when D is perfectly balanced.

Theorem 4.1. For any positive δ ≪ 1, with probability at
least 1− 2δ, the following generalization bound holds for
all h ∈ H and f ∈ F:

RL
bal(h) ≤ CD

[
R̂S(h) + ΦS(H, δ) + λaΦS(F , δ)

]
,

(16)
where ΦS(H, δ) and ΦS(F , δ) represent the empirical
Rademacher complexities of H and F with some additional
terms, respectively.

Proof. Please refer to Appendix A.2.

Theorem 4.1 confirms that optimizing LPRIME provides a
bound on the generalization error under a balanced testing
distribution. Further analysis can be found in Appendix A.

5. Experiments
5.1. Experimental Setup

Datasets. We conduct experiments on four real-world im-
balanced regression benchmarks introduced by (Yang et al.,
2021): (i) AgeDB-DIR is a facial age estimation dataset
derived from AgeDB (Moschoglou et al., 2017). (ii) IMDB-
WIKI-DIR is an age estimation dataset constructed from
IMDB-WIKI (Rothe et al., 2018). (iii) NYUD2-DIR is de-
rived from the NYU Depth Dataset V2 (Silberman et al.,
2012) for depth prediction from RGB indoor scenes. (iv)
STS-B-DIR is a natural language dataset based on STS-
B (Cer et al., 2017; Wang, 2018), providing continuous
similarity scores between pairs of sentences. Detailed de-
scriptions of these datasets are provided in Appendix B.1.

Evaluation metrics. For each dataset, we adopt metrics
from (Gong et al., 2022; Keramati et al., 2024). For AgeDB-
DIR and IMDB-WIKI-DIR, we use Mean Absolute Error
(MAE) and Geometric Mean (GM). For NYUD2-DIR, we
adopt Root Mean Squared Error (RMSE) and Threshold
Accuracy (δ1). For STS-B-DIR, we employ Mean Squared
Error (MSE) and Pearson correlation. For all datasets, we
report results for four subsets: All, Many, Median, and Few.
All refers to the entire test set. Based on the number of
training samples per label, Many includes labels with over
100 samples, Median covers those with 20 to 100 samples,
and Few consists of labels with fewer than 20 samples.

Baselines. We compare our method against state-of-the-art
approaches for DIR, including re-weighting (SQInv and
Inv) (Yang et al., 2021), Label Distribution Smoothing
(LDS) (Yang et al., 2021), Feature Distribution Smooth-
ing (FDS) (Yang et al., 2021), Balanced MSE (Ren et al.,
2022), RankSim (Gong et al., 2022), VIR (Wang & Wang,
2023), ConR (Keramati et al., 2024), HCA (Xiong & Yao,
2024), and IM-Context (Nejjar et al., 2024). For all methods,
we use the official implementations when available.
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Table 1. Comparison with state-of-the-art methods on AgeDB-DIR. † indicates that the results are quoted from the original paper, as
the code is not publicly available. The best results are marked in bold, while the second best are underlined.

Method MAE (↓) GM (↓)

All Many Median Few All Many Median Few

SQInv (MAE) 7.42±0.06 6.78±0.12 8.55±0.18 10.71±0.31 4.77±0.08 4.37±0.14 5.73±0.23 7.39±0.36

LDS (Yang et al., 2021) 7.51±0.08 6.93±0.04 8.43±0.22 10.40±0.52 4.80±0.05 4.44±0.05 5.50±0.26 6.98±0.58

FDS (Yang et al., 2021) 7.45±0.09 6.84±0.10 8.52±0.17 10.21±0.22 4.75±0.10 4.37±0.09 5.57±0.27 6.69±0.51

LDS + FDS (Yang et al., 2021) 7.40±0.08 6.82±0.06 8.26±0.17 10.45±0.45 4.70±0.09 4.29±0.06 5.58±0.20 6.97±0.60

Balanced MSE (Ren et al., 2022) 7.60±0.19 7.00±0.29 8.08±0.15 11.96±0.30 4.83±0.15 4.43±0.20 5.34±0.25 8.42±0.08

RankSim (Gong et al., 2022) 7.10±0.05 6.48±0.03 8.19±0.14 10.32±0.14 4.53±0.07 4.10±0.06 5.46±0.16 6.95±0.16

VIR (Wang & Wang, 2023) 7.39±0.05 6.73±0.05 8.42±0.16 10.86±0.28 4.66±0.06 4.22±0.09 5.51±0.14 7.51±0.24

ConR (Keramati et al., 2024) 7.34±0.07 6.74±0.04 8.34±0.31 10.26±0.25 4.73±0.11 4.34±0.07 5.59±0.40 6.80±0.47

HCA†
(Xiong & Yao, 2024) 7.45 6.86 8.22 10.90 - - - -

PRIME 7.09±0.08 6.38±0.11 8.39±0.26 10.13±0.36 4.39±0.08 3.91±0.10 5.58±0.22 6.57±0.49

PRIME + PRW 7.06±0.09 6.67±0.09 7.27±0.25 9.91±0.16 4.39±0.08 4.14±0.09 4.69±0.20 6.39±0.16

PRIME + CB 7.12±0.09 6.61±0.09 8.07±0.11 9.29±0.68 4.47±0.05 4.16±0.08 5.23±0.07 5.81±0.46

PRIME + LDAM 7.24±0.06 6.85±0.14 7.84±0.31 9.29±0.44 4.47±0.07 4.26±0.12 4.89±0.25 5.60±0.54

Table 2. Comparison with state-of-the-art methods on IMDB-WIKI-DIR. † indicates that the results are quoted from the original
paper, as the code is not publicly available. The best results are marked in bold, while the second best are underlined.

Method MAE (↓) GM (↓)

All Many Median Few All Many Median Few

SQInv (MAE) 7.57±0.04 6.98±0.04 12.23±0.14 23.21±0.13 4.23±0.03 3.99±0.03 6.94±0.13 15.25±0.99

LDS (Yang et al., 2021) 7.75±0.05 7.15±0.05 12.70±0.17 22.77±0.43 4.39±0.06 4.13±0.05 7.43±0.18 14.14±0.67

FDS (Yang et al., 2021) 7.58±0.03 6.98±0.04 12.50±0.12 23.05±0.18 4.25±0.01 3.99±0.01 7.41±0.12 14.89±0.74

LDS + FDS (Yang et al., 2021) 7.75±0.08 7.16±0.08 12.47±0.18 22.80±0.30 4.39±0.08 4.15±0.08 7.17±0.24 14.47±0.23

Balanced MSE (Ren et al., 2022) 7.95±0.12 7.39±0.14 12.27±0.29 23.35±0.67 4.57±0.12 4.34±0.12 7.03±0.27 15.04±0.75

RankSim (Gong et al., 2022) 7.43±0.04 6.85±0.03 12.06±0.24 22.77±0.29 4.14±0.03 3.91±0.02 6.80±0.27 13.47±1.22

VIR (Wang & Wang, 2023) 7.51±0.07 6.90±0.09 12.49±0.46 23.34±0.59 4.16±0.09 3.90±0.10 7.35±0.36 15.73±0.99

ConR (Keramati et al., 2024) 7.45±0.05 6.87±0.04 12.07±0.25 22.78±0.77 4.15±0.05 3.92±0.04 6.77±0.31 14.61±1.41

HCA†
(Xiong & Yao, 2024) 7.54 6.91 12.69 22.96 - - - -

PRIME 7.36±0.05 6.73±0.06 12.48±0.23 23.01±0.92 3.98±0.04 3.73±0.05 7.17±0.24 14.38±1.16

PRIME + PRW 7.37±0.03 6.74±0.03 12.04±0.28 22.34±0.23 4.00±0.05 3.76±0.07 6.67±0.34 13.45±1.32

PRIME + CB 7.48±0.01 6.90±0.02 12.05±0.15 22.71±0.42 4.15±0.03 3.91±0.02 6.74±0.16 13.91±0.50

PRIME + LDAM 7.49±0.04 6.91±0.04 12.23±0.18 22.32±0.26 4.17±0.06 3.94±0.05 6.94±0.29 13.44±0.60

Implementation details. For all experiments, we adopt the
benchmark settings of (Yang et al., 2021). To ensure fair
comparisons, we use the same backbones and training set-
tings as prior work (e.g., RankSim (Gong et al., 2022) and
ConR (Keramati et al., 2024)), tuning only the hyperparam-
eters of PRIME. For AgeDB-DIR and IMDB-WIKI-DIR,
we use ResNet50 (He et al., 2016) as the backbone, while
for NYUD2-DIR, we adopt the ResNet50-based encoder-
decoder architecture (Hu et al., 2019). For STS-B-DIR, we
employ BiLSTM + GloVe (Pennington et al., 2014) word
embeddings as the feature extractor. Our proxy features
{zpi }

C
i=1 are randomly initialized using He initialization (He

et al., 2015) and learned jointly with the model parameters.
All results are reported as mean and standard deviation over
five independent runs. The complete implementation details
are provided in Appendix B.2.

