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Abstract

Recent advances in sign language research have benefited from CNN-based back-
bones, which are primarily transferred from traditional computer vision tasks (e.g.,
object detection, image recognition). However, these CNN-based backbones usu-
ally excel at extracting features like contours and texture, but may struggle with
capturing sign-related features. To capture such sign-related features, SignGraph
model extracts the cross-region sign features by building the Local Sign Graph
(LSG) module and the Temporal Sign Graph (TSG) module. However, we empha-
size that although capturing cross-region dependencies can improve sign language
performance, it may degrade the representation quality of local regions. To mitigate
this, we introduce MixSignGraph, which represents sign sequences as a group of
mixed graphs for feature extraction. Specifically, besides the LSG module and
TSG module that model the intra-frame and inter-frame cross-regions features,
we design a simple yet effective Hierarchical Sign Graph (HSG) module, which
enhances local region representations following the extraction of cross-region fea-
tures, by aggregating the same-region features from different-granularity feature
maps of a frame, i.e., to boost discriminative local features. In addition, to further
improve the performance of gloss-free sign language task, we propose a simple
yet counter-intuitive Text-based CTC Pre-training (TCTC) method, which gener-
ates pseudo gloss labels from text sequences for model pre-training. Extensive
experiments conducted on the current five sign language datasets demonstrate that
MixSignGraph surpasses the most current models on multiple sign language tasks
across several datasets, without relying on any additional cues. Code and models
are available at: https://github.com/gswyct/SignLanguage.

1 Introduction

Advancements in computer vision (CV) and natural language processing (NLP) technologies have
significantly facilitated the development of sign language (SL) research, including Sign Language
Recognition (SLR) and Sign Language Translation (SLT). The SLR task encompasses Isolated SLR
(ISLR) (1)) and Continuous SLR (CSLR) (2;[3; 4), aiming to recognize isolated or continuous signs
as corresponding glosses or gloss sequences. While the SLT task focuses on translating continuous
signs into spoken language (5). In the current SL framework, the standard approach first uses 2D/3D
CNN-based backbones to extract visual features (6; 7} 8)), then employs temporal modules (5595 10)
to capture dynamic changes in sign frames, and finally adopts a Connectionist Temporal Classification
(CTC) decoder to obtain the gloss sequence or a translation model to generate the spoken sentence.

Unlike other CV tasks where contour and texture representations are crucial, SL tasks need to focus
on both manual and non-manual features, particularly the collaboration of these cues in different
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regions (11;[12), while the traditional CNNs may fail to capture the collaboration of signs across
different regions, thereby limiting their ability to extract effective sign features. To enhance the
CNN-based backbone’s ability to extract sign-related features, existing work has focused on designing
various CNN-based backbones by incorporating domain knowledge, such as skeleton information (9),
depth images (13)), or local areas (10). Additionally, some studies have adopted different training
strategies e.g., back translation (14), knowledge distillation (15) and contrastive learning (6)). Besides,
in SLT tasks, many current SOTA models also rely on gloss annotations to pre-train their backbones
with CTC loss, aiming to improve the SLT performance. When gloss annotations are missing, i.e., in
Gloss-Free SLT (GFSLT) tasks, how to improve the SLT performance is still a challenging task.

To address the limitation of CNN-based backbones, SignGraph (4)) transforms SL frames into graph
nodes and proposes the Local Sign Graph (LSG) and Temporal Sign Graph (TSG) modules to
model spatial and temporal cross-region dependencies. However, such strategies may inadvertently
degrade fine-grained local features due to the emphasis on cross-region aggregation. Regarding
improving the gloss-free SLT performance, the existing models have attempted to introduce attention
mechanisms (16), contrastive language-image pre-training (17 or vector quantization (18).

Building upon prior work, we propose a
simple yet effective sign graph neural net-
work, MixSignGraph, for SL tasks (CSLR
and SLT). In addition to extracting cross-
region features, MixSignGraph introduces
a Hierarchical Sign Graph (HSG) module
to enhance local representations from fea-
ture maps of different granularities, mitigat-
ing the degradation of local features that ~ Traditional CNN: Traditional downsampling:
may occur during cross-region modeling in in spatial, temporal dimension | from high to low resolution
SignGraph. The main intuitions are: Cross-
region feature extraction may lead to the
local representation of the current node be-
ing diluted by features from other regions,
resulting in the degradation of local informa-
tion. Moreover, the content within a single
region can be represented at different levels LSG/TSG: across regions Our HSG: the same regions
of granularity through hierarchical feature in one or adjacent frames across feature maps
maps generated by down-sampling. There- )

fore, we propose a Hierarchical Sign Graph Figure 1: (Left) Comparison between CNNs and

(HSG) module, which connects correspond- LSG/TSG in SignGraph. (Right) Message passing
ing regions across multi-granularity feature ~©f the same regions among different-resolution feature

maps. This hierarchical design allows the Maps between downsampling in CNNs and our HSG.

model to reinforce local representations by

aggregating complementary information from different granularities, thereby mitigating the degra-
dation caused by cross-region feature fusion. Besides, to further improve the performance of sign
language tasks without gloss annotations, we propose a simple yet counter-intuitive Text-based
CTC Pre-training (TCTC) method, which generates pseudo gloss labels from text labels for model
pre-training. We make the following contributions:

* To address the limitations of SignGraph (4), we propose a simple yet effective sign graph
neural network, called MixSignGraph. In addition to extracting cross-region features,
MixSignGraph introduces a Hierarchical Sign Graph (HSG) module, which enables bidirec-
tional exchanges of feature maps with different granularities, to enhance local representations
from hierarchical feature maps. The proposed HSG can mitigate the degradation of local
features that may occur during cross-region modeling.

* A simple, effective, yet counter-intuitive training method named Text-based CTC Pre-
training (TCTC) is proposed for the GFSLT task, which generates pseudo gloss annotations
based on text labels. The proposed TCTC effectively improves the performance of GFSLT
and narrows the gap with gloss-based SLT models.

* The extensive experiments on common SL tasks (including CSLR and SLT) over five public
datasets demonstrate the superiority of the proposed MixSignGraph, which shows promising
results and does not use any extra cues.
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Figure 2: The proposed MixSignGraph architecture.

2 Preliminaries

For a SL sequence f={f;}%_, with 6 frames, the target of CSLR task is to get a recognized gloss
sequence g = { gi}le with 9 glosses, while the target of SLT task is to generate a spoken language
sentence ¢ = {t;};_, with ¢ words based on input f. SignGraph (4) introduces the following modules
to model the SL sequence f:

Patchify Stem. To apply graph convolutional networks (GCNs) directly to SL frames instead of
skeleton data, a patchify stem is employed to divide each RGB frame with height H, width W
into N = HW/P? patches (or nodes) v; = {v;; }é'\’:p with the corresponding feature embedding
Hij € RP. Here, v;; represents the j-th patch in the i-th frame f;, D denotes the feature dimension,
and P is the patch size.

Local Sign Graph Learning. To capture correlations between different spatial regions, such as the
face and hands, SignGraph (4)) introduces a Local Sign Graph (LSG) module to extract intra-frame
cross-region features. Specifically, it computes the feature distances between patches within each
frame using a distance function DZS (19). Based on these distances, a K-nearest neighbor (KNN)-
based graph construction strategy is used to obtain local sign graph, and graph convolution is applied
to integrate features across nodes, enabling effective modeling of intra-frame spatial dependencies.

Temporal Sign Graph Learning. To capture the movements of the body, hands, and face, Sign-
Graph (4) introduces a Temporal Sign Graph (TSG) module that dynamically establishes connections
between regions across consecutive frames, enabling the learning of inter-frame cross-region features.
Similarly, it calculates feature distances between patches in adjacent frames and adopts a KNN-based
graph construction strategy to effectively model cross-region features between frames.

