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ABSTRACT

Self-supervised learning has emerged as a strategy to reduce the reliance on costly
supervised signals by pretraining representations only using unlabeled data. These
methods combine heuristic proxy classification tasks with data augmentations
and have achieved significant success, but our theoretical understanding of this
success remains limited. In this paper we analyze self-supervised representation
learning using a causal framework. We show how data augmentations can be
more effectively utilized through explicit invariance constraints on the proxy
classifiers employed during pretraining. Based on this, we propose a novel self-
supervised objective, Representation Learning via Invariant Causal Mechanisms
(RELIC), that enforces invariant prediction of proxy targets across augmentations
through an invariance regularizer which yields improved generalization guarantees.
Further, using causality we generalize contrastive learning, a particular kind of
self-supervised method, and provide an alternative theoretical explanation for the
success of these methods. Empirically, RELIC significantly outperforms competing
methods in terms of robustness and out-of-distribution generalization on ImageNet,
while also significantly outperforming these methods on Atari achieving above
human-level performance on 51 out of 57 games.

1 INTRODUCTION

Training deep networks often relies heavily on large amounts of useful supervisory signal, such as
labels for supervised learning or rewards for reinforcement learning. These training signals can be
costly or otherwise impractical to acquire. On the other hand, unsupervised data is often abundantly
available. Therefore, pretraining representations for unknown downstream tasks without the need for
labels or extrinsic reward holds great promise for reducing the cost of applying machine learning
models. To pretrain representations, self-supervised learning makes use of proxy tasks defined on
unsupervised data. Recently, self-supervised methods using contrastive objectives have emerged as
one of the most successful strategies for unsupervised representation learning (Oord et al., 2018;
Hjelm et al., 2018; Chen et al., 2020a). These methods learn a representation by classifying every
datapoint against all others datapoints (negative examples). Under assumptions on how the negative
examples are sampled, minimizing the resulting contrastive loss has been justified as maximizing a
lower bound on the mutual information (MI) between representations (Poole et al., 2019). However,
(Tschannen et al., 2019) has shown that performance on downstream tasks may be more tightly
correlated with the choice of encoder architecture than the achieved MI bound, highlighting issues
with the MI theory of contrastive learning. Further, contrastive approaches compare different views
of the data (usually under different data augmentations) to calculate similarity scores. This approach
to computing scores has been empirically observed as a key success factor of contrastive methods, but
has yet to be theoretically justified. This lack of a solid theoretical explanation for the effectiveness
of contrastive methods hinders their further development.

To remedy the theoretical shortcomings, we analyze the problem of self-supervised representation
learning through a causal lens. We formalize intuitions about the data generating process using
a causal graph and leverage causal tools to derive properties of the optimal representation. We
show that a representation should be an invariant predictor of proxy targets under interventions
on features that are only correlated, but not causally related to the downstream targets of interest.
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Since neither causally nor purely correlationally related features are observed and thus performing
actual interventions on them is not feasible, for learning representation with this property we use data
augmentations to simulate a subset of possible interventions. Based on our causal interpretation, we
propose a regularizer which enforces that the prediction of the proxy targets is invariant across data
augmentations. We propose a novel objective for self-supervised representation learning called REpre-
sentation Learning with Invariant Causal mechanisms (RELIC). We show how this explicit invariance
regularization leverages augmentations more effectively than previous self-supervised methods and
that representations learned using RELIC are guaranteed to generalize well to downstream tasks
under weaker assumptions than those required by previous work (Saunshi et al., 2019).

