
Cascade-CLIP: Cascaded Vision-Language Embeddings Alignment for
Zero-Shot Semantic Segmentation

Yunheng Li 1 Zhong-Yu Li 1 Quansheng Zeng 1 Qibin Hou 1 2 Ming-Ming Cheng 1 2

Abstract
Pre-trained vision-language models, e.g., CLIP,
have been successfully applied to zero-shot se-
mantic segmentation. Existing CLIP-based ap-
proaches primarily utilize visual features from the
last layer to align with text embeddings, while
they neglect the crucial information in intermedi-
ate layers that contain rich object details. How-
ever, we find that directly aggregating the multi-
level visual features weakens the zero-shot abil-
ity for novel classes. The large differences be-
tween the visual features from different layers
make these features hard to align well with the
text embeddings. We resolve this problem by
introducing a series of independent decoders to
align the multi-level visual features with the text
embeddings in a cascaded way, forming a novel
but simple framework named Cascade-CLIP. Our
Cascade-CLIP is flexible and can be easily ap-
plied to existing zero-shot semantic segmenta-
tion methods. Experimental results show that our
simple Cascade-CLIP achieves superior zero-shot
performance on segmentation benchmarks, like
COCO-Stuff, Pascal-VOC, and Pascal-Context.
Our code is available at https://github.
com/HVision-NKU/Cascade-CLIP.

1. Introduction
Semantic segmentation, as one of the fundamental topics in
computer vision, has achieved remarkable success in predict-
ing the category of each pixel of an image (Chen et al., 2021;
Huang et al., 2021; Xie et al., 2021; Cheng et al., 2022a).
However, semantic segmentation models (Zhao et al., 2017;
Zeng et al., 2022) trained on closed-set annotated images
are only capable of segmenting the predefined categories.
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Figure 1. Motivation illustration of Cascade-CLIP. The cosine sim-
ilarity map (above) indicates the visual features from the intermedi-
ate layers of CLIP (Radford et al., 2021) layers can capture richer
local object details compared to the last one (Layer 12).

This motivates some researchers to study the zero-shot se-
mantic segmentation models (Bucher et al., 2019; Gu et al.,
2020; Han et al., 2023b), which can segment categories that
are not even present in the training images and is attracting
more and more attention.

Recently, benefiting from the impressive zero-shot capa-
bility at the image level, large-scale visual-language pre-
training models, typified by CLIP (Radford et al., 2021),
have been considered in zero-shot semantic segmentation.
Nevertheless, directly applying CLIP to the zero-shot se-
mantic segmentation task is ineffective as it requires dense
pixel/region-wise predictions. Two-stage methods (Xu et al.,
2022b; Ding et al., 2022) solve the aforementioned issue via
generating region proposals by trained proposal generator
and feeding the cropped masked regions to CLIP for zero-
shot classification. Although this paradigm retains CLIP’s
image-level zero-shot ability well, it introduces high com-
putational cost. The one-stage line (Zhou et al., 2023; Xu
et al., 2024) produces pixel-wise segmentation by matching
text embeddings and pixel-level features extracted from the
last layer of CLIP’s visual encoder, achieving a good bal-
ance between efficiency and effectiveness. However, these

1

https://github.com/HVision-NKU/Cascade-CLIP
https://github.com/HVision-NKU/Cascade-CLIP


Cascade-CLIP: Cascaded Vision-Language Embeddings Alignment for Zero-Shot Semantic Segmentation

(a) ZegCLIP (Zhou et al., 2023)

Image
Encoder

Shallow

Middle

Deep D
ecoder

Text-Im
age

L
oss

(b) Multi-layer Features Fusion

Image
Encoder

Shallow

Middle

Deep D
ecoder

Text-Im
age

L
oss

(c) Cascade-CLIP (Ours)

Image
Encoder

Shallow

Middle

Deep Text-Image
Decoder

Text-Image
Decoder

Text-Image
Decoder

L
oss

Mask

Mask

Mask

Extraction features
Cascade

Figure 2. Three zero-shot segmentation approaches based on CLIP. (a) ZegCLIP relies on the last-layer visual features without considering
information from intermediate layers. (b) Inspired by SegFormer (Xie et al., 2021), we fuse both intermediate- and last-layers features to
enhance feature representation, yet this integration disrupts the correlation between text and visual features. (c) To alleviate this issue, our
Cascade-CLIP separats the image encoder and aligns independent text-image decoders for deep features and middle features respectively,
and finally cascades the segmentation results.

Table 1. Comparisons with different methods on COCO-Stuff
164K, and PASCAL VOC 2012 datasets1. Straightforward fu-
sion of multi-layer features leads to performance degradation.

COCO-Stuff 164K PASCAL VOC 2012

Methods mIoUS mIoUU hIoU mIoUS mIoUU hIoU

ZegCLIP (Baseline) 40.1 39.5 39.8 90.5 78.3 84.0
Multi-layer Fusion 37.7 39.0 38.4 91.2 75.0 82.3

Cascade-CLIP 41.1 43.4 42.2 92.7 83.1 87.7

methods exhibit weaknesses in segmenting object details,
especially the boundaries of the semantic objects.

Building on insights from the closed-set segmentation meth-
ods (Zheng et al., 2021; Hou et al., 2020; Xie et al., 2021;
Guo et al., 2022), a viable solution for capturing rich lo-
cal details is to aggregate multi-level features from the en-
coder to improve the coarse segmentation results. For the
CLIP model, we observe that the visual features extracted
from the intermediate layers contain rich object details as
illustrated in Fig. 1. Nevertheless, directly fusing the multi-
level features produces unsatisfactory results. As shown in
Tab. 1, a straightforward fusion of the middle-layers and
the last-layer features (Fig. 2(b)) degrades the performance
compared to the baseline model (Fig. 2(a)). The baseline’s
success lies in effectively leveraging the pre-trained corre-
lations in CLIP between the last-layer visual features and
the text embeddings. However, the fusion of multi-level
features disrupts these original visual-language correlations
due to the significant disparity between the middle-layer and
last-layer features, weakening CLIP’s zero-shot capability
on unseen classes. Moreover, after feature fusion, the dif-
ferences between features also disrupt the pre-trained visual
representations, further increasing the difficulty of aligning
visual features with the text embeddings during fine-tuning.

