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Abstract

We propose conjugate energy-based models (EBMs), a class of deep latent-variable models
with a tractable posterior. Conjugate EBMs have similar use cases as variational autoen-
coders, in the sense that they learn an unsupervised mapping between data and latent
variables. However these models omit a generator, which allows them to learn more flexi-
ble notions of similarity between data points. Our experiments demonstrate that conjugate
EBMs achieve competitive results in terms of image modelling, predictive power of latent
space, and out-of-distribution detection on a variety of datasets.

1. Introduction

Deep generative models approximate a data distribution by combining a prior over latent
variables with a neural generator, which maps latent variables to points on a data man-
ifold. While it is common to evaluate these models in terms of their ability to generate
realistic examples, an arguably more important use case of these models is that they learn
representations in absence of supervision. To be useful in downstream tasks, these represen-
tations should encode some set of “semantically meaningful” features rather than “nuisance
variables” that are unlikely to have predictive power.

Guiding a model towards a semantically meaningful representation requires some form
of inductive bias. A large body of work on variational autoencoders (VAEs, Kingma and
Welling (2013); Rezende et al. (2014)) has explored the use of priors as inductive biases.
Relatively mild biases in the form of conditional independence are common in the literature
on disentangled representations (Higgins et al., 2016; Kim and Mnih, 2018; Chen et al.,
2018; Esmaeili et al., 2019). More generally, recent work has employed priors that reflect
structure of the underlying data to represent objects in an image (Eslami et al., 2016; Lin
et al., 2020b; Engelcke et al., 2019; Crawford and Pineau, 2019b), or moving objects in video
(Crawford and Pineau, 2019a; Kosiorek et al., 2018; Wu et al., 2020; Lin et al., 2020a).

Despite steady progress, work on disentangled representations and structured VAEs still
predominantly considers synthetic data sets. To train a VAE we minimize a reconstruction
loss, which treats all pixels in an image equally. For complex natural scenes, learning a
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Figure 1: (Left) Samples from CIFAR-10 along with the top 2-nearest-neighbors in pixel
space, the latent space of a VAE, and the latent space of a CEBM. (Right)
Confusion matrices of 1-nearest-neighbor classification on CIFAR-10 based on L2
distance in the latent space. On average, CEBM representations more closely
align with class labels compared to VAE.

model that can produce pixel-perfect reconstructions poses fundamental challenges, given
the combinatorial explosion of possible inputs. This is not only a problem from the perspec-
tive of generation, but also from the perspective of the learned representation; a VAE must
encode all factors of variation that give rise to large deviations in pixel space, regardless of
whether these factors are semantically meaningful (e.g. presence and locations of objects)
or not (e.g. shadows of objects in the background of the image).

In this paper, we consider energy-based models (EBMs) with latent variables as an
alternative VAEs for learning representations in an unsupervised manner. The general idea
of using EBMs for this purpose is by no means new; it has a long history in the context
of restricted Boltzmann machines (RBMs) and related models (Smolensky, 1986; Welling
et al., 2004; Hinton et al., 2006). Our motivation with the present work is to design a class
of energy-based models that retain the desirable features of VAEs while addressing what
we see as one of their main weaknesses: We would like incorporate inductive biases, but
model the data at an intermediate level of representation that does not necessarily encode
all features of an image at the pixel level.

Concretely, we propose Conjugate EBMs (CEBMs), a class of models in which the
energy function defines a neural exponential family. While the normalizer of this family is
intractable, we can compute its posterior in closed form when we pair the likelihood with
an appropriate conjugate bias term in the energy function. As a result, the neural sufficient
statistics in a CEBM fully determine both the marginal likelihood and the encoder, hereby
side-stepping the need for a generator.

In our experiments, we evaluate the representations learned by CEBM using class labels
as a proxy for the primary factors of variation in a dataset. We show that CEBMs learn
a notion of similarity that aligns more closely with class labels in terms of the nearest
neighbors in latent space (Figure 1). Moreover, we show that the representations learned by
CEBMs (in an unsupervised manner) can achieve a competitive performance in classification
and out-of-distribution detection tasks.
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2. Background

2.1. Energy-Based Models

An EBM (LeCun et al., 2006) defines a density pp(z) = exp{—Fy(z)}/Zy in terms of an
energy function Fp(z) : R” — R with parameters §, which maps inputs € R to a scalar
value. The density pg(z) can only be evaluated up to an unknown constant of proportionality
since the normalizing constant Zy = [dxz exp{—Ey(z)} is typically intractable. To train an
EBM, we approximate the gradient of the expected log-likelihood