Next we generalize contrastive learning and provide an alternative theoretical explanation to MI for
the success of these methods. We generalize the proxy task of instance discrimination commonly used
in contrastive learning using the causal concept of refinements (Chalupka et al., 2014). Intuitively, a
refinement of a task can be understood as a more fine-grained variant of the original problem. For
example, a refinement for classifying cats against dogs would be the task of classifying individual
cat and dog breeds. The instance discrimination task results from the most fine-grained refinement,
e.g. discriminating individual cats and dogs from one another. We show that using refinements as
proxy tasks enables us to learn useful representations for downstream tasks. Specifically, using causal
tools, we show that learning a representation on refinements such that it is an invariant predictor of
proxy targets across augmentations is a sufficient condition for these representations to generalize to
downstream tasks (cf. Theorem 1). In summary, we provide theoretical support both for the general
form of the contrastive objective as well as for the use of data augmentations. Thus, we provide an
alternative explanation to mutual information for the success of recent contrastive approaches namely
that of causal refinements of downstream tasks.

We test RELIC on a variety of prediction and reinforcement learning problems. First, we evaluate
the quality of representations pretrained on ImageNet with a special focus on robustness and out-of-
distribution generalization. RELIC performs competitively with current state-of-the-art methods on
ImageNet, while significantly outperforming competing methods on robustness and out-of-distribution
generalization of the learned representations when tested on corrupted ImageNet (ImageNet-C
(Hendrycks & Dietterich, 2019)) and a version of ImageNet that consist of different renditions of the
same classes (ImageNet-R (Hendrycks et al., 2020)). In terms of robustness, RELIC also significantly
outperforms the supervised baseline with an absolute reduction of 4.9% in error. Unlike much prior
work that specifically focuses on computer vision tasks, we test RELIC for representation learning in
the context of reinforcement learning on the Atari suite (Bellemare et al., 2013). There we find that
RELIC significantly outperforms competing methods and achieves above human-level performance
on 51 out of 57 games.

Contributions.

• We formalize problem of self-supervised representation learning using causality and propose
to more effectively leverage data augmentations through invariant prediction.

• We propose a new self-supervised objective, REpresentation Learning with Invariance Causal
mechanisms (RELIC), that enforces invariant prediction through an explicit regularizer and
show improved generalization guarantees.

• We generalize contrastive learning using refinements and show that learning on refinements
is a sufficient condition for learning useful representations; this provides an alternative
explanation to MI for the success of contrastive methods.

2 REPRESENTATION LEARNING VIA INVARIANT CAUSAL MECHANISMS

Problem setting. LetX denote the unlabelled observed data and Y = {Yt}Tt=1 be a set of unknown
tasks with Yt denoting the targets for task t. The tasks {Yt}Tt=1 can represent both a multi-environment
as well as a multi-task setup. Our goal is to pretrain with unsupervised data a representation f(X)
that will be useful for solving the downstream tasks Y .

Causal interpretation. To effectively leverage common assumptions and intuitions about data
generation of the unknown downstream tasks for the learning algorithm, we propose to formalize
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Figure 1: (a) Causal graph formalizing assumptions about content and style of the data and the
relationship between targets and proxy tasks. The dashed arrows are not causal and represent learning,
while the dashdotted lines denote that Y R is a refinement Yt’s. All other arrows are causal. (b)
RELIC objective. KL refers to the Kullback-Leibler divergence, while x-entropy denotes cross
entropy.

them using a causal graph. We start from the following assumptions: a) the data is generated from
content and style variables, with b) only content (and not style) being relevant for the unknown
downstream tasks and c) content and style are independent, i.e. style changes are content-preserving.
For example, when classifying dogs against giraffes from images, different parts of the animals
constitute content, while style could be, for example, background, lighting conditions and camera
lens characteristics. By assumption, content is a good representation of the data for downstream tasks
and we therefore cast the goal of representation learning as estimating content. In the following, we
compactly formalize these assumptions with a causal graph1, see Figure 1a.

Let C and S be the latent variables describing content and style. In Figure 1a, the directed arrows
from C and S to the observed data X (e.g. images) indicate that X is generated based on content
and style. The directed arrow from C to the target Yt (e.g. class labels) encodes the assumption that
content directly influences the target tasks, while the absence of any directed arrow from S to Yt
indicates that style does not. Thus, content C has all the necessary information to predict Yt. The
absence of any directed path between C and S in Figure 1a encodes the intuition that these variables
are independent, i.e. C ⊥⊥ S.

