
Understanding and Diagnosing Deep Reinforcement Learning

Ezgi Korkmaz 1

Abstract
Deep neural policies have recently been installed
in a diverse range of settings, from biotechnology
to automated financial systems. However, the uti-
lization of deep neural networks to approximate
the value function leads to concerns on the deci-
sion boundary stability, in particular, with regard
to the sensitivity of policy decision making to
indiscernible, non-robust features due to highly
non-convex and complex deep neural manifolds.
These concerns constitute an obstruction to under-
standing the reasoning made by deep neural poli-
cies, and their foundational limitations. Hence, it
is crucial to develop techniques that aim to under-
stand the sensitivities in the learnt representations
of neural network policies. To achieve this we
introduce a theoretically founded method that pro-
vides a systematic analysis of the unstable direc-
tions in the deep neural policy decision boundary
across both time and space. Through experiments
in the Arcade Learning Environment (ALE), we
demonstrate the effectiveness of our technique for
identifying correlated directions of instability, and
for measuring how sample shifts remold the set of
sensitive directions in the neural policy landscape.
Most importantly, we demonstrate that state-of-
the-art robust training techniques yield learning
of disjoint unstable directions, with dramatically
larger oscillations over time, when compared to
standard training. We believe our results reveal
the fundamental properties of the decision pro-
cess made by reinforcement learning policies, and
can help in constructing reliable and robust deep
neural policies.

1. Introduction
Reinforcement learning algorithms leveraging the power of
deep neural networks have obtained state-of-the-art results
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initially in game-playing tasks (Mnih et al., 2015) and subse-
quently in continuous control (Lillicrap et al., 2015). Since
this initial success, there has been a continuous stream of de-
velopments both of new algorithms (Mnih et al., 2016; Has-
selt et al., 2016; Wang et al., 2016), and striking new perfor-
mance records in highly complex tasks (Silver et al., 2017;
Schrittwieser et al., 2020). While the field of deep rein-
forcement learning has developed rapidly (Mankowitz et al.,
2023), the understanding of the representations learned by
deep neural network policies has lagged behind.

The lack of understanding of deep neural policies is of criti-
cal importance in the context of the sensitivities of policy
decisions to imperceptible, non-robust features. Beginning
with the work of (Szegedy et al., 2014; Goodfellow et al.,
2015), deep neural networks have been shown to be vulnera-
ble to adversarial perturbations below the level of human per-
ception. In response, a line of work has focused on propos-
ing training techniques to increase robustness by applying
these perturbations to the input of deep neural networks
during training time (i.e. adversarial training) (Goodfellow
et al., 2015; Madry et al., 2017). Yet, concerns have been
raised on these methods including decreased accuracy on
clean data (Bhagoji et al., 2019), prohibiting generalization
(Korkmaz, 2023), and incorrect invariance to semantically
meaningful changes (Tramèr et al., 2020). While some stud-
ies argued that detecting adversarial directions could be the
best we can do so far (Korkmaz & Brown-Cohen, 2023),
the diagnostic perspective on understanding policy decision
making and vulnerabilities requires urgent further attention.

Thus, it is crucial to develop techniques to precisely under-
stand and diagnose the sensitivities of deep neural policies,
in order to effectively evaluate newly proposed algorithms
and training methods. In particular, there is a need to have
diagnostic methods that can automatically identify policy
sensitivities and instabilities that arise under many different
scenarios, without requiring extensive research effort for
each new instance.

For this reason, in our paper we focus on understanding
the learned representations and policy vulnerabilities and
ask the following questions: (i) How can we analyze the
rationale behind deep reinforcement learning decisions?
(ii) What is the temporal and spatial relation between non-
robust directions on the deep neural policy manifold? (iii)
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How do the directions of instabilities in the deep neural
policy landscape transform under a portfolio of state-of-the-
art adversarial attacks? (iv) How does distributional shift
affect the learnt non-robust representations in reinforcement
learning with high dimensional state representation MDPs?
(v) Does the state-of-the-art certified adversarial training
solve the problem of learning correlated non-robust repre-
sentations in sequential decision making? To be able to
answer these questions in our paper from worst-case to natu-
ral directions we focus on understanding the representations
learned by deep reinforcement learning policies and make
the following contributions:

• We introduce a theoretically founded novel approach
to systematically discover and analyze the spatial and
temporal correlation of directions of instability on the
deep reinforcement learning manifold.

