
Rolling Diffusion Models

David Ruhe 1 2 * Jonathan Heek 1 Tim Salimans 1 Emiel Hoogeboom 1

Abstract

Diffusion models have recently been increasingly
applied to temporal data such as video, fluid me-
chanics simulations, or climate data. These meth-
ods generally treat subsequent frames equally re-
garding the amount of noise in the diffusion pro-
cess. This paper explores Rolling Diffusion: a
new approach that uses a sliding window denois-
ing process. It ensures that the diffusion process
progressively corrupts through time by assigning
more noise to frames that appear later in a se-
quence, reflecting greater uncertainty about the
future as the generation process unfolds. Empir-
ically, we show that when the temporal dynam-
ics are complex, Rolling Diffusion is superior to
standard diffusion. In particular, this result is
demonstrated in a video prediction task using the
Kinetics-600 video dataset and in a chaotic fluid
dynamics forecasting experiment.

1. Introduction
Diffusion models (Sohl-Dickstein et al., 2015; Song & Er-
mon, 2019; Ho et al., 2020) have significantly boosted the
field of generative modeling. They provided the funda-
ments for large-scale text-to-image systems like DALL-E 2
(Ramesh et al., 2022), Imagen (Saharia et al., 2022), Parti
(Yu et al., 2022), and Stable Diffusion (Rombach et al.,
2022). Other applications of diffusion models include den-
sity estimation, text-to-speech, and image editing (Kingma
et al., 2021; Gao et al., 2023; Kawar et al., 2023).

After these successes in these domains, interest in develop-
ing diffusion models for time sequences has grown. Promi-
nent recent large-scale works include, e.g., Imagen Video
(Ho et al., 2022a), Stable Diffusion Video (StabilityAI,

∗Work done as a Student Researcher at Google. 1Google
Deepmind, Amsterdam, Netherlands 2University of Ams-
terdam, Netherlands. Correspondence to: David Ruhe
<david.ruhe@gmail.com>, Jonathan Heek, Tim Salimans, Emiel
Hoogeboom <{jheek, salimans, emielh}@google.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

2023). Other impressive results for generating video data
have been achieved by, e.g., (Blattmann et al., 2023; Ge
et al., 2023; Harvey et al., 2022; Singer et al., 2022; Ho
et al., 2022b). Applications of sequential generative model-
ing outside video include, e.g., fluid mechanics or weather
and climate modeling (Price et al., 2023; Meng et al., 2022;
Lippe et al., 2023).

What is common across many of these works is that they
treat the temporal axis as an ‘extra spatial dimension’. That
is, they treat the video as a 3D tensor of shape K ×H ×W .
This has several downsides. First, the memory and com-
putational requirements can quickly grow infeasible if one
wants to generate long sequences. Second, one is typically
interested in being able to roll out the sampling process for
a variable number of time steps. Therefore, an alternative
angle is a fully autoregressive approach by conditioning on
a sequence of input frames and simulating a single output
frame, which is then concatenated to the input frames, upon
which the recursion can continue. In this case, one has to
traverse the entire denoising diffusion sampling chain for
every single frame, which is computationally intensive. Ad-
ditionally, iteratively sampling single frames leads to quick
autoregressive error accumulation. A middle ground can be
found by jointly generating blocks of frames. However, in
this block-autoregressive case, a diffusion model would use
the same number of denoising steps for every frame. This is
suboptimal since, given a sequence of conditioning frames,
the generative uncertainty about the next few is much lower
than the frames further into the future. Finally, both meth-
ods sample frames only jointly with earlier frames, which is
potentially a suboptimal parameterization.

In this paper, we propose a new framework called Rolling
Diffusion, a method that explicitly corrupts data from past
to future. This is achieved by reparameterizing the global
diffusion time to a local time for each frame. It turns out
that by doing this, one can (apart from boundary conditions)
completely focus on a local sliding window sequential de-
noising process. This has several temporal inductive biases,
alleviating some of the abovementioned issues.

1. In denoising diffusion models, the model output tends
to contain low-frequency information in high noise
regimes and includes high-frequency information only
when corruptions are light. In our framework, the noise

1



Rolling Diffusion Models

Figure 1. Overview of the Rolling Diffusion rollout sampling procedure. The input to the model contains some conditioning and a
sequence of partially denoised frames. The model then denoises the frames by a small amount. After denoising, the sliding window
shifts, and the fully denoised frames are concatenated with the conditioning. This process is repeats until the desired number of frames is
generated. Example video taken from the Kinetics-600 dataset (Kay et al., 2017) (CC BY 4.0).

strength is higher for frames that are further from the
conditioning. As such, the model only needs to pre-
dict low-frequency information (i.e., global structures)
for frames further into the future; high-frequency in-
formation gets included as frames move closer to the
present.

2. Each frame is generated together with both a number
of preceding and succeeding frames.

3. Due to the local sliding window point of view, every
frame enjoys the same inductive bias and undergoes a
similar sampling procedure regardless of its absolute
position in the video.

These merits are empirically demonstrated in, among others,
a video prediction experiment using the Kinetics-600 video
dataset (Kay et al., 2017) and in an experiment involving
chaotic fluid mechanics simulations.

2. Background: Diffusion Models
2.1. Diffusion

Diffusion models consist of a process that destroys data
stochastically, named the ‘diffusion process’, and a gener-
ative process called the denoising process. Let zt ∈ RD

denote a latent variable over a diffusion dimension t ∈ [0, 1].
We refer to t as the global (diffusion) time, which will deter-
mine the amount of noise added to the data. Given a data-
point x ∈ RD, x ∼ q(x), the diffusion process is designed
so that z0 ≈ x and z1 ∼ N (0, 1) via the distribution:

q(zt|x) := N (zt|αtx, σ
2
t I) , (1)

where at and σ2
t are strictly positive scalar functions of t.

We define their signal-to-noise ratio

SNR(t) :=
α2
t

σ2
t

(2)

to be monotonically decreasing in t. Finally, we let α2
t +

σ2
t = 1, corresponding to a variance-preserving process

which also implies a2t ∈ (0, 1] and σ2
t ∈ (0, 1].

Given the noising process, it can be shown (Sohl-Dickstein
et al., 2015) that the true (i.e., optimal) denoising distribu-
tion for a single datapoint x from time t to time s (s ≤ t) is
given by

q(zs|zt,x) = N (zs|µt→s(zt,x), σ
2
t→sI) , (3)

where µ and σ2 are analytical mean and variance functions
of t, s, x and zt. The parameterized generative process
pθ(zs|zt) is then defined by approximating x via a neural
network fθ : RD × [0, 1] → RD. That is, we set

pθ(zs|zt) := q(zs|zt,x = fθ(zt, t)) . (4)

The diffusion objective can be expressed as a KL-divergence
between the diffusion process and the denoising process, i.e.
DKL(q(x, z0, . . . ,z1) || p(x, z0, . . . ,z1)) which simplifies
to (Kingma et al., 2021):

Lθ(x) := Et∼U(0,1),ϵ∼N (0,1)

[
a(t)||x− fθ(zt,ϵ, t)||2

]
+ Lprior + Ldata , (5)

where Lprior and Ldata are typically negligible. The weight-
ing a(t) can be freely specified. In practice, it was found

2



Rolling Diffusion Models

Figure 2. Left: an illustration of a global rolling diffusion process and its local time reparameterization. The global diffusion denoising
time t (vertical axis) is mapped to a local time tk for a frame k (horizontal axis). The local time is then used to compute the diffusion
parameters αtk and σtk . On the right, we show how the same local schedule can be applied to each sequence of frames based on the frame
index w. The nontrivial part of sampling the generative process only occurs in the sliding window as it gets shifted over the sequence.

that specific weightings of the loss result in better sample
quality (Ho et al., 2020). This is the case for, e.g., ϵ-loss,
which corresponds to a(t) = SNR(t).