VQ,CQ = Epdata(m) [V@ logpg(a:)] = Epdaca(x)[_ve Eg(a?)] — V@ log Zg, (1)
E (z) [VQEQ(I')] + Epg(z’) [V@Eg(x/)]. (2)

= Dpdata

Estimating the gradient of the log normalizer Vglog Zy requires samples from the model
a2’ ~ pg(z’), which in turn requires approximate inference since this density is intractable.
A commonly used method is Stochastic Gradient Langevin Dynamics (SGLD, Welling and
Teh (2011)), which initializes a sample z{, ~ po(2’) and then performs a sequence of gradient
updates with additional injected noise ¢
a OEy(z')
T STy T g
Recent work has shown that EBMs with convolutional energy functions can accurately
model distributions over images, in the sense that SGLD produces realistic samples (Ni-
jkamp et al., 2019a,b; Du and Mordatch, 2019; Xie et al., 2016).

+e€, e~ N(0, ).

2.2. Conjugate Exponential Families

An exponential family is a set of distributions whose probability density function or prob-
ability mass function can be expressed in the form

p(x | n) = h(z) exp {t(x)"n — A(n)},

where h(-) is base measure, 7 is a vector of natural parameters , t(-) is a vector of sufficient
statistics, and A(-) is a log normalizer . If a likelihood belongs to an exponential family,
then there exists a conjugate prior with the form p(n | A) = ho(n) exp {to(n) "A—Ao(A)}. A
prior is conjugate to a likelihood when its vector of sufficient statistics comprises the natural
parameters and the log-normalizer of the likelihood to(n) = [n, —A(n)], A = [A1, A2]. The
convenient property of conjugate exponential families is that both the marginal likelihood
p(z | \) and the posterior p(n | z, \) are tractable. The reason is that the joint probability
has the form

pl@,n | A) =p(x | n)pn | A) =exp{n (M+t(x)) — A(n)(A2+1) — Ag(N)}.
If we substitute \y = A\ + t(x) and A2 = X2 + 1, we can equivalently factorize this joint as

pl@,n | A)=p(n |z, p@| ) =pn|A) exp{Ao(X) — Ag(M)}. (3)

This shows that the posterior is in the same exponential family as the prior, and that we
can express the marginal likelihood using the log normalizer Ag(-)

p(n |z, A) =p(n | V), p | A) = exp {Ag(A) — Ag(N)}. (4)
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3. Conjugate Energy-Based Models

In this paper we are interested in learning a probabilistic model that defines a joint distri-
bution py(z,z) over high-dimensional data = € R” and a lower-dimensional set of latent
variables z € R¥. Because most work on deep generative models has focused on images,
we will restrict ourselves to this data modality. We propose to consider models of the form

po(e.2) = - exp{ — Bula.2)}, Bylw2) = ~to@) (=) = b(=),  (5)
In the energy function, n : R® — RH¥ decodes latent variables to a vector of natural
parameters in an intermediate space of dimension H. The function tg : R? — R plays the
role of an encoder, which maps data to sufficient statistics in the same space as 1(z). The
function b : R — R serves as an inductive bias that plays a role analogous to the prior.
We will consider a bias b(z) = logp(z | A) in form of a tractable exponential family

b(2) = n(z) A — A(N). (6)
We can then express the energy function as

Ep(w,2) = ~tg(x) () = b(z) = = (A + to(x)) 'n(2) + A(N). (7)

This form of the energy function has a very convenient property: It corresponds to a model
po(, z) in which the posterior py(z | x) is tractable. To see this, we can make a substitution
A = XA+ ty(x) analogous to the one in Equation 3, which allows us to express the energy as

Ep(x,2) = —(n9(2) T A = AN)) — (A(X) — A(V)),
We now see that we can factorize the he corresponding density pg(z, 2) as

po(x, 2 | A) =pg(z | A) pa(z | 2, A). (8)

which yields a posterior and a marginal that are analogous to the distributions in Equation 4
1
po(z |z, A) =pz | A+te(z)), po(z|N) = Zexp {AX+to(z)) — A(N) }. 9)

This posterior is conjugate, in the sense that it is in the same tractable family as the bias.
In addition to having a tractable posterior, CEBMs have the convenient property that the
marginal likelihood pg(z | \) itself can be expressed as an energy-based model that is defined
in terms of the log normalizer A(-) and the encoder network tg(z). This means that we can
train CEBMs using SGLD in the same way as other EBMs.