Patch Merging. Considering that patches with a fixed window may not effectively capture sign
features (e.g., hand regions may be split by different patches), SignGraph (4) adopts the patch merging
module to downsample feature maps by a factor of 2, to generate larger-size patches.

3 Method

Overall Framework. As shown in Figure[2] when given the video frames, a patchify stem is adopted
to convert each frame into a set of patches (i.e., nodes) v; = {v; j };VZI Then, the three key modules
are utilized to construct graphs and capture sign-related features as follows. First, by adopting the
LSG and TSG modules, MixSignGraph can learn both the correlation of cross-region features within
one frame and the interaction of cross-region features among adjacent frames. Second, by aggregating
the same-region features from different feature maps of a frame, we build a hierarchical sign graph
G", to bidirectionally exchange features and mine different-granularity one-region features. After
that, we adopt a global feature module (2} |6) to learn global changes of whole frames. To tackle
CSLR tasks, a classifier and a widely-used CTC loss (20) are adopted to predict the probability p(g|f)
of the target gloss sequence. In SLT tasks, we adopt a translation model to convert feature sequences
or gloss sequences into text sequences. To further improve GFSLT performances, we propose the
Text-based CTC Pre-training (TCTC) mechanism, which generates pseudo gloss labels from text
sequences for model pre-training.
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in low resolution for frame f;, we have N* = H"W" nodes v} for uf and N' = H'W' nodes v!

for pl. Here, H", Wh, C", H!, W' and C" are the height, width and the number of channels of y"
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and ! respectively, and % = % = s > 0, where s is the downsampling factor. As shown in

Figure 2| and [3| to construct the hierarchical sign graph, we first use a projection layer with weights

h h h ’ . . . .
O to map pl € RIE"XWxC o ;" = ;O ensuring the same dimensionality as !, where

/ h h 1 . . . /
plt € RIETXWEXC Then, we add an undirected edge e(v/, vl ), if the node v} in 1" and the
node v, in p! correspond to the one region.

el ={e(viy,vix) |5 €[0,N")}, k= <Vv‘thJ X Wt V%:VhJ> .

In this way, we can get the edge set ¥ between y! and i for the frame f;, and obtain the hierarchical
sign graph G = {(v!', v!), eb}. After that, we apply a graph convolutional layer GCA/j; to enable
bidirectional exchanges of the same regions across different-granularity feature maps to perform
feature fusion. ) _ )

i = GCN m({pf i} eh), i = i+ pit O3 @)

Unlike LSG and TSG, which dynamically build edges based on the KNN algorithm to capture
cross-region features, the HSG focuses on fusing features belonging to the same region at different
granularities, aiming to enhance local features of one region.

Mixed Sign Graph Learning. Based on the previous work SignGraph, we insert the proposed HSG
module after the LSG and TSG modules to enhance local information from feature maps of different
granularities. For convenience, we represent the ith LSG, T'SG and HSG module as LSG;, TSG;
and HSG;, respectively.

3.1 Text-based CTC Pre-training

Gloss-based Tasks. For CSLR tasks, CTC loss with gloss annotations has become the de-facto
loss function in current CSLR models. While in gloss-based SLT tasks, the current SOTA SLT
models (22} [7) rely on pre-training, in which CTC loss with gloss sequences is used to optimize the
backbone to extract effective video-level features, as described in Equation[3] After the pre-training,
these SLT models further introduce a pre-trained translation model (e.g., mBART (23))) and fine-tune
the translation model for SLT, as defined in Equation d Here, L7 denotes CTC loss function,
Lk denotes cross-entropy loss function, g and g respectively denote recognized gloss sequence and
labeled gloss sequence,  and # respectively denote translated sentence and labeled sentence, © r and
O7 denote the parameters of recognition and translation models.

min ‘CCTC(gag) (3)
ORr

min (,CCTc(g, g) + Lcg (LZ’ t)) @

OR,0O7

Gloss-free Tasks. The above pre-training process enables the backbone to learn segmentation and
semantic information from gloss annotations, which are crucial for improving the SLT performance.
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(a) Visualization of feature distribution of one
test sample in PHOENIX14T dataset.

(b) Visualization of feature distribution of one
test sample in the How2Sign dataset.

Figure 4: Visualization of feature distribution, which is displayed via t-SNE (21)). Blue, green, and
pink points represent the input features of the translation model by NOT using TCTC, using TCTC,
using CTC pre-training with gloss annotations.

However, in the other SLT tasks, i.e., gloss-free SLT tasks, there are no gloss annotations, since
annotating glosses is a labor-intensive task.

Text-based CTC Pre-training (TCTC): To improve the performance of these gloss-free SLT tasks,
we propose a simple, effective, yet counter-intuitive training method called Text-based CTC Pre-
training (TCTC), which generates pseudo gloss sequences from labeled sentences for pre-training.
Specifically, in TCTC, we obtain the pseudo gloss sequence ¢’ by simply pre-processing labeled
sentence t, including removing punctuations, lemmatization and word-level tokenization. Then, we
directly use the CTC loss with pseudo gloss sequence t’ to optimize the backbone during initial
pre-training, and then fine-tune the entire model for translation, as depicted in Equation 5 [6]

&)
(6)

min Lore (tA/, t/)
Or

min (Loro () + Lop(i.1))

ORr,07

The principle of TCTC: Typically, CTC loss requires that the source sequence and the target
sequence are aligned in the same order. Thus, CTC loss is often used in the CSLR task, where the
sign video and gloss sequence have the same order. However, in SLT tasks, the alignment between the
SL video and the text sequence is usually non-monotonic, due to the difference in grammatical rules
between SL and spoken language. To tackle the challenge of GFSLT task, TCTC generates pseudo
gloss sequences from labeled sentences and then adopts CTC loss for model pre-training. Although
the generated pseudo gloss sequences from text/sentences may be different from the ground-truth
gloss sequences, our TCTC is still crucial for improving SLT performance. The two possible reasons
can be concluded as follows. First, given the discrete nature of languages, the inputs and outputs
of translation models (e.g., mBART used in SLT) are in a categorical, discrete-valued space (i.e.,
typically as token embeddings (24)). Second, without CTC pre-training, the features of adjacent
frames/clips (extracted by the backbone) tend to remain in a continuous-valued space, while CTC
pre-training with gloss sequences guides the model to segment video features into discrete units.
Therefore, by using CTC with pseudo gloss sequence ¢’ to pre-train the backbone, TCTC provides a
weak tokenization function, even if it may result in inaccurate segmentation.

To verify the effectiveness of TCTC, we visualize the feature distributions input to the translation
model, i.e., the features output from the CSLR model, while using or NOT using TCTC. As shown in
the bottom left part of Figure ] the embedding distributions of gloss sequence (i.e., red points) and
words in spoken sentence (i.e., black points) are normally in a discrete-valued space, as described in
the first reason of the previous paragraph. When moving to the top left part of Figure[d] the features
extracted by NOT using TCTC are located at close positions (e.g., blue points on a continuous curve),
while the features extracted by using TCTC scatter at different positions (i.e., green points in a
discrete-valued space), as described in the second reason of the previous paragraph. It demonstrates



that introducing CTC loss with pseudo gloss annotations can guide the model to extract discrete and
tokenized video features. From the perspective of feature distribution space, the pattern of feature
distribution by using TCTC is similar to that of word embedding in spoken sentences, i.e., in a
discrete-valued space. It is worth mentioning that the TCTC mechanism not only makes sense for our
proposed MixSignGraph, but also works for other backbones. To verify this phenomenon, we also
visualize the feature distribution of the other pre-trained backbone I3D in right part of Figure[d which
is adopted for How2Sign and OpenASL datasets (see Section @] for details). The above phenomenon
proves that TCTC can provide a weak tokenization function, even if TCTC may bring inaccurate
segmentation.