5.2. Main Results

Age estimation. Tables 1 and 2 show the overall results on
AgeDB-DIR and IMDB-WIKI-DIR, respectively. For fair
comparisons, LDS, FDS, RankSim, ConR, and our methods
all use the square root inverse (SQInv) re-weighted MAE
loss as the regression loss, following the convention of (Yang
et al., 2021). Notably, PRIME itself already achieves state-
of-the-art performance on both datasets, highlighting the
effectiveness of the proposed proxy-based approach. Fur-
thermore, PRW, CB, and LDAM consistently improve per-
formance in the Median and Few categories.

To further validate the effectiveness of PRIME, we addition-
ally compare it against IM-Context (Nejjar et al., 2024),
a recent method that leverages large-scale models (e.g.,
GPT2 (Garg et al., 2022) and PFN (Müller et al., 2022)) for
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Table 3. Comparison with state-of-the-art methods on NYUD2-DIR. † indicates that the results are quoted from the original paper, as
the code is not publicly available. The best results are marked in bold, while the second best are underlined.

Method RMSE (↓) δ1 (↑)

All Many Median Few All Many Median Few

Inv (RMSE) 1.314±0.022 0.751±0.050 0.894±0.056 1.801±0.037 0.687±0.016 0.666±0.033 0.740±0.025 0.688±0.017

LDS 1.386±0.038 0.690±0.038 0.887±0.010 1.952±0.067 0.668±0.027 0.701±0.030 0.730±0.011 0.612±0.040

FDS 1.343±0.019 0.727±0.044 0.883±0.043 1.865±0.037 0.685±0.014 0.686±0.026 0.749±0.032 0.660±0.023

LDS + FDS 1.335±0.056 0.691±0.051 0.883±0.022 1.865±0.110 0.686±0.010 0.699±0.025 0.743±0.018 0.666±0.036

Balanced MSE 1.307±0.021 0.819±0.027 0.881±0.042 1.761±0.037 0.672±0.014 0.595±0.015 0.808±0.012 0.698±0.020

ConR 1.326±0.030 0.837±0.038 0.885±0.063 1.784±0.079 0.677±0.006 0.604±0.019 0.812±0.021 0.690±0.026

HCA† 1.475 - - - 0.689 - - -

PRIME 1.292±0.020 0.782±0.022 0.881±0.019 1.752±0.044 0.687±0.004 0.624±0.008 0.810±0.005 0.704±0.015

PRIME + PRW 1.272±0.032 0.837±0.011 0.920±0.020 1.682±0.061 0.689±0.003 0.607±0.007 0.814±0.012 0.724±0.016

PRIME + CB 1.295±0.032 0.823±0.020 0.900±0.034 1.734±0.066 0.685±0.005 0.605±0.008 0.819±0.021 0.712±0.027

PRIME + LDAM 1.302±0.009 0.807±0.030 0.871±0.032 1.758±0.037 0.682±0.002 0.613±0.011 0.822±0.013 0.698±0.017

Table 4. Comparison with state-of-the-art methods on STS-B-DIR. The best results are in bold, while the second best are underlined.

Method MSE (↓) Pearson correlation (↑)

All Many Median Few All Many Median Few

Inv (MSE) 1.298±0.072 1.300±0.099 1.281±0.090 1.319±0.068 0.628±0.016 0.603±0.019 0.596±0.015 0.663±0.016

LDS 0.990±0.038 0.931±0.052 1.270±0.048 0.954±0.020 0.742±0.013 0.703±0.015 0.701±0.018 0.766±0.007

FDS 1.262±0.091 1.254±0.147 1.274±0.217 1.316±0.064 0.606±0.015 0.592±0.027 0.612±0.014 0.665±0.007

LDS + FDS 0.974±0.007 0.929±0.008 1.161±0.030 0.983±0.051 0.747±0.003 0.709±0.003 0.709±0.003 0.755±0.017

RankSim 0.980±0.014 0.928±0.024 1.208±0.088 0.985±0.025 0.745±0.002 0.707±0.004 0.702±0.014 0.756±0.009

PRIME 0.970±0.004 0.894±0.012 1.325±0.062 0.930±0.035 0.750±0.003 0.712±0.003 0.710±0.010 0.773±0.010

PRIME + PRW 0.967±0.004 0.885±0.010 1.351±0.061 0.925±0.017 0.753±0.002 0.715±0.003 0.711±0.011 0.775±0.006

PRIME + CB 0.980±0.008 0.906±0.010 1.335±0.079 0.922±0.028 0.748±0.001 0.708±0.001 0.711±0.004 0.777±0.009

PRIME + LDAM 0.975±0.016 0.893±0.006 1.366±0.084 0.919±0.053 0.751±0.003 0.712±0.003 0.709±0.014 0.778±0.015

in-context learning in regression. Following IM-Context, we
adopt the pre-trained CLIP image encoder (ViT-B/32) (Rad-
ford et al., 2021) as the backbone, and fine-tune it jointly
with a two-layer MLP regression head using our PRIME
loss. To ensure robustness, we report the average perfor-
mance of PRIME over five independent runs. As shown
in Table 5, PRIME substantially outperforms both PFN-
localized and GPT2-localized across all evaluation metrics.
These results confirm that PRIME remains effective even
on top of a strong pre-trained backbone model, highlighting
its compatibility with powerful feature extractors.

Depth estimation. Table 3 presents the depth estimation re-
sults on NYUD2-DIR, a more challenging setting where the
high-dimensional target space exhibits non-linear relation-
ships. Following ConR, we measure target similarity based
on the difference between the average depth values and use
Balanced MSE as the regression loss. PRIME outperforms
Balanced MSE and ConR, demonstrating its effectiveness
even for complex targets. Notably, PRIME significantly
improves performance in the Few category, underscoring
its ability to mitigate data imbalance. Furthermore, incor-
porating PRW, CB, and LDAM further enhances minority

performance, achieving state-of-the-art results across the
All, Median, and Few categories.

Text similarity estimation. Table 4 reports the performance
on STS-B-DIR. Since STS-B-DIR exhibits a highly discrete
target distribution (Yang et al., 2021), we smooth it using
LDS and employ inverse (INV) re-weighted MSE loss as the
regression loss, following RankSim. Overall, PRIME and
its variants achieve state-of-the-art results, demonstrating
their effectiveness across diverse target domains.

5.3. Analysis

PRIME facilitates effective feature learning. We investi-
gate the effect of proxies on feature learning. Figure 2 illus-
trates feature space similarities between the learned proxies
and the features of the test samples in AgeDB-DIR. For
clarity, data points are sorted by their target values, with the
expectation that matrix values gradually decrease from the
diagonal to the periphery. As shown in Figure 2(a), thanks
to Lproxy, the proxies are well-ordered in the feature space
according to their target values. Figure 2(b) confirms that
features are generally well aligned with their corresponding
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Table 5. Comparison with IM-Context on AgeDB-DIR and IMDB-WIKI-DIR. IM-Context results are taken from the original paper.
Both PRIME and the two IM-Context variants (PFN-localized and GPT2-localized) use the CLIP image encoder (ViT-B/32) as their
feature extractor. Under the same backbone, PRIME achieves consistently superior performance.