CEBMSs differ from VAEs in that they lack a generator network. Instead, the density
is fully specified by the encoder network ty(x), which defines a notion of agreement (A +
to(x)) Tn(2) between data and latent variables in an intermediate feature space. In VAEs, by
contrast we would assume that the sufficient statistics ¢(x) are known, and learn a generator
ng(z) to compute a notion of agreement in data space (see Appendix B). Note that when
z is a categorical variable, the sufficient statistics tp(z) define a classifier, and CEBMs are
equivalent to the models that are considered in recent work on EBMs for classification
(Grathwohl et al., 2019; Liu and Abbeel, 2020).
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Figure 2: CEBM Samples of MNIST, F-MNIST, SVHN and CIFAR-10.

MNIST Fashion-MNIST CIFAR-10 SVHN
Models 1 10 100 fwull | 1 10 100 fuwll | 1 10 100 full | 1 10 100 full
VAE 42 85 92 95 41 63 T2 81 16 22 31 38 |13 13 16 36
GMM-VAE | 53 86 93 97 | 49 68 79 84 |19 23 33 39 |13 14 23 56
CEBM 67 89 95 97 | 52 70 77 83 |19 30 42 52 12 25 48 70

CEBMM 67 91 97 98 |52 71 80 85 |16 28 42 51 10 17 39 60

IGEBM 63 89 95 97 |50 70 79 83 |16 26 33 42 | 10 16 35 49

Table 1: Classification accuracy. We pre-train 5 unsupervised models (rows) on MNIST,
Fashion-MNIST, CIFAR10, SVHN. Then we train logistic classifiers using 1, 10,
100 examples per class (i.e. shots) and the full training dataset. We report the
testing classification accuracy, where CEBM outperforms.

4. Inductive Biases

CEBMs have a property that is somewhat counter-intuitive. While the posterior pg(z | z, A)
is tractable, the prior py(z) is in general not tractable. In particular, although the bias bg(z)
is the logarithm of a tractable exponential family, it is not the case that pg(z) # exp{bg(z)}.
Rather the prior py(z) has the form,

po(z) = “EEL [y expfiofa) o)

In principle the bias a CEBM can take the form of any exponential family distribution.
Since products of exponential families are also in the exponential family, this covers a broad
range of possible biases. In this paper, we will constrain ourselves to a Spherical Gaussian
and a Mixture of Gaussians. We provide derivations for both cases in Appendix A.

5. Experiments

Our experiments evaluate to what extent CEBMs can learn representations that encode
meaningful factors of variation, whilst discarding details about the input that we would
consider noise. We train using both inductive biases and will refer to them as CEBM
(Spherical Gaussian) and CEBMM (Mixutre of Gaussian) for the rest of Section. See
Appendix C and D for architecture and training details.

5.1. Samples and Latent Space

We begin with a qualitative evaluation by visualizing samples. Figures 2 shows samples
from CEBMs with uniform noise initialization an 500 SGLD steps.
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To assess to what extent the representation in CEBMs aligns with classes in each dataset,
we look at the agreement between the label for each data point and the label of its nearest
neighbor in the latent space. Figure 1 shows that the distance in pixel space is a poor
measure of similarity in this dataset, whereas proximity in the latent space is more likely
to agree with class labels in both VAEs and CEBMs. Quantitatively, in Appendix F, we
observe a stronger alignment between classes and the latent representation in CEBMs, which
is reflected in higher numbers on the diagonal of the matrix.

5.2. Classification

To evaluate performance in settings where few labels are available, we train a logistic clas-
sifier using 1,10, 100 examples per class, as well as the full training dataset. We compare
CEBMs against the IGEBM (Du and Mordatch, 2019), a standard VAE with the spheri-
cal Gaussian prior, and the GMM-VAE (Tomczak and Welling, 2018) where the prior is a
mixture of Gaussians. As discussed in Section 2, IGEBM does not have an explicit repre-
sentation. In order to compare against IGEBM, we remove the last layer (which outputs
the energy) and use the resulting intermediate representation as the latent code.