4 [Experiments

Datasets. Our experiment evaluation is conducted on five publicly available SL datasets, including
PHOENIX14 (25), PHOENIX14T (5),CSL-Daily (14), How2sign (26) and OpenASL (27). For
more detailed descriptions of these datasets, please refer to Appendix

Architecture Setting. Our architecture is im-

plemented using PyTorch 1.11. The setup in- Table I: Effects of sign graph modules.

cludes the following components: (1) Patchify | . rsa, msa, sa, 756, mscs|. P Test
stem and Patch merging: We use a patchify stem WER Del/Ins| WER Delfins
and patch merging module in SignGraphtoob- % X X X X X [n384ns5/202 8127
. . ; v 192 5.6/2.2|21.0 4823
tain patch (node) embeddings. (2) Distance func- % 196 5611215 51/25
tion: In the baseline setting, we measure the dis- v 199 67211216 6231
tance between two nodes using the Euclidean v 193 5.3/2.1/20.8 5.8/2.0
distance. (3) Global feature module: This mod- v 195 6.6/1.7|21.2 5.4/2.4
ule comprises two 1D convolution blocks, a 2- v 194 62129215 5936
layer BILSTM with a hidden size of 1024 for ¥ v 187 5.1/23|206 52/17
. v v 18.6 4.3/1.8]20.2 5.5/1.7
global feature modeling, and a fully connected v/ 178 61031 196 5329
layer for the final prediction. (4) Translation — , , 171 53200 197 5.053.0

network: For a fair comparison, following the
current SOTA SLT model (7)), we adopt the pre-
trained mBART model provided by Hugging-
face as our translation network.

17.4 5.7/2.1/19.6 5.1/2.9
16.7 4.9/2.1/19.0 4.9/2.9

AN
ANEN
AN

Training Setting. For fair comparisons, we adopt the same data preprocessing and training settings
as in previous work (2 4)). In regard to How2Sign and OpenASL datasets, we adopt the visual
features generated by a pre-trained I3D model (8) . In addition, to ensure the model can be trained
end-to-end on three 3090 GPUs with 24GB memory, the entire model is trained in half-precision.

Evaluation. We evaluate the performances of MixSignGraph on the following tasks: CSLR and
SLT (including Sign2Gloss2Text, Sign2Text, Gloss-free Sign2Text). Please refer to Appendix [A.3]
for detailed descriptions of these tasks. To evaluate our model, we adopt the Word Error Rate (WER)
metric for the CSLR task, and ROUGE-L F1 Score (28)) and BLEU-1-4 (29)) for SLT tasks.

4.1 Ablation Study

Following the previous work (5)), we perform ablation studies on PHOENIX 14T dataset to verify the
effectiveness of the proposed MixSignGraph model.

Effects of Sign Graph Modules. As shown in Table|l} we conduct an ablation study to evaluate the
individual and combined contributions of the LSG, TSG, and HSG modules. The baseline model
without any graph module yields a WER of 22.3%/ 22.2% on the Dev/Test set. Furthermore, when
HSG is combined with LSG and TSG, we observe consistent performance gains, which demonstrates
that the proposed HSG module effectively mitigates the degradation of local features caused by
cross-region feature extraction, and helps enhance the model’s overall representation capability and
CSLR performance.

Most importantly, the best performance is achieved when the HSG modules is inserted after LSG and
TSG modules, resulting in the lowest WER of 16.7% (Dev) and 19.0% (Test), which demonstrates
the importance of hierarchical local feature enhancement via HSG in complementing cross-region



Table 2: Effect of proposed TCTC for SLT. Besides, we also show the CSLR performance based on

the pseudo gloss sequence obtained by text labels in the right part.

Dataset Model Dev Test Dev Test
ROUGE BLEU1 BLEU2 BLEU3 BLEU4|ROUGE BLEU1 BLEU2 BLEU3 BLEU4|WER Del/Ins |WER Del/Ins
PHOENIX 14T w/o TCTC| 32.63 33.57 1871 1347 9.20 ‘ 3456 3531 21.05 1645 940 - -/- - -/-
w/TCTC | 51.71 51.07 37.97 2998 24.87 51.14 50.01 38.04 29.95 24.02 [59.97 36.8/2.5 |59.55 35.9/2.7
w/gloss | 5577 5501 42.64 3494 29.00 53.84 5490 4253 3450 2897 (1672 4.9/2.1 |19.01 4.9/29
CSL-Daily w/o TCTC| 34.11 3378 20.13 1261 8.01 ‘ 3221 3286 1834 10.67 6.78
w/TCTC | 49.16 4998 3642 26.89 2043 4993 5024 3691 2754 21.01 [66.87 39.11/4.9 |66.05 38.18/4.9
w/ gloss | 54.54 5587 4245 32775 2577 54.67 5541 4243 3284 2587 (2513 6.4/2.1 |25.01 7.0/1.6
How2Sign w/o TCTC| 1835 23.88 1292 7.89 505 ‘ 18.06 2341 1255 7.6l 4.86 - -/- - -/-
w/ TCTC | 29.24 3482 2247 1561 1128 28.01 32.74 20.83 1441 10.41 |72.38 46.35/2.69|74.88 50.27/2.07
OpenASL w/o TCTC| 12.86 11.95 489 2.78 1.88 ‘ 1256 11.29 464 277 1.95 - -I- - -/-
w/TCTC | 2541 2682 1670 1148 836 2571 26.65 1655 11.68 8.69 |81.53 59.88/1.08|81.33 60.39/1.29

Table 3: CSLR qualitative results on PHOENIX14, PHOENIX 14T and CSL-Daily. We use different

colors to represent

, deletions, and insertions, respectively.

example(a) PHOENIX14 dataset

Groundtruth MORGEN DASSELBE SCHAUER REGION SONST VIEL SONNE REGION TEILWEISE WEHEN STARK
MultiSignGraph | MORGEN DASSELBE SCHAUER REGION SONST VIEL SONNE REGION TEILWEISE WEHEN

MixSignGraph | MORGEN DASSELBE SCHAUER REGION SONST VIEL SONNE REGION TEILWEISE WEHEN STARK
example(b) PHOENIX14T dataset

Groundtruth DARUNTER NEBEL LANG IN-KOMMEND DANEBEN SONNE BERG OBEN DANN DURCHGEHEND SONNE
MultiSignGraph | _ ON__ DARUNTER NEBEL LANG IN-KOMMEND DANEBEN SONNE BERG OBEN DANN DURCHGEHEND SONNE
MixSignGraph | DARUNTER NEBEL LANG IN-KOMMEND DANEBEN SONNE BERG OBEN DANN DURCHGEHEND SONNE
example(b) CSL-Daily dataset

Groundtruth i 5350 4F 4 Wil

MultiSignGraph | ft 435 £ + [F)2 &5 W

MixSignGraph | i 535 4 + [F]2%% W

Table 4: SLT qualitative results on PHOENIX 14T, CSL-Daily, How2Sign and OpenASL.
example(a) PHOENIX14T dataset
Groundtruth | und zum wochenende wird es dann sogar wieder ein bisschen kilter
w/o TCTC und zum wochenende teil recht freundliche hochdruckwetter begleitet uns
w/ TCTC und zum wochenende wird es dann sogar ein bisschen kilter
Gloss-based | und zum wochenende wird es dann sogar wieder ein bisschen kilter
example(b) | CSL-daily dataset
Groundtruth | X fF F 53 51 H T 2 IF R FA IR AL ?
w/o TCTC | 3X B H AT 4 4 4k F0 9K 42
w/ TCTC X EAE o F AT 4 5 2 IR Ak
Gloss-based | iX 4 % 5> 5l H + 4 07 4L AR 4k 2
example(c) | How2sign dataset
Groundtruth | You can take this forward and back, you can take it in a circle, you can take it in a lot of different directions.
w/o TCTC Take a step forward, back; you can do a circular mothion that can go from on direction to the other.
w/ TCTC You can take this forward and back, you can take it in circles, you can take it in a lot of different ways.
example(d) | OpenASL dataset
Groundtruth | There are results pending for 20 other tests
w/o TCTC There are now fires and reports other people injured
w/ TCTC There are waiting for the results of the 20 other tests

spatial and temporal modeling. It confirms that H SG plays a critical role in reinforcing local features
and integrating multi-granularity graph-based representations.