2.2. Diffusion for temporal data

If one is interested in generation of temporal data beyond
typical hardware constraints, one must consider (autoregres-
sive) conditional extension of previously generated data. I.e.,
given an initial sample xk at a temporal index k, we want
to sample a (faithful) conditional distribution p(xk+1|xk).
This process can then be extended to videos of arbitrary
lengths. As discussed in Section 1, it is not yet clear what
kinds of parameterization choices are optimal to estimate
this conditional distribution. Further, no temporal inductive
bias is typically baked into the denoising process.

3. Rolling Diffusion Models
We introduce rolling diffusion models, merging the arrow
of time with the (de)noising process. To formalize this, we
first have to discuss the global diffusion model. We will see
that the only nontrivial parts of the global process take place
locally. Defining the noise schedule locally is advantageous
since the resulting model does not depend on the number of
frames K and can be unrolled indefinitely.

3.1. A global perspective

Let x ∈ RD×K be a time series datapoint where K de-
notes the number of frames and D the dimensionality of
each frame. The core idea that allows rolling diffusion is a

reparameterization of the diffusion (denoising) time t to a
frame-dependent local (frame-dependent) time: i.e.,

t 7→ tk . (6)

Note that we still require tk ∈ [0, 1] for all
k ∈ {0, . . . ,K − 1}. Furthermore, we still have a mono-
tonically decreasing signal-to-noise schedule, ensuring a
well-defined diffusion process. However, we now have a dif-
ferent signal-to-noise schedule for each frame. In this work,
we also always have tk ≤ tk+1, i.e., the local denoising time
of a given frame is smaller than the local time of the next
frame. This means we add more noise to future frames: a
natural temporal inductive bias. Note that this is not strictly
required; one could also have a reverse-time inductive bias
or a mixture. An example of such a reparameterization is
shown in Figure 2 (left). We depict a map that takes a global
diffusion time t (vertical axis) and a frame index k (hori-
zontal axis), and computes a local time tk, indicated with a
color intensity.

Forward process We now redefine the forward process
using the local time:

q(zt|x) :=
K−1∏
k=0

N (zk
t |αtkx

k, σ2
tk
I) , (7)

where we can reuse the α and σ functions (now evaluated
locally at tk) from before. Here, xk denotes the k-th frame
of x.

True backward process and generative process Given
a tuple (s, t), s ∈ [0, 1], t ∈ [0, 1], s ≤ t, we can divide the

3



Rolling Diffusion Models

frames k ∈ {0, . . . ,K − 1} into three categories:

clean(s, t) := {k | sk = tk = 0} , (8)
noise(s, t) := {k | sk = tk = 1} , (9)

win(s, t) := {k | sk ∈ [0, 1), tk ∈ (sk, 1]} . (10)

Note that here, s and t are both diffusion time-steps (corre-
sponding to certain SNR levels), while k denotes a frame
index. This categorization can be motivated using the sched-
ule depicted in Figure 2. Given, for example, t = 0.5
and s = 0.375, we see that the first frame k = 0 falls
in the first category. At this point in time, zt0 = zs0 are
identical given that limt→0+ log SNR(t) = ∞. On the
other hand, the last frame k = K − 1 (31 in the figure)
falls in the second category, i.e., both ztK−1

and zsK−1
are

distributed as independent standard Gaussians, given that
limt→1− log SNR(t) = −∞. Finally, the frame k = 16
falls in the third, most interesting category: the sliding win-
dow. As such, observe that the true denoising process can
be factorized as:

q(zs|zt,x) = q(zclean
s |zt,x)q(znoise

s |zt,x)q(zwin
s |zt,x).

(11)

This is helpful because we will see that the only frames that
need to be modeled are in the window. Namely, the first
factor has

q(zclean
s |zt,x) =

∏
k∈clean(s,t)

δ(zk
s |zk

t ) . (12)

In other words, if zk
t is already noiseless, then zk

s will also
be noiseless. Regarding the second factor, we see that they
are all independently normally distributed:

q(znoise
s |zt,x) =

∏
k∈noise(s,t)

N (zk
s |0, I). (13)

Simply put, in these cases zk
s is independent noise and does

not depend on data at all. Finally, the third factor has a true
non-trivial denoising process:

q(zwin
s |zt,x) =

∏
k∈win(s,t)

N (zk
s |µtk→sk(z

k
t ,x

k), σ2
tk→sk

I)

where µtk→sk and σ2
tk→sk

are the analytical mean and vari-
ance functions. Note that we can then optimally (w.r.t. a
KL-divergence) factorize the generative process similarly:

pθ(zs|zt) := p(zclean
s |zt)p(znoise

s |zt)pθ(zwin
s |zt) , (14)

with p(zclean
s |zt) :=

∏
k∈clean(s,t) δ(z

k
s |zk

t ) and
p(znoise

s |zt) :=
∏

k∈noise(s,t) N (zk
s |0, I). The only

‘interesting’ parameterized part of the generative process
then has

pθ(z
win
s |zt) :=

∏
k∈win(s,t)

q(zk
s |zt,xk = fθ(zt, tk)). (15)

In other words, we can only focus the generative process
on the frames that are in the sliding window. Finally, note
that we can choose to not condition the model on all zk

t that
have tk = 0, since frames that are far in the past are likely
to be independent of the current frame, and this excessive
conditioning would exceed computational constraints. As
such, we get

pθ(z
win
s |zt) = pθ(z

win
s |zclean

t , zwin
t ) (16)

:≈ pθ(z
win
s |ẑclean

t , zwin
t ) (17)

where ẑclean
t denotes a specific subset of zclean

t , typically
including a few frames slightly before the current sliding
window.

In Appendix A, we motivate, in addition to the arguments
above, the following loss function:

Lwin,θ(x) :=Et∼U(0,1),ϵ∼N (0,1) [Lwin,θ(x; t, ϵ)] (18)

with

Lwin,θ :=
∑

k∈win(t)

a(tk)||xk − fk
θ (z

win
t,ϵ , z

clean
t,ϵ , t)||2 ,

where we suppress some arguments for notational conve-
nience. Here, zt,ϵ denotes a noised version of x as a func-
tion of t and ϵ and a(tk) is a weighting function leading to,
e.g., the usual ‘simple’ ϵ-MSE loss, v-MSE loss, or x-MSE
loss.

Observe Figure 2 again. After training is completed, we can
essentially sample from the generative model by traversing
the image with the sliding window from the top left to the
bottom right.

3.2. A local perspective

In the previous section, we discussed how rolling diffusion
enables us to concentrate entirely on frames within a sliding
window. Instead of using t to represent the global diffusion
time, which determines the noise level for all frames, we
now redefine t to determine the noise level for each frame in
a smaller subsequence. Specifically, running the denoising
chain from t = 1 to t = 0 will sample a sequence such that
the first frame is completely denoised, but the subsequent
frames still retain some noise. In contrast, the global process
described earlier denoises an entire video.

Similar to before, we reparameterize t to allow for different
noise levels for each frame in the sliding window. This
reparameterization should be:

1. local, meaning we allow for sharing and reusing the
parameterization across various positions of the sliding
window, independent of their absolute locations.

4



Rolling Diffusion Models

2. consistent under moving the window, meaning that the
noise level for the current frame w when t = 0 should
match the noise level at w−1 at t = 1. This consistency
enables seamless denoising as the window slides, en-
suring that each frame is progressively denoised while
shifting positions.

Let W < K be the size of the sliding window, and w ∈
{0, . . . ,W−1} be the local indices of the frames. To satisfy
the first assumption, we define the schedule in terms of the
local index w (see Figure 2 (right)):

t 7→ tWw . (19)

For the second, we know tWw must have

tWw = g

(
w + t

W

)
(20)

for some monotonically increasing (in t) function g :
[0, 1] → [0, 1]. We will sometimes suppress W for no-
tational convenience. Note that due to the locality of the
parameterization, the process can be unfolded indefinitely
at test time.

A linear reparameterization In this work we typically
put g := id, i.e.,

tlin
w =

w + t

W
. (21)

See Figure 2 (right) for an illustration of how this local
schedule is applied to each sequence of frames. Observe
that tlin

w ∈ [w/W, (w + 1)/W ] ⊆ [0, 1]. As such, we can
directly use our SNR schedule to compute the diffusion
parameters for each frame.