• We highlight the connection between neural processing
with visual illusion stimulus and our analysis to under-
stand and diagnose deep neural policies. We conduct
extensive experiments in the Arcade Learning Environ-
ment with neural policies trained in high-dimensional
state representations, and provide an analysis on a port-
folio of state-of-the-art adversarial attack techniques.
Our results demonstrate the precise effects of adversar-
ial attacks on the non-robust features learned by the
policy.

• We investigate the effects of distributional shift on the
correlated vulnerable representation patterns learned
by deep reinforcement learning policies to provide a
comprehensive and systematic robustness analysis of
deep neural policies.

• Finally, our results demonstrate the presence of non-
robust features in adversarially trained deep reinforce-
ment learning policies, and that the state-of-the-art cer-
tified robust training methods lead to learning disjoint
and spikier vulnerable representations.

2. Background and Preliminaries
2.1. Preliminaries

A Markov Decision Process (MDP) is defined by a tuple
(S,A,P,R, γ) where S is a set of states, A is a set of ac-
tions, P : S × A × S → [0, 1] is the Markov transition
kernel, R : S × A × S → R is the reward function, and
γ ∈ [0, 1) is the discount factor. A reinforcement learn-
ing agent interacts with an MDP by observing the current
state s ∈ S and taking an action a ∈ A. The agent then
transitions to state s′ with probability P(s, a, s′) and re-
ceives reward R(s, a, s′). A policy π : S × A → [0, 1]
selects action a in state s with probability π(s, a). The

main objective in reinforcement learning is to learn a pol-
icy π which maximizes the expected cumulative discounted
rewards R = Eat∼π(st,·)

∑
t γ

tR(st, at, st+1). This maxi-
mization is achieved by iterative Bellman update to learn a
state-action value function (Watkins & Dayan, 1992)

Q(st, at) = R(st, at, st+1)+γ
∑
st

P(st+1|st, at)V (st+1).

Q(s, a) converges to the optimal state-action value function,
representing the expected cumulative discounted rewards ob-
tained by the optimal policy when starting in state s and tak-
ing action a, with value function V (s) = maxa∈A Q(s, a).
Hence, the optimal policy π∗(s, a) can be obtained by exe-
cuting the action a∗(s) = argmaxa Q(s, a) i.e. the action
maximizing the state-action value function in state s.

2.2. Adversarial Perturbation Techniques and
Formulations

Following the initial study conducted by Szegedy et al.
(2014), Goodfellow et al. (2015) proposed a fast and ef-
ficient way to produce ϵ-bounded adversarial perturbations
in image classification based on linearization of J(x, y), the
cost function used to train the network, at data point x with
label y. Consequently, Kurakin et al. (2016) proposed the
iterative form of this algorithm: the iterative fast gradient
sign method (I-FGSM).

xN+1
adv = clipϵ(x

N
adv + αsign(∇xJ(x

N
adv, y))). (1)

This algorithm further has been improved by the proposal
of the utilization of the momentum term (Dong et al., 2018).
Following this Korkmaz (2020) proposed a Nesterov mo-
mentum technique to compute ϵ-bounded adversarial pertur-
bations for deep reinforcement learning policies by comput-
ing the gradient at the point stadv + µ · vt,

vt+1 = µ · vt +
∇sadvJ(s

t
adv + µ · vt, a)

∥∇sadvJ(s
t
adv + µ · vt, a)∥1

(2)

st+1
adv = stadv + α · vt+1

∥vt+1∥2
(3)

Another class of algorithms for computing adversarial per-
turbations focuses on different methods for computing the
smallest possible perturbation which successfully changes
the output of the target function. The DeepFool method of
Moosavi-Dezfooli et al. (2016) works by repeatedly com-
puting projections to the closest separating hyperplane of
a linearization of the deep neural network at the current
point. Carlini & Wagner (2017) proposed targeted adversar-
ial formulations in image classification based on distance
minimization between the original sample and the adversar-
ial sample

min
xadv∈X

c · J(xadv) + ∥xadv − x∥22 (4)
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Another variant of this algorithm is based on ℓ1-
regularization of the ℓ2-norm bounded Carlini & Wagner
(2017) adversarial formulation (Chen et al., 2018).

