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Abstract

Spiking Neural Networks (SNNs) provide a sparse spike-driven mechanism which
is believed to be critical for energy-efficient deep learning. Mixture-of-Experts
(MoE), on the other side, aligns with the brain mechanism of distributed and
sparse processing, resulting in an efficient way of enhancing model capacity and
conditional computation. In this work, we consider how to incorporate SNNs’
spike-driven and MoE’s conditional computation into a unified framework. How-
ever, MoE uses softmax to get the dense conditional weights for each expert and
TopK to hard-sparsify the network, which does not fit the properties of SNNs. To
address this issue, we reformulate MoE in SNNs and introduce the Spiking Experts
Mixture Mechanism (SEMM) from the perspective of sparse spiking activation.
Both the experts and the router output spiking sequences, and their element-wise
operation makes SEMM computation spike-driven and dynamic sparse-conditional.
By developing SEMM into Spiking Transformer, the Experts Mixture Spiking At-
tention (EMSA) and the Experts Mixture Spiking Perceptron (EMSP) are proposed,
which performs routing allocation for head-wise and channel-wise spiking experts,
respectively. Experiments show that SEMM realizes sparse conditional computa-
tion and obtains a stable improvement on neuromorphic and static datasets with
approximate computational overhead based on the Spiking Transformer baselines.

1 Introduction

The spiking neural networks (SNNs) are regarded as the third generation of neural networks [1],
distinguished by biological plausibility [2], spike-driven characteristic, and low power consumption.
SNNs emulate the dynamics of biological neurons at a microscopic level, utilizing asynchronous
binary spikes for information transmission. The membrane potential of spiking neurons in SNNs is
only updated upon the arrival of spikes, avoiding calculations of zero values. The inherent features
make SNNs promising candidates for low-energy consumption on neuromorphic hardware, such
as TrueNorth [3] and Loihi [4]. There are lots of architectures in SNNs include Spiking Recurrent
Neural Networks [5], ResNet-like SNNs [6–9], Spiking Graph Neural Networks [10], and Spiking
Transformers [11–13]. Spiking Transformers stands at the forefront. Spikformer [11] introduces
Spiking Self-Attention (SSA). The Spike-Driven Transformer [12] introduces Spike-driven Self-
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Attention. Other works explore the Spiking Transformer in terms of structural improvements [14–17],
training methods [18], and different tasks [19], respectively.

Mixture-of-Experts (MoE) [20, 21] is known for allowing each expert to learn specific tasks or
features, showing better performance, conditional computing and dynamic adaptability, which are
crucial features in the brain mechanism [22, 23]. In this work, we are committed to exploring the
effective integration of MoE and Spiking Transformer. As shown in Fig.1(a), MoE introduces a
large number of parameters based on the original Transformer, and the conditional computation is
achieved by calculating the routing probability of each token on each expert through the softmax
function. Selecting Top-K experts based on the routing probability, MoE achieves hard sparsification.
However, SNN calculations need to avoid multiplication and cannot use complex softmax functions.
The features in SNNs are dynamically sparse and do not require additional TopK. All the parameters
of the expert must be loaded, which aggravates the difficulty of neuromorphic chip deployment.
These factors make porting MoE to SNNs non-trivial. To tackle this problem, we develop the Spiking
Experts Mixture Mechanism (SEMM), as shown in Fig.1(b), a universal SNN-MoE paradigm with
the following three main features. 1) The SEMM is spike-driven. The outputs of the expert and the
router are spike sequences, and the element-wise operation between them conforms to the SNN char-
acteristics, i.e., avoiding multiplication. 2) SEMM leverages the sparse spiking activation of SNNs to
achieve dynamic conditional computation of MoEs, which is more flexible than the fixed hard sparsi-
fication of Artificial Neural Network MoE (ANN-MoE). 3) With reasonable parameter count settings,
SEMM enables Spiking Transformers to achieve stable performance gains with negligible overhead.
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Figure 1: ANN-MoE and Spiking Experts Mixture Mecha-
nism (SEMM). N denotes the length of image patches.

Based on SEMM, we modify the Spik-
ing Self-attention (SSA) and Multi-layer
Perceptron (MLP) of Spiking Transform-
ers to obtain the Experts Mixture Spiking
Attention (EMSA) and the Experts Mix-
ture Spiking Perceptron (EMSP). EMSA
treats each head of SSA as an expert, com-
putes respective attention, and employs a
temporal-aware router to integrate atten-
tion. As for Multi-layer Perceptron (MLP),
it is common to substitute the entire MLP
with MoE [24], which leads to better per-
formance but a significant increase in the
overall parameter number. EMSP imple-
ments a channel-wise MoE within MLP to
overcome the shortcoming. EMSA and EMSP can be inserted directly and seamlessly into existing
Spiking Transformer variants [11, 14, 12]. Our work contributes in three main aspects:

• We introduce the Spiking Experts Mixture Mechanism (SEMM), a universal SNN-MoE paradigm.
SEMM is spike-driven, capable of efficient dynamic sparse conditional computation.