Method MAE (↓) GM (↓)

All Many Median Few All Many Median Few

Results for AgeDB-DIR:
PFN-localized (Nejjar et al., 2024) 6.58 5.61 8.49 10.49 4.29 3.58 6.30 8.19
GPT2-localized (Nejjar et al., 2024) 6.05 5.67 6.71 7.83 3.79 3.59 4.17 4.90
PRIME 5.47±0.03 5.46±0.08 5.48±0.23 5.57±0.35 3.48±0.05 3.45±0.07 3.64±0.13 3.35±0.27

Results for IMDB-WIKI-DIR:
PFN-localized (Nejjar et al., 2024) 8.96 8.71 10.79 16.33 5.26 5.17 6.00 9.42
GPT2-localized (Nejjar et al., 2024) 7.76 7.35 11.15 17.71 4.29 4.13 5.96 11.00
PRIME 6.42±0.03 5.98±0.05 9.92±0.32 16.28±0.57 3.49±0.02 3.33±0.04 5.17±0.32 9.41±0.51
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Figure 2. Feature space similarities on AgeDB-DIR. (a) Simi-
larity matrix among proxies. (b) Similarity matrix between proxies
and the means of their associated features. (c) Similarity matrices
among features, with (right) and without (left) PRIME.

proxies1. The plot on the left of Figure 2(c) shows that, with-
out PRIME, the features are poorly ordered, and the model
fails to learn effective representations—particularly for mi-
nority targets (i.e., those at both ends of the matrix diagonal).
As shown in the right plot of Figure 2(c), incorporating prox-
ies allows PRIME to guide the features towards the intended
structure for both majority and minority targets, resulting in
more balanced and well-ordered representations.

PRIME ensures well-ordered representations in the Few
category. To assess how well PRIME captures the ordinal-
ity of target values, we evaluate the Spearman correlation
between feature and label similarity matrices on the AgeDB-
DIR test set. A higher correlation suggests that the learned
features more faithfully reflect the ordinal structure of the
label space, which is an essential property for effective re-
gression. As shown in Table 6, PRIME achieves consistently
strong correlations across All samples and, notably, main-
tains a high correlation in the Few category. In contrast,
RankSim and ConR exhibit marked degradation in this un-
derrepresented regime. These results underscore the strength
of our proxy-based formulation, which offers holistic guid-
ance for feature positioning and enables minority samples
to align with the overall label structure.

1See Appendix C.1 for a discussion on the twisted pattern in
the top left of Figure 2(b).

Table 6. Spearman correlation between feature and label sim-
ilarities on AgeDB-DIR. A higher correlation indicates better
alignment between learned features and targets, implying more
well-ordered representations.

Method All Few

RankSim (Gong et al., 2022) 0.804±0.008 0.587±0.036

ConR (Keramati et al., 2024) 0.790±0.024 0.614±0.043

PRIME 0.942±0.008 0.828±0.020

Table 7. Comparison with representation learning methods for
general regression. See Appendix C.1 for the complete results.

Method MAE (↓) GM (↓)

HPN (Mettes et al., 2019) 7.38±0.08 4.66±0.09

Ordinal Entropy (Zhang et al., 2023a) 7.33±0.08 4.68±0.07

Rank-N-Contrast (Zha et al., 2023) 7.27±0.05 4.69±0.04

PRIME 7.09±0.08 4.39±0.08

Comparison with recent representation learning meth-
ods for general regression. To further demonstrate the
effectiveness of PRIME, we compare it with three recent
techniques proposed for general regression: HPN (Mettes
et al., 2019), Ordinal Entropy (Zhang et al., 2023a), and
Rank-N-Contrast (Zha et al., 2023). As shown in Table 7,
PRIME achieves clear margins over the compared baselines.
In particular, compared to HPN, which uses fixed proto-
types on a hypersphere, PRIME achieves significantly better
performance, verifying the effectiveness of our proxy de-
sign tailored for DIR. Notably, PRIME outperforms Ordinal
Entropy and Rank-N-Contrast—two leading representation
learning methods for general regression—highlighting its
ability to learn robust and reliable representations under
imbalanced target distributions.

Effectiveness of our proxy formulation. To validate the
effectiveness of our proxy formulation, we compare PRIME
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(a) ConR (b) PRIME (c) PRIME + PRW (d) PRIME + CB (e) PRIME + LDAM

Figure 3. Feature visualization with t-SNE on AgeDB-DIR. By leveraging proxies as global reference points, PRIME clearly demon-
strates well-ordered features with fewer minority feature collapses, effectively capturing the continuity of target values.

Table 8. Comparison with proxy-based alternatives on AgeDB-
DIR. See Appendix C.1 for the complete results.

Method MAE (↓) GM (↓)

ProxyNCA (Movshovitz-Attias et al., 2017) 7.33±0.08 4.64±0.06

Non-learnable (centroid) 7.10±0.05 4.53±0.07

PRIME 7.09±0.08 4.39±0.08

Table 9. Ablation study on AgeDB-DIR. See Appendix C.1 for
the complete results.

Init. yp
i Lproxy Align MAE (↓) GM (↓)

M1 Random - One-Hot 7.34±0.08 4.66±0.07

M2 Random ✓ One-Hot 7.24±0.09 4.61±0.12

M3 Unif. ✓ One-Hot 7.23±0.12 4.55±0.12

M4 Unif. ✓ Eq. (6) 7.09±0.08 4.39±0.08

with two proxy-based alternatives: ProxyNCA (Movshovitz-
Attias et al., 2017) and a non-learnable variant of PRIME.
For ProxyNCA, we adapt the original method to the regres-
sion setup by assigning proxies so that associated targets are
uniformly distributed, as in PRIME. For the non-learnable
variant, proxy features are updated as the centroids of sam-
ple features assigned to each proxy, rather than learned. As
shown in Table 8, PRIME consistently outperforms both
ProxyNCA and the non-learnable variant, attributed to its
formulation that optimizes learnable proxies to preserve
the ordinal structure of the target space. This leads to more
stable and effective feature representations, particularly in
data-sparse regions.

Ablation study. As shown in Table 9, we ablate three key
design choices: (i) whether to randomly initialize {yp

i }
C
i=1

or assign them uniformly in the target space, (ii) whether
to include Lproxy, and (iii) whether to perform feature align-
ment as in (6) or align features to their nearest proxy using a
one-hot strategy. Comparing the ablation models, M1 to M2
shows a significant performance gain, demonstrating the
effectiveness of Lproxy. From M2 to M3, assigning proxies
uniformly in the target space provides a slight improve-

ment over random initialization. Finally, from M3 to M4
(PRIME), performance further improves, as regression deals
with continuous targets, making distance proportional as-
signment as in (6), more effective than one-hot encoding.

Feature visualization. Figure 3 presents t-SNE (Van der
Maaten & Hinton, 2008) visualizations of the learned rep-
resentations from the AgeDB-DIR test set. As shown in
Figure 3(a), ConR is biased toward learning discriminative
representations only for majority targets (red), failing to
capture the continuity of target values. Moreover, minority
features (blue and green) collapse into the majority (red),
leading to poor performance for minority targets. In Fig-
ure 3(b), PRIME produces well-ordered features with fewer
minority feature collapses, effectively capturing the continu-
ity of target values. Figure 3(b)-(d) shows that incorporating
class imbalance techniques further promotes balanced fea-
ture learning, leading to more structured representations.

Computational efficiency (Appendix C.2). We confirm
that PRIME offers training efficiency comparable to other
imbalanced regression methods.

Hyperparameter sensitivity (Appendix C.3). We analyze
the impact of PRIME’s hyperparameters (C, λp, λa, τf , τt,
and α). Overall, PRIME demonstrates reliable and robust
performance across a wide range of hyperparameter choices.

6. Conclusion
We introduce PRIME, a novel representation learning frame-
work for imbalanced regression that leverages proxies to
learn balanced and well-ordered feature representations. By
using proxies as global reference points, PRIME facilitates
effective feature learning for both majority and minority tar-
gets. Theoretical analysis and extensive experiments on four
benchmark datasets spanning diverse target domains demon-
strate its effectiveness. Furthermore, PRIME seamlessly
integrates with any loss-based class imbalance technique.
We believe our work provides a flexible and unified frame-
work for incorporating various class imbalance techniques
into regression problems, introducing a new paradigm for
addressing imbalanced regression.
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Impact Statement
This paper presents work whose goal is to advance the field
of imbalanced regression. Imbalanced regression can have
societal implications, particularly in applications where ac-
curate predictions across the entire target range are critical.
For instance, in social sciences, models trained on imbal-
anced data may disproportionately favor well-represented
groups while yielding less reliable predictions for underrep-
resented populations. Such biases can exacerbate existing
inequalities, leading to unfair decision-making. Our work
can mitigate these issues and contribute to more equitable
predictive modeling.
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Appendix
The Appendix includes additional descriptions, experimental results, and analyses omitted from the main manuscript due to
space constraints. In Section A, we present a detailed theoretical analysis. In Section B, we provide further details on the
experimental setup. In Section C, we report additional experimental results and analyses.