Using the independence of mechanisms (Peters et al., 2017), we can conclude that under this causal
model performing interventions on S does not change the conditional distribution P (Yt|C), i.e.
manipulating the value of S does not influence this conditional distribution. Thus, P (Yt|C) is
invariant under changes in style S. We call C an invariant representation for Yt under S, i.e.

pdo(S=si)(Yt |C) = pdo(S=sj)(Yt |C) ∀ si, sj ∈ S, (1)

where pdo(S=s) denotes the distribution arising from assigning S the value s with S the domain of S
(Pearl, 2009). Specifically, using C as a representation allows for us to predict targets stably across
perturbations, i.e. content C is both a useful and robust representation for tasks Y .

Since the targets Yt are unknown, we will construct a proxy task Y R in order to learn representations
from unlabeled data X only. In order to learn useful representations for Yt, we will construct proxy
tasks that represents more fine-grained problems than Yt; for a more formal treatment of proxy tasks
please refer to Section 3. Further, to learn invariant representations, such as C, we enforce Equation 1
which requires us to observe data under different style interventions, i.e. we need data that describes
the same content under varying style. Since we do not have access to S, to simulate style variability
we use content-preserving data augmentations (e.g. rotation, grayscaling, translation, cropping for
images). Specifically, we utilize data augmentations as interventions on the style variable S, i.e.

1See (Peters et al., 2017) for a review of causal graphs and causality

3



Published as a conference paper at ICLR 2021

applying data augmentation ai corresponds to intervening on S and setting it to sai
. 2 Although

we are not able to generate all possible styles using a fixed set of data augmentations, we will use
augmentations that generate large sets of diverse styles as this allows us to learn better representations.
Note that the heuristic of estimating similarity based on different views from contrastive learning can
be interpreted as an implicit invariance constraint.

RELIC objective. Equation 1 provides a general scheme to estimate content (c.f. Figure 1a). We
operationalize this by proposing to learn representations such that prediction of proxy targets from
the representation is invariant under data augmentations. The representation f(X) must fulfill the
following invariant prediction criteria

(Invariant prediction) pdo(ai)(Y R|f(X)) = pdo(aj)(Y R|f(X)) ∀ai, aj ∈ A. (2)

A = {a1, . . . , am} is the set of data augmentations which simulate interventions on the style variables
and pdo(a) denotes pdo(S=sa).

To achieve invariant prediction, we propose to explicitly enforce invariance under augmentations
through a regularizer. This gives rise to an objective for self-supervised learning we call Representa-
tion Learning via Invariant Causal Mechanisms (RELIC). We write this objective as

min E
X∼p(X)

E
alk,aqt

∼A×A

∑
b∈{alk,aqt}

Lb(Y
R, f(X))

s.t. KL
(
pdo(alk)(Y R| f(X)), pdo(aqt)(Y R| f(X))

)
≤ ρ

where L is the proxy task loss and KL is the Kullback-Leibler (KL) divergence. Note that any
distance measure on distributions can be used in place of the KL divergence. We explain the remaining
terms in detail below.

Concretely, as proxy task we associate to every datapoint xi the label yRi = i. This corresponds to the
instance discrimination task, commonly used in contrastive learning (Hadsell et al., 2006). We take
pairs of points (xi, xj) to compute similarity scores and use pairs of augmentations alk = (al, ak) ∈
A×A to perform a style intervention. Given a batch of samples {xi}Ni=1 ∼ D, we use

pdo(alk)(Y R = j | f(xi)) ∝ exp
(
φ(f(xal

i ), h(xak
j ))/τ

)
.

with xa data augmented with a and τ a softmax temperature parameter. We encode f using a
neural network and choose h to be related to f , e.g. h = f or as a network with an exponential
moving average of the weights of f (e.g. target networks similar to (Grill et al., 2020)). To compare
representations we use the function φ(f(xi), h(xj)) = 〈g(f(xi)), g(h(xj))〉 where g is a fully-
connected neural network often called the critic.

