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ABSTRACT

Bayesian optimization under contextual uncertainty (BOCU) is a family of BO
problems in which the learner makes a decision prior to observing the context and
must manage the risks involved. Distributionally robust BO (DRBO) is a subset of
BOCU that affords robustness against context distribution shift, and includes the
optimization of expected values and worst-case values as special cases. By con-
sidering the first derivatives of the DRBO objective, we generalize DRBO to one
that includes several other uncertainty objectives studied in the BOCU literature
such as worst-case sensitivity (and thus notions of risk such as variance, range, and
conditional value-at-risk) and mean-risk tradeoffs. We develop a general Thomp-
son sampling algorithm that is able to optimize any objective within the BOCU
framework, analyze its theoretical properties, and compare it to suitable baselines
across different experimental settings and uncertainty objectives.

1 INTRODUCTION

Bayesian optimization (BO) is a well-established framework for black-box optimization under the
constraint of limited function evaluations (Garnett, 2023) that has seen numerous successes in real-
world applications, including hyperparameter tuning (Chen et al., 2018), protein design (Romero
et al., 2013), and experimental physics (Duris et al., 2020). While standard BO assumes that the
learner has full control over all input variables to the objective function, in many practical scenarios,
the learner only has control over a subset of variables (decision variables), while the other variables
(context variables) may be randomly determined by the environment. For example, in agriculture,
a farmer optimizing plant growth may have control over the amount of water the crops receive, but
not the amount of sunlight. A line of research we term BO under contextual uncertainty (BOCU)
studies such scenarios in which the learner makes a decision prior to observing the context and must
therefore manage the uncertainty in the final input due to the uncertainty in the context. This is done
by maximizing some uncertainty objective that takes the context distribution into account, such as
the expected value or the worst-case value with respect to the context. Distributionally robust BO
(DRBO) is a subset of BOCU that generalizes these uncertainty objectives. However, there are many
other uncertainty objectives under the BOCU umbrella that have thus far been seen as adjacent to
DRBO, including (conditional) value-at-risk, mean-variance tradeoff, and many others.

This paper unifies several of these disparate works into a single general framework. We show that,
by considering the first derivatives of the DRBO objective with respect to the margin, the DRBO
framework may be extended to include the above-mentioned adjacent uncertainty objectives and
many others. We also subsume in our framework robust satisficing (Long et al., 2023), a recently
proposed uncertainty objective in the operations research literature that has recently been applied in
the context of BO (Saday et al., 2023). By unifying these seemingly different settings, we believe
our work allows BOCU problems to be studied in a new and interesting light. Moreover, our frame-
work encompasses a family of novel uncertainty objectives not yet studied in the literature with
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their own individual interpretations. Beyond theoretical interest, our unified framework has practi-
cal ramifications: we develop a single BO algorithm capable of optimizing any of the uncertainty
objectives within the framework which simplifies the process of any practitioner who wishes to op-
timize different objectives. We provide a regret bound and the conditions under which it achieves
sublinear regret, and empirically demonstrate its performance in various experimental settings and
uncertainty objectives.

Related work. Our work unifies several settings in a line of research studying BO under con-
textual uncertainty (BOCU). The closest works to ours are those on distributionally robust BO
(DRBO) (Kirschner et al., 2020; Nguyen et al., 2020; Husain et al., 2023; Inatsu et al., 2022;
Tay et al., 2022), an adaptation of distributionally robust optimization (DRO) in operations re-
search (Rahimian & Mehrotra, 2022) to the BO setting. The DRBO framework captures stochastic
BO (Toscano-Palmerin & Frazier, 2022) and robust BO (Bogunovic et al., 2018) which optimize
expected values and worst-case values respectively. Other works under the BOCU umbrella opti-
mize for various notions of risk, including (conditional) value-at-risk (Cakmak et al., 2020; Nguyen
et al., 2021a;b), quantiles/expectiles (Picheny et al., 2022), and a scalar combination of mean and
variance (Iwazaki et al., 2021). Makarova et al. (2021) also consider the mean-variance tradeoff, but
do not consider the notion of observable contexts and treat the noisy observations as heteroscedastic.
Beland & Nair (2017) and Cakmak et al. (2020) propose very general frameworks whose objectives
are arbitrary mappings from distributions to real numbers (termed ‘robustness metrics’ and ‘risk
measures’ respectively); however, they assume the context is within the learner’s control during the
learning procedure, and the large generality of their frameworks appears to preclude meaningful
regret analyses. Our framework extends DRBO in a manner that increases its generality while still
being amenable to analysis.

BOCU can be considered to generalize a line of work referred to as contextual BO in which the
context is observed prior to making a decision (Krause & Ong, 2011; Char et al., 2019; Fiducioso
et al., 2019; Kirschner & Krause, 2019), by viewing it as a special case of DRBO in which the
reference distribution is a point mass corresponding to the context at that iteration and the margin
ϵ = 0. BOCU is a subset of an even more general class of BO works that study optimization under
an inability to fully control every decision due to random or adversarial influences, including BO
with uncertain inputs (Oliveira et al., 2019), BO for finding equilibria in games (Marchesi et al.,
2020; Tay et al., 2023), BO with partially-specified decisions (Hayashi et al., 2022), and causal
BO (Aglietti et al., 2020; Sussex et al., 2023), among many others.