One can extend the linear local time to include clean condi-
tioning frames. Let ncln denote the number of clean frames
(chosen as a hyperparameter), then the local time for a frame
w is:

tlin
w (ncln) := clip

(
w + t− ncln

W − ncln

)
, (22)

where clip : R → [0, 1] clips value between 0 and 1.

3.3. Boundary conditions

While framing rolling diffusion purely from a local perspec-
tive is convenient for training and sampling, it introduces
some complicated edge conditions. Given the linear local
time reparameterization tlin

w , we have that given the diffu-
sion time t running from 1 to 0, the local times run from
( 1
W , 2

W , . . . W
W ) to ( 0

W , 1
W , . . . , W−1

W ). This means that us-
ing this setting, the signal-to-noise ratios are never minimal
for all frames, meaning we cannot start sampling from a
completely noisy state. Visually, in Figure 2, the rolling

sampling procedure can be seen as moving the sliding win-
dow over the diagonal from top left to bottom right such that
the local times of the frames remain invariant upon shifting.
However, this means that placing the window at the very
left edge still results in having partially denoised frames.

To account for this, we co-train the rolling diffusion model
with an additional schedule that can handle this boundary
condition:

tinit
w := clip

( w

W
+ t

)
. (23)

This init noise schedule can start from initial random noise
and generates a video in the ‘rolling state’. That is, at diffu-
sion time t = 1, this will put all frames to maximum noise,
and at t = 0 the frames will be in the rolling state. To be
precise, it starts from local times (1, 1, . . . 1) and denoises
to (0, 1

W , 2
W , . . . , W−1

W ), after which we can start using the
previously described tlin

w schedule. From a visual perspec-
tive, in Figure 2, this corresponds to placing the window at
the upper left corner and moving it down vertically, until it
reaches the stage where it can start moving diagonally.

On the interval [0, 1
W ], this schedule contains the previous

local schedule tlin
w as a special case. To see this, note that

tinit
w ( 1

W ) =
(

1
W , 2

W , . . . , 1
)
, which is the same as tlin

w (1).
Similarly, one can check the case for tinit

w (0). This means
that the model could be trained solely with tinit

w to handle
the boundaries as well as being able to roll out indefinitely.
At sampling time, one then still uses the tinit

w schedule but
restricted to [0, 1

W ]. The caveat, however, is that the tlin
w

schedule only gets selected 1/W of the time during training
(assuming t ∼ U(0, 1)). In contrast, this schedule is used
almost exclusively at test time, with the exception being at
the boundary. As such, we find it beneficial to oversample
the tlin

w schedule during training based on a Bernoulli rate β.

3.4. Local training

We briefly discuss training details under the aforemen-
tioned local time reparameterizations. We now consider
x ∈ RD×W , chunking videos into blocks of W frames.
From tw one can compute αtw and σtw using typical SNR
schedules. Let z ∈ RD×W , we have as the forward (nois-
ing) process

q(zt|x) :=
W∏

w=0

N (zw
t |αtwx

w, σ2
twI), (24)

where xw denotes the w-th frame of x.

The training objective becomes

Lloc,θ(x) := Et∼U(0,1),ϵ∼N (0,1) [Lloc,θ(x; t, ϵ)] , (25)

where we put

Lloc,θ(x, t, ϵ) :=

W∑
w=0

a(tw)||xw − fw
θ (zt,ϵ; t)||2 . (26)

5



Rolling Diffusion Models

1.5 7 .5 13 .5 19 .5 25 .5 31 .5 37 .5 43 .5 49 .5 55 .5 61 .5 67 .5
Time (s)

Ground Truth

Model

Figure 3. Sample Kolmogorov flow rollout. We observe that ground-truth structures are preserved initially, but the model diverges from
the true data later on. Despite this, model is able to generate new turbulent dynamics much later on in the sequence.

Algorithm 1 Rolling Diffusion: Training
Require: Dtr := {x1, . . . ,xN}, x ∈ RD×W , ncln, β, fθ
repeat

Sample x from Dtr, t ∼ U(0, 1), y ∼ B(β)
if y then

Compute local time tinit
w (ncln), w = 0, . . . ,W − 1

else
Compute local time tlin

w (ncln), w = 0, . . . ,W − 1
end if
Compute αtw and σtw for all w = 0, . . . ,W − 1
Sample zt ∼ q(zt|x) using Equation (24) (reparameterized
from ϵ ∼ N (0, 1))
Compute x̂← fθ(zt,ϵ; t)
Update θ using Lloc,θ(x; t, ϵ)

until Converged

Algorithm 2 Rolling Diffusion: Rollout
Require: pθ , ncln, z0 with local diffusion times
(0/W, . . . , (W − 1)/W ) (i.e., progressively noised).
Video Prediction x̂← {zncln

0 }
repeat

Sample zW ∼ N (0, I)

z1 ← {z1
0 , . . . , z

W−1
0 ,zW }

for t = 1, (T − 1)/T, . . . , 1/T do
Compute local times tlin

w (ncln), w = 0, . . . ,W − 1
Sample zt−1/T ∼ pθ(zt−1/T |zt)

end for
x̂← x̂ ∪ {zncln

0 }
until Completed

The training and sampling procedures are summarized in
Algorithm 1 and Algorithm 2. We summarize sampling at
the boundary using tinit

w in Appendix B. Furthermore, we
provide a visual of the rolling sampling loop in Figure 1.

4. Related Work
4.1. Video diffusion

Video diffusion has been studied and applied directly in
pixel space (Ho et al., 2022a;b; Singer et al., 2022) and in

latent space (Blattmann et al., 2023; Ge et al., 2023; He et al.,
2022; Yu et al., 2023c), the latter typically empirically being
slightly more effective. Furthermore, these videos usually
extend the two-dimensional image setting to three (two
spatial dimensions and one temporal dimension) without
considering autoregressive extension.

Methods that explore autoregressive video generation in-
clude Yang et al. (2023); Harvey et al. (2022). Directly
parameterizing the conditional distribution of future frames
given past frames is preferable (Harvey et al., 2022; Tashiro
et al., 2021) compared to adapting the denoising schedule
of an unconditional diffusion model. Unlike previous ap-
proaches, Rolling Diffusion explicitly introduces a notion of
time in the training procedure. Harvey et al. (2022) compare
various conditioning schemes but do not explicitly consider
a temporally adapted noise schedule.

4.2. Other time-series diffusion models

Apart from video, sequential diffusion models have also
been applied to other modes of time-series data, such as
audio (Kong et al., 2021), text (Li et al., 2022), but also
scientifically to weather data (Price et al., 2023) or fluid
mechanics (Kohl et al., 2023). Lippe et al. (2023) show that
incorporating a diffusion-inspired denoising procedure can
help recover high frequency information that typically gets
lost when using learned numerical PDE solver emulators.
Dyffusion (Cachay et al., 2023) employs a forecasting and
interpolation model in a two-stage fashion. Both models are
trained with MSE objectives. This means that the generative
model can be interpreted as factorized Gaussians, potentially
leading to blurry predictions when generating stochastic or
highly chaotic data as considered in this work. Wu et al.
(2023) also study autoregressive models with specialized
noising schedules, focusing mostly on text generation. Fi-
nally, Zhang et al. (2023) published around the same time
as the current work a paper with similar ideas as rolling
diffusion. There are, however, some core differences. This
work analyzes in more detail how rolling diffusion relates
to a global, well-defined diffusion process, motivating why

6



Rolling Diffusion Models

0 10 20 30 40 50
Time-Step

102

103

FS
D 

(
)

Method
MSE (2-1)
Standard Diffusion (2-1)
Standard Diffusion (2-4)
Standard Diffusion (2-8)
Rolling Diffusion (init noise) (2-8)

Figure 4. FSD results of the Kolmogorov Flow rollout experiment.
Lower is better.

training on a sliding window is acceptable. We isolate the
effect of rolling diffusion and study it in more detail, while
Zhang et al. (2023) combine local noise levels with addi-
tional losses, potentially blurring the effect of the sliding
window idea with the impact of these auxiliary terms. Fi-
nally, we introduce rolling diffusion schedules that deal with
the boundary situations, allowing for generating sequences
in an end-to-end manner.