Effect of TCTC for Gloss-Free SLT. To demonstrate the effectiveness of our proposed TCTC
mechanism, we compare a SLT model trained end-to-end (i.e., NOT using TCTC) and the same
model pre-trained with TCTC, in terms of SLT performance. As shown in Table 2] our model
pre-trained with TCTC significantly outperforms the one trained end-to-end, e.g., our model improves
gloss-free SLT performance by 23.14 ROUGE score and 19.8 BLEU4 score on PHOENIX 14T dev set.
In addition, on PHOENIX14T and CSL-Daily, the performance of our model pre-trained with TCTC
is close to that of the gloss-based SLT model (i.e., pre-trained with gloss annotations), e.g., 55.77
ROUGE and 54.54 ROUGE score. It indicates that the proposed TCTC mechanism can substantially
bridge the performance gap between GFSLT and gloss-based SLT.

4.2 Qualitative Results

CSLR Qualitative Results. As shown in Table[3] we conduct qualitative analysis for MixSignGraph
in the CSLR task, and show one sample from the test set of PHOENIX14, PHOENIX14T and



Table 5: Comparison of CSLR performance on PHOENIX14 and PHOENIX14T datasets. (F: face,
M: mouth, H: hands, S: skeleton, P: pre-training backbone with ImageNet, v *: pre-training on other
datasets. Same applies to the tables below.)

Extra cues PHOENIX14 PHOENIX14T
Model Backbone DEV TEST DEV  TEST
FAM H S P | WER del/ins WER del/ins | WER WER
STMC (11) VGGl1 v vV 21.1  7.7/34 207 74/26 | 19.6  21.0
C2SLR (30) ResNet18 v 20.5 -/- 20.4 -/- 20.2 20.4
TwoStream (7) S3D v v v v 18.4 -/- 18.8 -/- 17.7 19.3
CrossL-Two (3) S3D v v v V| 157 -/- 16.7 -/- 16.9 18.5
CrossL-Single (3) S3D v - -/- - -/- 206 213
RTG-Net (12) RepVGG v v v v 200 84/1.5 201 8.6/1.7 | 19.63 20.01
Joint-SLRT (31) GooleNet v - - - - 24.6 24.5
TwoStream (7) S3D V¥l 224 -/- 23.3 -/- 21.1 22.4
VAC (2) ResNet18 v | 212 79/25 223 84/26 - -
SMKD (15) ResNet18 v 20.8 6.8/2.5 21.0 6.3/23 | 208 224
CorrNet (32) ResNet18 v 188 56/2.8 194 5.7/23 | 189 20.5
FCN (33) Customed 23.7 -/- 239 -/- - -
Contrastive (6) ResNet18 19.6 51/27 198 58/3.0| 20.0  20.1
HST-GNN (34) Customized GCN) | v vV VvV V 19.5 -/- 19.8 -/- 19.5 19.8
CoSign (33) ST-GCN(GCN) v v v 19.7 -/- 20.1 -/- 19.5 20.1
SignGraph (4) Customized(GCN) v 182 49/20 191 53/19 | 17.8 19.1
MixSignGraph Customized(GCN) v 165 49/20 173 49/22 | 16.7 19.0

CSL-Daily, respectively. It can be found that MixSignGraph yields more accurate gloss predictions
than MultiSignGraph, demonstrating that the newly-proposed MixSignGraph is more effective.

SLT Qualitative Results. As shown in Table[d] we present qualitative analysis of MixSignGraph in
the SLT task, and show one sample from the test set of PHOENIX14T, CSL-Daily, How2Sign and
OpenASL, respectively. It shows that the gloss-based Sign2Text model achieves the best performance
while MixSignGraph pre-trained with TCTC also achieves satisfactory translation results.

4.3 Comparisons on CSLR Tasks

Evaluation on PHOENIX14T.

As shown in Table EL we com- Table 6: Comparison of CSLR performance on CSL-daily.
pare our model with existing

Extra cues DEV TEST
models on CSLR performance,  CSLR Backbone | BT | WER delfins | WER  delfins
and we provide both the per- —GRiSLRT BT | GoogloNet 7 1 331 103/44 | 320 96/41
formances on the validation set Twogtream @ ggD v j ) ggg ; ;gz ;

TwoStream (7) D * . -/- 5 -/-
and test set. Most of the cur- i s GoogLeNet v | 336 139/34 | 331 135/3.0
rent models adopt existing CNN-  CorrNet (32) ResNet18 v | 306 A 30.1 -
based backbones’ and achieve Contrastive (6) ResNet18 26.0 115/30 253 112/35
S CoSign (35) ST-GCN | v 281 - 272 -
good performance by injecting SignGraph (@) GCN v | 273 7923 | 264 738/21
extra cues (11575 130), adding ex-  MixSignGraph GCN v | 251 64/21 | 250 7.0/1.6

tra constraints (6} 25 [15) or intro-

ducing attention mechanism (32)). As for the GCN-based models, CoSign (35) mainly relies on
pre-processed fine-grained skeleton data, and achieves 19.5%, 20.1% WER on dev, test set. While
HST-GCN (34) adopts both CNN-based backbone and GCN-based backbone to extract RGB features
and skeleton features respectively, and achieves 19.5%, 19.8% WER on dey, test set. It is worth men-
tioning that the SOTA model CrossL-Two (3) utilizes both RGB features and fine-grained skeleton
features (i.e., keypoints in hands, body and face), and pre-trains its backbone on both PHOENIX14
and CSL-daily datasets, achieving 16.9%, 18.5% WER on dev, test set respectively. When moving
to our MixSignGraph, it does not use any extra cues or pre-train on other SL datasets, but it still
achieves comparable performance with CrossL-Two on test set. While on dev set, our model even
outperforms CrossL-Two model by 0.2% WER.

Evaluation on PHOENIX14. We conduct a comparative analysis of our model and current CSLR
models using the PHOENIX 14 dataset. As illustrated in Table [5] our straightforward yet robust
MixSignGraph model achieves the superior performance (16.5% WER) on the dev set and surpasses
the majority of existing models, thus demonstrating the effectiveness of our MixSignGraph.

Evaluation on CSL-daily. We also show CSLR performance of our model on CSL-daily dataset.
Table @ shows that our model achieves 25.1%, 25.0% WER on the dev, test set, respectively. It
indicates that our model can surpass the SOTA model by only using RGB modality.



Table 7: Comparison of SLT performance on PHOENIX14T dataset.