A. Detailed Theoretical Analysis
In this section, we provide theoretical justifications for the proposed method. In §A.1, we provide a complete description of
the definitions and notations used in this analysis. In §A.2, we present the proof of Theorem 4.1 from the main manuscript.
In §A.3, we present an extended theoretical analysis of Theorem 4.1 under non-optimal proxy settings. In §A.4, we provide
further theoretical evidence for the claim that the use of class imbalance techniques promotes balanced feature learning.

A.1. Definitions and Notations

We first rigorously clarify the underlying probabilistic distributions used throughout the paper. Specifically, while x and y
are random variables with a given probability density function p(x,y), the corresponding proxy index ξ is a hypothetical
random variable for which we need to define a probability distribution. Therefore, we define our joint probability density
function as follows:

p(x,y, ξ) := p(x|y)q(ξ|y)p(y), (17)

where q(ξ|y) is our probabilistic modeling function of p(ξ|y). For instance, in PRIME, we take

q(ξ = j|y) = Tj =
e−τtdt(y,y

p
j )∑C

k=1 e
−τtdt(y,y

p
k)

for j = 1, . . . , C. (18)

Next, the balanced distributions for y and ξ are defined as follows:

pbal(x,y) :=p(x|y)pbal(y), (19)
pbal(x,y, ξ) :=p(x,y|ξ)pbal(ξ). (20)

Here, pbal(y) and pbal(ξ) correspond to the uniform distributions over the spaces Y and {1, . . . , C}, respectively.

We assume that the proxies are optimally positioned2, i.e., Lproxy = 0. This assumption is justified, as the proxies can be
pre-optimized using (4) prior to model training. Hence, LPRIME in (8) simplifies to Lreg + λaLalign. Then, our balanced risk
is defined as the weighted sum of the balanced regression risk and the balanced alignment risk:

RL
bal(h) :=

∫
Lreg(g ◦ f(x),y)pbal(x,y)︸ ︷︷ ︸

balanced regression risk (i.e.,Rbal(h))

+λa

∫
(− log pθ(ξ|x)) pbal(x,y, ξ)dxdydξ︸ ︷︷ ︸

balanced alignment risk

, (21)

where pθ(ξ|x) is our feature association with proxy, which we take

pθ(ξ = j|x) = Aj =
e−τfdf (z,z

p
j )∑C

k=1 e
−τfdf (z,z

p
k)

for j = 1, . . . , C (22)

in our PRIME model. Note that the balanced risk with respect to RL
bal(h) is always greater than the balanced regression risk

Rbal(h) because the balanced alignment risk is always positive.

2We later relax this assumption and extend the analysis to non-optimal proxy settings; see Section A.3.
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A.2. Proof of Theorem 4.1

Theorem A.1 (Full description of Theorem 4.1). For any positive δ ≪ 1, with probability at least 1− 2δ, the following
generalization bound holds for all h ∈ H and f ∈ F:

RL
bal(h) ≤ CD

[
1

n

n∑
i=1

Lreg(g ◦ f(xi),yi)− λa
1

n

n∑
i=1

C∑
j=1

q(ξ = j|yi) log pθ(ξ = j|xi)︸ ︷︷ ︸
R̂S(h)

+ 2µLregR̂S(H) + 3MLreg

√
log 2

δ

2n︸ ︷︷ ︸
ΦS(H,δ)

+λa 2µLR̂S(F) + 3ML

√
log 2

δ

2n︸ ︷︷ ︸
ΦS(F,δ)

]
,

where CD := max
{
supy

pbal(y)
p(y) ,maxj

pbal(ξ=j)
p(ξ=j)

}
, µLreg and µL are Lipschitz continuity of y 7→ Lreg(y,y

′) for all y ∈ Y

for any fixed y′ ∈ Y and x 7→
∑C

j=1 −q(ξ = j|y′) log pθ(ξ = j|x) for all x ∈ X for any fixed y′ ∈ Y , respectively, MLreg

and ML are constants satisfying Lreg(y,y
′) < MLreg for all y,y′ ∈ Y and

∑C
j=1 −q(ξ = j|y) log pθ(ξ = j|x) < ML for

all (x,y) ∈ X × Y , respectively, and R̂S denotes the Rademacher complexity.

Proof.

RL
bal(h) =

∫
Lreg(g ◦ f(x),y)pbal(x,y)dxdy + λa

∫
(− log pθ(ξ|x)) pbal(x,y, ξ)dxdydξ

=

∫
Lreg(g ◦ f(x),y)p(x|y)pbal(y)dxdy + λa

∫
(− log pθ(ξ|x)) p(x,y|ξ)pbal(ξ)dxdydξ

≤
(
sup
y

pbal(y)

p(y)

)∫
Lreg(g ◦ f(x),y)p(x|y)p(y)dxdy

+

(
max

j

pbal(ξ = j)

p(ξ = j)

)
λa

∫
(− log pθ(ξ|x)) p(x,y|ξ)p(ξ)dxdydξ

=

(
sup
y

pbal(y)

p(y)

)∫
Lreg(g ◦ f(x),y)p(x,y)dxdy

+

(
max

j

pbal(ξ = j)

p(ξ = j)

)
λa

∫
− log pθ(ξ|x)p(x,y, ξ)dxdydξ

=

(
sup
y

pbal(y)

p(y)

)∫
Lreg(g ◦ f(x),y)p(x,y)dxdy

+

(
max

j

pbal(ξ = j)

p(ξ = j)

)
λa

∫
−q(ξ|y) log pθ(ξ|x)p(x,y)dxdydξ

=

(
sup
y

pbal(y)

p(y)

)∫
Lreg(g ◦ f(x),y)p(x,y)dxdy

+

(
max

j

pbal(ξ = j)

p(ξ = j)

)
λa

∫
−
∑
ξ

q(ξ|y) log pθ(ξ|x)p(x,y)dxdy,

where the second-to-last equality follows from the definition, p(x,y, ξ) = p(x|y)q(ξ|y)p(y) = p(x,y)q(ξ|y). Hence, by
applying Theorem 11.3 in (Mohri, 2018) to the regression risk and alignment risk separately, the following inequality holds
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with probability at least 1− 2δ,

RL
bal(h) ≤

(
sup
y

pbal(y)

p(y)

) 1

n

n∑
i=1

Lreg(g ◦ f(xi),yi) + 2µLregR̂S(H) + 3MLreg

√
log 2

δ

2n


+

(
max

j

pbal(ξ = j)

p(ξ = j)

)
λa

− 1

n

n∑
i=1

C∑
j=1

q(ξ = j|yi) log pθ(ξ = j|xi) + 2µLR̂S(F) + 3ML

√
log 2

δ

2n

 .

Then, the rest of the proof follows directly from the definition of CD.

Remark. Theorem 4.1 covers various algorithms, such as PRIME, PRIME + PRW, PRIME+CB, and PRIME+LDAM, by
modeling q(ξ|y) and pθ(ξ|x) appropriately.

A.3. Extension to Non-optimal Proxy Settings

We now extend the theoretical analysis to settings with non-optimal proxies, where the learned proxy features deviate from
their optimal positions due to approximation errors.

Let {z̃pj}j=1,...,C denote the optimal proxy features that minimize Lproxy, and define the corresponding feature association

as p̃θ(ξ|x) := e
−τf df (z,z̃

p
j
)∑C

k=1 e−τf df (z,z̃
p
k
)

for all j = 1, . . . , C. Then, we define the learned proxy features as zpj := z̃pj + ϵj for all

j = 1, . . . , C, where ϵj represents the estimation error, and pθ(ξ|x) := e
−τf df (z,z

p
j
)∑C

k=1 e−τf df (z,z
p
k
)

denotes the corresponding feature

association with respect to the learned proxies.

To analyze the non-optimal case, we revisit the balanced alignment risk term in (21), originally derived under the assumption
of optimally positioned proxies, and rewrite − log p̃θ(ξ|x) using the following identity:

− log p̃θ(ξ|x) = − log pθ(ξ|x) + (log pθ(ξ|x)− log p̃θ(ξ|x)) .