5. Experiments
We conduct experiments using data from various domains
and explore several conditioning settings. In all our exper-
iments, we use the Simple Diffusion architecture (Hooge-
boom et al., 2023) with equal parameters for both standard
and rolling diffusion. We use two-dimensional spatial con-
volution blocks after which we have transformer blocks that
attend both spatially and temporally in the deepest layers.
Hyperparameter settings can be found in Appendix C. A
note on the runtime complexity can be found in Appendix D.

5.1. Kolmogorov Flow

First, we run an experiment on simulated fluid dynamics
from JaxCFD (Kochkov et al., 2021; Dresdner et al., 2022).
Specifically, we use the Kolmogorov flow, an instance of the
incompressible Navier-Stokes equations. Recently, there
has been increasing interest in emulating classical numeri-
cal PDE integrators with machine learning models. Various
results have shown that these have the capacity to simulate
from initial conditions complex systems to high precision

(e.g., Li et al. (2020)). To similar ends, generative mod-
els are of increasing interest, as they provide several ben-
efits. First, they provide a way to directly obtain marginal
distributions over a future state of a physical system, as
opposed to numerically rolling out an ensemble of initial
conditions. This especially has use-cases in weather or
climate modeling, fluid mechanics analyses, and stochastic
differential equation studies. Second, they can improve mod-
eling high frequency information over approaches based on
mean-squared error objectives.

The simulation is based on the following partial differential
equation ∂u

∂τ + ∇ · (u ⊗ u) = ν∇2u − 1
ρ∇p + f , with

u : [0, T ]× R2 → R2 is the solution, ⊗ the tensor product,
ν the kinematic viscosity, ρ the fluid density, p the pres-
sure field, and, finally, f the external forcing. We randomly
sample viscosities ν between 5 · 10−4 and 5 · 10−3, and
densities between 0.5 and 2, making the task of predicting
the dynamics non-deterministic. The ground truth data is
generated using a finite volume-based direct numerical sim-
ulation (DNS) with a maximal time step of 0.05s with 6 000
time-steps, corresponding to 300 seconds of simulation time,
subsampled every 1.5s. Note that this is much longer than
typical simulations, which only consider simulation times in
the order of tens of seconds. We simulate 200 000 such sam-
ples at 64× 64, corresponding to 2 terabytes of data. Due
to the chaotic nature and the long simulation time, a model
cannot be expected to predict the exact future state, which
makes it an ideal dataset to test long temporal rollouts. De-
tails on the simulation settings can be found in Appendix E.
The model is given 2 input frames containing the horizontal
and vertical velocities. Note that the long rollout lengths (up
to ± 60 seconds), together with the large 1.5s strides, make
this a more challenging task than the usual ‘neural emulator’
task, where the predictions can be extremely accurate due
to the shorter time-scales and higher temporal resolutions.
For example, Lippe et al. (2023); Sun et al. (2023) only go
up to ±15s with much smaller strides.

Evaluation Typical PDE-emulation tasks directly com-
pare models to ground truth using data-space RMSE scores.
However, in our uncertain setting we are more interested in
how well the generated distribution matches the target dis-
tribution. The ground-truth simulator provides no inherent
uncertainty estimation, and running ensembles from various
initial parameters is not straightforward due to a lack of pro-
posal distribution for these initial settings. Instead, we pro-
pose a method similar to Fréchet Inception Distance (FID)
or FVD. We make use of the fact that spatial frequency in-
tensities provide a good summary statistic (Sun et al., 2023;
Dresdner et al., 2022; Kochkov et al., 2021). Let fx ∈ RF

denote a vector of spatial-spectral magnitudes computed us-
ing a (two-dimensional) Discrete Fourier Transform (DFT)
from a variable x. Then, FD ∈ N × F denotes all the

7



Rolling Diffusion Models

Model

Ground Truth

Figure 5. Top: Rolling Diffusion rollout on the BAIR Robot Pushing dataset. Bottom: ground-truth.

frequencies of a (test-time) dataset D := {x1, . . . ,xN}.
Let Fθ denote the Fourier magnitudes of N samples from
a generative model. We now compute the Frećhet distance
between the generated samples and the true data by setting

FSD(D, θ)

:= ∥f̄D − f̄θ∥2 + tr
(
ΣD +Σθ − 2(ΣDΣθ)

1/2
)

(27)

where f̄ and Σ denote the mean and covariance of the
frequencies, respectively. We call this metric the Fréchet
Spectral Distance (FSD).

We provide an example rollout in Figure 3, where we plot
the vorticity of the velocity field. Quantitatively, we present
in Figure 4 the FSD results derived from the horizontal ve-
locity fields of the fluid. Note that the standard diffusion
(ncln-1) baselines can be seen as a adaptations of PDE Re-
finer (Lippe et al., 2023) and (Kohl et al., 2023) for our
task. Regarding rolling diffusion, we use the tinit

w (ncln) repa-
rameterization with ncln = 2, and use tlin

w (ncln) for long
rollouts. It is clear that an autoregressive MSE-based model,
as typically used in the literature, is not suitable for this task.
For standard diffusion, we iteratively generate W − ncln
frames, after which we concatenate these to the condition-
ing and continue the rollout. Rolling diffusion always shifts
the window by one, sampling using the process described
before. Rolling diffusion consistently outperforms standard
diffusion methods, regardless of conditioning settings and
window sizes (ncln,W − ncln). Additional qualitive and
numerical results can be found in Appendix F.

5.2. BAIR Robot Pushing Dataset

The Berkeley AI Research (BAIR) robot pushing dataset
(Ebert et al., 2017) is a standard benchmark for video pre-
diction. It contains 44 000 videos at 64× 64 of a robot arm
pushing objects around. Following previous methods, we
condition in on 1 frame and predict the next 15. We evaluate,
consistently with previous works, using the Frechét Video
Distance (FVD) (Unterthiner et al., 2019). For FVD, we use
the I3D network (Carreira & Zisserman, 2017) by compar-
ing 100× 256 model samples against the 256 examples in
the evaluation set.

Method FVD (↓)
DVD-GAN (Clark et al., 2019) 109.8
VideoGPT (Yan et al., 2021) 103.3
TrIVD-GAN-FP 103.3
Transframer (Nash et al., 2022) 100
CCVS (Le Moing et al., 2021) 99
VideoTransformer (Weissenborn et al., 2019) 94
FitVid (Babaeizadeh et al., 2021) 93.6
NUWA (Wu et al., 2022) 86.9
Video Diffusion (Ho et al., 2022b) 66.9

Standard Diffusion (Ours) 59.7
Rolling Diffusion (Ours) 59.6

Table 1. Results of the BAIR Robot Pushing baseline experiment.

Regarding rolling diffusion, we use the tinit
w (ncln) reparam-

eterization to sample the W = 16 (ncln = 1) frames to a
partially denoised state, and then use tlin

w (ncln) to rollout
and complete the sampling. Note that standard diffusion
samples all 15 frames at once and might be at an advantage
since we do not consider autoregressive extension.

The results are shown in Table 1. We observe that both
standard diffusion and rolling diffusion using the same (Sim-
ple Diffusion) architecture outperform previous methods.
Additionally, we see that there is no significant difference
between the standard and rolling framework in this setting.
This is because the sampled sequences are, in both cases,
indistinguishable from the true data Figure 5.

5.3. Kinetics-600

Finally, we evaluate video prediction on the Kinetics-600
benchmark (Kay et al., 2017; Carreira et al., 2018). It con-
tains approximately 400 000 training videos depicting 600
different activities rescaled to 64× 64. We run two experi-
ments using this dataset. The first is a baseline experiment
in a setting equal to previously published works. The next
one specifically tests Rolling Diffusion’s ability to autore-
gressively rollout for long sequences.

Baseline We compare against previous methods using 5
input frames and 11 output frames, and show the results

8



Rolling Diffusion Models

Model

Ground Truth

Figure 6. Top: Rolling Diffusion rollout on the Kinetics-600 dataset. Bottom: ground-truth. License: CC BY 4.0.