Combining these pieces, we learn representations by minimizing the following objective over the full
set of data xi ∈ D and augmentations alk ∈ A×A

min−
N∑
i=1

∑
alk

log
exp (φ(f(xal

i ), h(xak
i ))/τ)∑M

m=1 exp (φ(f(x
al
i ), h(xak

m ))/τ)
+ α

∑
alk,aqt

KL(pdo(alk), pdo(aqt)) (3)

withM the number of points we use to construct the contrast set and α the weighting of the invariance
penalty. We used the shorthand pdo(a) for pdo(a)(Y R = j | f(xi)). With appropriate choices for φ, g,
f and h above, Equation 3 recovers many recent state-of-the-art methods (c.f. Table 5 in Section A).
Figure 1b presents a schematic of the RELIC objective.

The explicit invariance penalty encourages the within-class distances (for a downstream task of inter-
est) of the representations learned by RELIC to be tightly concentrated. We show this empirically in
Figure 2 and theoretically in Appendix B. In the following section we provide theoretical justification
for using an instance discrimination-based contrastive loss using a causal perspective. We also show
(cf. Theorem 1 below) that minimizing the contrastive loss alone (i.e. α = 0) does not guarantee
generalization. Instead, invariance across augmentations must be explicitly enforced.

2Since neither content nor style are a priori known, choosing a set of augmentations implicitly defines which
aspects of the data are considered style and which are content.
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3 GENERALIZING CONTRASTIVE LEARNING

Learning with refinements. In contrastive learning, the task of instance discrimination, i.e. classi-
fying the dataset {(xi, yRi = i)|xi ∈ D}, is used as the proxy task. To better understand contrastive
learning and motivate this proxy task, we generalize instance discrimination using the causal concept
of refinements (Chalupka et al., 2014). Intuitively, a refinement of one problem is another more
fine-grained problem. If task Yt is to classify cats against dogs, then a refinement of Yt is the task of
classifying cats and dogs into their individual breeds. See Figure 4 for a further visual example. For
any set of tasks, there exist many different refinements. However, the most fine-grained refinement
corresponds exactly to classifying the dataset {(xi, yRi = i)|xi ∈ D}. Thus, the instance discrimi-
nation task used in contrastive learning is a specific type of refinement. For a definition and formal
treatment of refinements please refer to Appendix D.

Let Y R be targets of a proxy task that is a refinement for all tasks in Y . Leveraging causal tools,
we connect learning on refinements to learning on downstream tasks. Specifically, we provide a
theoretical justification for exchanging unknown downstream tasks with these specially constructed
proxy tasks. We show that if f(X) is an invariant representation for Y R under changes in style
S, then f(X) is also an invariant representation for tasks in Y under changes in style S. Thus
by enforcing invariance under style interventions on a refinement, we learn representations that
generalize to downstream tasks.3 This is summarized in the following theorem.

Theorem 1. Let Y = {Yt}Tt=1 be a family of downstream tasks. Let Y R be a refinement for all tasks
in Y . If f(X) is an invariant representation for Y R under style interventions S, then f(X) is an
invariant representation for all tasks in Y under style interventions S, i.e.

pdo(si)(Y R | f(X)) = pdo(sj)(Y R | f(X)) ⇒ pdo(si)(Yt | f(X)) = pdo(sj)(Yt | f(X)) (4)

for all si, sj ∈ S with pdo(si) = pdo(S=si). Thus, f(X) is a representation that generalizes to Y .