min
xadv∈X

c · J(xadv) + σ1 ∥xadv − x∥1 + σ2 ∥xadv − x∥22

2.3. Deep Reinforcement Learning Policies and
Adversarial Effects

Beginning with the work of Huang et al. (2017) and Kos &
Song (2017), which introduced adversarial examples based
on FGSM to deep reinforcement learning, there has been a
long line of research on both adversarial attacks and robust-
ness for deep neural policies. On the attack side, Korkmaz
(2020) showed Nesterov momentum produced adversarial
perturbations that are faster to compute compared to Carlini
& Wagner (2017) with similar or better impact on the pol-
icy performance. More intriguingly, the work of Korkmaz
(2022) discovered that deep reinforcement learning policies
learn similar adversarial directions across MDPs intrinsic
to the training environment, thus revealing an underlying
approximately linear structure learnt by deep neural poli-
cies. On the defense side Pinto et al. (2017) model the
interaction between an adversary producing perturbations
and the deep neural policy taking actions as a zero-sum
game, and train the policy jointly with the adversary in or-
der to improve robustness. More recently, Huan et al. (2020)
formalized the adversarial problem in deep reinforcement
learning by introducing a modified MDP definition which
they term State-Adversarial MDP (SA-MDP). Based on
this model the authors proposed a theoretically motivated
certified robust adversarial training algorithm called SA-
DQN. Quite recently, Korkmaz (2023) provided a contrast
between natural directions and adversarial directions with re-
spect to their perceptual similarity to base states and impact
on the policy performance. While the results in this paper
demonstrate that certified adversarial training techniques
limit the generalization capabilities of deep reinforcement
learning policies, the paper further argues the need for re-
thinking robustness in deep reinforcement learning. While
recent studies raised some concerns on the drawbacks of
certified adversarial training techniques from generalization
to security, these studies lack a method of explaining and
understanding the main problems of robustness in deep re-
inforcement learning, and in particular with clear analysis
of the vulnerabilities of the policies.

3. Probing the Deep Neural Policy Manifold
via Non-Lipschitz Directions

In our paper our goal is to seek answers for the following
questions:

• What is the reasoning behind deep reinforcement learn-
ing decision making?

• How can we analyze the robustness of deep reinforce-
ment learning policies across time and space?

• What are the effects of distributional shift on the vul-
nerable representations learnt?

• How do adversarial attacks remold the volatile patterns
learnt by the neural policies?

• Does adversarial training ensure robust and safe poli-
cies without learning any non-robust features?

To be able to answer these questions we propose a principled
robustness appraisal method that probes the deep reinforce-
ment learning manifold via non-Lipschitz directions across
time and across space. In the remainder of this section we
explain in detail our proposed method.

Definition 3.1 (ϵ-non-Lipschitz Direction). Let Q be a state-
action value function and let ϵ > 0. For a state s ∈ S and
vector w ∈ Rd, let ŝ = s + ϵw. The vector v is an ϵ-non-
Lipschitzness direction that uncovers the high-sensitivities
of the deep neural manifold for Q in state s if

v = argmax
∥w∥2=1

Q(ŝ, argmax
a∈A

Q(ŝ, a)) (5)

−Q(ŝ, argmax
a∈A

Q(s, a)).

In words, v is a non-Lipschitz direction when adding a per-
turbation of ℓ2-norm ϵ along v maximizes the difference
between the maximum state-action value in the new state
and the value assigned in the new state to the previously
maximal action. Eqn 5 can be approximated by using the
softmax cross entropy loss.1 The cross entropy loss be-
tween the softmax policy in state sg and the argmax policy
τ(s, a) = 1a=argmaxa′ π(s,a′)(a) at state s is

J(s, sg) = −
∑
a∈A

τ(s, a) log(π(sg, a))

= − log(π(sg, a
∗(s))).

Therefore by definition of the softmax policy we have

J(s, sg) = log
∑
a′∈A

eQ(sg,a
′)/T −Q(sg, a

∗(s))/T

≈ (Q(sg, a
∗(sg))−Q(sg, a

∗(s)))/T

where the final approximate equality becomes close to an
equality as T gets smaller. Setting v = sg − s, shows
that maximizing the softmax cross entropy approximates
the maximization in Definition 5. Hence, the gradient
∇sgJ(s, sg)|sg=s gives the direction of the largest increase
in cross-entropy when moving from state s. Intuitively this

1π(s, a) is defined as the softmax policy of the state-action

value function π(s, a) =
e(Q(s,a)/T )∑

a′∈A e(Q(s,a′)/T )
.