Extra cues PHOENIX14T
Sign2Gloss2Text DEV TEST
FFM H S P ROUGE BLEUI BLEU2 BLEU3 BLEU4 | ROUGE BLEUI BLEU2 BLEU3 BLEU4
SL-Luong (5] v 44.14 42.88 30.30 23.02 18.40 43.80 43.29 30.39 22.82 18.13
Joint-SLRT (31} v 47.73 34.82 27.11 22.11 - 48.47 35.35 27.57 22.45
SignBT (14} v 49.53 49.33 36.43 28.66 23.51 49.35 48.55 36.13 28.47 23.51
STMC-Transf v 46.31 48.27 35.20 27.47 22.47 46.77 48.73 36.53 29.03 24.00
MMTLB 22} v 50.23 50.36 37.50 29.69 24.63 49.59 49.94 37.28 29.67 24.60
RTG-Net (12} v v v v 50.18 51.17 37.95 29.88 25.95 50.04 50.87 37.95 29.74 25.87
TwoStream-SLT v v v v 52.01 52.35 39.76 31.85 26.47 51.59 52.11 39.81 32.00 26.71
MixSignGraph v 52.59 52.40 39.84 31.95 26.56 51.46 5235 39.23 32.26 26.04
Sign2Text ‘ FFM H S P ‘ ROUGE BLEUl BLEU2 BLEU3 BLEU4 ‘ ROUGE BLEUl BLEU2 BLEU3 BLEU4
Joint-SLRT v - 47.26 34.40 27.05 22.38 - 46.61 33.73 26.19 21.32
HST-GNN v v v - 46.10 33.40 27.50 22.6 - 45.20 34.70 27.50 22.60
STMC-T (10} v v v v 48.24 47.60 36.43 29.18 24.09 46.65 46.98 36.09 28.70 23.65
SignBT (14} v 50.29 51.11 37.90 29.80 24.45 49.54 50.80 37.75 29.72 24.32
CoSLRT (6} 5247 52.29 39.60 31.34 27.83 52.24 52.48 41.17 32.30 27.88
MMTLB 22} v 53.10 53.95 41.12 33.14 27.61 52.65 53.97 41.75 33.84 28.39
TwoStream-SLT (7} v v v Y 54.08 54.32 41.99 34.15 28.66 53.48 54.90 4243 34.46 28.95
MixSignGraph v 55.77 55.01 42.64 34.94 29.00 53.84 54.90 42.53 34.50 28.97
Gloss-free SLT |FM_ H S P | ROUGE BLEUl BLEU2 BLEU3 BLEU4 | ROUGE BLEUI BLEU2 BLEU3 BLEU4
SL-Luong (5} v 31.80 31.87 19.11 13.16 9.94 31.80 32.24 19.03 12.83 9.58
TSPNet (37} v - - - - - 34.96 36.10 23.12 16.88 13.41
GASLT - - - - - 39.86 39.07 26.74 21.86 15.74
CSGCR (38} v 38.96 35.85 24.77 18.65 15.08 38.85 36.71 25.40 18.86 15.18
GFSLT (16} v 40.93 41.97 31.04 24.30 19.84 40.70 41.39 31.00 24.20 19.66
GFSLT-VLP v 43.72 44.08 33.56 26.74 22.12 42.49 43.71 33.18 26.11 21.44
Sign2GPT (39) vE - - - - - 48.90 49.54 35.96 28.83 22.52
MixSignGraph v 51.71 51.07 37.97 29.98 24.87 51.14 50.01 38.04 29.95 24.02
Table 8: Comparison of SLT performance on CSL-Daily dataset.
Extra cues CSL-Daily
Sign2Gloss2Text DEV TEST
FM H S P | ROUGE BLEUI BLEU2 BLEU3 BLEU4 | ROUGE BLEUI BLEU2 BLEU3 BLEU4
SL-Luong (57 v 40.18 41.46 2571 16.57 11.06 40.05 41.55 25.73 16.54 11.03
Joint-SLR’ v 44.18 46.82 32.22 22.49 15.94 44.81 47.09 32.49 22.61 16.24
SignBT v 48.38 50.97 36.16 26.26 19.53 48.21 50.68 36.00 26.20 19.67
MMTLB 22} v 51.35 50.89 37.96 28.53 21.88 51.43 50.33 37.44 28.08 21.46
TwoStream-SLT (7} v v v v 5391 53.58 40.49 30.67 23.71 54.92 54.08 41.02 31.18 24.13
MixSignGraph v 53.48 53.73 41.53 30.70 23.76 53.65 54.07 41.04 31.32 24.44
Sign2Text ‘ FM H S P ‘ ROUGE BLEUI BLEU2 BLEU3 BLEU4 ‘ ROUGE BLEU! BLEU2 BLEU3 BLEU4
Joint-SLRT (31} v 37.06 37.47 24.67 16.86 11.88 36.74 37.38 24.36 16.55 11.79
SignBT (14} v 49.49 51.46 37.23 27.51 20.80 49.31 51.42 37.26 27.76 21.34
Contrastive (6} 50.34 51.97 37.10 27.53 21.79 50.73 52.31 37.37 27.89 21.81
MMTLB 22} v 53.38 53.81 40.84 31.29 24.42 53.25 53.31 40.41 30.87 23.92
TwoStream-SLT (7} v v v v 55.10 55.21 42.31 32.71 25.76 55.72 55.44 42.59 32.87 25.79
MixSignGraph v 54.54 55.87 42.45 32.75 25.77 54.67 55.41 42.43 32.84 25.87
Gloss-free SLT ‘ FM H S P ‘ ROUGE BLEUI BLEU2 BLEU3 BLEU4 ‘ ROUGE BLEU! BLEU2 BLEU3 BLEU4
SL-Luong (5} v 34.28 34.22 19.72 12.24 7.96 34.54 34.16 19.57 11.84 7.56
GASLT v - - - - 20.35 19.90 9.94 5.98 4.07
GFSLT-VLP v 36.44 39.20 25.02 16.35 11.07 36.70 39.37 24.93 16.26 11.00
Sign2GPT (39} VE - - - - - 42.36 41.75 28.73 20.60 15.40
GFSLT-VLP-SignCL v - - - - - 49.04 49.76 36.85 29.97 22.74
SignLLM (18} VE 44.49 46.88 36.59 2991 25.25 47.23 45.21 34.78 28.05 23.40
MixSignGraph v 49.16 49.98 36.42 26.89 20.43 49.93 50.24 36.91 27.54 20.78
Table 9: Comparison of SLT performance on How2Sign dataset.
Extra cues How2Sign
Gloss-free SLT DEV TEST
F/M_ H S P [ROUGE BLEUI BLEU2 BLEU3 BLEU4 | ROUGE BLEUI BLEU2 BLEU3 BLEU4
SLT-IV v - 35.20 20.62 13.25 8.89 - 34.01 19.30 12.18 8.03
YouTube-SLT &1} v - - - - - - 14.96 5.11 2.26 1.22
SSVP-SLT (42} v - - - - 25.70 30.20 16.70 10.50 7.00
GIoFE-VN {43} v 12.98 15.21 7.38 4.07 2.37 12.61 14.94 7.27 3.93 2.24
Ours(I3D) v 29.24 34.82 22.47 15.61 11.28 28.01 34.74 20.83 14.41 10.41

4.4 Comparisons on SLT tasks

Evaluation on PHOENIX14T Dataset. As shown in Table [/} we compare our model with existing
models using PHOENIX14T dataset on SLT tasks, which include Sign2Gloss2Text, Sign2Text, and
Gloss-free Sign2Text (also known as Gloss-free SLT). Our MixSignGraph achieves comparable
performance to the SOTA model (TwoStream) on both Sign2Gloss2Text and Sign2Text tasks. When
moving to the gloss-free SLT task, our MixSignGraph pre-trained with TCTC mechanism significantly
surpasses the current SOTA model, e.g., 8.65 ROUGE score higher than GFSLT-VLP (16)) on test set.
Besides, MixSignGraph also narrows the performance gap between the gloss-free SLT model and the
gloss-based SLT model, i.e., 51.14 ROUGE score vs. 53.84 ROUGE score.

Evaluation on CSL-daily. As shown in Table[8] we also show the SLT performance of our MixSign-
Graph on CSL-daily dataset. It can be found that MixSignGraph outperforms the most of current



Table 10: Comparison of SLT performance on OpenASL dataset.