Based on this formulation, the first term, − log pθ(ξ|x), follows the same derivation as in the proof of Theorem 4.1. The
second term, log pθ(ξ|x) − log p̃θ(ξ|x), quantifies the discrepancy arising from the deviation between the learned and
optimal proxies. This discrepancy term can be bounded using the following inequality:

log pθ(ξ|x)− log p̃θ(ξ|x) = log
e−τfdf (z,z̃

p
ξ+ϵξ)∑C

k=1 e
−τfdf (z,z̃

p
k+ϵk)

− log
e−τfdf (z,z̃

p
ξ)∑C

k=1 e
−τfdf (z,z̃

p
k)

=τf

(
df (z, z̃

p
ξ)− df (z, z̃

p
ξ + ϵξ)

)
+ log

∑C
k=1 e

−τfdf (z,z̃
p
k)∑C

k=1 e
−τfdf (z,z̃

p
k+ϵk)

≤τf

(
df (z, z̃

p
ξ)− df (z, z̃

p
ξ + ϵξ)

)
+ logmax

k

{
e−τfdf (z,z̃

p
k)

e−τfdf (z,z̃
p
k+ϵk)

}
=τf

(
df (z, z̃

p
ξ)− df (z, z̃

p
ξ + ϵξ)

)
+max

k
τf (df (z, z̃

p
k + ϵk)− df (z, z̃

p
k))

≤2τf max
k

|df (z, z̃pk + ϵk)− df (z, z̃
p
k)| .
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Consequently, we obtain the following upper bound on the desired balanced risk:

R̃L
bal(h) :=

∫
Lreg(g ◦ f(x),y)pbal(x,y)dxdy + λa

∫
(− log p̃θ(ξ|x)) pbal(x,y, ξ)dxdydξ

≤
(
sup
y

pbal(y)

p(y)

)∫
Lreg(g ◦ f(x),y)p(x,y)dxdy

+

(
max

j

pbal(ξ = j)

p(ξ = j)

)
λa

∫
−
∑
ξ

q(ξ|y) log p̃θ(ξ|x)p(x,y)dxdy

=

(
sup
y

pbal(y)

p(y)

)∫
Lreg(g ◦ f(x),y)p(x,y)dxdy

+

(
max

j

pbal(ξ = j)

p(ξ = j)

)
λa

∫ ∑
ξ

q(ξ|y) (− log pθ(ξ|x) + (log pθ(ξ|x)− log p̃θ(ξ|x))) p(x,y)dxdy

≤
(
sup
y

pbal(y)

p(y)

)∫
Lreg(g ◦ f(x),y)p(x,y)dxdy

+

(
max

j

pbal(ξ = j)

p(ξ = j)

)
λa

∫
−
∑
ξ

q(ξ|y) log pθ(ξ|x)p(x,y)dxdy

+

∫
2τf max

k
|df (z, z̃pk + ϵk)− df (z, z̃

p
k)| p(x,y)dxdy

)
.

If df is a norm, we can apply the triangle inequality to simplify the last term of the inequality:

R̃L
bal(h) ≤

(
sup
y

pbal(y)

p(y)

)∫
Lreg(g ◦ f(x),y)p(x,y)dxdy

+

(
max

j

pbal(ξ = j)

p(ξ = j)

)
λa

∫
−
∑
ξ

q(ξ|y) log pθ(ξ|x)p(x,y)dxdy + 2τf max
k

df (z̃
p
k + ϵk, z̃

p
k)

 .

Remark. Importantly, as training progresses and the proxies become more accurate (i.e., ϵk becomes smaller), the residual
term decreases accordingly, resulting in a tighter bound. Empirically, we also observe that PRIME performs robustly even
when the proxies are randomly initialized.

A.4. Further Theoretical Insight

Another perspective offered by Theorem 4.1 is that RL
bal(h) is bounded by a constant multiple of CD. A higher value of CD

leads to a larger deviation between RL
bal(h) and R̂S(h). Intuitively, incorporating data skewness into an effective balancing

of the loss function facilitates a more direct estimation of the balanced risk. Specifically, as PRIME focuses on aligning
features with proxies, we direct our analysis to the risk associated with Lalign.

Theorem A.2. For any loss function L(x,y, ξ), we have

∫
L(x,y, ξ)pbal(x,y, ξ)dxdydξ =

∫
Lr(x,y, ξ)p(x,y, ξ)dxdydξ,

where the reweighted loss, Lr, is defined as

Lr :=
pbal(ξ)∫

q(ξ|y)p(y)dy
L.
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Proof. ∫
Lr(x,y, ξ)p(x,y, ξ)dxdydξ =

∫
L(x,y, ξ) pbal(ξ)∫

q(ξ|y)p(y)dy
p(x,y, ξ)dxdydξ

=

∫
L(x,y, ξ)pbal(ξ)

p(ξ)
p(x,y|ξ)p(ξ)dxdydξ

=

∫
L(x,y, ξ)p(x,y|ξ)pbal(ξ)dxdydξ

=

∫
L(x,y, ξ)pbal(x,y, ξ)dxdydξ.

Remark. If L = −Tξ logAξ and q(ξ|y) = Tξ, L reduces to our alignment loss Lalign.

Theorem A.2 confirms that employing Lr allows the balanced alignment risk to be minimized directly. Note that the
weighting term pbal(ξ)/p(ξ) is related to the proxy frequency. Since PRW, CB, and LDAM perform re-weighting, balancing,
and margin control based on the proxy frequency, they empirically approximate Lr. Specifically, for PRW, using q(ξ|y) = Tξ

and applying batch-wise Monte Carlo, we can derive sj as follows:

pbal(ξ = j)

p(ξ = j)
=

pbal(ξ = j)∫
q(ξ = j|y)p(y)dy

≈
1
C

1
Nb

∑Nb

i=1 q(ξ = j|y = yi)
=

1

sj
. (23)

A similar deriviation is possible for CB, LDAM by appropriately modeling q(ξ|y) and pθ(ξ|x). Finally, we conclude that
incorporating class imbalance techniques approximately induces the balanced alignment risk, leading to balanced feature
learning.
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B. Detailed Experimental Setup
This section presents additional details of our experimental setup. In §B.1, we first provide a detailed explanation of the
datasets used in our experiments. In §B.2, we provide the implementation details of PRIME.

B.1. Dataset Details

In this work, we conduct experiments on four real-world imbalanced regression benchmarks introduced by (Yang et al.,
2021): AgeDB-DIR, IMDB-WIKI-DIR, NYUD2-DIR, STS-B-DIR. For a fair and meaningful comparison with existing
methods, we evaluate the proposed method using the same experimental setup, following the previous state-of-the-art
methods for each dataset (Yang et al., 2021; Gong et al., 2022; Keramati et al., 2024). Table 10 provides the overall statistics
of the four datasets. Please refer to (Yang et al., 2021) for more details.

Table 10. Overall dataset statistics.

Dataset Target type Target range Bin size Max bin Min bin # Training # Val. # Test

AgeDB-DIR Age [0, 101] 1 353 1 12,208 2,140 2,140
IMDB-WIKI-DIR Age [0, 186] 1 7,149 1 191,509 11,022 11,022
NYUD2-DIR Depth [0.7, 10] 0.1 1.46× 108 1.13× 106 50,688 - 654
STS-B-DIR Text similarity [0, 5] 0.1 428 1 5,249 1,000 1,000

B.2. Implementation Details

For fair comparisons, we follow the benchmark settings of (Yang et al., 2021) for all baselines and our method. Specifically,
we use the same backbones and training details as in existing methods and tune only the hyperparameters of PRIME.
Tables 11, 12, 13, and 14 summarize the implementation details for AgeDB-DIR, IMDB-WIKI-DIR, NYUD2-DIR, and
STS-B-DIR, respectively. Overall, PRIME is easy to implement and can be integrated into existing regression methods by
simply adding Lproxy and Lalign to the regression loss Lreg. We will release the code after publication.

PRIME. The number of proxies C is empirically determined for each dataset. Proxy embeddings {zpi }
C
i=1 are initialized

with He initialization (He et al., 2015) and trained jointly with the model. The Proxy lr refers to the multiplication factor
applied to the learning rate of the proxy. The hyperparameters λp, λa, τf , τt, and α are set empirically. Especially, we use
high τf values following (Movshovitz-Attias et al., 2017; Kim et al., 2020; Teh et al., 2020; Lim et al., 2022).