3



Understanding and Diagnosing Deep Reinforcement Learning

is the direction along which the policy distribution π(s, a)
will most rapidly diverge from the argmax policy. Hence,
∇sgJ(s, sg)|sg=s is a high-sensitivity direction in the neu-
ral policy landscape in state s. Fundamentally, moving
along the non-Lipschitz directions on the deep neural pol-
icy decision boundary will uncover the non-robust features
learnt by the reinforcement learning policy. To capture the
correlated non-robust features we must aggregate the infor-
mation on high-sensitivity directions from a collection of
states visited while utilizing the policy π in a given MDP.
We thus define a single direction which captures the aggre-
gate non-robust feature information from multiple states via
the first principal component of the non-Lipschitz directions
as follows:

Definition 3.2 (Principal non-Lipschitz direction). Given
a set of n states S = {si}ni=1 the principal non-Lipschitz
direction is the vector GS given by

GS = argmax
{z∈Rd|∥z∥2=1}

1

n

n∑
i=1

⟨z,∇sgJ(si, sg)|sg=si⟩2.

Proposition 3.3 (Spectral characterization of principal
non-Lipschitz directions). Given a set of n states S =
{si}ni=1 define the matrix L(S) by

L(S) = 1

n

n∑
i=1

∇sgJ(si, sg)|sg=si [∇sgJ(si, sg)|sg=si ]
⊤.

Then GS is the eigenvector corresponding to the largest
eigenvalue of L(S).

Proof. Observe that by linearity of the inner product

1

n

n∑
i=1

⟨z,∇sgJ(si, sg)|sg=si⟩2

=
1

n

n∑
i=1

z⊤∇sgJ(si, sg)|sg=si [∇sgJ(si, sg)|sg=si ]
⊤z

= z⊤(
1

n

n∑
i=1

∇sgJ(si, sg)|sg=si [∇sgJ(si, sg)|sg=si ]
⊤)z

= z⊤L(S)z.

Thus GS = argmax{z∈Rd|∥z∥2=1} z
⊤L(S)z. Therefore,

by the variational characterization of eigenvalues, GS is
the eigenvector corresponding to the largest eigenvalue of
L(S).

Thus, the dominant eigenvector corresponds to GS , the
largest correlation with non-Lipschitz directions across time,
which follows from the standard analysis of principal com-
ponent analysis. Also note that GS has the same dimensions
as each state s, and thus can easily be rendered in the same

Algorithm 1 RA-NLD: Robustness Analysis via Non-
Lipschitz Directions in the Deep Neural Policy Manifold

Input: MDP M, state-action value function Q(s, a),
actions a ∈ A, states s ∈ S, the transition probability
kernel P(s, a, s′)
Output: Principal non-Lipschitz direction G(i, j)
for s = s0 to sT do

τ(s, a) = 1a=argmaxa′ Q(s,a′)(a)
π(sg, a) = softmax(Q(sg, a))
J(s, sg) = −

∑
a∈A τ(s, a) log(π(sg, a))

L += ∇sgJ(s, sg)|sg=s[∇sgJ(s, sg)|sg=s]
⊤

end for
Return: Eigenvector G corresponding to largest eigen-
value of L

format as the states to visualize non-robust features. Propo-
sition 3.3 shows that GS can be computed by solving an
eigenvalue problem. Proposition 3.3 is the basis for Algo-
rithm 1, which computes GS by first calculating L(S) by
summing over states, and then outputs the maximum eigen-
vector. Next we demonstrate how RA-NLD can be used to
measure the effects of environment changes on the corre-
lated non-robust features both visually and quantitatively.

Definition 3.4 (Encountered set of states). Let Ψ : S → S
be a function that transforms states s ∈ S of an MDP
M. Let S be the set of states encountered when utilizing
policy π in M. Then SΨ is defined to be the set of states
encountered when utilizing the policy π ◦Ψ in M i.e. when
the policy state observations are transformed via Ψ.

In this setting, comparing GS and GSΨ will provide a quali-
tative picture of how the environmental change affects the
learned vulnerable representation patterns. In order to give
a more quantitative metric for this change we define

Definition 3.5 (Feature Correlation Quotient). For two sets
of states S and S′, the feature correlation quotient is given
by

Λ(S′, S) =
G⊤
S′L(S)GS′

G⊤
S L(S)GS

.

Proposition 3.6 (Boundedness of Feature Correlation Quo-
tient). For any two sets of states S and S′ it holds that
0 ≤ Λ(S′, S) ≤ 1.