In this paper, we renovate the way of aligning visual and
text embeddings and propose Cascade-CLIP, a multi-level
framework that can better leverage the diverse visual fea-

1mIoUS and mIoUU represent the mean Intersection over
Union (%) of seen and unseen classes, respectively. hIoU denotes
the harmonic mean IoU score among seen and unseen classes.

tures from CLIP and enhance the transferability to novel
classes. Specifically, Cascade-CLIP splits the visual en-
coder into multiple stages, ensuring a little variation in the
features within each stage. Each stage is equipped with
an independent text-image decoder, employing distinct text
embeddings to align the multi-level visual features better
and build better vision-language correlation. In this way, we
can integrate complementary multi-level semantic masks
from the visual encoder to enhance the segmentation results
as demonstrated in Fig. 1 (bottom row).

By exploiting multi-level features, for the first time, we
demonstrate that our Cascade-CLIP can largely improve the
image-to-pixel adaptability of CLIP in zero-shot semantic
segmentation. In addition, Cascade-CLIP is also flexible
and can be seamlessly utilized in existing state-of-the-art
methods, such as ZegCLIP (Zhou et al., 2023) and SPT-
SEG (Xu et al., 2024), to lift their performance on three
commonly used zero-shot segmentation benchmarks. In
particular, thanks to the cascaded vision-language alignment,
our method performs especially well for unseen classes,
reflecting strong adaptability. The contributions can be
summarized as follows:

• We unveil that visual features from the intermediate
layers of CLIP contain rich local information about
objects. However, simply fusing the multi-level visual
features weakens CLIP’s zero-shot capability.

• We propose Cascade-CLIP, a flexible cascaded vision-
language embedding alignment framework that can
effectively leverage the multi-level visual features from
CLIP to improve the transferability for novel classes.

• Extensive experiments demonstrate the effectiveness of
our Cascade-CLIP in zero-shot semantic segmentation
on three widely-used benchmarks.

2. Related work
2.1. Pre-trained Vision Language Models

Large-scale vision-language models (Jia et al., 2021; Kim
et al., 2021; Radford et al., 2021) pre-trained with web-scale
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image-text pairs have made great progress in aligning image
and text embeddings and achieved strong zero/few-shot gen-
eralization capabilities. For example, one of the most pop-
ular vision-language models, CLIP (Radford et al., 2021),
is trained contrastively using 400 million image-text pairs.
Due to its zero-shot recognition capabilities and its simplic-
ity, CLIP has been widely adapted to various down-stream
tasks, such as zero-shot visual recognition (Khattak et al.,
2023), dense prediction (Rao et al., 2022), object detec-
tion (Gu et al., 2021), and visual referring expression (Wang
et al., 2022). This work explores how to efficiently trans-
fer CLIP’s powerful generalization ability from images to
pixel-level classification.

2.2. Zero-shot Semantic Segmentation

Zero-shot semantic segmentation performs a pixel-level
classification that includes unseen categories during train-
ing. Previous works, such as SPNet (Xian et al., 2019),
ZS3 (Bucher et al., 2019), CaGNet (Gu et al., 2020),
SIGN (Cheng et al., 2021b), JoEm (Baek et al., 2021), and
STRICT (Pastore et al., 2021), focus on learning a mapping
between visual and semantic spaces to improve the general-
ization ability of the semantic mapping from the seen classes
to the unseen ones. Recent approaches mostly employ large-
scale visual-language models (e.g., CLIP (Radford et al.,
2021) and ALIGN (Jia et al., 2021)) with powerful zero-
shot classification ability for zero-shot semantic segmen-
tation. Some training-free methods, such as ReCo (Shin
et al., 2022) and CaR (Sun et al., 2023), directly use CLIP
to perform zero-shot semantic segmentation. Other meth-
ods, like MaskCLIP+ (Zhou et al., 2022a), apply CLIP to
generate pseudo-annotations for unseen classes to train ex-
isting segmentation models, but the requirement for unseen
class names constrains it. To relieve this limitation, some
works, like ZegFormer (Ding et al., 2022), Zsseg (Xu et al.,
2022b), FreeSeg (Qin et al., 2023), and DeOP (Han et al.,
2023a), decouple the zero-shot semantic segmentation into
the class-agnostic mask generation process and the mask cat-
egory classification process using CLIP. While they retain
the zero-shot capability of CLIP at the image level, the com-
putational cost inevitably increases due to the introduction
of proposal generators.

Instead of using heavy proposal generators, ZegCLIP (Zhou
et al., 2023) introduces a lightweight decoder to match the
text embeddings against the visual embeddings extracted
from CLIP. Similarly, SPT-SEG (Xu et al., 2024) enhances
the CLIP’s semantic understanding ability by integrating
spectral information. Although the above methods have suc-
cessfully translated CLIP’s image classification into pixel
segmentation, there is still a large room for improvement.
Unlike previous works, we take a new look at zero-shot se-
mantic segmentation by investigating the role of the features
from the intermediate layers in the visual encoder.

3. Method
The zero-shot semantic segmentation task (Bucher et al.,
2019; Zhou et al., 2023) aims to segment both the seen
classes C and unseen classes Ĉ after training on a dataset
with the seen part of available pixel annotations. Normally,
C ∩Ĉ = ∅ and the labels of Ĉ are unavailable while training.
The key problem is to retain the ability to identify unseen
classes when training on the seen classes.

3.1. Revisiting ZegCLIP

Recent zero-shot semantic segmentation approaches (Zhou
et al., 2023; Xu et al., 2024) are mostly based on the one-
stage scheme due to its high efficiency and good perfor-
mance. Here, we revisit the ZegCLIP work (Zhou et al.,
2023) as our baseline.

As illustrated in Fig. 2(a), ZegCLIP (Zhou et al., 2023)
first extracts CLIP’s text embeddings of C classes as T =
[t1, t2, . . . , tC ] ∈ RC×d and CLIP’s visual features of an
image as [CLS] token g ∈ R1×d and patch tokens H ∈
RN×d, where d is the feature dimension of the CLIP model,
and N is the number of patch tokens. C is the number of
classes with C = |C| during training and C = |C∪Ĉ| during
inference. To avoid overfitting, a relationship descriptor,
denoted as T̂ = concat(T ⊙ g,T) ∈ RC×2d, where ⊙
and concat are the Hadamard product and concatenation,
is employed by (Zhou et al., 2023) instead of T. Then,
the semantic masks M ∈ RC×N can be generated in the
text-image decoder by measuring the similarity between the
text embeddings T̂ and the visual features H. The whole
process can be represented as follows:

M = Softmax(D(ϕq(T̂), ϕk(H))), (1)

where D(·) denotes the text-image decoder, as illustrated in
the right part of Fig. 3. ϕq and ϕk are two linear projections
that align the feature dimension of T̂ and H.