Extra cues OpenASL
Gloss-free SLT DEV | TEST
F/M_ H S P [ROUGE BLEUI BLEU2 BLEU3 BLEU4 | ROUGE BLEUI BLEU2 BLEU3 BLEU4

Conv-GRU(27) v 16.25 16.72 8.95 6.31 4.82 16.10 16.11 8.85 6.18 4.58
13D-transformer(27) v 18.88 18.26 10.26 7.17 5.60 18.64 18.31 10.15 7.19 5.66
Open v v 25.31 2435 14.94 10.72 8.39 24.83 23.87 14.08 9.90 7.54
Open(27) v v v 20.43 20.10 11.81 8.43 6.57 21.02 20.92 12.08 8.59 6.72
GIoFE-VN (43} V| 2137 21.06 12.34 8.68 6.68 21.75 21.56 12.74 9.05 7.06
Ours(I3D) v 25.41 26.82 16.70 11.48 8.36 25.71 26.65 16.55 11.68 8.69

models on all the Sign2Gloss2Text, Sign2Text and gloss-free SLT tasks, especially on the gloss-free
SLT task (i.e., 2.7 ROUGE score higher than the SOTA model).

Evaluation on How2Sign. How2Sign is a large American Sign Language dataset. Considering
that the How2Sign dataset only provides sentence labels (i.e., NO gloss labels), we compare our
proposed model with existing models in terms of gloss-free SLT performance. Note that we adopted
the I3D features provided by previous work to accelerate training, which may compromise the SLT
performance. As shown in Table[9] our MixSignGraph pre-trained with TCTC achieves a BLEU4
score of 11.28/10.41 on the dev/test set, outperforming the baseline model (which also uses 13D
features) and thus establishing a new baseline for future work.

Evaluation on OpenASL. Similar to the How2Sign dataset, OpenASL is also a large dataset that
contains only sentence labels and has a very rich vocabulary. We compare our proposed model with
these baseline models, which adopt I3D as backbone for fair comparisons in terms of gloss-free SLT
performance. As shown in Table [I0] our model outperforms the baseline models and provides a new
baseline for future work.

5 Conclusion

We propose MixSignGraph, a simple yet effective architecture that models sign sequences as graphs
for feature extraction. To address local feature degradation caused by cross-region modeling in
SignGraph, we design a Hierarchical Sign Graph (HSG) module that connects corresponding regions
across multi-granularity features by bidirectional information exchange. We further introduce a
Text-based CTC Pre-training (TCTC) strategy that generates pseudo-gloss sequences via simple
NLP processing. Experiments on five benchmarks across CSLR and SLT tasks show that our model
achieves strong performance without relying on any additional cues.

6 Limitations and Broader Impacts

Here, we list some potential ideas that can be further explored to improve the performance of SL
tasks. Our TCTC mechanism for the gloss-free SLT task works well based on processed text, but it
also encounters problems such as difficulty in CTC loss convergence, especially in cases with large
vocabularies. Therefore, more effective methods to obtain pseudo labels for CTC pre-training are
expected. In addition, we also highlight the potential negative social impacts. First, our method may
experience unpredictable failures, so it should not be used in scenarios where such failures could
have serious consequences. Second, our method is a data-driven approach and its performance may
be influenced by biases in data, thus, caution is advised in the data collection process.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly summarize the main contributions of the
paper, including the proposal of HSG and the TCTC training strategy. (see Sections[T} [3).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We include a dedicated “Limitations and Borader Impacts™ section in the
main paper, where we discuss practical challenges, and the potential negative social impacts
including high resource demands, data bias, and model reliability in real-world applications.
(see Sections [6).

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Our work focuses on empirical model design and evaluation for sign language
translation. It does not include theoretical results that require formal assumptions or proofs.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide comprehensive details of the model architecture, training settings ,
and evaluation protocol (Sectiond)). These include datasets, hyperparameters, and imple-
mentation details necessary to reproduce our results. We also plan to release the code and
model checkpoints upon publication.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We plan to release the full codebase, model checkpoints, and detailed instruc-
tions for reproducing all experimental results, including data preprocessing, training, and
evaluation scripts.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides comprehensive training and testing details, including data
splits, model architecture, hyperparameters, learning rate, optimizer, and training epochs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

16


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: While we report the main experimental results, we do not include error bars or
statistical significance tests due to limited computational resources. In future work, we plan
to provide more extensive statistical analysis over multiple random seeds or cross-validation
splits.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper specifies the type of computing resources used, including GPU
model (e.g., 3090), memory (e.g., 24GB) (See Section E])

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conforms in every respect with the NeurIPS Code of Ethics. No
part of our work involves deception, human subjects, sensitive data, or potentially harmful
outcomes. We have ensured transparency, reproducibility, and fairness in our methodology
and reporting.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
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* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our work discusses both potential positive and negative societal impacts.(See
Section[6)

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible

release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The model weights used in this work are trained solely on publicly available
datasets, and we do not release any new datasets or pretrained models that pose a high risk
for misuse. Therefore, no additional safeguards are necessary.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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13.

14.

Answer: [Yes]

Justification: We used publicly available datasets and pretrained model weights, all of which
are properly cited in the paper. The licenses and terms of use for these assets were carefully
reviewed and respected. We have also specified the sources, versions, and relevant URLs
where appropriate.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release any new datasets, models, or code assets. All
experiments are based on publicly available datasets and pretrained models, which are
properly cited.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve any crowdsourcing or research with human
subjects. All the datasets used in this paper are publicly available.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15.

16.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or research with human sub-
jects. All datasets used are publicly available and do not contain personally identifiable
information.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:

Justification: Our core methodology does not involves Large Language Models (LLMs) as a
central component.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Appendix

A.1 Related Work

Sign Language Tasks. The unique grammatical rules of sign language lead to some differences
between the frameworks of CSLR and SLT tasks. Nevertheless, both frameworks contain a visual
backbone to capture visual features from videos. However, it is a challenging task for the widely
adopted CNN-based backbones to focus on sign-related features, since CNN backbones are initially
designed to capture the texture and contours of objects (44). To guide CNN-based backbones to
extract sign-related features, some current SL models introduce prior knowledge (e.g., local areas (45)),
skeletons (9;130; 7)) and depth images (13)) to manually inject expert knowledge into the backbone,
making it focus on SL-related areas. Some other SL models try to add additional constraints (e.g.,
knowledge distillation (15 [2) and contrastive learning (6))) to optimize their backbones. Besides,
there are also some SL models that turn their attention to obtaining more sign language samples by
back translation (14), cross modality augmentation (46)), pre-training with other sign language related
datasets (22} [3) and adopting pre-trained visual models as their backbones (39). To capture effective
SL-related features, SignGraph (4)) represents frames as nodes and builds LSG and TSG modules to
capture cross-region features both in one frame (i.e., the correlation of hands and face regions) and
among adjacent frames (e.g., hand motions, facial expression changes).

In CSLR tasks, the CTC module (47) is adopted to align gloss sequences with SL videos. While
SLT (5) models often adopt a pre-trained language model (e.g., mBART (23), GPT2 (48))) to get
the translated sentence. In these SLT models, the traditional training paradigm usually involves two
stages: first, pre-training their backbone using gloss sequences (equivalent to the CSLR task), then
connecting a pre-trained translation model and fine-tuning the entire model. In the first stage, labeled
gloss sequence is critical for improving SLT performances, as pre-training with gloss sequences
can assist the model in learning segmentation and semantic information of SL. However, annotating
gloss sequences for SL videos is labor-intensive and cumbersome. Therefore, gloss-free SLT tasks
have gained attention (16} |17; 1395 40). The existing gloss-free SLT models usually adopt attention
mechanisms (16) or contrastive language-image pre-training (17) to improve SLT performances, and
have achieved promising results.