• Based on SEMM, we develop the Experts Mixture Spiking Attention (EMSA), whose information
from all head-wise experts is selectively integrated through a temporal-aware router. We restructure
MLP by a channel-level spiking-sparse SEMM, named the Experts Mixture Spiking Perceptron
(EMSP). They can seamlessly replace self-attention and MLP in Spiking Transformers.

• Extensive experiments demonstrate the stable performance improvement of SEMM on both static
and neuromorphic datasets. Notably, Spike-driven Transformer-8-512 with SEMM achieves a
remarkable 76.62% accuracy on ImageNet with 4 time steps, surpassing the baseline (74.57%).

2 Related Work

Deep Spiking Neural Networks and Spiking Transformers. Spatio-temporal backpropaga-
tion(STBP) [25] directly trains SNNs by performing backpropagation on both spatial and temporal
domains. Temporal backpropagation [26] computes the gradients of the timings of existing spikes
for the membrane potential at the spike timing. Treshold-dependent batch normalization (tdBN) [8]
is used to extend the network depth. SEW-ResNet [7] proposed the spiking element-wise residual
for SNNs. Spikformer [11] firstly converts all the components of Vision Transformer (ViT) into
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Figure 2: (a) The overview of Spiking Transformer. (b) The Experts Mixture Spiking Attention (EMSA). (c)
The Experts Mixture Spiking Perceptron (EMSP). EMSA and EMSP can directly replace SSA and MLP in (a).

spike-form and pioneers the field of SNN-Transformer. Spike-driven Transformer [12] goes further
by introducing linear spike-driven self-attention. Spikingformer [14] proposes a hardware-friendly
spike-driven residual learning architecture. Besides, Masked Spiking Transformer [27] combines
SNNs and Transformers from the perspective of the ANN-to-SNN conversion. However, the SNN
Transformer architecture that can bring SNNs’ superiority into full play is still ongoing research.

Mixture-of-Experts. The Mixture-of-Experts (MoE) [28, 29] combines the predictions of multiple
specialized experts, which is effective in handling high-dimensional data and complex problems.
Researchers explore diverse gating mechanisms [30, 31], optimizing expert allocation strategies [32,
33], and enhancing the scalability of MoE models [34, 35]. Sparsely-Gated Mixture-of-Experts [30]
adopted MoE into architectures such as the Long Short-Term Memory (LSTM) [36], showcasing
effectiveness in Language Modeling. The Transformer also benefits from MoE with the substitution
of the Multi-layer Perceptron (MLP) [24, 37]. Switch Transformer [35] has scaled the models with
trillions of parameters. Currently, there is no existing work on MoE with Spiking Transformers.

3 Methodology

3.1 Preliminaries and Overall Architecure

Spiking neuron is the basic unit of SNNs. For the dynamics of the Leaky Integrate-and-Fire (LIF)
neuron used in this work, the t − th-time-step membrane potential U [t] is equal to the sum of the
state potential H[t − 1] at the previous time step and the input X[t]. When membrane potential
exceeds the threshold uth, the neuron will fire a spike, otherwise, it remains inactive. Consequently,
the output S[t] only contains binary values, either 1 or 0. Hea(·) is a Heaviside function that satisfies
Hea (x) = 1 when x ≥ 0, otherwise Hea (x) = 0. H[t] is the temporal state output, and Vreset

denotes the reset potential after a spiking event. β < 1 determines the rate of decay. If the neuron
remains inactive, the potential U [t] decays towards H[t] over time. LIF can be described as:

U [t] = H[t− 1] +X[t], (1)
S[t] = Hea (U [t]− uth) , (2)
H[t] = VresetS[t] + (βU [t]) (1− S[t]) . (3)

Spiking Transformer[11, 14, 12] baselines contain Patch Splitting (PS), Relative Position Em-
bedding (RPE), Spiking Self Attention (SSA) (e.g., Spiking Self-Attention [11] and Spike-driven
Self-Attention[12]), MLP and linear classification head, as shown in Fig. 2(a). Given a 2D image
sequence I ∈ RT×C×H×W , where T , C, H , and W denote time-step, channel, height and width,
the PS splits it into a sequence of N flattened spike patches x with D dimensional channel. A
Convolution-BatchNorm-LIF block generates Relative Position Embedding (RPE):
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X0 = PS (I) + RPE, (4)

X
′

l = SSA(Xl−1) +Xl−1, (5)

Xl = MLP(X
′

l) +X
′

l, (6)
Y = CH(GAP(XL)), (7)

where the X0 is fed into the L-blocks and each block consists of a SSA and a MLP. X
′

l,Xl are spike
sequences and l = 1...L is layer. A Global Average-pooling (GAP) is utilized on the XL and the
linear Classification Head (CH) to output the prediction Y. See Appendix. A for more details.