Since the visual features are only extracted from the last
layer of the visual encoder, previous methods often cannot
identify the boundaries of the semantic objects well. This is
because the deep features carry high-level semantic global
features as shown in Fig. 1 but less low-level local details
compared to the intermediate layers, which we will pay
close attention to in this paper.

3.2. Motivation

Multi-level features are commonly used in closed-set seg-
mentation models (Zheng et al., 2021; Xie et al., 2021)
to sharpen the object segmentation details. Our analysis
in Sec. 1 also reveals that features from the middle lay-
ers of CLIP (Radford et al., 2021) can capture rich local
object details. This motivates us to investigate how to effec-
tively take advantage of these distinct features to enhance

3



Cascade-CLIP: Cascaded Vision-Language Embeddings Alignment for Zero-Shot Semantic Segmentation

...

CLIP Frozen Visual Encoder with Learnable Tokens Segmentation Map

B
lock

[CLS] token

Learnable tokens
Patch tokens

B
lock

B
lock

B
lock

B
lock

B
lock

B
lock

B
lock

T̂1 T̂2 T̂3NGA
Z1

NGA
Z2 Z3

Cascaded
Decoders

Text-Image
Decoder

Text-Image
Decoder

Text-Image
Decoder

+ +

+ Cascade mask

T̂ Text embedding

NGA Neighborhood
Gaussian aggregation

Mask (M ∈ RC×N )

Text-Image
Decoder

Multihead Attn

Multihead Attn

Multihead Attn

T̂ ∈ RC×2d

Z ∈ RN×d

Figure 3. Architecture of our Cascade-CLIP. The CLIP visual encoder is divided into multiple stages. Then, we employ the NGA module
to aggregate features of blocks within each stage and assign an independent text-image decoder for aggregated visual features and
non-sharing text embeddings. In the text-image decoder (right part of the figure), the segmentation mask could be calculated by the scaled
dot product attention via the Multihead Attention (Attn) layers, inspired by (Zhang et al., 2022). Finally, we combine the multi-level
semantic masks produced by different cascaded decoders to enhance segmentation predictions. (Please refer to Sec. 3.3 for details.)

(a) Original CLIP (b) Cascade-CLIP (Ours)

Figure 4. Centered kernel alignment heatmap (Kornblith et al.,
2019) between layers of (a) Original CLIP and (b) Cascade-
CLIP (Ours). The last row (red box) shows the similarity between
features from the last layer and other layers. The green box illus-
trates the similarity between adjacent layers.

CLIP’s transferability to novel classes, which has been omit-
ted by previous works. However, simply aggregating the
multi-level visual features as done in Fig. 2(b) degrades the
segmentation performance. To analyze the reasons for the
performance degradation, we attempt to visualize the cen-
tered kernel alignment map (Kornblith et al., 2019) of the
visual features of CLIP as shown in Fig. 4(a), which mea-
sures the similarity between different layers. We observe
a substantial dissimilarity between the shallow and deep
features, and the difference increases with network depth.
This indicates that directly integrating the multi-level inter-
mediate features into the last ones may break the alignment
of vision-language embedding in pre-trained CLIP due to
the substantial differences, thereby weakening the zero-shot
capability of CLIP.

Given the above analysis, we intend to investigate how to
effectively leverage the intermediate features with rich local
details to improve zero-shot segmentation. To address this
challenge, we propose two strategies, namely Cascaded
Vision-Language Embedding Alignment and Neighborhood
Gaussian Aggregation to better align the multi-level visual
features with the text embeddings. These strategies aim to
reduce the feature differences between different layers so

that the mid-level visual features can be well aligned with
the text embeddings and complement deep-level features,
improving the ability of zero-shot segmentation.

3.3. Cascaded Alignment Framework

The overview of the proposed Cascade-CLIP framework is
illustrated in Fig. 3. Basically, the visual encoder of CLIP
is split into multiple stages to extract multi-level visual fea-
tures, with a little variation for the features in each stage.
Then, to better build vision-language correlations during
fine-tuning, we assign each stage of the visual encoder an
independent text-image decoder considering the feature dif-
ferences between various stages. The decoder is similar to
the one mentioned in Sec. 3.1. Finally, the refined results
are generated by cascading complementary segmentation
masks from various stages.

To be specific, let Hl denote the patch tokens of the l-th
Transformer block. For ViT-B, the number of blocks should
be 12. First, we separate the CLIP’s visual encoder into S
stages, each containing a group of Transformer blocks. In
each stage, e.g., s-th stage, to better leverage the multi-level
features from different Transformer blocks, we introduce
a Neighborhood Gaussian Aggregation (NGA) module to
aggregate these features, resulting in aggregated features Zs.
We will describe the NGA module in detail later. Then, for
the output from the s-th stage Zs, we associate a correspond-
ing text embedding T̂s, acquired through linear projection
from T̂. Subsequently, Zs and T̂s are fed into an inde-
pendent text-image decoder to generate semantic masks.
Finally, we replace the single semantic masks in Eq. 1 by
combining all semantic masks generated by multiple stages
as follows:

MS = Softmax

(∑S

s=1
Ds(T̂s,Zs)

)
, (2)

where Ds(·) denotes the s-th text-image decoder. Here,
we use an element-wise summation operation, which can
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be regarded as an ensemble of the outputs from multiple
cascaded decoders.

As shown in Fig. 3, the vision-language alignment process
can be applied multiple times to different blocks in a cas-
caded way. In practice, we do not append the text-image
encoder to the shallow Transformer blocks because the shal-
low features contain little semantic information. Our experi-
ment in Sec. 4.4 will show how to split the visual encoders
to take advantage of the multi-level visual features.

Loss function with cascaded masks. Given the text-image
decoder Ds(·) from the s-th stage, let Ms = Ds(T̂s,Zs)

be the predicted segmentation mask. M =
∑S

s=1 Ms is
the multi-level cascaded mask. The objective loss function
Lpixel is defined as:

Lpixel = αLdice(Y,M) + βLfocal(Y,M), (3)

where Ldice and Lfocal are the dice loss (Milletari et al., 2016)
and focal loss (Lin et al., 2017) with Sigmoid as activation
function, respectively. Y is the ground truth. {α, β} are two
weights with the default values of {1, 100}, respectively.