Proof. By Proposition 3.3,

G⊤
S′L(S)GS′ ≤ max

∥z∥2=1
z⊤L(S)z = G⊤

S L(S)GS

Thus the numerator of Λ(S′, S) is always less than or equal
to the denominator i.e. Λ(S′, S) ≤ 1. Furthermore, L(S) is
positive semidefinite, as it is a sum of rank one projection
matrices, and hence Λ(S′, S) ≥ 0.
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Figure 1. RA-NLD results of untransformed states and states under adversarial perturbations computed via Carlini&Wagner, Nesterov
Momentum, and elastic-net regularization for Pong and BankHeist. Row1: Pong. Row2: BankHeist. Column1: Untransformed. Column2:
C&W. Column3: Nesterov Momentum. Column4: Elastic-Net

Table 1. The feature correlation quotient Λ(Ŝ, S) and Λ(SΨ, S) for the adversarial transformations: Carlini&Wagner, Nesterov Momen-
tum, DeepFool, Elastic-Net.

Environments Base Observations Carlini&Wagner Nesterov Momentum DeepFool Elastic-Net

Freeway 0.9917±0.0023 0.9499±0.02056 0.7868±0.02162 0.6869±0.02981 0.72590±0.0592
BankHeist 0.8360±0.0116 0.2837±0.02316 0.3407±0.02412 0.1748±0.04421 0.30917± 0.0521
RoadRunner 0.7652±0.0385 0.1621±0.02199 0.3826±0.03118 0.5353±0.03127 0.52506± 0.0782
Pong 0.4934±0.0391 0.0408±0.04056 0.3444±0.01981 0.3277±0.02871 0.10529± 0.0629

Therefore, the feature correlation quotient Λ(S′, S) is a
number between zero and one which intuitively measures
how correlated the non-robust features from S′ are to those
from S. When measuring how an environmental change
affects the decisions made by the deep neural policy and
the non-robust representations learnt, it is also important to
take the stochastic nature of the MDP into account. In par-
ticular, the non-robust features observed with two different
executions of the same policy may differ slightly due to the
inherent randomness of the MDP. To account for this, we
first collect a baseline set of states with no modification S.
We then collect a set of states Ŝ with no modification, and
SΨ with modification. By comparing Λ(Ŝ, S) to Λ(SΨ, S)
we can see how much of the decrease in average correla-
tion is caused by the stochastic nature of the MDP, and
how much of the decrease is caused by the environmental
change.

4. Experimental Analysis
The deep reinforcement learning policies evaluated in our
experiments are trained with the Double Deep Q-Network
algorithm (Hasselt et al., 2016) initially proposed in (van
Hasselt, 2010) with the architecture proposed by Wang et al.
(2016), and State-Adversarial Double Deep Q-Network (see
Section 2.3) with experience replay (Schaul et al., 2016).
The set of states S is collected over 10 episodes. We use the
adversarial methodology from Korkmaz & Brown-Cohen

(2023). The adversarial perturbation hyperparameters are:
for the Carlini&Wagner formulation κ is 10, learning rate is
0.01, initial constant is 10, for the elastic-net regularization
formulation β is 0.0001, learning rate is 0.1, maximum
iteration is 300, for Nesterov Momentum ϵ is 0.001, and
decay factor is 0.1.2

4.1. Non-Robust Feature Shifts under Adversarial
Perturbations

In this section we investigate the effects of adversarial at-
tacks on the learnt correlated non-robust features. Figure
1 reports the RA-NLD results for the untransformed states
and the adversarially attacked state observations. In par-
ticular, these perturbations are computed via the Nesterov
momentum, Carlini&Wagner, and elastic-net regularization
formulations (see Section 2.2). Figure 1 demonstrates that
different adversarial formulations surface different sets of
correlated non-robust features. Depending on the perturba-
tion type, the correlated directions of instability can change
quite noticeably. In fact, while the Carlini&Wagner for-
mulation leaves a distinct signature on the vulnerable rep-
resentation pattern, the non-robust features under Nesterov

2The hyperparameters for the adversarial attacks are fixed to the
same levels as base studies to provide transparency and consistency
with the prior work. Furthermore, note that the setting is also
optimized to achieve the most effective adversarial perturbations
(i.e. perturbations causing the largest decrease on the discounted
expected cumulative rewards obtained by the policy).
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Figure 2. Fourier spectrum of the RA-NLD of the state-of-the-art adversarially and vanilla trained deep neural policies.3Row1: Adversarial.
Row2: Vanilla. Column1: RoadRunner. Column2: BankHeist. Column3: Pong. Column4: Freeway

Figure 3. Standardized gradients ∥∇sgJ(si, sg)∥2 for vanilla
trained and state-of-the-art certified adversarially trained deep
reinforcement learning policies.