3.2 Spiking Experts Mixture Mechanism

Before exploring the adaptation of spiking MoE in SNNs, we first review MoE in ANNs. An ANN-
MoE layer typically comprises a set of m experts EA = {E1,E2, ...,Em}, along with a router RA
for selecting the corresponding experts. Given an input sequence XA, the resulting output can be
expressed as the sum of the Top-K selected experts from m candidates using a router:

y =
K∑

k=1

Rk(XA) ·Ek(XA), (8)

R(x) = TopK(softmax(XAWR,K)), (9)

TopK(v,K) =

{
v if v is in the top K elements
0 otherwise (10)

where WR is the router weight matrix. The TopK(·,K) together with the softmax(·) sets all
elements of the routing vector to zero except the largest top K values. The sparse conditional
computing is obtained from the selecting of TopK and the different routing weights of the softmax,
while K is usually taken as 0.5 ∗m. We argue that the ANN-MoE is not suitable for SNN for two
main reasons. First, the float-point routing-expert and the softmax which involve exponentiation and
division, do not adhere to the computation principles of SNNs. Second, SNN experts are inherently
highly sparse, so the hard sparsification approach of additional TopK is unnecessary. An event-
triggered spike-based sparse conditional computation on asynchronous neuromorphic chips is needed
more than TopK. To bridge these gaps, we introduce a generalized representation of the Spiking
Experts Mixture Mechanism (SEMM), which is as follows,

SEMM(E,R,F(·)) = F(E,R), (11)
where E = {E1,E2, ...,Em} represents the spiking sequence of m spiking experts in the Spiking
Transformer, and R ∈ {0, 1}T×N×m represents the spiking router for allocating computation. F(·)
denotes the element-wise form of the operation between the router and the expert output spiking
sequence, i.e., Hadamard product and addition.

As a MoE mechanism specifically designed for SNNs, SEMM has the following three significant
advantages. i) Spike-driven. The SEMM is spike-driven, which is important for SNNs. Due to the
spike-driven computation mode of experts, i.e., Spiking Self-attention and Spiking-MLP, SEMM
computations are triggered by sparse spikes of experts and require only synaptic manipulation. For
example, the Hadamard product between the spiking signals R and E is equivalent to mask. ii)
Sparse-spiking conditional computation. The SEMM subtly utilizes the sparse activation of the
spiking routers for the conditional computation of MoE. SEMM has a variable sparsity when dealing
with different data. Additionally, SEMM does not suffer from the load imbalance problem in ANN-
MoE, i.e., TopK selects fixed number of experts. The sparse conditional computation is distributed
to each expert. iii) Efficient computation. Unlike loading with multiple heavy expert modules of
ANN-MoE, the SEMM has comparable parameters and operations to the previous SSA and MLP of
Spiking Transformers. These are further discussed in Sec. 3.5. Without loss of generality, we use the
mainstream architecture of Spiking Transformer for SEMM embedding in Sec. 3.3 and Sec. 3.4.

3.3 Experts Mixture Spiking Attention

We begin by reviewing the processing of Spiking Self-Attention (SSA). Different from vanilla ANN-
Transformers [38], it discards the softmax normalization for the attention map. The SSA mechanism
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can be described by the following equation:

Q = SNQ(L-BNQ(X)),K = SNK(L-BNK(X)),V = SNV(L-BNV(X)), (12)

A = SSA(Q,K,V) =

{
SN (QKTV ∗ s), for Spiking Self-Attention
SN (SUMc (Q⊙K))⊙V, for Spike-Driven Self-Attention (13)

where SN represents the spiking neuron and L-BN represents that the features pass sequentially
through Linear and BatchNorm. s is the scaling factor and Q,K,V ∈ {0, 1}T×N×D are in spike-
form. A ∈ {0, 1}T×N×D is the spiking output of SSA. ⊙ is the Hadamard product, and SUMc(·)
denotes the sum of each column. As shown in Fig 2(b), the Experts Mixture Spiking Attention
(EMSA) based on SEMM and SSA is formulated as:

Am = SSA(Qm,K,V), (14)
E = {A1,A2, ...,Am}, (15)
R = SN (BN(XWR)) = {r1, r2, ..., rm}, (16)

SEMM(E,R,F(·)) =
m∑
i=1

ri ∗Ai, (17)

EMSA = SN (BN(SEMM(E,R,F(·)))Wo), (18)

where Am ∈ {0, 1}T×N×d is the output of each SSA experts, and WR ∈ RD×m is the router weight
matrix. R ∈ {0, 1}T×N×m is the routing sequence. We set d ≤ D by default to avoid introducing
too many parameters. The operation F(·) between expert-router is computed by masking the expert
using router pair-by-pair and then summing them up. The output of EMSA is obtained by performing
matrix multiplication between SEMM(E,R,F(·)) and synaptic weight Wo ∈ Rd×D, the same as
the last layer of SSA block in Spiking Transformers.