2 PRELIMINARIES

We study problems involving decision variables x ∈ X ⊂ Rm, context variables c ∈ C =
{c(1), c(2), ..., c(n)} ⊂ Rℓ, |C| = n, and functions over the joint decision-context space f : X×C →
R. We assume that X is a compact and convex subset of Rm, and that C is a finite set (a standard as-
sumption in the DRBO literature (Inatsu et al., 2022; Kirschner et al., 2020; Tay et al., 2022)). The
decision variables x can be chosen by the learner, while the context variables c are sampled ran-
domly from some probability distribution. The learner chooses x prior to observing the context c.
We assume that some reference distribution p is known that captures the learner’s prior knowledge
of the distribution governing c. Since C is finite, p (and all distributions over C) can be represented
as a probability vector in Rn, i.e., pi, the i-th entry of p, is the probability that the random vector
c has value c(i). The learner also chooses some convex distribution distance d, e.g., one of the
f -divergences or integral probability metrics. This work is concerned with optimization problems
of the form x∗ = argmaxx∈X g(x; f,p, d, ϵ) where g is a scalar function and ϵ denotes additional
problem-dependent parameters. We refer to g as an uncertainty objective. We sometimes omit the
parameters f,p and d to reduce clutter and introduce specific parameters in ϵ as the need arises. The
first examples of such uncertainty objectives are the stochastic optimization (SO) (Toscano-Palmerin
& Frazier, 2022) and robust optimization (RO) (Bogunovic et al., 2018) objectives:

gSO(x) := E
c∼p

[f(x, c)] = p⊤f(x), gRO(x) := min
c∈C

f(x, c) (1)

where f(x) := (f(x, c(i)))ni=1 ∈ Rn. Throughout this work, we use bold symbols to represent
vectors, and bold symbols followed by (x) to indicate a vector in Rn constructed by applying a
function to each of (x, c(1)), (x, c(2)), ..., (x, c(n)). While the SO objective is a straightforward
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way to handle contextual uncertainty, it has two shortcomings: first, its correctness is dependent
on p being the true distribution from which c is sampled; second, the expected value says nothing
about how bad individual realizations of f(x, c) may be, a fact which risk-averse learners may be
dissatisfied with. RO is more risk-averse but may be too pessimistic as it does not incorporate any
knowledge about the distribution of c and simply assumes that the worst possible value is attained.
Distributionally robust optimization (DRO) is a generalization that allows an ‘interpolation’ between
these two objectives (Kirschner et al., 2020; Nguyen et al., 2020; Tay et al., 2022):

gDRO(x; ϵ) = v(x, ϵ) := min
q∈U(p,d,ϵ)

q⊤f(x) (2)

U(p, d, ϵ) := {q ∈ Rn : q ⪰ 0,1⊤q = 1, d(p,q) ≤ ϵ}

where the margin ϵ ≥ 0, and U(p, d, ϵ) is the uncertainty set and contains elements that are valid
probability distributions ϵ-close to the reference distribution p in terms of d. Intuitively, DRO con-
siders how poor the expected value may be if an adversary were allowed to shift the context dis-
tribution a distance ϵ away from p. In this work, we consider only distances d such that d(p, ·) is
a convex function of q. The uncertainty set constraints are then convex, and v(x, ϵ) is the optimal
value of a convex optimization problem. v(x, ϵ), also termed the worst-case expected value (under
ϵ-distribution shift), is non-increasing in ϵ, and is itself a convex function of ϵ (Boyd & Vanden-
berghe, 2004, Sec. 5.6). SO is recovered when ϵ = 0, and RO is recovered when ϵ ≥ ϵ̂x := d(p, ex)
where ex is a probability vector with zeroes everywhere except at an index in argmini f(x)i. The
learner thus chooses their level of risk aversion via ϵ. Fig. 1 illustrates v(x, ϵ) as a function of ϵ and
the relationship between SO, RO and DRO.