Method FVD (↓)
Phenaki (Villegas et al., 2022) 36.4
TrIVD-GAN-FP (Luc et al., 2020) 25.7†

Video Diffusion (Ho et al., 2022b) 16.2
RIN (Jabri et al., 2022) 10.8
MAGVIT (Yu et al., 2023a) 9.9†

MAGVITv2 (Yu et al., 2023b) 4.3†

W.A.L.T.-L (Gupta et al., 2023) 3.3†

Rolling Diffusion (Ours) 5.2
Standard Diffusion (Ours) 3.9

Table 2. FVD results of the Kinetics-600 baseline task (stride 1).
Two-stage methods are indicated with ‘†’.

in Section 5.3 The evaluation metric is again FVD. We
note that many of the current SOTA methods are two-stage,
meaning that they use an autoencoder and run diffusion in
latent space. While empirically compelling (Rombach et al.,
2022), this makes it hard to isolate the effect of the diffusion
model itself. Note that it is not always clear whether the
autoencoder parameters are included in the parameter count
for two-stage methods, or on what data they are pretrained.
Running diffusion using the standard diffusion U-ViT archi-
tecture achieves an FVD of 3.9, which is comparable to the
best two-stage methods. Rolling diffusion has a strong dis-
advantage in this case: (1) the baseline generates all frames
at once, thereby not suffering from autoregressive errors;
and (2) with a stride of 1, there is very little dynamics in the
16 frames, mostly suitable for a standard diffusion model.
Still, rolling diffusion achieves a competitive FVD of 5.2.

Rollout Next, we compare the models’ capabilities to
autoregressively rollout and show the results in Table 3. All
settings use a window size of W = 16 frames, exploring
several ncln settings, denoted with ‘Cond-Gen’. During
training, we mix tlin

w with a slightly adjusted version of tlin
w

(see Appendix G) at an oversampling rate of β.

We analyze two settings, one with a stride (also known as
frame-skip or frame-step) of 1, rolling out for 64 steps, and
another setting with a stride of 8 rolling out for 24 steps,

Method Cond-Gen FVD (↓)
stride=8 Standard Diffusion (5-11) 58.1
steps=24 Rolling β = 0.1 (5-11) 39.8

stride=1 Standard Diffusion (15-1) 1369
steps=64 Standard Diffusion (8-8) 157.1

Standard Diffusion (5-11) 123.7
Rolling β = 0.9 (5-11) 211.2

Table 3. Kinetics-600 (Rollout) with 8192 FVD samples, 100 sam-
pling steps per 11 frames. Trained for 300k iterations.

effectively predicting ahead up to the 192th frame. In the
first setting, standard diffusion performs better, quite possi-
bly due to the invariability of the data. We oversample the
linear rolling schedule with a rate of β = 0.9 to account
for the high number of test-time steps. Rolling diffusion
consistently wins in the second setting, which is much more
dynamic. Note also that single-frame diffusion significantly
underperforms here and that larger block autoregression is
favorable. See an example rollout in Figure 6. Addition-
ally, we compare to TECO (Yan et al., 2023), which uses
slightly different input-output settings, in Appendix F. From
Appendix H, we get an indication of the effect of the over-
sampling rate on the performance of rolling diffusion. In
this case, slightly oversampling tlin

w yields the best result.

From these (and previous) results we draw the conclusion
that rolling diffusion is particularly effective in dynamic
settings, where the data is highly variable.

6. Conclusion
We presented Rolling Diffusion Models, a new DDPM
framework that progressively noises (and denoises) data
through time. Validating our method on video and fluid
mechanics data, we observed that rolling diffusion’s natu-
ral inductive bias gets most effectively exploited when the
data is highly dynamic. In this setting, Rolling Diffusion
outperforms various existing methods. This allows for ex-
citing future directions in, e.g., video, audio, and weather or
climate modeling.

9



Rolling Diffusion Models

Impact Statement
Sequential generative models, including diffusion models,
have a significant societal impact with applications in video
generation and scientific research by enabling fast, highly
detailed sampling. While they offer the upside of creating
more accurate and compelling synthesis in fields ranging
from climate modeling to medical imaging, there are notable
downsides regarding content authenticity and originality of
digital media.

References
Babaeizadeh, M., Saffar, M. T., Nair, S., Levine, S., Finn,

C., and Erhan, D. Fitvid: Overfitting in pixel-level video
prediction. arXiv preprint arXiv:2106.13195, 2021.

Blattmann, A., Rombach, R., Ling, H., Dockhorn, T., Kim,
S. W., Fidler, S., and Kreis, K. Align your latents: High-
resolution video synthesis with latent diffusion models. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 22563–22575, 2023.

Cachay, S. R., Zhao, B., James, H., and Yu, R. Dyffusion:
A dynamics-informed diffusion model for spatiotemporal
forecasting. arXiv preprint arXiv:2306.01984, 2023.

Carreira, J. and Zisserman, A. Quo vadis, action recogni-
tion? a new model and the kinetics dataset. In proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 6299–6308, 2017.

Carreira, J., Noland, E., Banki-Horvath, A., Hillier, C., and
Zisserman, A. A short note about kinetics-600. arXiv
preprint arXiv:1808.01340, 2018.

Clark, A., Donahue, J., and Simonyan, K. Adversarial
video generation on complex datasets. arXiv preprint
arXiv:1907.06571, 2019.

Dresdner, G., Kochkov, D., Norgaard, P., Zepeda-Núñez, L.,
Smith, J. A., Brenner, M. P., and Hoyer, S. Learning to
correct spectral methods for simulating turbulent flows.
In arXiv, 2022. doi: 10.48550/ARXIV.2207.00556. URL
https://arxiv.org/abs/2207.00556.

Ebert, F., Finn, C., Lee, A. X., and Levine, S. Self-
supervised visual planning with temporal skip connec-
tions. CoRL, 12:16, 2017.

Gao, Y., Morioka, N., Zhang, Y., and Chen, N. E3 tts:
Easy end-to-end diffusion-based text to speech. In 2023
IEEE Automatic Speech Recognition and Understanding
Workshop (ASRU), pp. 1–8. IEEE, 2023.

Ge, S., Nah, S., Liu, G., Poon, T., Tao, A., Catanzaro, B., Ja-
cobs, D., Huang, J.-B., Liu, M.-Y., and Balaji, Y. Preserve
your own correlation: A noise prior for video diffusion

models. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 22930–22941, 2023.

Gupta, A., Yu, L., Sohn, K., Gu, X., Hahn, M., Fei-Fei,
L., Essa, I., Jiang, L., and Lezama, J. Photorealistic
video generation with diffusion models. arXiv preprint
arXiv:2312.06662, 2023.

Harvey, W., Naderiparizi, S., Masrani, V., Weilbach, C.,
and Wood, F. Flexible diffusion modeling of long videos.
Advances in Neural Information Processing Systems, 35:
27953–27965, 2022.

He, Y., Yang, T., Zhang, Y., Shan, Y., and Chen, Q. Latent
video diffusion models for high-fidelity video generation
with arbitrary lengths. arXiv preprint arXiv:2211.13221,
2022.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. In Larochelle, H., Ranzato, M., Hadsell,
R., Balcan, M., and Lin, H. (eds.), Advances in Neural In-
formation Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS,
2020.

Ho, J., Chan, W., Saharia, C., Whang, J., Gao, R., Gritsenko,
A., Kingma, D. P., Poole, B., Norouzi, M., Fleet, D. J.,
et al. Imagen video: High definition video generation
with diffusion models. arXiv preprint arXiv:2210.02303,
2022a.

Ho, J., Salimans, T., Gritsenko, A., Chan, W., Norouzi,
M., and Fleet, D. J. Video diffusion models.
arXiv:2204.03458, 2022b.

Hoogeboom, E., Heek, J., and Salimans, T. simple diffusion:
End-to-end diffusion for high resolution images. arXiv
preprint arXiv:2301.11093, 2023.