Theorem 1 states that if Y R is a refinement of Y then learning a representation on Y R is a sufficient
condition for this representation to be useful on Y . For a formal exposition of these points and
accompanying proofs, please refer to Appendix D. Recall that the instance discrimination proxy task
is the most fine-grained refinement, and so the right hand side of 4 is satisfied for any downstream
task satisfying the stated assumptions of the theorem.

We generalize contrastive learning through refinements and connect representations learned on
refinements and downstream tasks in Theorem 1. Thus, using causality we provide an alternative
explanation to mutual information for the success of contrastive learning. Note that our methodology
of refinements is not limited to instance discrimination tasks and is thus more general than currently
used contrastive losses. Real world data often includes rich sources of metadata which can be used
to guide the construction of refinements by grouping the data according to any available meta-data.
Note that the coarser we can create a refinement, the more data efficient we can expect to be when
learning representations for downstream tasks. Further, we can also expect to require less supervised
data to finetune the representation.

4 RELATED WORK

Contrastive objectives and mutual information maximization. Many recent approaches to self-
supervised learning are rooted in the well-established idea of maximizing mutual information (MI),
e.g. Contrastive Predictive Coding (CPC) (Oord et al., 2018; Hénaff et al., 2019), Deep InfoMax
(DIM) (Hjelm et al., 2018) and Augmented Multiscale DIM (AMDIM) (Bachman et al., 2019). These
methods are based on noise contrastive estimation (NCE) (Gutmann & Hyvärinen, 2010) which,
under specific conditions, can be viewed as a bound on MI (Poole et al., 2019). The resulting objective
functions are commonly referred to as InfoNCE.

The precise role played by mutual information maximization in self-supervised learning is subject
to some debate. (Tschannen et al., 2019) argue that the performance on downstream tasks is

3Note that since refinements are more fine-grained that the original task, if a representation captures a
refinement then it also captures the downstream tasks as strictly more information is needed to solve the
refinement.
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not correlated with the achieved bound on MI, but may be more tightly correlated with encoder
architecture and capacity. Importantly, InfoNCE objectives require custom architectures to ensure
the network does not converge to non-informative solutions thus precluding the use of standard
architectures. Recently, several works (He et al., 2019; Chen et al., 2020a) successfully combined
contrastive estimation with a standard ResNet-50 architecture. In particular, SimCLR (Chen et al.,
2020a) relies on a set of strong augmentations4, while (He et al., 2019) uses a memory bank. Inspired
by target networks in reinforcement learning, (Grill et al., 2020) proposed BYOL: an algorithm for
self-supervised learning which remarkably does not use a contrastive objective. Although theoretical
explanation for the good performance of BYOL is presently missing, interestingly the objective, an `2
distance between two different embeddings of the input data resembles the `2 form of our regularizer
proposed in Equation 5 in Appendix B.

0 500 1000
Linear Discriminant Ratio

distance = 162

ReLIC
SimCLR
AMDIM

Figure 2: Distribution of
the linear discriminant ra-
tio (FLDA, see text) of f
for RELIC, SimCLR and
AMDIM (y-axis clipped to
aid visualization).

Recently, (Saunshi et al., 2019) proposed a learning theoretic frame-
work to analyze the performance of contrastive objectives. However,
without strong assumptions on intra-class concentration they note that
contrastive objectives are fundamentally limited in the representations
they are able to learn. RELIC explicitly enforces intra-class concen-
tration via the invariance regularizer, ensuring that it generalizes under
weaker assumptions. Unlike (Saunshi et al., 2019) who do not dis-
cuss augmentations, we incorporate augmentations into our theoretical
explanation of contrastive methods.

The reasons for the improvement in performance from AMDIM through
to SimCLR and BYOL are not easily explained by either the MI max-
imization or the learning theoretic viewpoint. Further, it is not clear
why relatively minor architectural differences between the methods
result in significant differences in performance nor is it obvious how
current state-of-the-art can be improved. In contrast to prior art, the
performance of RELIC is explained by connections to causal theory.
As such it gives a clear path for improving results by devising problem
appropriate refinements, interventions and invariance penalties. Furthermore, the use of invariance
penalties in RELIC as dictated by causal theory yields significantly more robust representations that
generalize better than those learned with SimCLR or BYOL.