To better align the intermediate visual features with the text
embeddings, we employ visual prompt tuning (Zhou et al.,
2022b; Ding et al., 2022) by introducing learnable tokens
onto the visual features of each block in the frozen encoder.
During visual prompt tuning, the cascaded alignment man-
ner enables the gradients to be directly back-propagated to
the middle layers of the visual encoder. This can promote
the alignment of mid-layer features and text embeddings,
substantially enhancing the similarity across different lay-
ers. We illustrate this in Fig. 4(b), which reflects a clear
difference from Fig. 4(a).

Neighborhood Gaussian aggregation. To better utilize the
potential of the features from each Transformer block, we
propose the Neighborhood Gaussian Aggregation (NGA)
module to fuse the multi-level features within each stage.
Based on the analysis in Sec. 3.2 and the illustration
in Fig. 4(b), we observe a gradual decline in feature similar-
ity across layers with increasing distance. Thus, we propose
to assign blocks with distinct Gaussian weights during fea-
ture fusion based on their relative neighborhood distances.
Furthermore, these weights are trainable concerning the
training data, facilitating the acquisition of adaptive weight
information from different blocks within each encoder stage.
Considering the s-th stage of encoder that consists of d
Transformer blocks, the Gaussian weights Ws,l and aggre-
gated features Zs can be computed as:

Ws,l = exp

(
−1

2

(d− l + 1)2

σ2

)
, l ∈ [1, d],

Zs =

d∑
l=1

Hl ·Ws,l,

(4)

where the variance parameter σ of the Gaussian function is
set to 1 by default. l corresponds to the index of the Trans-
former block. Increasing σ results in uniform weighting
across Transformer blocks while decreasing σ leads to the
dependence on single block features (as demonstrated in
our ablation experiments in Sec. C of the Appendix). By
setting variance parameter σ, the NGA module can assign a
higher weight to nearby blocks and a lower weight to distant
ones, facilitating more effective and flexible integration of
features across different depth levels.

4. Experiments
4.1. Datasets and Evaluation Metrics

To evaluate the effectiveness of our proposed method,
we perform extensive experiments on three widely used
benchmark datasets, including COCO-Stuff (Caesar et al.,
2018), Pascal-VOC (Everingham et al., 2015), and Pascal-
Context (Mottaghi et al., 2014). The split of seen and un-
seen categories follows the common settings of the previous
works (Zhou et al., 2023), and the mean IoU and harmonic
mean IoU of both seen and unseen categories are reported.
Further details on dataset statistics, data splitting, and evalu-
ation metrics can be found in Sec. B of the Appendix.

4.2. Implementation Details

We implement the proposed method on the open-source
toolbox MMSegmentation (Contributors, 2020) and conduct
all experiments using a machine with 4 NVIDIA RTX 3090
GPUs. VIT-B/16 (Dosovitskiy et al., 2020), which contains
12 Transformer blocks, is adopted as the image encoder of
CLIP (Radford et al., 2021). The batch size on each GPU is
set to 4, and the input image resolution is 512 × 512. The
optimizer is AdamW (Loshchilov & Hutter, 2019) with the
default training schedule in the MMSeg toolbox. For a fair
comparison, we use the same number of training iterations
on each dataset as ZegCLIP (Zhou et al., 2023).

4.3. Comparisons with the State-of-the-art Methods

To demonstrate the effectiveness of our Cascade-CLIP, the
evaluation results are compared with previous state-of-the-
art methods, including two-encoder approaches (e.g., Zeg-
Former (Ding et al., 2022), Zsseg (Xu et al., 2022b) and
DeOP (Han et al., 2023a)) and one-encoder approaches
(e.g., ZegCLIP (Zhou et al., 2023)).

Comparisons in the inductive setting. As shown in Tab. 2,
Cascade-CLIP remarkably improves the performance in the
inductive setting, where features and annotations for un-
seen classes are not provided. It is worth noting that while
boosting the results of the seen classes, our method im-
proves the performances of the unseen classes. For example,
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Table 2. Comparison with the inductive and transductive state-of-the-art zero-shot segmentation methods on COCO-Stuff 164K, and
PASCAL VOC 2012 datasets. R denotes ResNet (He et al., 2016). ST represents re-train the model with the generating pseudo-labels on
unseen classes. Our Cascade-CLIP integrates features extracted from layers 6 to 12 of the image encoder using a three-stage cascade
decoder: {6-8}, {9-11}, {12}.

Methods Backbone Segmentor2 COCO-Stuff 164K (171) PASCAL VOC 2012 (20)

mIoUS↑ mIoUU↑ hIoU↑ mIoUS↑ mIoUU↑ hIoU↑
Inductive: training images do not contain any unseen objects.
ZegFormer (Ding et al., 2022) R101&CLIP-B MaskFormer 36.6 33.2 34.8 86.4 63.6 73.3
Zsseg (Xu et al., 2022b) R101&CLIP-B MaskFormer 39.3 36.3 37.8 83.5 72.5 77.5
DeOP (Han et al., 2023a) R101&CLIP-B MaskFormer 38.0 38.4 38.2 88.2 74.6 80.8
Zsseg+MAFT (Jiao et al., 2023) R101&CLIP-B MaskFormer 40.6 40.1 40.3 88.4 66.2 75.7
SPNet-C (Xian et al., 2019) R101 W2V&FT 35.2 8.7 14.0 78.0 15.6 26.1
ZS3Net (Bucher et al., 2019) R101 W2V 34.7 9.5 15.0 77.3 17.7 28.7
CaGNet (Gu et al., 2020) R101 W2V&FT 33.5 12.2 18.2 78.4 26.6 39.7
SIGN (Cheng et al., 2021b) R101 W2V&FT 32.3 15.5 20.9 75.4 28.9 41.7
JoEm (Baek et al., 2021) R101 W2V - - - 77.7 32.5 45.9
ZegCLIP (Zhou et al., 2023) CLIP-B SegViT 40.2 41.4 40.8 91.9 77.8 84.3
Cascade-CLIP (Ours) CLIP-B SegViT 41.1 43.4 42.2 92.7 83.1 87.7