We report the classification accuracy on the test set in Table 1. We can see that that
CEBMs overall achieve a higher accuracy compared to VAEs in particular for CIFAR-10 and
SVHN where the pixel distance is not good measure for similarity. Moreover, we observe
that CEBMs outperform IGEBM which suggest that the inductive biases in CEBMs can
lead to increased performance in downstream tasks.

5.3. Out-of-Distribution Detection

EBMs have formed the basis for encouraging results in out-of-distribution (OOD) detec-
tion (Du and Mordatch, 2019; Grathwohl et al., 2019). In Appendix G, we report the
area under the receiver-operator curve (AUROC) using two score functions: logpy(x) and
a gradient-based function proposed by Grathwohl et al. (2019). CEBMs results for OOD
detection in most cases improve upon VAE and IGEBM baselines.

6. Conclusion

We introduced CEBMs; a new family of energy-based models that define a joint energy
function over both the data and latent variables. The joint distribution factorizes into
a tractable posterior and a marginal likelihood, imposing an inductive bias on the latent
space. This factorization allows us to directly optimize the marginal likelihood of the data,
while at the same time imposing an inductive bias on the latent space. Experimental results
for this class of models are encouraging; we observe a closer agreement between unsuper-
vised representations and class labels, which translates into improvements in downstream
classification tasks.
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Appendix A. Derivation for Two Cases of Inductive Biases

1. Spherical Gaussian. As a bias that is analogous to the standard prior in VAEs, we
consider a spherical Gaussian with fixed hyperparameters (u, o) = (0,1) for each dimension
of z € RK,

bo(2) = (n(z) A = A(N),

k

Each term has sufficient statistics n(zx) = (2, 27) and natural parameters

= () = (0-3) .

The marginal likelihood of the CEBM is then

pole | 3) = e { 3 (40 - A }, (11)
k

where A\, = \ + to,r(z) and the log normalizer is

Ai,l 1
A(Ng) = TIva 2 log(—=Ak,2)-

2. Mixture of Gaussians. In our experiments we will consider datasets that are nor-
mally used for classification. These datasets, by design, exhibit multimodal structure that
we would like to see reflected in the learned representation. As an inductive bias that is
amenable to uncovering this structure, we will consider a bias in the form of a mixture of
L Gaussians,

bo(y,2) =Y Ily=1(n(z) Mg — ANik)).
k,l

Here z € R¥ is a vector of features and y € {1,..., L} is a categorical assignment variable.
The bias for each component [ is a spherical Gaussian with hyperparameters ); ;, for each
dimension k. Again using the notation S\l,k = Nk + tosk(x) to refer to the posterior
parameters, then we obtain an energy

Bo(z,y,2) = = > Iy =Ny n(zk) — AQu))-
k,l

We can then define a joint probability over data z and the assignment y in terms the log
normalizer A(-),

po(x,y|\) = Zgl()\) exp { ;I[y =] (A(S\lk) - A()\l,k))}:

which then allows us to compute the marginal

po(x [ A) = po(m,y | N). (12)
Y
We optimize this marginal with respect hyperaparameters A as well as the weights 6.

10
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Appendix B. Relationship between CEBMs and VAEs

B.1. Variational Autoencoders

Variational autoencoders are a widely used class of deep generative models Kingma and
Welling (2013); Rezende et al. (2014). A VAE defines a joint distribution pg(zx, z) over
data x and latent variables z; it combines an unstructured prior (e.g. a spherical Gaussian)
with a likelihood that is parameterized by an expressive neural network, often referred to
as a decoder. An inference model, also known as an encoder, approximates the posterior
po(z | ) by mapping each data point x onto latent variables z. These models are trained
by maximizing the stochastic evidence lower bound (ELBO) defined as

po(z, 2)
L($,0) = Epypra(e) 45 (2la) {log M] (13)

When the gg(z|x) is reparameterizable, we can compute Monte Carlo estimates of the
gradient of this objective using pathwise derivatives. Non-reparameterizable cases, such as
models with discrete variables, require likelihood-ratio estimators Williams (1992).
Despite their successes, VAEs have limitations. By maximizing the ELBO, we favor
encoder-decoder pair that perfectly reconstruct their input, so there is nothing preventing
the VAE from mapping similar inputs to similar encoding, even when they might be seman-
tically different. Likewise, examples that might be very dissimilar in pixel space because of
noise or benign transformations might end up with very different latent representations.