Causality and invariance. Recently, the notion of invariant prediction has emerged as an important
operational concept in causal inference (Peters et al., 2016). This idea has been used to learn classifiers
which are robust against domain shifts (Gong et al., 2016). Notably, (Heinze-Deml & Meinshausen,
2017) propose to use group structure to delineate between different environments where the aim is to
minimize the classification loss while also ensuring that the conditional variance of the prediction
function within each group remains small. Unlike (Heinze-Deml & Meinshausen, 2017) who use
supervised data and rely on having a grouping in the training data, our approach does not rely on
ground-truth targets and can flexibly create groupings of the training data if none are present. Further,
we enforce invariant prediction within the group by constraining the distance between distributions
resulting from contrasting data across groups.

The relationship between causal inference and semi-supervised learning has been explored in
(Schölkopf et al., 2012). In particular, in order for unlabeled data to be helpful for learning, the
relationship between the predictors and targets must be anti-causal. Our setting is somewhat different
as we assume a latent decomposition of the observed variables and learn representations based on
proxy targets which are refinements of the true targets.

Our invariance penalty is similar in practise to consistency regularizers which have recently gained
popularity in semi-supervised learning (Sajjadi et al., 2016; Xie et al., 2019; Sohn et al., 2020).
These typically supplement the supervised training signal with a term which enforces similarity
between the function’s output on two views of data. Although recently proposed consistency methods
are heuristic, they have deeper roots in the more rigorous co-training approach to semi-supervised
learning from multiple views (Blum & Mitchell, 1998; Kakade & Foster, 2007; Sridharan & Kakade,
2008; McWilliams & Montana, 2012; McWilliams et al., 2013). The main conceptual difference

4The set of augmentations includes Gaussian blurring, various colour distortions, flips and random cropping.
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between our approach and consistency-based methods is that we do not have access to a supervised
training signal and that the RELIC penalty is motivated from the underlying causal graph.

5 EXPERIMENTS

We first visualize the influence of the explicit invariance constraint in RELIC on the linear separability
of the learned representations. We then evaluate RELIC on a number of prediction and reinforcement
learning tasks for usefulness and robustness. For the prediction tasks, we test RELIC after pretraining
the representation in a self-supervised way on the training set of the ImageNet ILSVRC-2012 dataset
(Russakovsky et al., 2015). We evaluate RELIC in the linear evaluation setup on ImageNet and
test its robustness and out-of-distribution generalization on datasets related to ImageNet. Unlike
much prior work in contrastive learning which focuses specifically on computer vision tasks, we test
RELIC also in the context of learning representations for reinforcement learning. Specifically, we
test RELIC on the suite of Atari games (Bellemare et al., 2013) which consists of 57 diverse games
of varying difficulty.

Linear evaluation. In order to understand how representations learned by RELIC differ from other
methods, we compare it against those learned by AMDIM and SimCLR in terms of Fischer’s linear
discriminant ratio (Friedman et al., 2009): FLDA = ‖µk − µk′‖2/

∑
i,j∈Ck ‖f(xi)− f(xj)‖

2 where
µk = 1

|Ck|
∑

i∈Ck f(xi) is the mean of the representations of class k and Ck is the index set of that
class. A larger FLDA implies that classes are more easily separated with a linear classifier. This can
be achieved by either increasing distances between classes (numerator) or shrinking within-class
variance (denominator).