Transductive: training images employ the names of unseen classes.
Zsseg+ST (Xu et al., 2022b) R101&CLIP-B MaskFormer 39.6 43.6 41.5 79.2 78.1 79.3
FreeSeg (Qin et al., 2023) R101&CLIP-B Mask2Former 42.4 42.2 42.3 91.9 78.6 84.7
FreeSeg+MAFT (Jiao et al., 2023) R101&CLIP-B Mask2Former 44.1 55.2 49.0 90.0 86.3 88.1
SPNet-C+ST (Xian et al., 2019) R101 W2V&FT 34.6 26.9 30.3 77.8 25.8 38.8
ZS5Net (Bucher et al., 2019) R101 W2V 34.9 10.6 16.2 78.0 21.2 33.3
CaGNet+ST (Gu et al., 2020) R101 W2V&FT 35.6 13.4 19.5 78.6 30.3 43.7
MaskCLIP+ (Zhou et al., 2022a) R101 DeepLabv2 38.1 54.7 45.0 88.8 86.1 87.4
MVP-SEG+ (Guo et al., 2023) R101 DeepLabv2 38.3 55.8 39.9 44.9 67.5 54.0
ZegCLIP+ST (Zhou et al., 2023) CLIP-B SegViT 40.7 59.9 48.5 92.3 89.9 91.1
TagCLIP+ST (Li et al., 2023) CLIP-B SegViT 40.4 60.0 48.3 94.3 92.7 93.5
Cascade-CLIP+ST (Ours) CLIP-B SegViT 41.7 62.5 50.0 93.3 93.4 93.4

Table 3. Comparison with the state-of-the-art zero-shot segmenta-
tion methods on PASCAL Context dataset.

Methods PASCAL Context (59)

mIoUS↑ mIoUU↑ hIoU↑
Inductive
SPNet-C (Xian et al., 2019) 27.1 9.8 14.4
ZS3Net (Bucher et al., 2019) 20.8 12.7 15.8
CSRL (Li et al., 2020) 29.4 14.6 19.5
JoEm (Baek et al., 2021) 33.0 14.9 20.5
ZegCLIP (Zhou et al., 2023) 53.8 45.5 49.3
Cascade-CLIP (Ours) 55.9 47.2 51.2

Transductive
ZS5Net (Bucher et al., 2019) 27.0 20.7 23.4
ZegCLIP+ST (Zhou et al., 2023) 54.5 41.4 47.1
Cascade-CLIP+ST (Ours) 56.4 55.0 55.7

Cascade-CLIP promotes the state-of-the-art performance by
2.0% on COCO and 5.3% on Pascal VOC in terms of mIoU
for unseen classes, demonstrating its robust generalization
capabilities of zero-shot segmentation.

2The description of segmentors is acquired from (Zhu & Chen,
2023). MaskFormer and MasksFormer are proposed by (Cheng
et al., 2021a) and (Cheng et al., 2022b); DeepLabv2 is proposed
by (Chen et al., 2018); W2V is proposed by (Mikolov et al., 2013);
SegViT is proposed by (Zhang et al., 2022).

Comparisons in the transductive setting. We further eval-
uate the transferability of Cascade-CLIP in the transductive
setting, where models are retrained by generating pseudo
labels for unseen pixels and utilizing ground truth labels
for seen pixels. Tab. 2 demonstrates that our model signifi-
cantly improves the performance for unseen classes while
consistently maintaining excellent performance across seen
classes after transductive self-training.

To further validate the effectiveness of our Cascade-CLIP,
we conduct comparisons with other methods on the PAS-
CAL Context dataset. As shown in Tab. 3, our Cascade-
CLIP consistently outperforms other methods, particularly
regarding mIoU for unseen classes. The results above
clearly demonstrate the effectiveness of our proposed meth-
ods. For additional experimental results on the effectiveness
and generality of our method, please refer to Sec. 4.5.

Qualitative results. Fig. 5 shows the segmentation results
of the baseline and our proposed Cascade-CLIP on seen
and unseen classes. Cascade-CLIP shows impressive seg-
mentation ability for both seen and unseen classes and can
clearly distinguish similar unseen classes. For example, our
method can better distinguish the ‘giraffe’ regions from the
‘tree’ regions (Fig. 5(1)), the ‘boat’ regions from the ‘river’
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Figure 5. Qualitative transductive results on COCO-Stuff 164K. The black and red tags represent seen and unseen classes, respectively.

Table 4. Ablation on components of Cascade-CLIP.

Cascaded decoders NGA mIoUS↑ mIoUU↑ hIoU↑
✗ ✗ 40.1 39.5 39.8
✓ ✗ 40.8 42.6 41.7
✓ ✓ 41.1 43.4 42.2

regions (Fig. 5(2)), and the ‘clouds’ regions from the ‘sky’
regions (Fig. 5(3)). More qualitative results are available
in Sec. D of the Appendix.

4.4. Ablation Study

Component-wise ablations. To understand the effect of
each component in our Cascade-CLIP, including the cas-
caded decoders and the NGA modules, we initiate with
the baseline ZegCLIP, which employs the visual features
of CLIP’s last layer, and then gradually incorporate each
proposed module. As shown in Tab. 4, employing cascaded
decoders can capture distinct and complementary informa-
tion from different blocks in the encoder, improving 3.1%
mIoU scores on unseen classes (the 2nd result). On this
basis, the NGA module is introduced to aggregate rich local
information of objects within each split encoder, further en-
hancing the mIoU scores on unseen classes (the 3rd result).

Effect of the proposed block splitting manner. The cas-
caded decoder architecture is pivotal in our Cascade-CLIP
due to its ability to preserve visual-language associations.
Our analysis in Tab. 5 indicates that separating the last block
into an independent stage (the 3rd result) is more effective

Table 5. Effect of different block splitting manners. The elements
in {} means the block numbers that are used to fuse features in the
encoder. When the number of blocks exceeds 1, an NGA is used.

Block splitting manner #Decoders mIoUS↑ mIoUU↑ hIoU↑
{4-6}, {7-9}, {10-12} 3 40.4 42.7 41.5
{6-8}, {9-10}, {11-12} 3 40.7 42.4 41.5
{6-8}, {9-11}, {12} 3 41.1 43.4 42.2

Table 6. Numbers of cascaded decoders and corresponding blocks
in the visual encoder of Cascade-CLIP.