Jabri, A., Fleet, D. J., and Chen, T. Scalable adaptive com-
putation for iterative generation. CoRR, abs/2212.11972,
2022.

Kawar, B., Zada, S., Lang, O., Tov, O., Chang, H., Dekel,
T., Mosseri, I., and Irani, M. Imagic: Text-based real
image editing with diffusion models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 6007–6017, 2023.

Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier,
C., Vijayanarasimhan, S., Viola, F., Green, T., Back, T.,
Natsev, P., et al. The kinetics human action video dataset.
arXiv preprint arXiv:1705.06950, 2017.

Kingma, D. P. and Gao, R. Understanding diffusion ob-
jectives as the elbo with simple data augmentation. In
Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023.

10

https://arxiv.org/abs/2207.00556


Rolling Diffusion Models

Kingma, D. P., Salimans, T., Poole, B., and Ho, J. Varia-
tional diffusion models. CoRR, abs/2107.00630, 2021.

Kochkov, D., Smith, J. A., Alieva, A., Wang, Q., Brenner,
M. P., and Hoyer, S. Machine learning–accelerated com-
putational fluid dynamics. Proceedings of the National
Academy of Sciences, 118(21), 2021. ISSN 0027-8424.
doi: 10.1073/pnas.2101784118. URL https://www.
pnas.org/content/118/21/e2101784118.

Kohl, G., Chen, L.-W., and Thuerey, N. Turbulent flow sim-
ulation using autoregressive conditional diffusion models.
arXiv preprint arXiv:2309.01745, 2023.

Kong, Z., Ping, W., Huang, J., Zhao, K., and Catanzaro, B.
DiffWave: A versatile diffusion model for audio synthesis.
In 9th International Conference on Learning Representa-
tions, ICLR, 2021.

Le Moing, G., Ponce, J., and Schmid, C. Ccvs: context-
aware controllable video synthesis. Advances in Neural
Information Processing Systems, 34:14042–14055, 2021.

Li, X., Thickstun, J., Gulrajani, I., Liang, P. S., and
Hashimoto, T. B. Diffusion-lm improves controllable
text generation. Advances in Neural Information Process-
ing Systems, 35:4328–4343, 2022.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Fourier
neural operator for parametric partial differential equa-
tions. arXiv preprint arXiv:2010.08895, 2020.

Lippe, P., Veeling, B. S., Perdikaris, P., Turner, R. E.,
and Brandstetter, J. Pde-refiner: Achieving accurate
long rollouts with neural pde solvers. arXiv preprint
arXiv:2308.05732, 2023.

Luc, P., Clark, A., Dieleman, S., Casas, D. d. L., Doron, Y.,
Cassirer, A., and Simonyan, K. Transformation-based
adversarial video prediction on large-scale data. arXiv
preprint arXiv:2003.04035, 2020.

Meng, C., Gao, R., Kingma, D. P., Ermon, S., Ho, J., and
Salimans, T. On distillation of guided diffusion models.
CoRR, abs/2210.03142, 2022.

Nash, C., Carreira, J., Walker, J., Barr, I., Jaegle, A., Ma-
linowski, M., and Battaglia, P. Transframer: Arbitrary
frame prediction with generative models. arXiv preprint
arXiv:2203.09494, 2022.

Price, I., Sanchez-Gonzalez, A., Alet, F., Ewalds, T., El-
Kadi, A., Stott, J., Mohamed, S., Battaglia, P., Lam, R.,
and Willson, M. Gencast: Diffusion-based ensemble
forecasting for medium-range weather. arXiv preprint
arXiv:2312.15796, 2023.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen,
M. Hierarchical text-conditional image generation with
CLIP latents. CoRR, abs/2204.06125, 2022.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, CVPR 2022, New
Orleans, LA, USA, June 18-24, 2022, pp. 10674–10685.
IEEE, 2022.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J.,
Denton, E., Ghasemipour, S. K. S., Ayan, B. K., Mah-
davi, S. S., Lopes, R. G., Salimans, T., Ho, J., Fleet,
D. J., and Norouzi, M. Photorealistic text-to-image diffu-
sion models with deep language understanding. CoRR,
abs/2205.11487, 2022.

Singer, U., Polyak, A., Hayes, T., Yin, X., An, J., Zhang,
S., Hu, Q., Yang, H., Ashual, O., Gafni, O., Parikh,
D., Gupta, S., and Taigman, Y. Make-a-video: Text-
to-video generation without text-video data. CoRR,
abs/2209.14792, 2022.

Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In Bach, F. R. and Blei, D. M.
(eds.), Proceedings of the 32nd International Conference
on Machine Learning, ICML, 2015.

Song, Y. and Ermon, S. Generative modeling by estimat-
ing gradients of the data distribution. In Advances in
Neural Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems 2019,
NeurIPS, 2019.

StabilityAI. Introducing stable video diffusion. In Stability
AI, Nov 2023. Accessed: 2024-01-25.

Sun, Z., Yang, Y., and Yoo, S. A neural pde solver with tem-
poral stencil modeling. arXiv preprint arXiv:2302.08105,
2023.

Tashiro, Y., Song, J., Song, Y., and Ermon, S. Csdi: Con-
ditional score-based diffusion models for probabilistic
time series imputation. Advances in Neural Information
Processing Systems, 34:24804–24816, 2021.

Unterthiner, T., van Steenkiste, S., Kurach, K., Marinier, R.,
Michalski, M., and Gelly, S. Fvd: A new metric for video
generation. In arXiv, 2019.

Villegas, R., Babaeizadeh, M., Kindermans, P.-J., Moraldo,
H., Zhang, H., Saffar, M. T., Castro, S., Kunze, J., and
Erhan, D. Phenaki: Variable length video generation
from open domain textual description. arXiv preprint
arXiv:2210.02399, 2022.

11

https://www.pnas.org/content/118/21/e2101784118
https://www.pnas.org/content/118/21/e2101784118


Rolling Diffusion Models

Weissenborn, D., Täckström, O., and Uszkoreit, J. Scal-
ing autoregressive video models. arXiv preprint
arXiv:1906.02634, 2019.

Wu, C., Liang, J., Ji, L., Yang, F., Fang, Y., Jiang, D.,
and Duan, N. Nüwa: Visual synthesis pre-training for
neural visual world creation. In European conference on
computer vision, pp. 720–736. Springer, 2022.

Wu, T., Fan, Z., Liu, X., Gong, Y., Shen, Y., Jiao, J., Zheng,
H.-T., Li, J., Wei, Z., Guo, J., et al. Ar-diffusion: Auto-
regressive diffusion model for text generation. arXiv
preprint arXiv:2305.09515, 2023.

Yan, W., Zhang, Y., Abbeel, P., and Srinivas, A. Videogpt:
Video generation using vq-vae and transformers. arXiv
preprint arXiv:2104.10157, 2021.

Yan, W., Hafner, D., James, S., and Abbeel, P. Temporally
consistent transformers for video generation. In Krause,
A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S., and
Scarlett, J. (eds.), International Conference on Machine
Learning, ICML, 2023.

Yang, R., Srivastava, P., and Mandt, S. Diffusion probabilis-
tic modeling for video generation. Entropy, 25(10):1469,
2023.

Yu, J., Xu, Y., Koh, J. Y., Luong, T., Baid, G., Wang, Z.,
Vasudevan, V., Ku, A., Yang, Y., Ayan, B. K., Hutchinson,
B., Han, W., Parekh, Z., Li, X., Zhang, H., Baldridge, J.,
and Wu, Y. Scaling autoregressive models for content-
rich text-to-image generation. CoRR, abs/2206.10789,
2022.

Yu, L., Cheng, Y., Sohn, K., Lezama, J., Zhang, H., Chang,
H., Hauptmann, A. G., Yang, M.-H., Hao, Y., Essa, I.,
et al. Magvit: Masked generative video transformer. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10459–10469, 2023a.

Yu, L., Lezama, J., Gundavarapu, N. B., Versari, L., Sohn,
K., Minnen, D., Cheng, Y., Gupta, A., Gu, X., Haupt-
mann, A. G., et al. Language model beats diffusion–
tokenizer is key to visual generation. arXiv preprint
arXiv:2310.05737, 2023b.