Figure 2 shows the distribution of FLDA for RELIC, SimCLR and AMDIM after training as measured
on the (downsampled) ImageNet validation set. The distance between medians of RELIC and
SimCLR is 162. AMDIM is tightly concentrated close to 20. The invariance penalty ensures that—
even though labels are a-priori unknown—for RELIC within-class variability of f is concentrated
leading to better linear separability between classes in the downstream task of interest.This is reflected
in the rightward shift of the distribution of FLDA in Figure 2 for RELIC compared with SimCLR and
AMDIM which do not impose such a constraint.

Table 1: Accuracy (in %) under linear evaluation on Ima-
geNet for different self-supervised representation learning
methods. Methods with * use SimCLR augmentations.
Methods with † use custom, stronger augmentations.

Method Top-1 Top-5
ResNet-50 architecture

PIRL 63.6 -
CPC v2 63.8 85.3
CMC 66.2 87.0
SimCLR (Chen et al., 2020a) * 69.3 89.0
SwAV (Caron et al., 2020) * 70.1 -
RELIC (ours) * 70.3 89.5
InfoMin Aug. (Tian et al., 2020) † 73.0 91.1
SwAV (Caron et al., 2020) † 75.3 -

ResNet-50 with target network
MoCo v2 (Chen et al., 2020b) 71.1 -
BYOL (Grill et al., 2020) * 74.3 91.6
RELIC (ours) * 74.8 92.2

Next we evaluate RELIC’s representa-
tion by training a linear classifier of top
of the fixed encoder following the pro-
cedure in (Kolesnikov et al., 2019; Chen
et al., 2020a) and Appendix E.4. In Ta-
ble 1, we report top-1 and top-5 accu-
racy on the ImageNet test set. Methods
denoted with * use SimCLR augmenta-
tions (Chen et al., 2020a), while meth-
ods denoted † use custom, stronger aug-
mentations. Comparing methods which
use SimCLR augmentations, RELIC
outperforms competing approaches on
both ResNet-50 and ResNet-50 with
target network. For completeness, we
report results for SwAV (Caron et al.,
2020) and InfoMin (Tian et al., 2020),
but note that these methods use stronger
augmentations which alone have been
shown to boost performance by over 5%.
A fair comparison between different ob-
jectives can only be achieved under the
same architecture and the same set of
augmentations.
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Robustness and generalization. We evaluate robustness and out-of-distribution generalization of
RELIC’s representation on datasets Imagenet-C (Hendrycks & Dietterich, 2019) and ImageNet-R
(Hendrycks et al., 2020), respectively. To evaluate RELIC’s representation, we train a linear classifier
on top of the frozen representation following the procedure described in (Chen et al., 2020a) and
appendix E.5.2. For Imagenet-C we report the mean Corruption Error (mCE) and Corruption Errors
for Noise corruptions in Table 3. RELIC has significantly lower mCE than both the supervised
ResNet-50 baseline and the unsupervised methods SimCLR and BYOL. Also, it has the lowest
Corruption Error on 14 out of 15 corruptions when compared to SimCLR and BYOL. Thus, we see
that RELIC learns the most robust representation. RELIC also outperforms SimCLR and BYOL on
ImageNet-R showing its superior out-of-distribution generalization ability; see Table 2. For further
details and results please consult E.5.

Table 2: Top-1 error rates for different self-supervised representation learning methods on ImageNet-
R. All models are trained only on clean ImageNet images and RELICT refers to RELIC using a
ResNet-50 with target network as in BYOL (Grill et al., 2020).

Method Supervised SimCLR RELIC BYOL RELICT

Top-1 Error (%) 63.9 81.7 77.4 77.0 76.2

Table 3: Mean Corruption Error (mCE), mean relative Corruption Error (mrCE) and Corruption
Errors for the “Noise” class of corruptions (Gaussian, Shot, Impulse) on ImageNet-C. The mCE value
is the average across 75 different corruptions. Methods are trained only on clean ImageNet images.