Block splitting manner Number mIoUS↑ mIoUU↑ hIoU↑
Number of cascaded decoders
{12} (Baseline) 1 40.1 39.5 39.8
{9-11}, {12} 2 40.2 40.2 40.2
{6-8}, {9-11}, {12} 3 41.1 43.4 42.2
{3-5}, {6-8}, {9-11}, {12} 4 40.8 42.5 41.7

Number of blocks
{8-9}, {10-11}, {12} 2 40.7 41.3 41.0
{6-8}, {9-11}, {12} 3 41.1 43.4 42.2
{4-7}, {8-11}, {12} 4 41.1 41.5 41.3

than other combinations of partitioning strategies (the 1st re-
sult and the 2nd result). This is because the last layer feature
of CLIP’s image encoder possesses the strongest association
with text embedding, and matching it to a separate decoder
reduces the destruction of this correlation.

Number of cascaded decoders and number of blocks
in each stage. To show the importance of information fu-
sion across different layers, we present the performance of

7



Cascade-CLIP: Cascaded Vision-Language Embeddings Alignment for Zero-Shot Semantic Segmentation

Table 7. Cascade-CLIP vs. other methods with multi-decoders.
Utilizing the last-layer features or directly fusing multi-layer fea-
tures with the same blocks as our Cascade-CLIP and aligning them
with multiple decoders results in a decline in performance.

Description Param. (M) mIoUS↑ mIoUU↑ hIoU↑
Last-layer 40.5 40.3 40.6 40.5
Multi-layer fusion 40.5 39.9 35.7 37.7
Cascade-CLIP 40.5 41.1 43.4 42.2

Table 8. Comparison of different aggregation methods. † denotes
that the weights are trainable.

Description mIoUS↑ mIoUU↑ hIoU↑
Concat 39.9 41.0 40.5
Self-attention 37.7 39.0 38.4
Sum 39.3 42.0 40.6
NGA 40.9 43.0 41.9

Sum† 39.9 41.2 40.5
NGA† 41.1 43.4 42.2

Table 9. Effect of independent/shared text embedding.

Description mIoUS↑ mIoUU↑ hIoU↑
Shared 40.5 42.4 41.4
Independent 41.1 43.4 42.2

Cascade-CLIP with different numbers of cascaded decoders
and different blocks in each corresponding encoder stage
in Tab. 6. We can see that increasing the number of cascaded
decoders from 1 to 3 gradually improves the segmentation
performance. This indicates the complementarity of features
from various layers compared to previous works only using
the features from the last layer. Our default value of Trans-
former blocks per stage is 3. Reducing the number of blocks
to 2 causes a degradation in performance due to the neglect
of mid-layer features. The best performance is achieved by
cascading three decoders (including an extra decoder for the
last block). Note that we do not use the beginning blocks as
they encode features with little semantics.

To demonstrate the effectiveness of our designs in lever-
aging CLIP’s multi-level features, we also present cosine
similarity maps of features and qualitative segmentation
results. At the top of Fig. 6, we show the patch similarity
of unseen classes not included in the training process. We
observe that the intermediate layers of our method contain
detailed information on local objects, including boundaries.
Moreover, as illustrated at the bottom of Fig. 6, by leverag-
ing these distinctive features, our Cascade-CLIP improves
segmentation performance for both seen and unseen classes
compared to using only last-block features.

NGA v.s. other aggregation methods. In each split en-
coder stage, the differences between features across various

Table 10. Extending Cascade-CLIP to existing methods to improve
zero-shot segmentation results.

Methods COCO-Stuff 164K VOC 2012

mIoUS↑ mIoUU↑ mIoUS↑ mIoUU↑
Inductive
Frozen CLIP 32.3 32.5 85.9 59.5
Frozen CLIP+Ours 36.3 35.3 89.0 69.7

ZegCLIP 40.2 41.4 91.9 77.8
ZegCLIP+Ours 41.1 43.4 92.7 83.1

SPT-SEG 38.0 40.7 92.0 85.0
SPT-SEG+Ours 40.2 43.6 92.1 86.1

Transductive
ZegCLIP+ST 40.7 59.9 92.3 89.9
ZegCLIP+Ours+ST 41.7 62.5 93.3 93.4

SPT-SEG 40.4 57.5 93.6 92.2
SPT-SEG+Ours+ST 41.7 62.1 93.8 94.4

Fully Supervised
ZegCLIP 40.7 63.2 92.4 90.9
ZegCLIP+Ours 41.5 64.0 93.7 94.6

layers will disrupt the feature space after aggregating various
layers. To overcome this issue, we propose Neighborhood
Gaussian Aggregation (NGA) to reduce disruptions in the
original feature space by considering the distance between
blocks. As shown in Tab. 8, our NGA outperforms com-
mon aggregation strategies (e.g., Sum, Connect and Self-
attention). With learnable weights, our NGA further boosts
performance. This indicates that our NGA, which assigns
smaller weights to distant features when fusing multi-level
features, is advantageous in improving zero-shot segmenta-
tion compared to other feature aggregation methods.

Cascade-CLIP vs. other methods with multi-decoder.
To demonstrate the efficacy of integrating diverse semantic
masks generated from distinct cascaded decoders, rather
than introducing extra parameters that could impact per-
formance, we construct a multi-decoder model based on
the last-layer features or the fusion of multi-layer features.
As shown in Tab. 7, Cascade-CLIP outperforms the last-
layer and multi-layer approaches with equivalent parameter
amounts. This indicates that relying only on the last-layer
features fails to yield complementary and enhanced segmen-
tation results. Moreover, the direct fusion of features leads
to a decrease in zero-shot capability, which is not improved
even with the use of multiple decoders.

Effect of independent/shared text embedding. Since the
features from different split encoder stages exhibit signifi-
cant discrepancies, it is essential to align distinct text embed-
dings with the features of each stage. This is validated by the
results presented in Tab. 9, where our Cascade-CLIP with
independent text embedding achieves higher mIoU scores
than those with shared text embedding.
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Figure 6. Visualizations of cosine similarity maps about features and qualitative segmentation results. We visualize feature correspondence
through cosine similarity calculations on visual patches of unseen classes from both deep and shallow layers in our Cascade-CLIP. The
inductive segmentation results are generated by cascading different decoders.

4.5. Extending Cascade-CLIP to Other Methods

Our approach is a generalized framework for improving
the zero-shot segmentation capabilities. Specifically, we
can seamlessly integrate Cascade-CLIP into existing popu-
lar zero-shot semantic segmentation methods, e.g., Frozen
CLIP (Radford et al., 2021), ZegCLIP (Zhou et al., 2023)
and SPT-SEG (Xu et al., 2024). As shown in Tab. 10, our
method can significantly enhance these methods’ results,
proving the proposed approach’s generalization ability.