3 A GENERAL FRAMEWORK WITH FIRST DERIVATIVES

We have seen thus far that v(x, ϵ) encapsulates the uncertainty objectives SO, RO, and DRO de-
pending on the value of ϵ. It turns out that, by including information about the first derivatives of
v(x, ϵ) with respect to ϵ, we can include even more uncertainty objectives that have been studied in
the BOCU literature. Define the right derivative of v(x, ϵ) at ϵ as

δ(x, ϵ) := lim
h↓0

v(x, ϵ+ h)− v(x, ϵ)

h
. (3)

Since v(x, ϵ) is a convex function of ϵ with domain [0,∞), δ(x, ϵ) exists and is finite everywhere
on the open interval (0,∞) (Rockafellar, 1997, Thm. 23.4), and is non-positive since v(x, ϵ) is
non-increasing in ϵ. Special care must be taken to ensure that δ(x, 0) is finite1 with a particular
choice of distribution distance d; distribution distances that fulfill this condition include the total
variation (TV) distance, maximum mean discrepancy (MMD), and the Wasserstein metric, among
others (Gotoh et al., 2020; Staib & Jegelka, 2019). When δ(x, 0) is finite, it is the worst-case
sensitivity (WCS) uncertainty objective (Gotoh et al., 2020; Tay et al., 2022):

gWCS(x) := δ(x, 0) . (4)

The worst-case sensitivity may be considered an uncertainty objective as Gotoh et al. (2020) showed
that the worst-case sensitivity corresponds to different ‘notions of risk’ depending on d. For example,
when d is the TV distance, δ(x, 0) is the range maxi f(x)i − minj f(x)j (assuming p has non-
zero mass on the indices attaining the maximum and minimum); when d is the maximum mean
discrepancy (MMD), δ(x, 0) is a quantity closely related to the variance Vc∼p[f(x, c)] (Staib &
Jegelka, 2019); when d is a specific f -divergence, δ(x, 0) is linked to the conditional value-at-
risk (Nguyen et al., 2021a). Just as DRO may be interpreted as an interpolation between SO and
RO, in order to interpolate between the expected value (SO) and these notions of risk (WCS), a
learner may choose as their uncertainty objective a scalar combination of the expected value and
these notions of risk (Iwazaki et al., 2021), which we refer to as the mean-risk tradeoff (MR) with
tradeoff parameter β > 0:

gMR(x;β) := E
c∼p

[f(x, c)] + βδ(x, 0) . (5)

MR as a function of β is the linearization of v(x, ϵ) around ϵ = 0 (see Fig. 1). By the convexity of
v(x, ϵ) in ϵ, gMR(x;β) ≤ v(x, β) for all β ≥ 0.

1For example, δ(x, 0) = ∞ if d belongs to a particular family of smooth f -divergences (Gotoh et al., 2020).
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Table 1: Various uncertainty objectives studied in the literature, their expressions, and the parameters
required to recover them from our general uncertainty objective Equation 7. A bolded objective
indicates that all objectives indented under it are special cases.
Uncertainty objective Expression α β ϵ

Dist. robust opt. (DRO) (2) v(x, ϵ) := min
q∈U(p,d,ϵ)

E
c∼q

[f(x, c)] 1 0 [0,∞)

Stochastic opt. (SO) (1) E
c∼p

[f(x, c)] 1 0 0

Robust opt. (RO) (1) min
c∈C

f(x, c) 1 0 [ϵ̂x,∞)

Robust satisficing (RS) (6) max
k:k≤0

k s.t. ∀ϵ, v(x, ϵ) ≥ τx + kϵ 0 1 [0,∞)

Worst-case sensitivity (WCS) (4) δ(x, 0) := lim
h↓0

v(x, ϵ+ h)− v(x, ϵ)

h
0 1 0

Mean-risk tradeoff (MR) (5) E
c∼p

[f(x, c)] + βδ(x, 0) 1 [0,∞) 0

The uncertainty objectives WCS and MR only use the quantity δ(x, 0). A natural question arises:
are there uncertainty objectives that rely on δ(x, ϵ) for some ϵ > 0? Robust satisficing (Long et al.,
2023; Saday et al., 2023), a recently introduced concept in the operations research literature, is one
such objective:

gRS(x; τ) := max
k:k≤0

k s.t. ∀ϵ, v(x, ϵ) ≥ τ + kϵ (6)

where τ ≤ Ec∼p [f(x, c)], otherwise the constraint is violated at ϵ = 0 for all k. In robust satis-
ficing, the learner chooses the parameter τ that represents a ‘good enough’ expected value under
the reference distribution. The quantity gRS(x; τ), also known as the antifragility, is the maximum
non-positive slope such that the linear function τ + gRS(x; τ)ϵ lower bounds v(x, ϵ) for all ϵ ≥ 0.
The interpretation is as follows: the learner accepts some baseline expected value τ , and in the case
of distribution shift, accepts a decrease in the expected value proportional to the distance between
the reference and true distributions; the decision x that minimizes this decrease per unit distance is
considered most robust. Fig. 1 illustrates the relationship between τ , v(x, ϵ), and the robust satisfic-
ing objective (the gradient of the dotted line). The following proposition (proofs of all results are in
Appendix A) establishes the link between robust satisficing and the first derivatives of v(x, ϵ).
Proposition 3.1. Suppose the distribution distance d is such that δ(x, 0) is finite. Fix a τ ≤
minx∈X Ec∼p [f(x, c)]. For all x ∈ X , there exists an ϵx ≥ 0 such that gRS(x; τ) ∈ ∂v(x, ϵx)
where ∂v(x, ϵx) is the subdifferential of v(x, ϵ) at ϵx.