Method mCE mrCE Gaussian Shot Impulse
Supervised 76.7 105.0 80.0 82.0 83.0
ResNet-50 architecture:

SimCLR 87.5 111.9 79.4 81.9 89.6
ReLIC 76.4 87.7 67.8 70.7 77.0

ResNet-50 with target network:
BYOL 72.3 90.0 65.9 68.4 73.7
ReLIC 70.8 88.4 63.6 65.7 69.2

Reinforcement Learning. Much prior work in contrastive learning has focused specifically on
computer vision tasks. In order to compare these approaches in a different domain, we investigate
representation learning in the context of reinforcement learning. We compare RELIC as an auxiliary
loss against other state of the art self-supervised losses on an agent trained on 57 Atari games. Using
human normalized scores as a metric, we use the original architecture and hyperparameters of the
R2D2 agent (Kapturowski et al., 2019) and supplement it with a second encoder trained with a given
representation learning loss. When auxiliary losses are present, the Q-Network takes the output of
the second encoder as an input. The Q-Network and the encoder are trained with separate optimizers.
For the augmentation baseline, the Q-Network takes two identical encoders trained end-to-end. Table
4 shows a comparison between RELIC, SimCLR, BYOL, CURL (Srinivas et al., 2020), and feeding
augmented observations directly to the agent (Kostrikov et al., 2020). We find that RELIC has
a significant advantage over competing self-supervised methods, performing best in 25 out of 57
games. The next best performing method, CURL performs best in 11 games. Note that none of these
methods outperform R2D2 (Kapturowski et al., 2019) which achieves superhuman performance in 52
games. Although previously published work shows the auxiliary tasks help on Atari, this is in the
very low-data regime. Here we show that ReLIC is able to close the gap in the more common Atari
set up. We hypothesize that the performance penalty resulting from adding auxiliary self-supervised
losses stems from the naive combining of the outputs of the two encoders; we will explore alternative
options for combining encoder outputs in future. Full details are presented in Section E.6.

6 CONCLUSION

In this work we have analyzed self-supervised learning using a causal framework. Using a causal
graph, we have formalized the problem of self-supervised representation learning and derived
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Table 4: Human Normalized Scores of Auxiliary Methods over 57 Atari Games.

Atari Performance RELIC SimCLR CURL BYOL Augmentation
Capped mean 91.46 88.76 90.72 89.43 80.60

Number of superhuman games 51 49 49 49 34
Mean 3003.73 2086.16 2413.12 1769.43 503.15

Median 832.50 592.83 819.56 483.39 132.17
40% Percentile 356.27 266.07 409.46 224.80 94.35
30% Percentile 202.49 174.19 190.96 150.21 80.04
20% Percentile 133.93 120.84 126.10 118.36 57.95
10% Percentile 83.79 37.19 59.09 44.14 32.74
5% Percentile 20.87 12.74 20.56 7.75 2.85

properties of the optimal representation. We have shown that representations need to be invariant
predictors of proxy targets under interventions on features that are only correlated, but not causally
related to the downstream tasks. We have leveraged data augmentations to simulate these interventions
and have proposed to explicitly enforce this invariance constraint. Based on this, we have proposed a
new self-supervised objective, Representation Learning via Invariant Causal Mechanisms (RELIC),
that enforces invariant prediction of proxy targets across augmentations using an invariance regularizer.
Further, we have generalized contrastive methods using the concept of refinements and have shown
that learning a representation on refinements using the principle of invariant prediction is a sufficient
condition for these representations to generalize to downstream tasks. With this, we have provided an
alternative explanation to mutual information for the success of contrastive methods. Empirically
we have compared RELIC against recent self-supervised methods on a variety of prediction and
reinforcement learning tasks. Specifically, RELIC significantly outperforms competing methods in
terms of robustness and out-of-distribution generalization of the representations it learns on ImageNet.
RELIC also significantly outperforms related self-supervised methods on the Atari suite achieving
superhuman performance on 51 out of 57 games. We aim to investigate the construction of more
coarse-grained refinements and the empirical evaluation of different kinds of refinements in future
work.
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