5. Conclusions
This paper focuses on leveraging the intermediate features
from CLIP with rich local details but significant differences
from deep features to enhance zero-shot semantic segmen-
tation. By introducing the cascaded mask mechanism, we
present the Cascade-CLIP framework, which aims to effec-
tively align multi-level visual features with the text embed-

dings in a cascaded way, thereby enhancing CLIP’s adapt-
ability from image to pixel level. Experiments demonstrate
the effectiveness of the proposed method.

Impact Statement

Our work explores how to leverage multi-level features from
the pre-trained CLIP to enhance the model’s zero-shot capa-
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A. Implementation Details
Text templates for prompts. Following the training details
of CLIP, we utilize text templates to generate embeddings
for class descriptions using the CLIP text encoder. Specif-
ically, we employ a single template, ”A photo of a { },”
for PASCAL VOC 2012 (VOC). For large-scale datasets
such as COCO-Stuff 164K (COCO) and PASCAL Context
(Context), we employ 15 augmented templates for improved
representation. The details of the 15 augmented templates
are: ‘A photo of a { }.’, ‘A photo of a small { }.’, ‘A photo
of a medium { }.’, ‘A photo of a large { }.’, ‘This is a photo
of a { }.’, ‘This is a photo of a small { }.’, ‘This is a photo
of a medium { }.’, ‘This is a photo of a large { }.’, ‘A { } in
the scene.’, ‘A photo of a { } in the scene.’, ‘There is a { }
in the scene.’, ‘There is the { } in the scene.’, ‘This is a { }
in the scene.’, ‘This is the { } in the scene.’ and ‘This is one
{ } in the scene.’.

B. Datasets and Evaluation Metrics
Datasets. COCO-Stuff is an extensive semantic segmen-
tation dataset comprising 171 categories, encompassing 80
things classes and 91 stuff classes. It contains 117k training
images and 5k validation images and it is divided into 156
seen classes and 15 unseen classes. In comparison, PAS-
CAL VOC consists of 11,185 training images and 1,449
validation images across 20 classes. We exclude the ‘back-
ground’ category, utilizing 15 classes as the seen part and
5 classes as the unseen part. Additionally, PASCAL Con-
text provides supplementary annotations for PASCAL VOC
2010, consisting of 4,998 training images and 5,005 valida-
tion images. For testing, we classify the dataset into 49 seen
classes (excluding ‘background’) and use the remaining 10
classes as unseen.

Data split. We adopt the identical unseen class setup intro-
duced in the previous method (Zhou et al., 2023) to ensure
a fair comparison. The specific name of unseen classes for
COCO-Stuff (COCO), PASCAL VOC 2012 (VOC), and
PASCAL Context (Context) datasets in Tab. 11.

Table 11. Details of unseen class names.
Dataset Name

COCO
cow, giraffe, suitcase, frisbee, skateboard,
carrot, scissors, cardboard, clouds, grass,
playingfield, river, road, tree, wallconcrete

VOC pottedplant, sheep, sofa, train, tvmonitor

Context cow,motorbike, sofa, cat, boat, fence
bird, tvmonitor, keyboard, aeroplane

Evaluation metrics. Following the previous work (Zhou
et al., 2023; Xu et al., 2024), we report the mean IoU (mIoU)
for seen and unseen classes denoted as mIoUS and mIoUU

Table 12. Efficiency comparison with different methods. The input
image is set to 512 × 512. All models are evaluated on a single
3090 GPU. Params. represents the number of parameters of the
model. Note that our Cascade-CLIP requires less learnable tokens.

Methods Param. (M)

Total↓Trainable↓GFLOPs↓FPS↑
ZegFormer (Ding et al., 2022) 210.0 60.3 1875.1 7.4
DeOP (Han et al., 2023a) 218.4 - 670.0 5.8
ZegCLIP (Zhou et al., 2023) 164.9 14.6 123.9 20.9
Cascade-CLIP (Ours) 193.1 40.5 123.8 18.4

respectively. In addition, we compute the harmonic mean
IoU (hIoU) among seen and unseen classes, which is calcu-
lated as

hIoU =
2(mIoUS +mIoUU )

mIoUS +mIoUU
. (5)

The mIoU metric is also adopted for the evaluation of cross-
dataset.

C. Experiment
Efficiency analysis. Besides performance comparison,
we also compare our approach with the typical two-
encoder methods (e.g., ZegFormer (Ding et al., 2022) and
DeOP (Han et al., 2023a) ) and one-encoder methods
(e.g., ZegCLIP (Zhou et al., 2023)). We test these meth-
ods under the same environment to ensure a fair compar-
ison, including hardware and image resolution. Tab. 12
shows that our approach introduces the trainable parame-
ters compared to ZegCLIP, notably less than ZegFormer’s.
Furthermore, the total parameter of the model increase is
marginal. Moreover, our Cascade-CLIP does not increase
the computational effort since Cascade-CLIP requires fewer
learnable tokens than ZegCLIP (refer to subsequent experi-
ments for details). Because of this, our Cascade-CLIP can
still maintain a high FPS speed during inference.

Generalization ability to other datasets. To further ex-
plore the generalization ability of our proposed Cascade-
CLIP, we perform additional experiments detailed in Tab. 13.
In this setting, we utilize the pre-trained model from the
source dataset (i.e., COCO) through supervised learning on
seen classes, assessing segmentation performance on both
seen and unseen classes in the target datasets (i.e., VOC
and Context). We also compare the previous state-of-the-art
zero-shot segmentation methods including the two-encoder
approaches (e.g., ZegFormer (Ding et al., 2022), Zsseg (Xu
et al., 2022b) and DeOP (Han et al., 2023a)) and one-
encoder approaches (e.g., GKC (Han et al., 2023b) and
TCL (Cha et al., 2023)). Our approach exhibits superior
cross-domain generalization compared to the previous meth-
ods, particularly outperforming the recent ZegCLIP, which
is also built on the CLIP model.
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Table 13. Generalization ability to other datasets. The models are
trained on the COCO-Stuff dataset.