Graph Convolutional Network. Due to the graph structures, graph convolution layers (49)) are
more flexible for message passing and aggregation. Naturally, GCN has been effectively applied
to skeleton-based data, where the connections between joints render the skeleton data inherently
suitable for GCN. With the skeleton data, GCN has been applied to SL tasks, in which some models
utilized GCNs to guide CNN-based backbones to extract skeleton-related features (9} 150} 134; 35).
However, these approaches often rely heavily on structured inputs (e.g., skeleton). To reduce the
dependence on structured data, the recent model VIT (51), which processes an image as patches with
a transformer model, has replaced CNNSs as a de facto architecture in many fields. After that, the VIG
model (19) directly represents an image as a graph structure to capture irregular and complex objects,
and achieves superior performance on image recognition tasks.

A.2 Datasets

Our experiment evaluation is conducted on five publicly available SL datasets, including three widely
used datasets (i.e., PHOENIX, PHOENIX14T and CSL-Daily) and two new and large datasets (i.e.,
How?2Sign and OpenASL), as described below.

* PHOENIX14 (25): A widely used German SL dataset with 1295 glosses from 9 signers for
CSLR. It includes 5672, 540 and 629 weather forecast samples for training, validation, and
testing, respectively.

* PHOENIX14T (5): A German SL dataset with both gloss annotations and translation
annotations. It contains 7096, 519 and 642 samples from 9 signers for training, validation and
testing, respectively. In regard to the two-stage annotations, the sign gloss annotations have
a vocabulary of 1066 different signs for CSLR, while the German translation annotations
have a vocabulary of 2877 different words for SLT.

e CSL-Daily (14): A Chinese SL dataset with 18401, 1176, 1077 labeled videos from 10
signers for training, testing and validation. It includes 2000 gloss annotations for CSLR and
2343 Chinese words for SLT.
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Dataset | Video Samples | Gloss Vocabulary | Token Vocabulary | Vocabulary in TCTC
| Train  Test Validation | Train Test  Validation | Train  Test Validation | Train  Test  Validation

PHOENIX14 25} | 5672 629 540 1103 497 462 - - - - -

PHOENIXI4T (3} | 7096 642 519 1085 411 393 2143 976 927 2888 1002 952
CSL-Daily (14) 18401 1176 1077 2000 1345 1358 2342 1358 1344 2332 1351 1351
How2Sign (26) 30904 2328 1713 - - - 83816 3312 3046 9098 2573 2302
OpenASL (27) 96476 975 966 - - - 13902 3336 3187 19144 2362 2220

Table 11: Details of datasets used in our paper.

Figure 5: Visualization of graph construction: LSG and T'SG modules (LSG; and T'SG in the
first row, LSG4 and T'SG in the second row) are in the left part, .SG module is in the right part.
The graph in LSG, T'SG and HSG module is shown in yellow, blue and green, respectively. We
also show some ‘unimportant’ edges between nodes of the background in red color.

* How2Sign (26): A multimodal and multiview continuous American Sign Language (ASL)
dataset. It consists of a parallel corpus, which has more than 80 hours of sign language
videos and a set of corresponding modalities (i.e., speech, English transcripts, and depth).
In this dataset, there are 31128, 1741 and 2322 samples for training, validation and testing,
respectively. In regard to the annotations, there are no gloss-level annotations, thus the
dataset is used for SLT tasks. It is worth mentioning that our experiment only uses the RGB
modality (i.e., NOT all modalities) with frontal view (i.e., NOT all views) to train and test
our model.

* OpenASL (27): A large ASL dataset with translation annotations for SLT. It includes 280
hours of ASL videos from more than 200 signers, and contains 96476, 997 and 999 samples
for training, validation and testing, respectively.

We provide detailed information of the five datasets in Table @ In addition, we also provide the
token vocabulary obtained by the mBART tokenizer and the vocabulary of pseudo gloss labels in
TCTC for reference. It is worth noting that the datasets we downloaded (i.e., shown in Table |'1;1'|) may
slightly differ from the official versions described in their own papers.

A.3 Evaluation Tasks.

We evaluate the performance of our model on the following tasks: : CSLR and SLT (including
Sign2Gloss2Text, Sign2Text, Gloss-free Sign2Text. (1) CSLR: Recognizing a sign sequence as a
corresponding gloss sequence, also known as Sign2Gloss. (2) SLT: Translating a sign sequence into
a spoken sentence, and it can be classified into the following three categories: (2.1) Sign2Gloss2Text:
First, the recognized gloss sequence is obtained based on the CSLR model. Then, the predicted glosses
are translated to a spoken sentence by a translation model. (2.2) Sign2Text: Directly translating a SL
video into a spoken sentence. Gloss annotations are required for pre-training a CSLR model, and
visual features output by the CSLR model are sent to a translation model for generating the spoken
sentence. (2.3) Gloss-free Sign2Text: Directly translating a SL video into a spoken sentence, while
NOT using gloss annotations to pretrain a CSLR model. This task is also known as gloss-free SLT.
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Table 12: Model details.

Model | Task |Visual backbone|Translation model [FLOPs (G)|Parameters(M)| Pre-trained Dataset
CrossL-Two CSLR Dual S3D - - - CSL-Daily+Phoenix14+Phoenix 14T
Sign2GPT Gloss-free SLT Dino-V2 ViT GPT2 - 1771.65 LVD-142M+WebText
TwoStream CSLR+S2T+S2G2T Dual S3D mBART 323.41 405.38 Kinetics-400+CC25
MultiSigngraph|CSLR+S2T+S2G2T+gloss-free SLT| ~ SignGraph mBART 256.13 395.80 ImageNet-1k+CC25
MixSigngraph |CSLR+S2T+S2G2T+gloss-free SLT|  SignGraph mBART 320.88 402.20 ImageNet-1k+CC25

A.4 Visualization of MixSignGraph

To verify whether our model can effectively capture sign-related features, we select a sign video from
the PHOENIX14T test set and visualize the constructed graph structure in both stages. In Figure[5]
we show the graphs in the LSG, T'SG and H SG modules. For clarity, only a subset of the edges
is displayed. In the LSG module, our model links nodes with similar contents or related semantic
representation (e.g., hand regions and face regions), to extract better intra-frame cross-region features.
In the T'SG module, our model builds edges among adjacent frames to track dynamic changes in
gestures and facial expressions, to capture inter-frame cross-region features. In the H.SG module,
our model connects the same regions with different granularities (i.e., the corresponding regions in
feature maps), to enhance one-region features. In addition, we also highlight some ‘unimportant’
edges between nodes in the background in red. As seen in Figure[5] the background nodes in the LSG
module are naturally connected to their neighboring nodes, and there are still a few background nodes
connected in the T'SG module. Fortunately, background nodes do not ‘disturb’ nodes in sign-related
regions, demonstrating the effectiveness of our model.

A.5 Model Comparison and Analysis

To provide a more comprehensive analysis, we compare our model with the existing models in the
following aspects: tasks, architecture information, flops, number of parameters, and pre-trained
datasets. As shown in Table among the existing models, the TwoStream model adopts a dual
S3D backbone and pre-train their backbone with Kinetics-400, which is an action recognition dataset.
Based on the backbone in TwoStream, the CrossL-Two model further pre-trains their backbone with
existing SL datasets. Sign2GPT adopts Dino-V2 ViT as the visual backbone, which is pre-trained
on LVD-142M (a very large vision dataset), and adopts GPT2 as the translation model, which is
also pre-trained on a very large text dataset WebText. In regard to MixSignGraph, it contains fewer
parameters and FLOPs, and it is only pre-trained on small datasets (i.e., ImageNet-1K and CC25
datasets), while achieving the promising performance on multiple SL tasks.

A.6 Other Ablation Study
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the large number of possible combina- K? K2

tions of Kll, K2, K% and Kf, it is im-
practical to make an exhaustive search
to find the globally optimal values of
these hyperparameters. Therefore, we fix three of the parameters at a time and adjust the fourth to
find suitable values. Finally, based on the WER performance on the DEV set, we set K}, K?, K} and
Kt2 to 3, 4, 49 and 49, respectively, as shown in Figure@

Figure 6: Effects of K; and K;.