3.4 Experts Mixture Spiking Perceptron

As illustrate in Fig. reffig:method, the Experts Mixture Spiking Perceptron (EMSP) launches the
channel-wise SEMM within MLP. The architecture can be written as follows:

E = SN (DWC(SN (BN(XW1)))) ∈ {0, 1}T×N×m (19)

R = SN (BN(XWR)) ∈ {0, 1}T×N×m, (20)
SEMM(E,R,F(·)) = E⊙R, (21)

EMSP = SN (BN((SEMM(E,R,F(·))Wo)) ∈ {0, 1}T×N×D, (22)

where W1,WR ∈ RD×m is the weight matrix of first layer in MLP and router, respectively. We
integrate a 3 × 3 Depth Wise Convolution layer DWC to capture local features on each channel
expert, which has fewer parameters and is computationally efficient compared to original convolution.
Wo ∈ Rm×D is the wight matrix of output layer. The original Spiking Transformer’s MLP would
have a D to 4 ∗D channel dimension increase after the first layer and the second layer would reduce
the dimension back to D. In EMSP we set m to (8//3) ∗D to try to match the parameter number of
the original MLP. EMSP integrates sparse routing of multiple channel-wise experts. It can also be
viewed as the channel-wise gating, which is suitable for temporal information processing, allowing
information to flow unimpeded through potentially many time steps [39]. The gate (router) branch
and expert branch can be also regarded as incorporating the Spike Element-Wise (SEW) [7] residual
block into EMSP. Channel-wise convolution and element-wise (Hadamard) products only introduce a
minor increase in computational cost. By appropriately configuring the number and dimensions of
expert networks, our EMSP achieves more efficient computation compared to the original spiking
MLP. More details of the computational overhead are given in the next sub-section.

3.5 Characteristics of SEMM

We explain each of the three advantages of SEMM, i.e., Spike-driven, Sparse-spiking conditional
computation and efficient computation.

Spike-driven has the following formal definition, meaning that the gathering of input current is
initiated by sparse spikes released from presynaptic neurons:
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Definition 1. In SNN, the operation is spike-driven if the input currents satisfy the following form,

Ii[t] =
∑
j

wi,jsj [t] =
∑

j,sj [t] ̸=0

wi,j , (23)

where Ii[t] is the input current of the i-th postsynaptic neuron at time step t, sj [t] ∈ {0, 1} is the
spike output of the j-th pre-synaptic neuron, wi,j is the weight of the synaptic connection from j to i.

For EMSA, the input current for the LIF in Eq. 18 at a specific time step t is given by:

I[t] = SEMM(E[t],R[t],F(·))Wo =

m∑
i=1

ri[t] ∗Ai[t]Wo, (24)

Ip,q[t] =

m∑
i=1

ri[t]
∑
l

ai,p,l[t]wl,q =
∑
i,l

(ri[t]∧ai,p,l[t])̸=0

wl,q, (25)

where I[t] has a dimension of P×Q, with p and q represent the p-th row and q-th column, respectively.
EMSA is essentially spike element-wise addition after masking operation on SSA, consistent with
the characteristics of spike-driven. For EMSP, the operation between two spiking sequences E and R
corresponds to the logical AND function [7], which also conforms to the spike driven,

I[t] = SEMM(E[t],R[t],F(·))Wo = (E[t]⊙R)[t]Wo, (26)

Ip,q[t] =
∑
l

ep,l[t]rp,l[t]wl,q =
∑
l

(ep,l[t]∧rp,l[t]) ̸=0

wl,q. (27)

10 15 20
Params (M)

76.5

77.0

77.5

78.0

78.5

79.0

79.5

Ac
cu

ra
cy

 (%
)

CIFAR100

3 4 5
Params (M)

79.0

79.5

80.0

80.5

81.0

81.5

82.0

82.5

CIFAR10-DVS

Spikformer
Spike-driven Transformer
Spikingformer

Figure 3: Comparison of parameters-
accuracy for different MoEs. Methods of
each line from left to right correspond to: 1.
the baseline, 2. EMSP, 3. ANN-router with
four heavy MLP experts, 4. Spiking-router
with four heavy MLP experts, respectively.
The last two use softmax and TopK (K = 2).

Sparse-spiking conditional computation means using
spiking routers to dynamically allocate the computation in
temporal and spatial dimension. More analysis is detailed
in experiments.