momentum appear most similar to those of the untrans-
formed states. Thus, evidently our imaging technique helps
to understand the rationale behind policy decision making
and the vulnerabilities of deep reinforcement learning poli-
cies by allowing us to visualize precisely how non-robust
features change with different sets of specifically optimized
adversarial directions. Table 1 reports the feature correlation
quotient Λ(Ŝ, S) and Λ(SΨ, S) results where S consists of
untransformed states and SΨ consists of states modified by
the Nesterov Momentum, Carlini&Wagner, elastic-net reg-
ularization and DeepFool formulations respectively. Note
that in all games the setting where Ŝ consists of a set of
untransformed states from an independent execution has
the highest feature correlation quotient Λ(Ŝ, S). Therefore
the additional decrease of Λ(SΨ, S) when SΨ is modified
by adversarial perturbations can be attributed to changes in
non-robust features caused by the perturbations. Observe
also that the qualitative similarity between the visualizations
in Figure 1 of the different transformed states is matched
by their ranking under Λ(SΨ, S) i.e. sorting from largest
to smallest correlation quotient for BankHeist yields Nes-
terov momentum, Elastic-Net, and then Carlini&Wagner.
The fact that the feature correlation quotient has distinct
results for untransformed states and for states under all the
types of adversarial formulations indicates that RA-NLD
can facilitate detecting different types of adversarial pertur-
bations. Measuring stimulus response to visual illusions has

RoadRunner BankHeist

Pong Freeway
Figure 4. Principal non-Lipschitz direction G(i, j) for the state-of-
the-art certified adversarially trained deep reinforcement learning
policies for BankHeist, Pong, Freeway and RoadRunner.

been used as an analysis tool in neural processing (Hubel &
Wiesel, 1962; Grunewald & Lankheet, 1996; Westheimer,
2008; Seymour et al., 2018). One way to understand our ap-
proach is to examine the studies that focus on investigating
the cortical area, parahippocampal cortex and hippocampus
against visual illusion stimulus (Grunewald & Lankheet,
1996; Axelrod et al., 2017).

3Figure 2 reports the Fourier transform of GS where S is col-
lected from a vanilla and adversarially trained policies in Road-
Runner, BankHeist, Pong and Freeway. The Fourier transform
reveals clear differences in the spatial frequencies occupied by GS

under vanilla and adversarial training. There is a consistent trend
that the larger entries of the Fourier transform are more evenly and
smoothly spread out for the adversarially trained policies. Thus,
adversarial training leaves a consistent signature on the non-robust
features detectable via the Fourier transform of GS . There is also a
change in orientation: if the larger entries of the Fourier transform
for the vanilla trained policy are more spread out along one axis,
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Table 2. The feature correlation quotient Λ(S′, S) in BankHeist, Freeway, RoadRunner, and Pong for the natural transformations:
brightness and contrast, compression artifacts, rotation modification, perspective transform, blurred observations.

Distributional Shift Freeway BankHeist RoadRunner Pong

Untransformed States 0.9917±0.0023 0.8360±0.0116 0.7652±0.0385 0.4934±0.0391
Brightness and Contrast 0.86756±0.0271 0.3095±0.0429 0.4369±0.0334 0.1678±0.0427
Compression Artifacts 0.90564±0.237 0.38814±0.022 0.24358±0.0204 0.49341±0.0191
Rotation Modification 0.1381±0.0081 0.2951±0.0062 0.3350±0.0050 0.13648±0.0032
Perspective Transform 0.3010±0.0281 0.1723±0.0311 0.3308±0.0274 0.4278±0.0196
Blurred Observations 0.2657±0.0148 0.0954±0.0127 0.2496±0.0162 0.0847±0.0083

4.2. Vulnerable Representations Learnt via Certified
Adversarial Training

In this section we investigate the effects of adversarial train-
ing on the correlated non-robust features. In particular, the
SA-DDQN algorithm adds the regularizer R,

R(θ) =
∑
s

(
max

s̄∈Dϵ(s)
max

a̸=a∗(s)
Qθ(s̄, a)−Qθ(s̄, a

∗(s))

)
.