Conversely, fix an ϵ ≥ 0. For all x ∈ X , there exists a τx ≤ Ec∼p [f(x, c)] such that δ(x, ϵ) =
gRS(x; τx). In particular, gWCS(x) = δ(x, 0) = gRS (x;Ec∼p [f(x, c)]).

In other words, the robust satisficing objective and the subderivatives of v(x, ϵ) are closely related.
For a fixed τ , the robust satisficing objective is a subderivative of v(x, ϵ) at some value of ϵ = ϵx
(which may be different for each decision x); likewise, for a fixed ϵ, the right derivative at ϵ (which is
a subderivative) is the robust satisficing objective for some τ = τx (which again may be different for
each decision x). This close link suggests that the right derivative δ(x, ϵ) at values of ϵ other than 0
can also be considered uncertainty objectives. This aligns with intuition: the smaller the magnitude
of the (always non-positive) gradient at a certain value of ϵ, the smaller the potential decrease in
v(x, ϵ) at larger values of ϵ by the convexity of v(x, ϵ).

3.1 GENERAL UNCERTAINTY OBJECTIVE

The discussion thus far suggests that both v(x, ϵ) and δ(x, ϵ) are useful quantities in the study of BO
under contextual uncertainty. We incorporate both quantities and introduce the scaling parameters
α ≥ 0 and β ≥ 0 to obtain the general uncertainty objective

g(x;α, β, ϵ) = αv(x, ϵ) + βδ(x, ϵ) . (7)

Table 1 shows the values of parameters α, β and ϵ required to recover the uncertainty objectives
described in this work. With a suitable choice of parameters, g(x;α, β, ϵ) recovers all of them
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Figure 1: Diagram illustrating the convex function v(x, ϵ) for some decision x, and how the various
uncertainty objectives relate to the function. The values of DRO, SO, RO, and MR are their dots’
vertical coordinates, while the values of RS and WCS are the gradients of their dotted lines.

exactly with the exception of robust satisficing, which has the following caveat: from Prop. 3.1, with
a fixed choice of ϵ, g(x; 0, 1, ϵ) = δ(x, ϵ) = gRS(x; τx), which is the robust satisficing objective for
a possibly different value of τx for each decision x. A practitioner who wishes to optimize the robust
satisficing objective with the same τ for every decision x using our general objective must know a
priori the specific ϵx for each x that corresponds to τ . This is generally not possible since f is
assumed to be unknown. Nevertheless, optimizing g(x; 0, 1, ϵ) still corresponds to optimizing the
robust satisficing objective, only with a different τx for each x.

Our general objective also allows for the optimization of novel uncertainty objectives that have
not been explicitly studied so far. The learner is free to choose values of α, β and ϵ that do not
recover previously studied uncertainty objectives and instead result in an uncertainty objective with
alternative interpretations as desired. For example, choosing α, β, ϵ to all be greater than 0 results
in an uncertainty objective that favors decisions with large worst-case expected values under ϵ-
distribution shift (v(x, ϵ) term), and that also do not decrease in worst-case expected value too much
as ϵ increases (δ(x, ϵ) term). Such an objective would be similar to MR except that the objective
is calculated at values of ϵ other than 0, which more explicitly accounts for distribution shift. This
general uncertainty objective may also be used if the learner wishes to maximize an ‘interpolation’
of DRO and RS objectives with the level of interpolation decided by the relative values of α and
β. We observe experimentally (see Appendix B) that BO algorithms that maximize an objective
with α, β greater than 0 are also ‘robust’ to the choice of uncertainty objective in that they also have
relatively good performance under both DRO (α = 1, β = 0) and RS (α = 0, β = 1) objectives.

4 A GENERAL ALGORITHM

We present a general BO acquisition function based on Thompson sampling (Thompson, 1933;
Russo & Van Roy, 2014) that optimizes the general uncertainty objective Equation 7 for any valid
choices of α, β and ϵ, and is thus capable of optimizing any of the uncertainty objectives in the
BOCU literature covered in this work.

We first formalize the learning setting. We assume the unknown function f is sampled from a Gaus-
sian process (GP) with mean 0 and kernel (covariance function) k(x, c;x′, c′), with k(x, c;x, c) =
1. At each iteration t, the learner chooses a decision xt ∈ X while ct ∈ C is sampled from p∗

t , and
the learner receives a noisy observation yt = f(xt, ct) + ξt, where each ξt is i.i.d. noise sampled
from the Gaussian distribution N (0, σ2). We assume that the sequence of true distributions {p∗

t }Tt=1
is fixed but unknown to the learner. Under these assumptions, the posterior mean and variance of f
at a decision-context pair (x, c) at the start of iteration t (having had t− 1 observations) are

µt−1(x, c) = kt−1(x, c)
⊤(Kt−1 + σ2I)−1yt−1

σ2
t−1(x, c) = k(x, c;x, c)− kt−1(x, c)