Efficient computations means that SEMM approximates
SSA and MLP in terms of number of parameters and the-
oretical synaptic operations. Tab. 1 demonstrates the
computation load for EMSA, EMSP versus SSA and MLP.
In terms of parameter number, despite having a routing
layer mD, EMSA has a smaller number of parameters
than SSA when the number of experts is within a reason-
able range (≥ 2). EMSP additionally introduces a 3× 3
depthwise convolution, and the number is slighter higher
than MLP. Due to the similarity of the actual spiking rates,
EMSA is smaller than SSA on the TND2 term, while
the calculation of the additional introduced by SEMM is
on the TND term (much smaller than TND2) and there-
fore can be ignored. The situation is similar on EMSP,
with depth-wise convolution adding a slight computational
overhead. The design of EMSP is different from ANN-MoE, which selects multiple heavy MLPs as
experts. We demonstrate it’s validity in Fig. 3, i.e., it performs better while the number of parameters
is much smaller than ANN-MoE.

4 Experiments

4.1 Sparse Conditional Computation Analysis

We analyze the average spiking rate (ASR) of routers for EMSA and EMSP on the ImageNet
validation set, which is shown in Tab. 2. The SD-Transformer-8-512 is used for the analysis. The
ASR of EMSA is around 0.5, which is comparable to the regular TopK setting of ANN-MoE. The
ASR of EMSP is low and gradually decreases as the block deepens, compared to the fixed TopK
hard sparse in ANN-MoE, SEMM fully reflects the advantage of SNN dynamic sparse conditional
computation. To further verify the spiking router, we ablate it, i.e., cancel it in EMSA and EMSP, as
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Table 1: Number of parameters and theoretical synaptic operations. R, R̂, R̃ and R denote the average spike
firing rates (the proportion of non-zero elements in the spike matrix) in various spike matrices. T , N , and D
are the time step, sequence length, and channel dimension of the input features, respectively. d is the channel
dimension of Am and m is the number of experts. The details are provided in the Appendix. B.

Param OPs

SSA 4D2 4RTND2 + 2R̂TN2D

EMSA (1 + 1/m)D2 + (2d+m)D (1 + 1/m)RTND2 + (2d+m)R̃TND + (D +md)RTN2

MLP 8D2 8RTND2

EMSP 8D2 + 24D 8RTND2 + 24R̃TND
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Figure 4: Ablation study on the EMSA and EMSP router.

shown in Fig. 4, the accuracy decreases significantly after canceling the router, and it is even lower
than the baseline model on the Spikingformer. Directly analyzing the conditional computation of
SEMM is challenging, we therefore use visualizations to illustrate this intuitively. As show in Fig.
5, for the same image, each expert’s router assigns a different computational region, e.g., the third
router filters the background of the expert’s features, while the second router assigns the computation
to the foreground target. The computation allocation of the spiking router to the irregular object
"snake" can be seen that the router is highly dynamic and effective. See Appendix. D for more
samples. In addition, as shown in Fig. 6, we also report the ASR of spatial-temporal locations of
routers in different kinds of images. As can be seen by the difference in average firing rates, spiking
router has a dynamic adjustment of ASR processing different kinds of images, further illustrating its
data-dependent conditional computation property.

Table 2: The average spike rate of EMSA and EMSP router in 8 blocks testing on the ImageNet.

Block0 Block1 Block2 Block3 Block4 Block5 Block6 Block7

EMSA 0.64 0.68 0.49 0.52 0.47 0.43 0.51 0.50

EMSP 0.25 0.30 0.33 0.27 0.20 0.10 0.05 0.02

4.2 Results on various Datasets
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Figure 8: Accuracy with different experts number.

We conduct experiments on static datasets, i.e., Im-
ageNet [40] and CIFAR [41], and neuromorphic
datasets, i.e., CIFAR10-DVS [42], DVS128 Ges-
ture [43] to verify the effectiveness of SEMM. See
Appendix. C for more details. ImageNet results
are shown in Tab. 3 which mainly compares SEMM
with the Spiking Transformer baselines. At slightly
lower model parameter counts, SEMM is steadily su-
perior to baselines. For instance, Spikformer-8-512
with SEMM is 2.55% higher than the baseline with
28.22M parameters, Spike-driven Transformer-8-384
with SEMM obtain 2.05% improvement. SEMM on
Spikingformer presents similar findings.
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Figure 5: Visualization of routers as masks. The mask position (black) indicates router of 0 here and the
background image is the same for each subplot. We show the dynamic sparsity of spiking router for different
experts (horizontal direction) and time steps (vertical direction).
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Figure 6: Average spiking rate of different kinds of images in the ImageNet validation set in the spatial-temporal
dimension. The height of the cube is the time step. (a) Japanese spaniel. (b) Volcano.
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Figure 7: Ablation study of EMSA and EMSP module.