B.2. VAEs as Energy-based Models

We can interpret the generative model in a VAE as a model with an energy function

Ey(x,2) = —t(z) no(2) — bo(2)- (14)

In this setting, 7g(z) is the generator network that maps low-dimensional latent variables
to a high-dimensional vector of natural parameters. The function ¢(x) is a known mapping
of data to the sufficient statistics of a Gaussian or Bernoulli likelihood.

The bias by(z) contains the terms in the log density logpg(z,z) that only depend on
z. In a VAE there are two such terms. The first is the log prior logpy(z). The second
is the log normalizer of A(ny(z)) for the likelihood logpg(z | z), which can be computed
in closed form because Gaussian and Bernoulli distributions are in the exponential family.
Combining these terms yields an energy function for the bias,

by(2) = logpy(2) — A(ne(2))- (15)

In other words, in a VAE we use known sufficient statistics ¢(z), and train a generator to
learn the natural parameters 7y(z). In a CEBM, by contrast, we assume known natural
parameters 7(z) and train an encoder to learn the sufficient statistics tg(z).

11
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Appendix C. Model Architectures

CEBMs employ an encoder network tp(z) in the form of 4-layer CNN (which is proposed
by Nijkamp et al. (2019a)), followed by an MLP output layer. For IGEBMs, we add one
extra MLP as its final layer which outputs a scalar value. VAEs use the same encoder
network as the CEBMs, and use a decoder network in form of an MLP followed by 4-layer

CNN.

Table Table C, Table Table C, and Table Table C show the architectures used for CEBM,
VAE, and IGEBM, respectively.

(a) MNIST and Fashion-MNIST.

(b) CIFAR10 and SVHN.

‘ Encoder

‘ Encoder

Input 28 x 28 x 1 images

Input 32 x 32 x 3 images

3 x 3 conv. 64 LeakyReLU.

stride 1. padding 1

3 x 3 conv. 64 LeakyReLU. stride 1. padding 1

4 x 4 conv. 64 LeakyReLU.

stride 2. padding 1

4 x 4 conv. 128 LeakyReLU. stride 2. padding 1

4 x 4 conv. 32 LeakyReLU.

stride 2. padding 1

4 x 4 conv. 256 LeakyReLU. stride 2. padding 1

4 x 4 conv. 32 LeakyReLU.

stride 2. padding 1

4 x 4 conv. 512 LeakyReLU. stride 2. padding 1

FC. 128 LeakyReLU

FC. 128 LeakyReLU

FC. 2 x 128 FC. 2 x 128
Table 2: Architecture of CEBM.
(a) MNIST and Fashion-MNIST.
Encoder ‘ Decoder

Input 28 x 28 x 1 images

Input z € R'?® latent variables

3 x 3 conv. 64 LeakyReLU.

stride 1. padding 1

FC. 128 ReLU

4 x 4 conv. 64 LeakyReLU.

stride 2. padding 1

FC. 3 x 3 x 32 ReLU

4 x 4 conv. 32 LeakyReLU.

stride 2. padding 1

4 x 4 upconv. 32 LeakyReLU. stride 2. padding 1

4 x 4 conv. 32 LeakyReLU.

stride 2. padding 1

4 x 4 upconv. 64 LeakyReLU. stride 2. padding 1

FC. 128 ReLU 4 x 4 upconv. 64 LeakyReLU. stride 2. padding 0
FC. 2 x 128 3 x 3 upconv. 1 stride 1. padding 0
(b) CIFAR10 and SVHN.
‘ Encoder ‘ Decoder

Input 32 x 32 x 3 images

Input z € R?® latent variables

3 x 3 conv. 64 LeakyReLU.

stride 1. padding 1

FC. 128 ReLU

4 x 4 conv. 128 LeakyReLU. stride 2. padding 1

FC. 4 x 4 x 512 ReLLU

4 x 4 conv. 256 LeakyReLU. stride 2. padding 1

4 x 4 upconv. 32 LeakyReLU. stride 2. padding 1

4 x 4 conv. 512 LeakyReLU. stride 2. padding 1

4 x 4 upconv. 64 LeakyReLU. stride 2. padding 1

FC. 128 ReLU

3 x 3 upconv. 64 LeakyReLU. stride 2. padding 1

FC. 2 x 128

3 x 3 upconv. 1 stride 1. padding 1

Table 3: Architecture of VAE.
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(a) MNIST and Fashion-MNIST. (b) CIFAR10 and SVHN.
Encoder ‘ ‘ Encoder
Input 28 x 28 x 1 images Input 32 x 32 x 3 images