during training in the temporal difference loss. Figure 4
shows the RA-NLD results for the state-of-the-art adver-
sarially trained deep reinforcement learning policies. The
non-robust features of the adversarially trained deep neu-
ral policies are much more tightly concentrated on disjoint
coordinates in the state observations, and these areas of con-
centration have moved significantly from where they were
under vanilla training. Thus, the visualization allows us
to see that correlated, non-robust features persist in adver-
sarially trained policies, albeit in different locations with
disjoint patterns than vanilla trained deep reinforcement
learning policies. To complete our analysis of adversar-
ial training we further include results on how non-robust
features vary across time. For this purpose the ℓ2-norm
of the gradient ∥∇sgJ(si, sg)∥2 in each state si ∈ S is
recorded for both adversarially trained and vanilla trained
policies in RoadRunner, Pong, and Freeway. The results are
plotted in Figure 3. In both RoadRunner and Freeway, the
adversarially trained policy has much higher variance in the
gradient norm and thus in the level of instability. This is
in contrast to the vanilla trained policy which tends to have
a much smoother distribution which remains closer to the
mean. These results indicate that adversarial training intro-
duces higher jumps in sensitivity over states (i.e. extreme
instability) when compared to vanilla training.

4.3. The Effects of Imperceptible Distributional Shift on
the Directions of Instabilities

To evaluate the effects of distributional shift on the learnt
policy we provide analysis on several environment modifi-
cations with RA-NLD. These transformations are natural

the adversarially trained Fourier transform is more spread along
the other.

semantically meaningful changes to the given MDP that
correspond to imperceptible modifications to the state ob-
servations. In particular, the imperceptibility Psimilarity is
measured by, Psimilarity(s,Ψ(s)) =

∑
l

1
HlWl

∑
h,w∥wl ⊙

(ŷlshw − ŷlΨ(s)hw)∥
2
2 where ŷls, ŷ

l
Ψ(s) ∈ RWl×Hl×Cl repre-

sent the vector of unit normalized activations in the con-
volutional layers with width Wl, height Hl, and Cl is the
number of channels.4 Figure 5 reports GS for states S col-
lected under the six environment modifications mentioned
above. For the untransformed setting the visualization of
GS clearly emphasizes the center of the region where the
agent’s paddle moves up and down to hit the ball. The com-
ponents of GS take larger positive values at the center of this
region and transition to negative values along the boundary.
A similar emphasis can be found for the case of compres-
sion artifacts, but with the signs reversed (i.e. the center of
the region is negative and the boundary is positive). The
other transformations exhibit larger changes in the regions
emphasized in the visualization with perspective transform,
blurring, rotation, and B&C causing the emphasized region
to move to different locations. Table 2 contains the values
of Λ(Ŝ, S) and Λ(SΨ, S) where S is collected from an un-
transformed run and SΨ is collected from each of the six
different transformations. In every game the largest value of
Λ(Ŝ, S) occurs when Ŝ comes from an independent untrans-
formed run, indicating that the additional decrease observed
for SΨ from transformed runs is caused by the respective
environmental transformations. It is notable that in Pong the
second highest value for Λ(SΨ, S) occurs for SΨ collected
with compression artifacts, as this corresponds precisely to
the qualitative similarity between the regions emphasized in
the visualization of GS for untransformed and compression
artifacts. Hence, the results for Λ(SΨ, S) help us to quanti-

4These imperceptible transformations include perspective trans-
form, blurring, rotation, brightness, contrast, and compression ar-
tifacts as proposed in Korkmaz (2023). In particular, brightness
and contrast is given by linear transformation, and compression
artifacts are the diminution in high frequency components due to
JPEG conversion. Note that this recent work demonstrates that
these natural imperceptible transformations cause more damage
to the policy performance compared to adversarial perturbations,
and further highlights that the certified adversarial training is more
vulnerable towards these natural attacks.
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Untransformed Rotated Blurred

Compression Artifacts Perspective Transform Brightness and Contrast
Figure 5. RA-NLD results of untransformed state observations and states under natural transformations with rotation, perspective
transformation, blurring, compression artifacts, and B&C for Pong.

tatively understand the effects of the environmental changes
in the MDP, while agreeing well with the qualitative results
of the RA-NLD outputs.

4.4. RA-NLD to Understand Policy Decision Making
and Diagnose Non-Robustness

By leveraging the non-Lipschitz direction analysis not only
can we uncover non-robust representations learnt deep neu-
ral policies, further we can analyze how their decisions are
formed given an MDP and a training algorithm and what
makes these decisions change under different influences
from adversarial manipulations and natural changes in a
given environment. While the RA-NLD visualizations give
us semantically meaningful information on how policy de-
cisions are influenced and the non-robust features learnt by
the deep neural policy, they also provide a detailed under-
standing of how these voaltile representations change under
non-stationary MDPs. The fact that RA-NLD can provide
fine-grained vulnerability analysis of deep reinforcement
learning policies under adversarial attacks, with distribu-
tional shift and with different training algorithms can help
with diagnosis of policy vulnerabilities in the development
phase.