The experimental results on CIFAR, CIFAR10-DVS, and DVS128 Gesture are shown in Tab. 4.
These four datasets are relatively small. We basically keep the experimental setup in [11, 12, 14],
including the network structure, training settings, etc., and details are given in the Appendix. C.1.
SEMM has demonstrated stable performance improvements across various datasets when integrated
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Table 3: Results on ImageNet-1k. Model-L-D represents a model with L encoder blocks and D channels.

Methods Architecture Param (M) Time Step Top-1 Acc (%)

SEW ResNet[7]
SEW-ResNet-34 21.79 4 67.04
SEW-ResNet-101 44.55 4 68.76
SEW-ResNet-152 60.19 4 69.26

MS-ResNet[9]
MS-ResNet-18 11.69 6 63.10
MS-ResNet-34 21.80 6 69.42
MS-ResNet-104∗ 77.28 5 76.02

Spikformer[11] Spikformer-8-384 16.81 4 70.24
Spikformer-8-512 29.68 4 73.38

Spikformer + SEMM Spikformer-8-384 16.05 4 72.86
Spikformer-8-512 28.22 4 75.93

Spike-driven Transformer[12] SD-Transformer-8-384 16.81 4 72.28
SD-Transformer-8-512 29.68 4 74.57

SD-Transformer + SEMM SD-Transformer-8-384 16.05 4 73.93
SD-Transformer-8-512 28.22 4 76.62

Spikingformer[14] Spikingformer-8-384 16.81 4 72.45
Spikingformer-8-512 29.68 4 74.79

Spikingformer + SEMM Spikingformer-8-384 16.05 4 73.58
Spikingformer-8-512 28.22 4 76.03

Table 4: Results on CIFAR10-DVS, DVS128 Gesture, and CIFAR.

Methods
CIFAR10-DVS DVS128 Gesture CIFAR-10 CIFAR-100

T Acc T Acc T Acc T Acc

tdBN [8] 10 67.80 40 96.90 6 93.20 - -
PLIF [44] 20 74.80 20 97.60 8 93.50 - -

DIET-SNN [45] - - - - 5 92.70 5 69.70
Dspike [46] 10 75.40 - - 6 94.30 6 74.20
DSR [47] 10 77.30 - - 20 95.40 20 78.50

Spikformer [11] 10 78.90 10 96.90 4 95.19 4 77.8616 80.90 16 98.30

Spikformer + SEMM 10 82.32 10 97.56 4 95.78 4 79.0416 82.90 16 98.63

Spike-Driven Transformer [12] 10 78.90 10 96.90 4 95.60 4 78.4016 80.00 16 99.30

Spike-Driven Transformer + SEMM 10 81.10 10 97.56 4 96.12 4 80.2616 82.42 16 99.30

Spikingformer [14] 10 79.90 10 96.20 4 95.81 4 79.2116 81.30 16 98.30

Spikingformer + SEMM 10 80.70 10 96.88 4 96.16 4 80.2416 82.10 16 98.56

into different Spiking Transformer baselines. Specifically, SEMM achieves SOTA on CIFAR-10
(96.16%), CIFAR-100 (80.26%), CIFAR10-DVS (82.9%) and DVS128 Gesture (99.3%).

4.3 Ablation Study and Hyperparameter Sensitivity

Module ablation. EMSA and EMSP together improve the performance of the baseline, as shown in
Fig. 7. The use of both EMSA and EMSP alone is better than baseline, illustrating their respective
superiority.

Experts number. We examine the utility brought by different numbers of experts of EMSA. The
results of Spiking Transformer baselines on CIFAR are presented in Fig. 8. It indicates that within a
certain range of expert numbers, the results can still be competitive and robust. Among these, we
select 4 experts as the parameter setting for our final application.
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5 Conclusion

In this work, we explored the feasibility of adapting MoE in Spiking Neural Networks and formulated
an SNN-MoE paradigm named the Spiking Experts Mixture Mechanism. Unlike the vanilla MoE,
which uses softmax and TopK hard sparse, SEMM implements dynamic conditional computation from
the viewpoint of spiking sparse activation. With redesigned Router-Expert pairs and element-wise
spike-driven operations, SEMM is computation-efficient and SNN-compatible. Embedded in Spiking
Transformers, SEMM-based EMSA and EMSP can bring stable performance improvement on static
and neuromorphic datasets. SEMM paradigm can inspire future exploration of high-performance,
high-capacity Spiking Transformers. We hope SEMM can bring vitality to dynamic conditional
computation and the design of next-generation architecture for SNNs. Future work will explore
SEMM implementation in a wider range of tasks and larger SNN models.
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A Overall architecture of Spike-driven Transformer/Spikingformer with
SEMM