3 x 3 conv. 64 LeakyReLU. stride 1. padding 1 3 x 3 conv. 64 LeakyReLU. stride 1. padding 1

4 x 4 conv. 64 LeakyReLU. stride 2. padding 1 4 x 4 conv. 128 LeakyReLU. stride 2. padding 1

4 x 4 conv. 32 LeakyReLU. stride 2. padding 1 4 x 4 conv. 256 LeakyReLU. stride 2. padding 1

4 x 4 conv. 32 LeakyReLU. stride 2. padding 1 4 x 4 conv. 512 LeakyReLU. stride 2. padding 1

FC. 128 LeakyReLU FC. 128 LeakyReLU

FC. 128 LeakyReLU. FC. 1 FC. 128 LeakyReLU. FC. 1

Table 4: Architecture of IGEBM

Appendix D. Training Details of Persistent Contrastive Divergence

Optimization. In CEBMs and VAEs, we choose the dimension of latent variables to be
128. For CEBMS, We found that the optimization becomes difficult with smaller dimen-
sions. We L2 regularize energy magnitudes (proposed by Du and Mordatch (2019)), where
the coefficient of the L2 regularization term is 0.1. We empirically found that the training
would become unstable without this regularization. We train our models using 60 SGLD
steps where we initialize samples from the replay buffer with 0.95 probability, and initialize
from uniform noise with 0.05 probability. We train all the models with 90k gradient steps,
batch size 128, Adam optimizer with learning rate le-4. When doing PCD, we used a reply
buffer of size 5000. We set the « in the SGLD teps to be 0.075. Similar to Du and Mor-
datch (2019), we found it useful to add some noise to the image before encoding. In our
experiments, we used Gaussian noise with 02 = 0.03. For the mixture models (CEBMM
and GMM-VAE), we used 50 mixtures.

Training Stability. As observed in previous work Du and Mordatch (2019); Grathwohl
et al. (2019), training EBMs can be a challenging task that often requires a thorough
hyperparameter search. We found that the choices of activation function, learning rate,
number of SGLD steps, and regularization will all affect training stability. Models regularly
diverge during training, and it is difficult to perform diagnostics given that log pg(z) cannot
be computed. As suggested by Nijkamp et al. (2019a), we found checking the difference
in energy between data and model samples to be helpful for verifying stable training. We
also note that in general, we observed a trade-off between sample quality and the predictive
power of latent variables in our experiments. We leave investigation of the source of this
trade-off to future work, but we suspect that this is because SGLD is having more difficulty
to converge when the latent space is more disjoint.
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Appendix E. Persistent Constrastive Divergence

Algorithm 1: Persistent Contrastive Divergence

Input: pdata(')v 07 a, T

B+ {zp ~U for b=1... buffer-size};

while not converged do

x ~ pdata(x);

x' ~ B with 95% probability and U otherwise;
fort=1...T do

e~ N(0,);
v ' — SV Ep(a') + €
end

Ag < V@E@(x) — V@Eg(x/);
0 «+ Adam(0, Ay);

Blz'] + ';
end
Output: ¢

14
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Appendix F. Confusion Matrices on 1-NN Classification

We perform 1-nearest-neighbor classification task for MNIST, Fashion-MNIST, SVHN, CI-
FAR10. We compute the L2 distance in the latent space of VAE, IGEBM and CEBM, and
also in pixel space. We visualize the confusion matrices
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on 032

Figure 6: CIFAR10
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Appendix G. Out-of-Distribution Detection Table

Fashion-MNIST CIFAR-10
log pg () | Ve log po () log py () | Ve log po ()
| MNIST E-MNIST C | MNIST E-MNIST C || SVHN Texture C |SVHN Texture C
VAE 50 39 9 61 57 1 42 58 41| 38 51 37
IGEBM 35 36 90 | 78 82 96 || 45 31 64| 33 17 62
CEBM 37 34 90 | 82 89 98 || 47 32 66| 31 17 54
CEBMM | 56 56 92| 56 80 95 || 55 30 62| 40 23 62

Table 5: AUROC scores in OOD Detection. We use logpg(x) and ||V, logpy(x)|| as score
functions.The left block shows results of the models trained on F-MNIST and
tested on MNIST, E-MNIST, Constant (C); The right block shows results of the
models trained on CIFAR-10 and tested on SVHN, Texture and Constant (C).
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