Class imbalance techniques. The implementations of class imbalance techniques follow their original codes, with hyperpa-
rameters set as in the respective papers. In PRW, the truncation threshold δmin for excessively small sj values is set as a
scaled multiple of the median value smed. In CB, β = 0.99 is used for all experiments, while in LDAM, the max margin
value defines the upper limit of the enforced margin. DRW, short for Deferred Re-weighting (Cao et al., 2019), is optionally
applied to all three methods, meaning that re-weighting is applied only after the specified DRW epoch.

Training details. For AgeDB-DIR and IMDB-WIKI-DIR, we use ResNet50 (He et al., 2016) as the backbone and the square
root inverse (SQInv) re-weighted MAE loss as the regression loss Lreg. For NYUD2-DIR, we adopt a ResNet50-based
encoder-decoder architecture (Hu et al., 2019) and Balanced MSE (Ren et al., 2022) as Lreg. For STS-B-DIR, we employ
BiLSTM with GloVe (Pennington et al., 2014) word embeddings as the feature extractor and use LDS + inverse (Inv)
re-weighted MSE loss as Lreg. The training hyperparameters, including epoch, batch size, learning rate, weight decay,
optimizer, and scheduler, are primarily chosen based on the previous state-of-the-art methods (Gong et al., 2022; Ren et al.,
2022; Keramati et al., 2024) for each dataset.
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Table 11. Implementation details for experiments on AgeDB-DIR.

Module Name PRIME + PRW + CB + LDAM

PRIME # Proxy 20 20 20 20
Proxy lr 1 1 1 1
λp 5 10 5 10
λa 25 50 25 50
τf 5 10 5 10
τt 5 2 5 1
α 0.005 0.0005 0.001 0.001

PRW δmin - 0.05× smed - -
DRW - ✗ - -

CB β - - 0.99 -
DRW - - ✗ -

LDAM Max margin - - - 0.5
DRW - - - 40

Training Backbone ResNet50 ResNet50 ResNet50 ResNet50
Lreg SQInv (MAE) SQInv (MAE) SQInv (MAE) SQInv (MAE)
Epoch 80 80 80 80
Batch size 64 64 64 64
Learning rate 2.5× 10−4 2.5× 10−4 2.5× 10−4 2.5× 10−4

Weight decay 1.0× 10−4 1.0× 10−4 1.0× 10−4 1.0× 10−4

Optimizer Adam Adam Adam Adam
Scheduler StepLR (60/0.1) StepLR (60/0.1) StepLR (60/0.1) StepLR (40/0.5)

Table 12. Implementation details for experiments on IMDB-WIKI-DIR.

Module Name PRIME + PRW + CB + LDAM

PRIME # Proxy 40 40 40 40
Proxy lr 5 5 1 1
λp 5 5 5 5
λa 25 25 25 25
τf 10 10 5 10
τt 1 2 5 2
α 0.001 0.001 0.001 0.001

PRW δmin - 1.0× smed - -
DRW - 60 - -

CB β - - 0.99 -
DRW - - ✗ -

LDAM Max margin - - - 0.5
DRW - - - ✗

Training Backbone ResNet50 ResNet50 ResNet50 ResNet50
Lreg SQInv (MAE) SQInv (MAE) SQInv (MAE) SQInv (MAE)
Epoch 80 80 80 80
Batch size 64 64 64 64
Learning rate 2.5× 10−4 2.5× 10−4 2.5× 10−4 2.5× 10−4

Weight decay 1.0× 10−4 1.0× 10−4 1.0× 10−4 1.0× 10−4

Optimizer Adam Adam Adam Adam
Scheduler StepLR (60/0.1) StepLR (60/0.1) StepLR (60/0.1) StepLR (60/0.5)
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Table 13. Implementation details for experiments on NYUD2-DIR.

Module Name PRIME + PRW + CB + LDAM

PRIME # Proxy 10 10 10 10
Proxy lr 1 1 1 1
λp 0.1 0.1 0.1 0.1
λa 0.5 0.5 0.5 0.5
τf 5 10 10 10
τt 1 2 2 2
α 0.0001 0.0005 0.0005 0.0005

PRW δmin - 0.05× smed - -
DRW - ✗ - -

CB β - - 0.99 -
DRW - - ✗ -

LDAM Max margin - - - 0.5
DRW - - - ✗

Training Backbone ResNet50 E-D ResNet50 E-D ResNet50 E-D ResNet50 E-D
Lreg Balanced MSE Balanced MSE Balanced MSE Balanced MSE
Epoch 20 20 20 20
Batch size 64 64 64 64
Learning rate 1.0× 10−4 1.0× 10−4 1.0× 10−4 1.0× 10−4

Weight decay 1.0× 10−4 1.0× 10−4 1.0× 10−4 1.0× 10−4

Optimizer Adam Adam Adam Adam
Scheduler StepLR (5/0.1) StepLR (5/0.1) StepLR (5/0.1) StepLR (5/0.1)

Table 14. Implementation details for experiments on STS-B-DIR.

Module Name PRIME + PRW + CB + LDAM

PRIME # Proxy 26 26 26 26
Proxy lr 1 1 1 1
λp 1× 10−5 2× 10−5 2× 10−5 1× 10−5

λa 5× 10−5 1× 10−4 1× 10−4 5× 10−5

τf 5 5 5 5
τt 5 5 5 5
α 0.001 0.01 0.01 0.01

PRW δmin - 3.0× smed - -
DRW - ✗ - -

CB β - - 0.99 -
DRW - - ✗ -

LDAM Max margin - - - 0.5
DRW - - - ✗

Training Backbone BiLSTM + GloVe BiLSTM + GloVe BiLSTM + GloVe BiLSTM + GloVe
Lreg LDS + Inv (MSE) LDS + Inv (MSE) LDS + Inv (MSE) LDS + Inv (MSE)
Epoch 300 300 300 300
Batch size 16 16 16 16
Learning rate 2.5× 10−4 2.5× 10−4 2.5× 10−4 2.5× 10−4

Optimizer Adam Adam Adam Adam
Patience 100 100 100 100
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C. Further Analyses
In this section, we present additional experimental results and analyses. In §C.1, we present additional details and complete
results for the experiments discussed in the manuscript. In §C.2, we evaluate the computational efficiency of PRIME. In
§C.3, we conduct a sensitivity analysis on the hyperparameters of PRIME. Lastly, in §C.4, we discuss the differences
between PRIME and Regression-as-Classification approaches, which reformulate regression as a classification problem.

C.1. Additional Results

C.1.1. PRIME FACILITATES EFFECTIVE FEATURE LEARNING

The twisted line in Figure 2(b) appears due to suboptimal alignment between features and their corresponding proxies in
the Few category. Although the proxies represent a balanced feature distribution, the alignment process in (7) still faces
challenges under sample imbalance. Minority samples, which occur infrequently, often fail to align properly with their
proxies, resulting in distorted feature–proxy alignment. The use of class imbalance techniques (e.g., PRW, CB, and LDAM)
provides better alignment focus on minority samples, mitigating this issue. To empirically validate their effect, we conduct
an additional analysis on the AgeDB-DIR dataset, measuring the Spearman correlation between the proxy–feature similarity
matrix (as visualized in Figure 2(b)) and the label similarity matrix. A higher correlation indicates better alignment and
reduced distortion in the learned feature space. Table 15 reports the Spearman correlation values when PRIME is combined
with various class imbalance techniques. Results are averaged over five runs. Incorporating class imbalance techniques
significantly improves the correlation, confirming their effectiveness in facilitating better alignment, particularly for samples
in the Few category.

Table 15. Spearman correlation between proxy-feature and label similarity matrices on AgeDB-DIR. A higher correlation indicates
better alignment between learned features and the corresponding proxies.

Method ρ (↑)

PRIME 0.722±0.020

PRIME + PRW 0.802±0.021

PRIME + CB 0.800±0.023

PRIME + LDAM 0.837±0.015

C.1.2. COMPARISON WITH RECENT REPRESENTATION LEARNING METHODS FOR GENERAL REGRESSION

In Table 7 of the manuscript, only the results for the entire test set (i.e., All) are reported. In Table 16 below, we present the
complete results. HPN shows slightly better performance than PRIME in Few. However, since HPN uses fixed prototypes on
a hypersphere, it cannot effectively represent the entire dataset, leading to suboptimal performance in Many and Median.
Notably, PRIME outperforms state-of-the-art representation learning methods designed for general regression, such as
Rank-N-Contrast and Ordinal Entropy, demonstrating its ability to learn effective representations that are robust to data
imbalance. Furthermore, PRIME exhibits the flexibility to incorporate various class imbalance techniques for balanced
feature learning in regression problems. Applying these techniques effectively enhances the performance of minority targets.