Methods Backbone VOC↑Context↑
Fully Supervised
ZegFormer (Ding et al., 2022) R101&CLIP-B 89.5 45.5
Zsseg (Xu et al., 2022b) R101&CLIP-B - 47.7
DeOP (Han et al., 2023a) R101&CLIP-B 91.7 48.8
GroupViT (Xu et al., 2022a) ViT-S 52.3 22.4
LSeg+ (Ghiasi et al., 2022) R101 59.0 36.0
ViL-Seg (Liu et al., 2022) ViT-B 33.6 15.9
SegCLIP (Luo et al., 2023) CLIP-B 52.6 24.7
OpenSeg (Ghiasi et al., 2022) R101 60.0 36.9
OVSegmentor (Xu et al., 2023) ViT-B 53.8 20.4
PACL (Mukhoti et al., 2023) ViT-B 72.3 50.1
TCL (Cha et al., 2023) CLIP-B 83.2 33.9
GKC (Han et al., 2023b) R101 83.2 45.2

Inductive
ZegCLIP (Zhou et al., 2023) CLIP-B 93.6 47.5
Cascade-CLIP (Ours) CLIP-B 93.8 48.4

Transductive
ZegCLIP+ST (Zhou et al., 2023) CLIP-B 94.1 52.7
Cascade-CLIP+ST (Ours) CLIP-B 94.0 52.8

Table 14. Effect of applying the different numbers of learnable
tokens. We report the results of ZegCLIP and our Cascade-CLIP.

ZegCLIP Cascade-CLIP (Ours)

Number mIoUS↑ mIoUU↑ hIoU↑ mIoUS↑ mIoUU↑ hIoU↑
35 39.4 40.9 40.1 40.6 42.3 41.4
50 39.2 39.7 39.5 41.1 43.4 42.2
100 40.2 41.4 40.8 40.8 42.0 41.4

Effect of the number of learnable tokens. The learnable
tokens are integrated into the CLIP frozen visual encoder
to facilitate deep prompt tuning. We present results for
different numbers of learnable tokens and compare them
against the baseline ZegCLIP. As shown in Tab. 14, our pro-
posed Cascade-CLIP with 35 learnable tokens outperforms
ZegCLIP with 100 tokens, achieving the best performance
with 50 learnable tokens. This demonstrates the superior
effectiveness and efficiency of our approach in zero-shot
segmentation by leveraging multi-level visual features in a
cascade manner.

Ablation on the cascaded encoders. Our Cascade-
CLIP can flexibly integrate the features from different en-
coder blocks. As shown in Tab. 15, both deep (the 1st result)
and intermediate features (the 2nd result) contribute to im-
proving the performance compared to using only the last
features. This again demonstrates that intermediate layer
features can complement last layer features, thus improving
segmentation results. Notably, competitive performance is
achieved even without employing last-layer features (the
3rd result). Moreover, simultaneously fusing these features
further enhances the overall model performance, indicat-
ing that our approach has the ability to effectively exploit

Table 15. Ablation of cascaded decoder. ✓indicates the fusion of
{ }-layer features in the Transformer block, aligning them with an
individual decoder.

{6-8} {9-11} {12} mIoUS↑ mIoUU↑ hIoU↑
✓ ✓ 40.2 40.2 40.2

✓ ✓ 40.5 42.2 41.3
✓ ✓ 40.3 41.8 41.1

✓ ✓ ✓ 41.1 43.4 42.2

Table 16. Ablation of variance σ of the Gaussian function in NGA
module. We present the initial weights of the corresponding fea-
tures at different variance values.

σ values of weights mIoUS↑ mIoUU↑ hIoU↑
0.8 {0.04, 0.46, 1.00} 92.3 82.6 87.3
1.0 {0.14, 0.61, 1.00} 92.7 83.1 87.7
1.2 {0.25, 0.71, 1.00} 92.4 79.1 85.1

Table 17. Variance weights of the Gaussian function in NGA mod-
ule before and after training.

Block splitting manner Initial weights Weight after training

{6-8} {0.14, 0.61, 1.00} {0.13, 0.59, 1.02}
{9-11} {0.14, 0.61, 1.00} {0.13, 0.59, 1.01}

Table 18. Ablation of weights of dice loss (α) and focal loss (β).

α β mIoUS↑ mIoUU↑ hIoU↑
1 10 87.7 72.4 79.3
1 50 91.3 81.1 85.9
1 100 92.7 83.1 87.7
1 150 91.3 82.5 86.7

distinctive features without compromising transferability.

Ablation on the variance parameter in NGA. Our NGA
module assigns distinct Gaussian weights to blocks for fea-
ture fusion based on their neighborhood relative distances.
The variance σ of Gaussian weights is a key parameter:
higher values lead to consistent weighting across feature
blocks, while lower values degenerate into reliance on a
single layer of features. Tab. 16 shows that increasing the
value of σ causes the mIoU in the unseen class to drop sig-
nificantly despite similar performance in seen classes. We
also present the variance weights of the NGA module in
different split encoder stages before and after training, as
shown in Tab. 17.

Ablation on the loss weights. We conduct ablation experi-
ments to examine the impact of dice loss weights (α) and
focal loss weights (β) on performance using the Pascal-VOC
dataset. The results in Tab. 18 indicate that emphasizing
focal loss weights 100 times more than dice loss weights is
more effective.
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Figure 7. Intersection over mIoU (%) on seen and unseen classes rises with the number of training iterations.

Training iterations. We employ 80000 default training
iterations on COCO for Cascade-CLIP to ensure a fair com-
parison with previous methods. Additionally, We investi-
gate the impact of training iterations for our Cascade-CLIP.
Fig. 7 shows the increment in iterations correlates with a
steady enhancement of mIoU for seen classes, accompa-
nied by a notable improvement in performance for unseen
classes. This indicates that our approach maintains strong
zero-shot capability on unseen classes, transitioning CLIP
from image-level recognition to pixel-level segmentation.

D. Visualizations
We further evaluate the segmentation performance of our
method in transductive settings, comparing it with existing
segmentation methods. The qualitative zero-shot segmenta-
tion results shown in Fig. 8 demonstrate that our Cascade-
CLIP model yields very clear segmentation masks in most
cases. For example, our model more accurately segments
the shape of the clouds, although their shape is irregular
in both the first and second examples. In the third exam-
ple, our segmentation mask clearly displays the shape of
the skateboard, although it occupies only a very small area
in the image. These observations confirm the remarkable
effectiveness of our Cascade-CLIP approach.
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Origin Image Ground Truth ZegCLIP SPT-SEG Cascade-CLIP (Ours)

Figure 8. Comparing qualitative zero-shot segmentation results among various semantic segmentation methods with the transductive
setting on the COCO-Stuff dataset.
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