We provide a detailed description of the overall structure of Spike-driven Transformer with SEMM,
and Spikingformer with SEMM. Given a 2D image sequence I ∈ RT×C×H×W , the Patch Splitting
Module (PSM), consisted of three Convolution-Batch Normalization-SN -Maxpooling layers and one
Convolution-Batch Normalization-Maxpooling layer, is used to projects and splits I into a sequence
of N flattened spike patches s with D channels. The Relative Position Embedding (RPE) module, a
Convolution-BatchNorm layer, is used to generate position embedding to get U0. SN (·) means the
spike neuron layer. Then the U0 is passed to the L-blocks encoder. The encoder block consists of
an Experts Mixture Spiking Attention (EMSA) and an Experts Mixture Spiking Perceptron (EMSP)
block. Membrane-shortcut residual connections are applied in both the EMSA and EMSP blocks.
A global average-pooling (GAP) is utilized on the processed feature from the encoder and outputs
the D-dimension feature which will be sent to the fully-connected-layer classification head (CH) to
output the prediction Y . The architecture can be written as follows:

u = PSM(I) , I ∈ RT×C×H×W , x ∈ RT×N×D, (28)

s = SN (u), s ∈ RT×N×D (29)

RPE = BN(Conv2d(s)), RPE ∈ RT×N×D (30)

U0 = u+RPE, U0 ∈ RT×N×D (31)

S0 = SN (U0), S0 ∈ RT×N×D (32)

U
′

l = EMSA(Sl−1) +Ul−1, U
′

l ∈ RT×N×D, l = 1...L (33)

S
′

l = SN (U
′

l), S
′

l ∈ RT×N×D, l = 1...L (34)

Sl = SN (EMSP(S
′

l) +U
′

l), Sl ∈ RT×N×D, l = 1...L (35)
Y = CH(GAP(SL)), (36)

Following the Spiking Experts Mixture Mechanism and Spike-driven Self-Attention (SDSA) used in
Spike-driven Transformer, the EMSA can be written as:

Q = SNQ(L-BNQ(X)),K = SNK(L-BNK(X)),V = SNV(L-BNV(X)), (37)
A = SDSA(Q,K,V) = SN (SUMc (Q⊙K))⊙V, (38)

The rest operate according to standard EMSA 18. The EMSP in Spike Driven Transformer is also
much the same as the standard 22, except that no spiking neuron layer in the output layer.

B Computation Overhead Details of SEMM

B.1 EMSA

The linear layers that generates m Query Qm have m(D
2

m ) = D2 parameters. The linear layer for
Key K has D2

m parameters. Generating Value V requires dD parameters. The output linear has dD
parameters. The router linear layer transforms D to expert number m, and has mD parameters. The
number of total parameters is (1 + 1/m)D2 + (2d+m)D. For operations, obtaining Query and Key
needs (1+1/m)RTND2. Computing Value or the output of EMSA requires dR̃TND. The number
of operations between Qm,K,V is (D +md)RRTN2. The number of router matrix computation
operations is mR̃TND. Due to the sparsity of SEMM and the smaller data dimensions, the number
of element-wise operations for the router and expert is negligible.

B.2 EMSP

The parameter number of W1,WR,Wo are all (8//3)D2. The number of parameters for 3 × 3
depthwise convolution is 3× 3× (8//3)D = 24D. The all parameter number is 8D2 + 24D. The
operation number of W1,WR,Wo are all (8//3)TND2. The number of operations for depthwise
convolution is 24R̃TND.
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C Experiment Details

C.1 Experimental Setup

Our experimental framework closely aligns with the methodology outlined in [11]. All of Baseline’s
code is publicly available, and we abide by their credentials. For the ImageNet-1K, we utilize a fixed
timestep count of T = 4. The optimizer is the AdamW, with a batch size of 128 or 256 over the
course of 310 training epochs. The learning rate is governed by a cosine-decay schedule, starting from
an initial value of 0.0004. We incorporate a suite of standard data augmentation techniques, including
random augmentation, mixup, and cutmix, into our training. For four small datasets, we adapt the
SEMM to a variety of baseline models, following the precedents set by [11, 12]. For CIFAR, we
maintain a timestep count of T = 4. For the neuromorphic datasets, we increase this to T = 10 and
T = 16, respectively. Our experimental setup is consistent with each Spiking Transformer baselines,
as detailed below.