Table 16. Comparison with representation learning methods for general regression on AgeDB-DIR. The best results are marked in
bold, and the second best are underlined.

Method MAE (↓) GM (↓)

All Many Median Few All Many Median Few

SQInv (MAE) 7.42±0.06 6.78±0.12 8.55±0.18 10.71±0.31 4.77±0.08 4.37±0.14 5.73±0.23 7.39±0.36

+ HPN (Mettes et al., 2019) 7.38±0.08 6.78±0.11 8.44±0.16 10.10±0.53 4.66±0.09 4.30±0.10 5.46±0.16 6.41±0.39

+ Ordinal Entropy (Zhang et al., 2023a) 7.33±0.08 6.77±0.13 8.24±0.13 10.16±0.38 4.68±0.07 4.32±0.09 5.39±0.19 6.82±0.38

+ Rank-N-Contrast (Zha et al., 2023) 7.27±0.05 6.52±0.03 8.62±0.15 10.66±0.41 4.69±0.04 4.23±0.02 5.73±0.15 7.12±0.37

+ PRIME 7.09±0.08 6.38±0.11 8.39±0.26 10.13±0.36 4.39±0.08 3.91±0.10 5.58±0.22 6.57±0.49

+ PRIME + PRW 7.06±0.09 6.67±0.09 7.27±0.25 9.91±0.16 4.39±0.08 4.14±0.09 4.69±0.20 6.39±0.16

+ PRIME + CB 7.12±0.09 6.61±0.09 8.07±0.11 9.29±0.68 4.47±0.05 4.16±0.08 5.23±0.07 5.81±0.46

+ PRIME + LDAM 7.24±0.06 6.85±0.14 7.84±0.31 9.29±0.44 4.47±0.07 4.26±0.12 4.89±0.25 5.60±0.54
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C.1.3. EFFECTIVENESS OF OUR PROXY FORMULATION

Table 8 in the manuscript reports only the results for the entire test set (i.e., All). In Table 17 below, we present the complete
results. For ProxyNCA, we adapt the original method to the regression setting. Similar to PRIME, proxy assignment
is designed to ensure that the associated targets are uniformly distributed in the target space. However, unlike PRIME,
which explicitly optimizes proxy features to be well-ordered in the feature space via Lproxy, ProxyNCA relies solely
on feature-proxy alignment. As shown in our results, PRIME significantly outperforms ProxyNCA, demonstrating the
advantage of our DIR-specific proxy formulation. For the non-learnable variant of PRIME, proxy features are computed
as the centroids of sample features assigned to each proxy. To enable proper backpropagation of the proxy and alignment
losses, these proxy features are updated within each mini-batch based on the current sample-to-proxy assignments. While
the centroid-based method achieves slightly better performance than the learnable proxy in the Median category, it suffers
from notable performance degradation in the other regions. In particular, we observe a significant performance drop in the
Few category, indicating that the centroid-based proxies struggle under severe data sparsity. This performance gap stems
from their inherent limitations: centroid quality depends on the number of assigned samples and becomes unstable when
only a few are available. In contrast, learnable proxies are global parameters updated via backpropagation, offering greater
stability and robustness under sparse conditions.

Table 17. Comparison with proxy-based alternatives on AgeDB-DIR. The best results are marked in bold, and the second best are
underlined.

Method MAE (↓) GM (↓)

All Many Median Few All Many Median Few

ProxyNCA (Movshovitz-Attias et al., 2017) 7.33±0.08 6.52±0.09 8.69±0.27 11.14±0.21 4.64±0.06 4.12±0.07 5.80±0.28 7.60±0.53

Non-learnable (centroid) 7.21±0.09 6.57±0.10 8.20±0.13 10.89±0.33 4.67±0.11 4.24±0.12 5.42±0.15 7.64±0.22

PRIME 7.09±0.08 6.38±0.11 8.39±0.26 10.13±0.36 4.39±0.08 3.91±0.10 5.58±0.22 6.57±0.49

C.1.4. ABLATION STUDY

Table 9 in the manuscript reports only the results for the entire test set (i.e., All). In Table 18 below, we present the complete
results. Comparing the ablation models, the transition from M1 to M2 leads to a significant performance improvement across
All, Many, and Few, highlighting the effectiveness of Lproxy. From M2 to M3, assigning proxies uniformly in the target
space leads to a notable performance gain in Few compared to random initialization, demonstrating the effectiveness of
ensuring that proxies represent the target space in a balanced manner. Finally, the transition from M3 to M4 (PRIME) further
enhances performance, as regression involves continuous targets, making distance-proportional assignment, as described in
(6), more effective than one-hot encoding.

Table 18. Performance comparison of ablation models on AgeDB-DIR. The best results are marked in bold.

Method MAE (↓) GM (↓)

All Many Median Few All Many Median Few

M1 7.34±0.08 6.49±0.04 8.84±0.29 11.24±0.36 4.66±0.07 4.11±0.06 5.96±0.24 7.88±0.48

M2 7.24±0.09 6.47±0.11 8.40±0.18 11.32±0.47 4.61±0.12 4.09±0.12 5.71±0.25 7.96±0.60

M3 7.23±0.12 6.45±0.11 8.52±0.29 10.96±0.51 4.55±0.12 4.01±0.11 5.74±0.23 7.76±0.36

M4 (PRIME) 7.09±0.08 6.38±0.11 8.39±0.26 10.13±0.36 4.39±0.08 3.91±0.10 5.58±0.22 6.57±0.49
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C.2. Computational Efficiency

To analyze the computational efficiency of PRIME, we compute the average wall-clock training time (in seconds) using four
NVIDIA Tesla V100 GPUs. Table 19 presents comparisons with existing representation learning methods on AgeDB-DIR.
For fair comparisons, we apply the same training details (e.g., epochs, batch size, optimizer, etc.) to all methods. The training
time of PRIME is considerably lower than that of FDS and ranking-based methods (RankSim and Rank-N-Contrast) while
remaining comparable to the time complexity of ProxyNCA, Ordinal Entropy, and ConR. Although incorporating class
imbalance techniques introduces a slight computational overhead, it remains comparable to other well-established methods.
Overall, these results demonstrate that PRIME is an effective representation learning framework that does not compromise
efficiency.

Table 19. Average wall-clock training time (in seconds) on AgeDB-DIR.

Method Training time (sec) (↓) ∆

SQInv (MAE) 1818.0 ± 58.7 -
+ ProxyNCA (Movshovitz-Attias et al., 2017) 1934.8 ± 77.4 (+ 116.8)
+ HPN (Mettes et al., 2019) 1833.8 ± 13.2 (+ 15.8)
+ FDS (Yang et al., 2021) 3380.0 ± 21.5 (+ 1562.0)
+ RankSim (Gong et al., 2022) 2254.4 ± 20.9 (+ 436.4)
+ Ordinal Entropy (Zhang et al., 2023a) 2067.6 ± 79.9 (+ 249.6)
+ Rank-N-Contrast (Zha et al., 2023) 2122.6 ± 33.7 (+ 304.6)
+ ConR (Keramati et al., 2024) 1952.6 ± 23.0 (+ 134.6)
+ PRIME 1936.6 ± 45.4 (+ 118.6)
+ PRIME + PRW 2094.6 ± 20.6 (+ 276.6)
+ PRIME + CB 1990.2 ± 41.4 (+ 172.2)
+ PRIME + LDAM 1987.6 ± 18.7 (+ 169.6)

C.3. Sensitivity Analysis

We analyze the impact of PRIME’s hyperparameters using the AgeDB-DIR dataset. Specifically, we examine the effects
of the number of proxies (C), the trade-off hyperparameters for Lproxy and Lalign in (8) (λp and λa), the temperature
hyperparameters (τf and τt), and the coefficient for the regularization term in (4) (α). We evaluate their influence by varying
the values as follows: C ∈ {10, 20, 30, 40}, λp ∈ {0.5, 2.5, 5.0, 10.0}, λa ∈ {5, 10, 25, 50}, τf ∈ {0.5, 1.0, 2.0, 5.0},
τt ∈ {0.5, 1.0, 2.0, 5.0}, and α ∈ {0, 0.0001, 0.0005, 0.001, 0.005}. Tables 20, 21, 22, 24, 23, and 25 summarize the
results. Overall, PRIME demonstrates reliable and robust performance across different hyperparameter choices. In particular,
PRIME consistently outperforms the w/o PRIME baseline in almost all cases (SQInv (MAE) serves as the baseline), further
demonstrating its effectiveness. As mentioned in Table 11, for the main results, we set C = 20, λp = 5, λa = 25, τf = 5,
τt = 5, and α = 0.005, which are highlighted in gray in the tables.