⊤(Kt−1 + σ2I)−1kt−1(x, c) (8)
where kt−1,i(x, c) := k(x, c;xi, ci), and Kt−1,ij := k(xi, ci;xj , cj). Finally, the learner has their
choice of uncertainty objective parameters (α, β, {ϵt}Tt=1) and reference distributions {pt}Tt=1.
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Algorithm 1 TS-BOCU
1: Input: GP with kernel k, maximum iteration T , uncertainty objective parameters

(α, β, {ϵt}Tt=1), reference distributions {pt}Tt=1
2: for iteration t = 1 to T do
3: Sample model f̃t from GP posterior given Dt−1

4: Select xt := argmaxx∈X g̃(x; f̃t,pt, α, β, ϵt)
5: Observe ct ∼ p∗

t
6: Observe yt = f(xt, ct) + ξt, ξt ∼ N (0, σ2)
7: Dt := {(xτ , cτ , yτ )}tτ=1
8: end for
9: return DT

The proposed acquisition, named TS-BOCU (Thompson sampling for BO under contextual un-
certainty), is described in Algorithm 1. As with all Thompson sampling-based algorithms, TS-
BOCU relies on a function f̃t sampled from the GP posterior at iteration t. The surrogate objective
g̃(x; f̃t,pt, α, β, ϵt) is the same as the general uncertainty objective Equation 7, except that the un-
known true function f is replaced with the known sampled function f̃t, and we make the dependence
on f̃t and pt explicit. g̃ can then be computed by computing v(x, ϵ) and δ(x, ϵ) (which relies on
two computations of v)2, and v in turn can be computed by solving the convex optimization problem
Equation 2. The learner chooses the decision xt that maximizes this surrogate objective.

4.1 THEORETICAL ANALYSIS

We analyze the T -period Bayesian cumulative regret (Russo & Van Roy, 2014) of TS-BOCU:

BayesRegret(T ) =
T∑

t=1

E [gt(x
∗
t )− gt(xt)]

where gt(x) := g(x; f,pt, α, β, ϵt) (making the dependence on f and pt explicit), x∗
t :=

argmaxx∈X gt(x), and the expectation is taken over the prior distribution of the underlying
function f and the random outcomes of the experiment formalized as the history HT :=
(x1, c1, y1, ...,xT−1, cT−1, yT−1,xT , cT ). Our main result bounds the Bayesian regret incurred
by TS-BOCU and provides the conditions under which the algorithm achieves a sublinear regret.
Theorem 4.1. If the following assumptions hold:

1. The kernel k is the squared exponential kernel or a Matérn kernel with ν > 2;
2. the distribution distance d is the total variation (TV) distance;
3. for all t ≤ T , the true distribution p∗

t satisfies the following:
(a) d(pt,p

∗
t ) ≤ ϵt;

(b) for all c ∈ [|C|], p∗t,c ≥ pmin > 0,

then TS-BOCU (Algorithm 1) incurs a T -period Bayesian regret bounded by

BayesRegret(T ) ≤ O
(
α
(√

T (A1γT +A2) ln (T 2τmt n) +

T∑
t=1

(E [Bϵt])
)

+ β
(√

ln (T 2τmt n) +
√
lnn+ p−1

min

√
T (A1γT +A2) ln (T 2τmt n)

))
(9)

where γT := max{(xt,ct)}T
t=1

(1/2) ln |I + σ−2KT | is the maximum information gain, B :=

maxx∈X ∥f(x)∥, τt := t2mab, A1 := ln(1 + σ−2)−1, A2 := 1
6Lm

2abπ5/2, and L, a and b are
kernel-dependent constants.

The proof of Theorem 4.1 adapts proof techniques from Russo & Van Roy (2014) for bounding the
Bayesian regret of Thompson sampling algorithms and from Kirschner et al. (2020) for the extension

2In practice, to approximate taking the limit h ↓ 0 in Equation 3 when computing δ(x, ϵ), we choose a h as
small as possible while still retaining numerical stability.
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to the DRBO setting. Our analysis focuses on bounding the regret incurred due to the new derivative
term in the general uncertainty objective Equation 7. The proof relies on an upper confidence bound
sequence Ut of the form

Ut(x) := αv̂t(x) + βδ̂t(x) (10)

v̂t(x) := min
q∈U(pt,d,ϵt)

q⊤ut(x)

δ̂t(x) := max
ℓt(x)⪯φ⪯ut(x)

lim
h→0

1

h

(
min

q∈U(pt,d,ϵt+h)
q⊤φ− min

q∈U(pt,d,ϵt)
q⊤φ

)
(11)

ut(x) := µt−1(x) +
√
βtσt−1(x), ℓt(x) := µt−1(x)−

√
βtσt−1(x)

We verify that Ut is well-defined under the assumptions of Theorem. 4.1:

Proposition 4.2. If the distribution distance d is the total variation (TV) distance, then the derivative
upper confidence bound δ̂t(x) defined in Equation 11 exists.