Spikformer with SEMM. The training epoch is set to 310 for CIFAR, 200 for DVS128 Gesture, and
106 for CIFAR10-DVS. The batch size is 128 for CIFAR, 16 for DVS128 Gesture and CIFAR10-DVS.
The learning rate is initialized to 0.0005 for CIFAR10/100, 0.001 for DVS128 Gesture and CIFAR10-
DVS. All of them are reduced with cosine decay. We follow [11] to apply data augmentation
on DVS128 Gesture and CIFAR10-DVS. In addition, the network structures used in CIFAR-10,
CIFAR10-DVS, and DVS128 Gesture are Spiking Transformer-4-384, Spiking Transformer-2-256
and Spiking Transformer-2-256.

Spike Driven Transformer with SEMM. The training epoch is set to 210 for CIFAR10/100 datasets,
200 for DVS128 Gesture, and 106 for CIFAR10-DVS. The batch size is 32 for CIFAR10/100, 16 for
DVS128 Gesture and CIFAR10-DVS. The learning rate is initialized to 0.0005 for CIFAR10/100,
0.0003 for DVS128 Gesture and 0.01 for CIFAR10-DVS. The rest is consistent with Spikformer.

Spikingformer with SEMM The training epoch is set to 410 for CIFAR10/100 datasets, 200 for
DVS128 Gesture, and 106 for CIFAR10-DVS. The batch size is 64 for CIFAR10/100, 16 for DVS128
Gesture and CIFAR10-DVS. The learning rate is initialized to 0.0005 for CIFAR10/100, 0.1 for
DVS128 Gesture and CIFAR10-DVS. The rest is consistent with Spikformer.

C.2 Model Details

In our experiments, we use 8 NVIDIA-4090 GPUs for ImageNet, and 1 NVIDIA-4090 GPU for other
datasets. We adjust the value of membrane time constant τ in spike neuron when training models on
DVS datasets. In direct training SNN models with surrogate function,

Sigmoid(x) =
1

1 + exp(−αx)
(39)

We select the Sigmoid function as the surrogate function with α = 4 in all experiments.

C.3 Additional Experiments

Table 5: Ablation study results on the time step.

Datasets Models Time-Step Top1-Acc(%)

CIFAR10/100

Spikformer + SEMM
1 94.11/74.67
2 94.87/78.49
4 95.78/79.04
6 95.99/79.29

Spike Driven Transformer + SEMM
1 94.97/76.77
2 95.58/78.49
4 96.12/80.26
6 96.48/80.87

Spikingformer + SEMM
1 94.54/77.16
2 95.42/78.85
4 96.16/80.24
6 96.67/81.22

The accuracy regarding different simulation time steps of the spiking neuron is shown in Tab. 5. At
all the time steps, our Spiking Transformer with SEMM shows competitive performance. When the
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time step is 1, our Spikformer with SEMM is 1.7% lower than the network with T = 4 on CIFAR10,
and our Spikformer with SEMM with 1 time step still achieves 74.67% on CIFAR100. The above
results show that Spikformer with SEMM is robust under fewer time steps.

In EMSP, the role of Deep Wise Convolution layer (DWC) is to independently extract features at the
channel-level experts using a 3x3 receptive field, thereby enhancing representational capacity. The
ablation study about DWC in Tab. 6 demonstrates its effectiveness.

Table 6: Ablation on Deep Wise Convolution layer.

Model Module CIFAR100 CIFAR10-DVS
Spikformer EMSP 78.53 82.32
Spikformer EMSP w/o DWC 78.17 81.30

Spike-driven Transformer EMSP 79.81 81.10
Spike-driven Transformer EMSP w/o DWC 78.95 80.51

Spikingformer EMSP 79.81 81.95
Spikingformer EMSP w/o DWC 79.44 81.20

D Visualization

D.1 Image Samples Visualization

More dynamic allocation visualizations of the spiking router are given in Fig. 9

E Discussion on the Feasibility of Hardware Deployment for SEMM

SEMM can theoretically be deployed on chips that are synchronous within layers and asyn-
chronous between layers, such as TrueNorth [48]. Specifically, multiple spiking router matrices,
i.e. {r1, r2, ..., rm}, can be implemented by one block (Linear-BatchNorm-SpikingNeuron), thus
can be mapped to the one core of the neuromorphic chip for computation. Outputs from the same
core are considered synchronous. The spiking Hadamard product and addition that occur in SEMM
are analogous to the AND and ADD operations in SEW ResNet [7]. These element-wise spiking
operations can be adapted on neuromorphics chips that support multiple branches and residuals, such
as Speck V2 [49].
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Figure 9: More visualization samples of routers as masks.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Please see abstract.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see Section 5.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The work does not involve proof of theory.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer:[Yes]

Justification: We detail all the techniques for reproducing the results of our work in Section.
4 and Appendix. C.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Please see the codes in the supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please see Appendix. C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please see Appendix C.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
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• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work does not involve social impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not release data or models with a high risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We describe in Section C.1.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our work does not introduce new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve crowdsourcing experiments and research with
human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not study participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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