Yu, S., Sohn, K., Kim, S., and Shin, J. Video probabilistic
diffusion models in projected latent space. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 18456–18466, 2023c.

Zhang, Z., Liu, R., Aberman, K., and Hanocka, R. Tedi:
Temporally-entangled diffusion for long-term motion syn-
thesis. arXiv preprint arXiv:2307.15042, 2023.

12



Rolling Diffusion Models

A. Rolling Diffusion Objective
Standard Diffusion For completeness, we briefly review the diffusion objective. Let T ∈ N be a finite number of
diffusion steps, and i ∈ {0, . . . , T} be a diffusion time-step. Kingma et al. (2021) show that the discrete-time DKL between
q(x, z0, . . . ,zT ) and p(x, z0, . . . ,zT ) can be decomposed as

DKL (q(x, z0, . . . ,zT )||p(x, z0, . . . ,zT )) = Eq(x,z0,...,zT ) [log q(x, z0, . . . ,zT )− log p(x, z0, . . . ,zT )] (28)
= c+DKL(q(zT |x)||p(zT ))︸ ︷︷ ︸

Prior Loss

+Eq(z0|x) [− log p(x|z0)]︸ ︷︷ ︸
Reconstruction Loss

+LD, (29)

where c is a data entropy term. The prior and reconstruction loss terms are typically negligible. LD is the diffusion loss,
which is defined as

LD =

T∑
i=1

Eq(zti
|x) [DKL(q(zsi |zti ,x)||p(zsi |zti))] , (30)

Further, when T → ∞ we get continuous analog of Equation (30) (Kingma et al., 2021). In practice, instead of using the
resulting KL objective, one typically uses a weighted loss, which in some cases still corresponds to an importance-weighted
KL (Kingma & Gao, 2023).

Lw :=
1

2
Et∼U(0,1),ϵ∼N (0,1)

[
w(λt) · −

dλt

dt
∥ϵ̂θ(zt;λt)− ϵ∥2

]
, (31)

where λt := log SNR(t). Note that in the main paper we directly write the weighting factor expression as a(t) for ease
of notation. The weighting function is often changed to improve image quality, for instance by being −1/dλt

dt so that the
objective becomes the simple ϵ-loss.

Rolling Diffusion Objective In rolling diffusion, the signal-to-noise schedule is unchanged but one has to account for the
local time reparameterization. Recall that tk := tk(t) denotes the local time reparameterization. Using similar derivations as
(Kingma et al., 2021), where we can factorize the KL divergence also over frame indices, we get the rolling diffusion loss:

L∞ = Et∼U(0,1),ϵ∼N (0,1)

[
K∑

k=1

w(λ(tk)) · −
dλ(tk)

dtk

dtk
dt

· ∥ϵk − ϵ̂kθ(zϵ,t; t)∥2
]
, (32)

where we again can apply a custom weighting factor.

Recall the frame categorization of the main paper, i.e.,

clean(s, t) := {k | sk = tk = 0} , (33)
noise(s, t) := {k | sk = tk = 1} , (34)

win(s, t) := {k | sk ∈ [0, 1), tk ∈ (sk, 1]} , (35)

we can see that t′k(t) = 0 for k ∈ clean(t − dt, t) and k ∈ noise(t − dt, t) and thus the objective only has non-zero loss
over the window:

L∞ = Et∼U(0,1),ϵ∼N (0,1)

 ∑
k∈win(t)

w(λ(tk)) · −
dλ(tk)

dtk

dtk
dt

· ∥ϵk − ϵ̂kθ(zϵ,t; t)∥2
 . (36)

Since the weighting function w is arbitrary, we can choose it such that the entire prefactor vanishes, resulting in the typical
ϵ-loss. However, the variational bound tells us that we should pay no price for any error made on the noise or clean frames.
Again, in the main paper we replace all the prefactors with a(tk) for notational convenience.

13



Rolling Diffusion Models

B. Algorithms

Algorithm 3 Rolling Diffusion: sampling at the boundary.
Require: x ∈ RD×ncln , W , T , tinit

w , pθ
Sample z1 ∼ N (0, I), z1 ∈ RD×(W−ncln)

z1 ← concat(x,z1)
for t = 1, (T − 1)/T, . . . , 1/T do

Compute local times tinit
w (ncln), w = 0, . . . ,W − 1

Sample zt−1/T ∼ pθ(zt−1/T |zt)
end for
Return z0, which now has local times (0/W, 1/W, . . . , (W − 1)/W )

C. Hyperparameters
In this section we denote the hyperparameters for the different experiments. Throughout the experiments we use U-ViTs
which are essentially U-Nets with MLP Blocks instead of convolutional layers when self-attention is used in a block. In
the PDE experiments relatively small architectures are used. For BAIR, we used a larger architecture, increasing both the
channel count and the number of blocks. For K600 we used even larger architectures, because this dataset turned out to be
the most difficult to fit.

Parameter Value

Blocks [3 + 3, 3 + 3, 3 + 3, 8]
Channels [128, 256, 512, 1024]
Block Type [Conv2D, Conv2D, Transformer (axial), Transformer]
Head Dim 128
Dropout [0, 0.1, 0.1, 0.1]
Downsample (1, 2, 2)
Model parametrization v
Loss ϵ-loss (x-loss with SNR + 1 weighting)
Number of Steps 100 000 (rollout experiments) / 570 000 (standard experiments)
EMA decay 0.9999
learning rate 1e-4

Table 4. Hyperparameters used for the Kolmogorov flow experiment.

Parameter Value

Blocks [4 + 4, 4 + 4, 4 + 4, 8]
Channels [256, 512, 1024, 2048]
Block Type [Conv2D, Conv2D, Transformer (axial), Transformer]
Head Dim 128
Dropout 0.1
Downsample (1, 2, 2)
Model parametrization v
Loss ϵ-loss (x-loss with SNR + 1 weighting)
Number of Steps 660 000
EMA decay 0.9999
learning rate 1e-4

Table 5. Hyperparameters used for the BAIR robot pushing experiment.

14



Rolling Diffusion Models

Parameter Value

Blocks [4 + 4, 4 + 4, 5 + 5, 8]
Channels [256, 512, 2048, 4096]
Block Type [Conv2D, Conv2D, Transformer (axial), Transformer]
Head Dim 128
Dropout [0, 0, 0.1, 0.1]
Downsample (1, 2, 2)
Model parametrization v
Loss ϵ-loss (x-loss with SNR + 1 weighting)
Number of Steps 300 000 (rollout experiments) / 570 000 (standard experiments)
EMA decay 0.9999
learning rate 1e-4

Table 6. Hyperparameters used for the Kinetics-600 experiments.

D. Runtime Complexity
Rolling diffusion models do not have an inherent runtime advantage over (batch) autoregressive diffusion models, as both
have similar parameter sizes. For fair comparison, one can fix a number of evaluations-per-frame for all models. For
example, we allow 32 model evaluations per frame. An autoregressive model would sample a sequence frame by frame,
each taking 32 evaluations. A batch-autoregressive model samples, e.g., 8 frames jointly, allowing for 256 model evaluations
for this subsequence. In rolling diffusion using a window size of 8, the model gets evaluated 4 times before sliding the
window. Upon sampling completion, every frame will be sampled using 32 evaluations.

Given this fixed number of model evaluations per frame, we show in this work that using a rolling sampling strategy can
benefit time series generation. However, we note that there are some slight inefficiencies during training. Note that in rolling
diffusion, some data is always revealed to the model due to the partial noising schedule. This means that if there is a high
overlap between the frames, the model can directly copy the global structure from early frames to the later frames, achieving
relatively good reconstruction loss. We believe that because of this, the model gets a less strong signal for learning an “image
or video prior”, as it can heavily rely on the conditioning signal. Further experimentation to alleviate this issue is required,
perhaps by adjusting the rolling noise schedule or fine-tuning a standard diffusion model using the rolling diffusion loss.