Conditions for sublinear regret. The maximum information gain γT in Equation 9 is a kernel-
dependent quantity that is standard in BO regret bound analysis (Srinivas et al., 2010). As long
as γT < O(T ) (as is the case for the popular squared exponential kernel), all terms in the regret
bound are sublinear in T with the possible exception of the

∑T
t=1 E [Bϵt] term. This term also

appears in the analysis of Kirschner et al. (2020) for DRBO under the ‘general’ setting, and can
be guaranteed to be sublinear with additional assumptions. For example (under the ‘data-driven’
setting of Kirschner et al. (2020)), if p∗

t is a constant p∗ for all t, ϵt = d(pt,p
∗), and pt is the

maximum likelihood estimate of p∗ given {ci}t−1
i=1 , then pt → p∗ as t → ∞ with probability

1 (Rao, 1957), implying that ϵt → 0 with probability 1 and thus that
∑T

t=1 E [ϵt] is sublinear. B is
a function of f that can be bound as a constant that does not depend on T , and is a random variable
independent of the sequence {ϵt} generated in the aforementioned manner. We thus conclude that∑T

t=1 E [Bϵt] = E [B]
∑T

t=1 E [ϵt] is sublinear under the additional assumptions above.

Necessity of assumptions. Under the assumption that the kernel k is the squared exponen-
tial kernel or a Matérn kernel with ν > 2, the derivatives of GP sample paths f satisfy
P(sup(x,c)∈X×C |

∂f(x,c)
∂xi

| > J) ≤ ae−(J/b)2 for all i ∈ {1, ...,m} and kernel-dependent constants
a and b (Ghosal & Roy, 2006). This high probability bound is a standard requirement (Kandasamy
et al., 2018; Srinivas et al., 2010) that enables analysis of continuous decision sets via an iterative
discretization argument. The assumption that d is the TV distance aids analysis considerably as TV
admits a closed form for the optimal solution of the convex optimization problem Equation 2 (see
Lemma A.11 in Appendix A.11). The derivative term presents significant challenges: the limit term
causes difficulties without a closed form, and the inner term is a difference of worst-case expected
values which, informally speaking, ‘erases’ the dependency on the uncertainty set and precludes
bounding it in terms of the margin ϵ as was done for the v(x, ϵ) term. The proof of Theorem 4.1
that bounds the regret incurred due to the derivative term thus relies on the closed form induced by
TV several times. Also, for Proposition 4.2, showing the existence of δ̂t(x) for general d involves
proving the uniform convergence of the limit term, a task that is again aided by the closed form
induced by TV. Despite this assumption, we show empirically in Sec. 5 that TS-BOCU displays the
sublinear property even when d is the MMD. We thus conjecture that a similar result exists for some
general class of distances and leave the proof of such an extended result to future work.

Thompson sampling enables tractability. Interestingly, the general objective can be optimized eas-
ily with Thompson sampling, whereas it is unclear whether there are UCB-based acquisitions (Srini-
vas et al., 2010; Chowdhury & Gopalan, 2017; Kirschner et al., 2020) that are both tractable and the-
oretically justified. The upper confidence bound sequence Ut in Equation 10 is difficult to compute
as δ̂t is the solution of a bilevel optimization problem. UCB-based acquisitions require an explicit
computation of the upper confidence bound, whereas Thompson sampling does not require it and
only requires the ability to sample from the posterior. In fact, the Bayesian regret of Thompson
sampling holds simultaneously for all possible choices of upper confidence bound sequence Ut and
thus performs as well as the best choice of Ut would predict (Russo & Van Roy, 2014). The BOCU
framework presented in this work is an interesting example of a family of BO problems in which
Thompson sampling is significantly easier to run than its UCB-based counterparts.

7
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Figure 2: Mean and one standard error (over 10 RNG seeds) of cumulative regret (lower is bet-
ter) incurred against iterations by the acquisitions Random, UCB-SO, UCB-RO, UCB-BOCU-1,
UCB-BOCU-2, and TS-BOCU with varying objective functions, uncertainty objectives, and dis-
tribution distances. UCB-BOCU-2 does not appear in the DRO experiments as it is equivalent to
UCB-BOCU-1 when β = 0.

5 EXPERIMENTS

Experimental settings. We evaluate our algorithm with 4 different underlying functions f : 1)
samples from a GP prior; 2) the Hartmann 3-D function; 3) a plant growth simulator constructed

8
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from real-world data where the decision and context variables are the pH and concentration of NH3

of the nutrient medium respectively, and the output is the maximum leaf area of a plant (Tay et al.,
2022); and 4) a COVID-19 epidemic model from Frazier et al. (2022) where the decision variables
are proportions of test kits allocated to 3 different sub-groups, the context variables are the initial
number of cases within these sub-groups and the transmission probability, and the output is the
number of resultant cases. The decision and context variables for the GP samples and Hartmann
function are decided from among their input variables arbitrarily. We choose 3 special cases of our
general uncertainty objective: 1) the DRO objective with α = 1, β = 0; 2) the WCS objective
with α = 0, β = 1; and 3) a general objective (termed GEN) not studied in previous work with
α = 1, β = 1. We use TV and MMD as the distribution distances d. We use a Gaussian and a
uniform distribution for the reference and true distributions respectively, and keep them constant for
all iterations. For DRO and GEN, we set the margin ϵ to be the distance between the reference and
true distributions; for WCS, ϵ = 0 as per its definition. Refer to Appendix C.1 for a full description
of the experimental settings.