Conducting ablation studies with RA-NLD in reinforcement
learning algorithm design can prevent building policies with
inherent non-robustness, and our algorithm can be utilized
to visualize and identify the effects of several design choices
(e.g. algorithm, neural network architecture) on the non-
robust features learnt by the policy from the MDP. In par-
ticular, given a visualization of the vulnerability pattern for
a trained policy, one can try to modify the training envi-

ronment in a way that will make the policy invariant to the
non-robust features revealed by RA-NLD. Such modifica-
tion could include changing the state representation in a way
that does not change the semantics of the MDP or the task at
hand, but does change the inherent non-robustness in ques-
tion. Furthermore, the effect of modifications to training
algorithms can also be directly visualized, as exemplified by
our results for adversarial training. Thus our method gives
a straightforward way to diagnose or debug any proposed
methods in terms of their effects on the non-robustness of
the neural policy and the volatile representations learnt by
it.

One intriguing fact is that RA-NLD can uncover the vulner-
able representations learnt by the certified adversarial train-
ing techniques. From the safety point of view it warrants
significant concern that the algorithms targeting and certify-
ing robustness end up learning non-robust representations.
From the alignment perspective RA-NLD discovers that
certified adversarial training is still producing misaligned
deep reinforcement learning policies. Ultimately, for future
research directions it is important to lay out exact trade-offs
and vulnerabilities for these algorithms to eliminate the bias
they can create for future research efforts. The impact of the
imperceptible environmental changes in the MDP is imme-
diately captured by the principal high-sensitivity direction
analysis. The most intriguing aspect of these results is that
not only can RA-NLD be used as a diagnostic tool during
training, but further the principal non-Lipschitz direction
analysis can also guide agents in real life on real-time un-
derstanding of the current rationale behind their decisions
and their vulnerabilities. The RA-NLD algorithm gives us
semantically meaningful information on the non-robust fea-
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tures learnt by the deep neural policy, and also provides
a detailed understanding of how these non-robust features
change under non-stationary environments.

5. Conclusion
In our paper we aim to seek answers for the following ques-
tions: (i) How can we analyze the robustness and reliability
of deep reinforcement learning policy decisions? (ii) What
is the relation of non-robust representations learnt by deep
neural policy temporally and spatially ? (iii) What are
the effects of adversarial attacks on correlated non-robust
features? (iv) Does adversarial training ensure safety and
provide robust policies that do not learn non-robust rep-
resentations? (v) How does distributional shift affect the
learnt correlated non-robust features? To be able to answer
these questions we analyze non-Lipschitz directions in the
deep neural policy landscape and we propose a novel tech-
nique to analyze and lay out correlated non-robust features
learned by deep reinforcement learning policies. We show
that deep reinforcement learning policies do end up learning
correlated non-robust vulnerable representations, and that
adversarial attacks lead to surfacing a new set of non-robust
features or highlighting the existing ones. Most importantly,
our results show that the state-of-the-art adversarial training
techniques also end up learning temporally and spatially
correlated non-robust features. Finally, we demonstrate that
distributional shifts introduce different sets of correlated
non-robust features compared to adversarial attacks. Hence,
our analysis not only allows us to effectively visualize cor-
related directions of instability, but also allows for precise
understanding of changes in the learnt non-robust represen-
tations caused by different training algorithms and different
methods for altering states. Thus, we believe that our analy-
sis can be critical both in understanding deep reinforcement
learning policy decision making and in diagnosing the vul-
nerabilities of deep neural policies, while further enhancing
our ability to design algorithms to improve robustness.

Impact Statement
The risks of artificial intelligence regarding safety have
never been as prominent as they are in the current time
(Tobin, 2023). From highly capable large language mod-
els (Google Gemini, 2023; OpenAI, 2023) to autonomous
driving vehicles, these risks arise in real life (The New
York Times, Decemeber 2023) as regulatory acts are be-
ing formed (The White House, 2023; European Comission,
2023; European Parliament, 2023). Our paper provides the
necessary diagnostic tools to understand and interpret AI
systems (i.e. deep reinforcement learning policies). Our
paper introduces a theoretically founded technique to un-
derstand the vulnerabilities and volatilities of deep neural
policies. Our results discover that certified robust training

techniques have spikier volatilities resulting in revealing the
current problems of safety guarantees in adversarial training
techniques. We believe that it is crucial to understand the
exact problems that might arise from the deep reinforcement
learning policies before these policies are deployed in real
life (The New York Times, 2022).
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