E. Simulation Details
The parameters used to generate the Kolmogorov Flow data are shown in Table 7. It is important to note that to introduce
uncertainty into an otherwise deterministic system, we vary the viscosity and density parameters, which must then be
inferred from the data. This would also make a standard solver very difficult to use in such a setting. Additionally, due to the
chaotic nature of the system, it is not deterministically predictable up to arbitrary precision. We use the ‘simple turbulence
forcing’ option, which combines a driving force with a damping term such that we simulate turbulence in two dimensions.

Table 7. Parameters for Kolmogorov Flow Simulation using JaxCFD

Parameter Value

Size 256
Viscosity Uniform random in [5.0× 10−4, 5.0× 10−3]
Density Uniform random in [2−1, 21]
Maximum Velocity 7.0
CFL Safety Factor 0.5
Max ∆t 0.05
Outer Steps 6000
Grid 256 × 256, domain [0, 2π]× [0, 2π]
Initial Velocity Filtered velocity field, 3 iterations
Forcing Simple turbulence, magnitude=2.5, linear coefficient=-0.1, wavenumber=4
Total Simulations 200,000

15



Rolling Diffusion Models

F. Additional Results
F.1. Kolmogorov Flow

We show in Table 8 the MSE and FSE errors at various time-steps. Note that the MSE model is always optimal in terms of
MSE loss, which is as expected. However, in terms of matching the frequency distribution, as measured by FSD, standard
diffusion, and in particular rolling diffusion are optimal. Averaging ensembles of the rolling diffusion model does not
improve the FSD score, but does improve the MSE score.

FSD/MSE @
Method 1 2 4 8 12 24 48

MSE (2-1) 304.7 / 14.64 687.1 / 137.15 1007 / 407.0 1649 / 407.0 2230 / 407.0 5453 / 407.0 7504 / 407.0
MSE (2-2) 531.3 / 20.1 7205 / 148.3 5596 / 407.0 7277 / 407.0 8996 / 406.1 1 ·104 / 407.0 1 ·104 / 407.0
MSE (2-4) 304.7 / 21.7 6684 / 148.9 6·104 / 378.9 3 ·104 / 407.0 2 ·104 / 407.0 2 · 104 / 407.0 2 ·104 / 407.0

Standard Diffusion (2-1) 39.59 / 20.76 57.73 / 192.6 142.0 / 710.0 297.7 / 794.6 399.4 / 773.1 442.5 / 758.3 763.6 / 732.5
Standard Diffusion (2-2) 59.15 / 47.88 86.12 / 334.9 112.6 / 766.3 241.8 / 781.5 314.7 / 755.5 403.3 / 725.0 726.3 / 695.4
Standard Diffusion (2-4) 86.19 / 49.93 141.6 / 353.6 246.6 / 753.2 397.8 / 758.0 555.6 / 726.9 1094.0 / 701.1 2401.0 / 666.3
Standard Diffusion (2-8) 87.0 / 54.0 137.7 / 399.2 288.3 / 770.1 338.7 / 725.3 355.5 / 713.6 530.6 / 705.5 1159 / 748.3

Rolling Diffusion (init noise) (2-2) 63.21 / 45.62 92.58 / 300.3 144.8 / 748.5 239.1 / 799.2 370.5 / 787.3 529.7 / 767.8 1568.7 / 735.3
Rolling Diffusion (init noise) (2-4) 29.59 / 39.72 47.44 / 287.8 43.39 / 738.4 61.93 / 769.0 214.32 / 735.7 648.53 / 699.1 1238.4 / 670.0
Rolling Diffusion (init noise) (2-8) 27.68 / 41.22 52.41 / 316.9 53.47 / 768.0 98.29 / 777.2 187.03 / 748.8 344.89 / 737.6 417.59 / 719.4

Rolling 10-Ensemble (2-8) 481.6 / 36.4 8590 / 214.7 4 ·104 / 429 5 ·104 / 440 5 ·104 / 429 5 ·104 / 428 5 ·104 / 429

Table 8. Kolmogorov Flow Results

1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0
Time (s)

MSE Model

Rolling Diffusion

Ground Truth

13.5 15.0 16.5 18.0 19.5 21.0 22.5 24.0
Time (s)

MSE Model

Rolling Diffusion

Ground Truth

25.5 27.0 28.5 30.0 31.5 33.0 34.5 36.0
Time (s)

MSE Model

Rolling Diffusion

Ground Truth

37.5 39.0 40.5 42.0 43.5 45.0 46.5 48.0
Time (s)

MSE Model

Rolling Diffusion

Ground Truth

49.5 51.0 52.5 54.0 55.5 57.0 58.5 60.0
Time (s)

MSE Model

Rolling Diffusion

Ground Truth

61.5 63.0 64.5 66.0 67.5 69.0 70.5 72.0
Time (s)

MSE Model

Rolling Diffusion

Ground Truth

Figure 7. Example rollout of a Kolmogorov flow sample. We depict the vertical velocity field. Note how the MSE model’s intensity
decreases as we move further from the conditioning frames.

F.2. Kinetics-600

In Section 5.3 we compare against TECO (Yan et al., 2023) on the Kinetics-600 dataset. TECO uses 20 conditioning frames
and generates 80 new frames at a resolution of 128 by 128 using 256 FVD samples.

16



Rolling Diffusion Models

Method FVD (↓)
TECO 799
Rolling Diffusion (Ours) 685

Table 9. In TECO (Yan et al., 2023), samples are generated conditioning on 20 frames and generating 80 new frames at a resolution of 128
by 128 using 256 FVD samples. Different from other parts of the paper because of the low sample count, FVD is measured by matching
the conditioning for the reference samples.

Furthermore, the following plot shows MSE deviations from ground-truth on Kinetics-600 data.

0 10 20 30 40 50 60 70
Time-Step

1000

2000

3000

4000

M
SE

 (
)

Rolling Diffusion

Figure 8. This figure shows MSE as a function of frame distance from the starting point on Kinetics-600 on the 20-12 setting with rollouts
until frame 80 on resolution 128 × 128. As the generated frames are further from the initial 20 conditioning frames, the error between the
original and the generated samples increases.

G. Rescaled Noise Schedule
For our Kinetics-600 experiments, we used a different noise schedule which can sample from complete noise towards a
“rolling state”, i.e., at diffusion times ( 1

W , 2
W , . . . W

W ). From there, we can roll out generation using, e.g., the linear rolling
sampling schedule tlin

w . The reason is that we hypothesized that the noise schedule tinit
w uses a clip operation, which means

that will be sampling in clean(s, t), which is redundant as outlined in the main paper and Appendix A.

tinit,resc
w (t) :=

w

W
+ t · (1− w

W
) (37)

Where we clearly have at t = 1
W that the local times are

(
1
W , 2

W , . . . , W
W

)
, which is what we need. Note that this schedule

is not directly proportional to t.

17



Rolling Diffusion Models

H. Hyperparameter Search for β

Task Training regiment Cond-Gen FVD

stride=8 Rolling init rescaled β = 0.1 (5-11) 39.8
steps=24 Rolling init rescaled β = 0.2 (5-11) 44.1

Rolling init rescaled β = 0.5 (5-11) 46.3
Rolling init rescaled β = 0.7 (5-11) 43.0
Rolling init rescaled β = 0.8 (5-11) 46.0
Rolling init rescaled β = 0.9 (5-11) 47.5
Rolling init clip β = 0.0 (5-11) 60.3
Rolling init clip β = 0.2 (5-11) 52.0
Rolling init clip β = 0.5 (5-11) 49.0
Rolling init clip β = 0.7 (5-11) 48.9

stride=1 Rolling init rescaled β = 0.7 (5-11) 216
steps=64 Rolling init rescaled β = 0.8 (5-11) 227

Rolling init rescaled β = 0.9 (5-11) 211
Standard Diffusion (15-1) 1460
Standard Diffusion (5-1) 1369
Standard Diffusion (8-8) 157.1
Standard Diffusion (5-8) 142.4

Table 10. Oversampling tlin
w vs. tinit

w noise on Kinetics-600 with 8192 FVD samples. We allow 100 denoising steps per 11 frames.

18