Baselines. To the best of our knowledge, our algorithm is the only algorithm in the literature de-
signed to handle all 3 uncertainty objectives tested; we are not aware of any BO works that handle
the WCS (for TV and MMD) and GEN objectives within the BOCU learning procedure. Never-
theless, we empirically compare our algorithm’s ability to solve general uncertainty objectives to
that of previous algorithms (and naive extensions) in the BOCU literature. We include a simple
random acquisition baseline, UCB algorithms for SO and RO as used in Kirschner et al. (2020),
and two naive extensions of the UCB algorithm for DRBO from Kirschner et al. (2020), named
UCB-BOCU-1 and UCB-BOCU-2, that incorporate tractable but theoretically unsupported deriva-
tive ‘upper bound’ terms. When β = 0, these algorithms revert to the original DRBO algorithm.
Refer to Appendix C.2 for a precise description of UCB-BOCU-1 and UCB-BOCU-2.

Analysis. The cumulative regret plots for each experimental setting are shown in Fig. 2. We observe
that TS-BOCU consistently demonstrates the sublinear property across all experimental settings and
achieves a low cumulative regret relative to the baselines in most settings. Random and SO tend
to struggle on most settings while RO has inconsistent performance. The UCB-BOCU variants
perform well on the DRO setting as expected since they were designed for that setting. However,
UCB-BOCU-1 does not perform well on any setting where β = 1 and the uncertainty objective in-
cludes the derivative term. UCB-BOCU-2 performs better in these settings, but uses a theoretically
unsupported heuristic. TS-BOCU enjoys both theoretical guarantees and good empirical perfor-
mance. Finally, we observe that TS-BOCU performs well when MMD is used even though the
theory was proved only for TV, which lends credence to the belief that the theory can be extended
to a more general class of distribution distances. The code for the experiments may be found at
https://github.com/sebtsh/unified-framework-BOCU.

6 CONCLUSION

This work proposed the BOCU framework, a natural extension of DRBO that unifies several un-
certainty objectives studied in the BO literature, and developed a general algorithm that optimizes
any uncertainty objective within the framework and whose performance is both theoretically and
empirically supported. We believe our work lays the foundations for several directions of future
work: one interesting question is whether the assumptions of Theorem 4.1 can be relaxed, such
as by considering a more general class of distribution distances. Furthermore, as described in the
related work section, there are still many disparate BO lines of research such as BO with uncertain
inputs (Oliveira et al., 2019) and causal BO Aglietti et al. (2020) that do not fit within the BOCU
framework. It is an open question as to whether there are even more general yet still theoretically
interesting frameworks that subsume these other settings.

REPRODUCIBILITY STATEMENT

We follow standard practices to ensure the reproducibility of our work. The source code for the
experiments (along with all datasets) is provided in the supplementary material (available online at
https://github.com/sebtsh/unified-framework-BOCU) for full reproducibility of
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the experimental results. All algorithms are fully described, and all theoretical results have clearly
stated assumptions and full proofs in the appendix.
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A PROOFS

A.1 PROOF OF PROPOSITION 3.1

Proposition 3.1. Suppose the distribution distance d is such that δ(x, 0) is finite. Fix a τ ≤
minx∈X Ec∼p [f(x, c)]. For all x ∈ X , there exists an ϵx ≥ 0 such that

gRS(x; τ) ∈ ∂v(x, ϵx)

where ∂v(x, ϵx) is the subdifferential of v(x, ϵ) at ϵx.

Conversely, fix an ϵ ≥ 0. For all x ∈ X , there exists a τx ≤ Ec∼p [f(x, c)] such that

δ(x, ϵ) = gRS(x; τx) ;

in particular,

gWCS(x) = δ(x, 0) = gRS

(
x; E

c∼p
[f(x, c)]

)
. (12)

Proof. Part 1:

For the first part of the proposition, the subdifferential ∂v(x, ϵx) is defined as

∂v(x, ϵx) := {c ∈ R : ∀ϵ′ ≥ 0, v(x, ϵ′) ≥ v(x, ϵx) + c(ϵ′ − ϵx)} ,

and we will show that gRS(x; τ) is in this set for some ϵx.