Effect of Graph Type. In MixSignGraph, we build dynamic dense graphs (i.e., connecting the top K
neighbors for each node) in the LSG module, dynamic sparse graphs (i.e., connecting only the top K
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Table 13: Effect of porposed graph modules

(a) Effect of graph types. (b) Effect of order of proposed sign graph modules.
Dev Test Dev Test
Do TR PR | WER Delins| WER Detins Model WER Del/Ins|WER Del/ins

Dense Sparse Fixed 16.7 4.9/2.1| 19.0 4.9/2.9
Dense Dense Fixed | 193 4929|201 s2ne ~ HSG —LSG—TSG| 168 5.1/2.0| 19.6 5.0/3.2

Sparse Sparse Fixed 19.0 5.3/2.1|20.2 5.4/2.1 HSG — TSG — LSG| 16.9 5.1/2.1]19.5 4.9/3.2

Sparse Dense Fixed 20.2 5.3/2.6| 20.6 5.5/2.9 LLSG — HSG — TSG| 17.2 6.3/2.0| 19.8 4.8/2.7

Dense Sparse Dynamic| 18.1 5.1/22) 20.1 5.1/21 1 9G — TSG — HSG/| 17.1 5.4/2.0| 19.0 5.0/2.7
S S i A .6/3.5| 21. 5/2.

Dense Dense Dynamic| 19.9°3.6/3.5| 218 3526 g poG L 15G| 169 5.5/1.8| 193 5.0/3.2

Sparse Sparse Dynamic| 19.1 5.0/1.9| 21.1 5.8/2.1
Sparse Dense Dynamic|20.7 6.0/2.1|215 6025  1SG—LSG — HSG| 16.7 4.9/2.1|19.0 4.9/2.9

Table 14: Ablation experiments of SignGraph on PHOENIX14T dev set.

(a) Backbone. Comparison of dif- (b) Distance function. Compari- (c) Graph Convolution Effect of

ferent backbones. son of distance functions. different GCN layers.
BackBone WER Del Ins Distance  WER Del Ins GraphConv ~ WER Del Ins
SwinT (52) 45.4 16.3 1.3 Cosine 174 55 20 GATv2Conv (54) 17.0 5.1 2.0
PyVIG (19) 354 12.1 1.3 Chebyshev 17.3 5.1 3.2 SAGEConv (33) 17.7 59 1.9
SA (53) 39.2 153 0.9 Euclidean 16.7 49 2.1 GCNConv (49) 17.7 5.5 2.0
Ours 16.7 4.9 2.1 EdgeConv (56) 16.7 4.9 2.1

(d) Patch size. Comparison of dif- (e) Multiscale SignGraph. Effect (f) Drop edge. Adding DropE-
ferent patch sizes with one LSG, of the number of stages in multi- dge (57) does not improve perfor-

T'SG and BSG modules. scale SignGraph. mance.
PatchSize WER Del Ins Stages WER Del Del DropRate  WER Del Ins
8 174 54 3.0 16—32 16.7 49 2.1 0 167 49 21
16 17.1 53 2.0 8§—16—32 171 52 20 15% 177 6.1 1.4
32 17.5 5.7 24 4—8—16—3217.8 54 3.1 30% 175 6.0 2.1

node pairs) in the 7'SG module, and fixed graphs (i.e., connecting the same regions between feature
maps) in the HSG module. To verify the effectiveness of the above graph types, we evaluate the
CSLR performance by changing the graph types in LSG, T'SG and H SG modules. For simplicity,
we only use one LSG module, one 7'SG module and one H.SG module in the experiment. As shown
in Table[I3a] when using a spare graph in the LSG module, a dense graph in the 7'SG module, or a
dynamic dense graph (i.e., building in the similar way with the LSG module) in the H.SG module,
there is a noticeable performance drop. That is to say, it is effective to adopt dense, sparse and fixed
graphs in the LSG, T'SG and HSG modules, and the combination of these mixed graphs can make
our model achieve the best recognition performance.

Effect of Ordering of Sign Graph Modules. We also evaluate the CSLR performance by changing
the ordering of three graph modules. As shown in Table[I3b] different orderings of the graph modules
lead to slight differences in the CSLR performance, i.e., the ordering has a little effect on the overall
effectiveness of feature extraction and integration. Nevertheless, the ordering 7'SG — LSG —HSG
can help the model to achieve the best CSLR performance. Thus our model MixSignGraph adopts
the ordering TSG — LSG —H SG by default.

Effects of Different Backbones. To verify the effectiveness of the MixSignGraph model, we replace
our backbone with other patch-based networks (e.g., CvT (38)), Swin Transformer (52))), or replace
our graph modules with Self-Attention (SA) layers (53). As shown in Table[[4a] simply adopting
the patch-based SOTA backbones or substituting our graph modules with SA layers does not lead
to appealing performances on the CSLR task. In contrast, our proposed MixSignGraph backbone
achieves a satisfactory performance by effectively capturing both cross-region and one-region features.

Effect of Distance Function. In the MixSignGraph, we use the KNN algorithm to find the nearest
neighbors for a node/patch based on the distance between two nodes. To select a suitable distance
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function to measure the distance between nodes, we evaluate the CSLR performance with the
following commonly used distance functions, i.e., Cosine distance, Chebyshev distance and Euclidean
distance. As shown in Table [I4b] there are subtle performance differences, when using different
distance functions. In MixSignGraph, we adopt Euclidean distance for better performance.

Effect of GCN Layer. To verify the effectiveness of the graph convolution layer, we test the
CSLR performance by adopting the following representative variants of graph convolution, i.e.,
GATv2Conv (54), SAGEConv (55), GCNConv (49), and EdgeConv (56). As shown in Table
even using different GCN layers, our model still achieves good performance. It indicates that our
MixSignGraph model has good flexibility in GCN layer selection. Nevertheless, among the above
GCN layers, EdgeConv can help our model to achieve the best CSLR performance, i.e., 16.7% WER.
Therefore, we adopt the EdgeConv layer in MixSignGraph for better performance.

Effect of Patch Sizes. Patches with different sizes have different receptive fields, thus can capture
different-range features and further affect the model performance. To observe the effect of patch sizes,
we evaluate the CSLR performance by only adopting one LSG module, one 7'SG module and one
H SG module, while changing the patch size. As shown in Table when using a patch size that is
too small (i.e., 8 x8) or too large (i.e., 32x32), the model MixSignGraph shows a worse performance.
We found that a suitable patch size strikes the best balance, leading to good performance.

Effect of Multiscale Sign Graphs. To leverage the scale-invariant property of images (19), PyVIG
adopts a pyramid architecture that gradually increases patch size from 4 to 32 by shrinking the spatial
size of feature maps to enhance feature extraction capability. Similarly, to extract better sign features
and achieve higher CSLR performance, we gradually add LSG, T'SG and HSG modules after
the early stage of the patchify stem. According to Table adding more LSG, T'SG and HSG
modules does not always bring performance gains. Therefore, MixSignGraph adopts two LSG, TSG
and H SG modules, i.e., increasing patch size from 16 to 32, aiming to achieve the best performance.

Effect of DropEdge. DropEdge (57) can alleviate the over-smoothing and overfitting problems in
dense graphs by randomly removing a certain number of edges from the input graph at each training
epoch. Considering that we build dense graphs for the LSG and H.SG modules, we introduce
DropEdge into these two modules and change the drop rates of DropEdge to evaluate the CSLR
performance. As shown in Table[T4f] adding DropEdge does not improve the performance of our
MixSignGraph. It indicates that our model can achieve excellent performance without relying on
external modules (e.g., DropEdge) and it can handle over-smoothing and overfitting problems well.
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