Table 20. Effect of the number of proxies (C) on AgeDB-DIR. The gray-highlighted value indicates the selected setting used in our
experiment. The best results are marked in bold.

Method MAE (↓) GM (↓)

All Many Median Few All Many Median Few

w/o PRIME 7.42±0.06 6.78±0.12 8.55±0.18 10.71±0.31 4.77±0.08 4.37±0.14 5.73±0.23 7.39±0.36

PRIME (C = 10) 7.35±0.10 6.49±0.06 8.80±0.40 11.47±0.46 4.65±0.05 4.09±0.05 5.95±0.28 7.90±0.47

PRIME (C = 20) 7.09±0.08 6.38±0.11 8.39±0.26 10.13±0.36 4.39±0.08 3.91±0.10 5.58±0.22 6.57±0.49

PRIME (C = 30) 7.14±0.09 6.41±0.14 8.31±0.23 10.61±0.32 4.48±0.06 3.98±0.09 5.55±0.13 7.31±0.50

PRIME (C = 40) 7.16±0.07 6.37±0.05 8.41±0.18 11.20±0.28 4.53±0.10 4.02±0.08 5.55±0.30 7.94±0.28
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Table 21. Effect of λp on AgeDB-DIR. The gray-highlighted value indicates the selected setting used in our experiment. The best results
are marked in bold.

Method MAE (↓) GM (↓)

All Many Median Few All Many Median Few

w/o PRIME 7.42±0.06 6.78±0.12 8.55±0.18 10.71±0.31 4.77±0.08 4.37±0.14 5.73±0.23 7.39±0.36

PRIME (λp = 0.5) 7.19±0.10 6.42±0.07 8.46±0.25 10.97±0.54 4.53±0.08 4.00±0.06 5.73±0.23 7.79±0.78

PRIME (λp = 2.5) 7.21±0.08 6.46±0.11 8.33±0.29 10.84±0.35 4.44±0.07 4.05±0.06 5.50±0.38 6.55±0.57

PRIME (λp = 5.0) 7.09±0.08 6.38±0.11 8.39±0.26 10.13±0.36 4.39±0.08 3.91±0.10 5.58±0.22 6.57±0.49

PRIME (λp = 10.0) 7.26±0.06 6.49±0.04 8.58±0.17 10.91±0.49 4.63±0.10 4.09±0.08 5.83±0.35 6.83±0.64

Table 22. Effect of λa on AgeDB-DIR. The gray-highlighted value indicates the selected setting used in our experiment. The best results
are marked in bold.

Method MAE (↓) GM (↓)

All Many Median Few All Many Median Few

w/o PRIME 7.42±0.06 6.78±0.12 8.55±0.18 10.71±0.31 4.77±0.08 4.37±0.14 5.73±0.23 7.39±0.36

PRIME (λa = 5) 7.20±0.14 6.54±0.12 8.37±0.29 10.25±0.40 4.57±0.14 4.16±0.13 5.46±0.31 6.78±0.48

PRIME (λa = 10) 7.18±0.08 6.41±0.11 8.51±0.17 10.80±0.62 4.63±0.05 4.10±0.08 5.83±0.19 7.68±0.63

PRIME (λa = 25) 7.09±0.08 6.38±0.11 8.39±0.26 10.13±0.36 4.39±0.08 3.91±0.10 5.58±0.22 6.57±0.49

PRIME (λa = 50) 7.21±0.07 6.42±0.07 8.56±0.26 10.94±0.45 4.54±0.07 4.02±0.08 5.72±0.24 7.65±0.70

Table 23. Effect of τf on AgeDB-DIR. The gray-highlighted value indicates the selected setting used in our experiment. The best results
are marked in bold.

Method MAE (↓) GM (↓)

All Many Median Few All Many Median Few

w/o PRIME 7.42±0.06 6.78±0.12 8.55±0.18 10.71±0.31 4.77±0.08 4.37±0.14 5.73±0.23 7.39±0.36

PRIME (τf = 0.5) 7.20±0.09 6.61±0.16 8.18±0.28 10.10±0.39 4.59±0.13 4.20±0.18 5.41±0.23 6.68±0.37

PRIME (τf = 1.0) 7.24±0.07 6.51±0.07 8.58±0.33 10.45±0.39 4.56±0.09 4.06±0.11 5.82±0.30 6.96±0.36

PRIME (τf = 2.0) 7.22±0.10 6.45±0.02 8.59±0.36 10.68±0.47 4.62±0.11 4.09±0.06 5.90±0.38 7.39±0.62

PRIME (τf = 5.0) 7.09±0.08 6.38±0.11 8.39±0.26 10.13±0.36 4.39±0.08 3.91±0.10 5.58±0.22 6.57±0.49

Table 24. Effect of τt on AgeDB-DIR. The gray-highlighted value indicates the selected setting used in our experiment. The best results
are marked in bold.

Method MAE (↓) GM (↓)

All Many Median Few All Many Median Few

w/o PRIME 7.42±0.06 6.78±0.12 8.55±0.18 10.71±0.31 4.77±0.08 4.37±0.14 5.73±0.23 7.39±0.36

PRIME (τt = 0.5) 7.20±0.09 6.42±0.10 8.46±0.27 11.07±0.26 4.43±0.12 3.90±0.14 5.70±0.35 7.95±0.27

PRIME (τt = 1.0) 7.16±0.08 6.44±0.06 8.33±0.17 10.67±0.46 4.52±0.08 4.04±0.07 5.57±0.11 7.38±0.61

PRIME (τt = 2.0) 7.20±0.10 6.40±0.12 8.60±0.25 10.85±0.22 4.59±0.04 4.06±0.07 5.79±0.31 7.63±0.30

PRIME (τt = 5.0) 7.09±0.08 6.38±0.11 8.39±0.26 10.13±0.36 4.39±0.08 3.91±0.10 5.58±0.22 6.57±0.49
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Table 25. Effect of α on AgeDB-DIR. The gray-highlighted value indicates the selected setting used in our experiment. The best results
are marked in bold.

Method MAE (↓) GM (↓)

All Many Median Few All Many Median Few

w/o PRIME 7.42±0.06 6.78±0.12 8.55±0.18 10.71±0.31 4.77±0.08 4.37±0.14 5.73±0.23 7.39±0.36

PRIME (α = 0) 7.22±0.11 6.44±0.10 8.44±0.08 11.16±0.40 4.56±0.09 4.02±0.10 5.76±0.06 7.77±0.40

PRIME (α = 0.0001) 7.17±0.06 6.44±0.08 8.27±0.38 11.03±0.17 4.55±0.07 4.04±0.02 5.62±0.38 7.79±0.24

PRIME (α = 0.0005) 7.22±0.07 6.47±0.05 8.34±0.26 11.19±0.34 4.60±0.07 4.10±0.03 5.66±0.25 7.76±0.29

PRIME (α = 0.001) 7.28±0.06 6.52±0.03 8.39±0.17 10.33±0.40 4.53±0.03 4.12±0.04 5.70±0.18 6.87±0.53

PRIME (α = 0.005) 7.09±0.08 6.38±0.11 8.39±0.26 10.13±0.36 4.39±0.08 3.91±0.10 5.58±0.22 6.57±0.49

C.4. Discussion on Regression-as-Classification Approaches

Although our PRIME shares a classification-like perspective, we highlight two key differences from Regression-as-
Classification approaches (Rothe et al., 2015; Cao et al., 2017; Liu et al., 2019a; Xiong & Yao, 2024) that quantize
continuous targets into discrete bins and treat each bin as a class: (i) As samples with different target values are grouped
under the same class, previous methods suffer from quantization errors. In contrast, PRIME assigns proxies based on target
associations derived from target distances, as in (6), effectively mitigating quantization error. (ii) Moreover, rather than
directly predicting proxy indices (i.e., classes), PRIME optimizes the model to minimize the feature distance to the corre-
sponding proxy. As our proxy loss Lproxy in (4) enforces proxies to be well-ordered, it facilitates better regression-specific
representation learning.
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