Let k = gRS(x; τ), which is to say that k is the largest non-positive real number such that the
following inequality holds for all ϵ ≥ 0:

v(x, ϵ) ≥ τ + kϵ . (13)

If k = 0, then k is in ∂v(x, ϵ̂x) since δ(x, ϵ̂x) ∈ ∂v(x, ϵ̂x) and δ(x, ϵ̂x) = 0.

If k < 0, we first show that this inequality holds with equality for at least one value of ϵ. As a
proof by contradiction, suppose not, i.e., v(x, ϵ) > τ + kϵ for all ϵ ≥ 0. Then, the gap b(ϵ) :=
v(x, ϵ)− τ − kϵ > 0 for all ϵ ≥ 0.

b(ϵ) is a continuous function on the interval [0, ϵ̂x] by the following argument: Since v(x, ϵ) is a
convex function of ϵ with domain [0,∞), it is continuous everywhere on the open interval (0,∞).
Since the proposition assumes that δ(x, 0) is finite, v(x, ϵ) is right-differentiable at ϵ = 0 and is thus
right-continuous at ϵ = 0. v(x, ϵ) is thus a continuous function on the interval [0, ϵ̂x], and thus so is
b(ϵ).

Since b(ϵ) is continuous on [0, ϵ̂x], by the extreme value theorem, c := minϵ∈[0,ϵ̂x] b(ϵ) > 0 exists.
c is the smallest gap between v(x, ϵ) and τ + kϵ on the interval [0, ϵ̂x]. Now choose

k′ := k +min

(
k

2
,
c

ϵ̂x

)
.

k′ > k and, since k < 0, k′ ≤ k/2 < 0. Furthermore, for all ϵ ∈ [0, ϵ̂x],

τ + k′ϵ = τ + kϵ+min

(
k

2
,
c

ϵ̂x

)
ϵ

≤ τ + kϵ+ c
ϵ

ϵ̂x
≤ τ + kϵ+ c

≤ v(x, ϵ) .

Note that, for ϵ > ϵ̂x, v(x, ϵ) = v(x, ϵ̂x), and τ+k′ϵ is decreasing in ϵ. We therefore conclude that k′
satisfies the required inequality constraint Equation 13 for all ϵ > 0, which leads to a contradiction
since 0 < k′ < k but k was defined to be the largest valid number. We therefore conclude that
Equation 13 holds with equality for at least one value of ϵ.

Let ϵx be this value of ϵ that satisfies Equation 13 with equality. For all ϵ ≥ 0, τ+kϵ can be rewritten
as

τ + kϵ = v(x, ϵx) + k(ϵ− ϵx)
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Since τ + kϵ ≤ v(x, ϵ) for all ϵ ≥ 0, we conclude that k is in ∂v(x, ϵx) which completes the proof
of the first part of the proposition.

Part 2:

For the second part of the proposition, with a fixed ϵ ≥ 0, define the linear function of ϵ′ ≥ 0

a(ϵ′) := v(x, ϵ) + δ(x, ϵ)(ϵ′ − ϵ) .

By the convexity of v(x, ϵ), a(ϵ′) ≤ v(x, ϵ′) for all ϵ′ ≥ 0. In particular,
τx := a(0) ≤ v(x, 0) = E

c∼p
[f(x, c)]

as desired. Observe that a(ϵ′) can be rewritten in terms of τx:
a(ϵ′) = τx + δ(x, ϵ)ϵ′ .

To show that δ(x, ϵ) = gRS(x; τx), it remains to show that there is no 0 ≥ k > δ(x, ϵ) such that
v(x, ϵ′) ≥ τx + kϵ′ for all ϵ′ ≥ 0. Let k = δ(x, ϵ) + γ for some γ > 0. If ϵ > 0,

τx + kϵ = τx + (δ(x, ϵ) + γ)ϵ

= a(ϵ) + γϵ

= v(x, ϵ) + γϵ

> v(x, ϵ)

as desired. If ϵ = 0, first observe that, by definition of δ(x, 0),
v(x, ϵ′)− v(x, 0)

ϵ′
→ δ(x, 0) as ϵ′ ↓ 0.

Thus, there must be some ϵ′ > 0 such that
v(x, ϵ′)− v(x, 0)

ϵ′
< δ(x, 0) + γ .

Rearranging,
v(x, ϵ′)− v(x, 0) < (δ(x, 0) + γ)ϵ′

v(x, ϵ′) < v(x, 0) + (δ(x, 0) + γ)ϵ′

v(x, ϵ′) < τx + kϵ′

as desired. To show Equation 12, choose ϵ = 0 to obtain τx = v(x, 0) = Ec∼p [f(x, c)], which
completes the proof.

A.2 PROOF OF THEOREM 4.1

Theorem 4.1. If the following assumptions hold:

1. The kernel k is the squared exponential kernel or a Matérn kernel with ν > 2;

2. the distribution distance d is the total variation (TV) distance;

3. for all t ≤ T , the true distribution p∗
t satisfies the following:

(a) d(pt,p
∗
t ) ≤ ϵt;

(b) for all c ∈ [|C|], p∗t,c ≥ pmin > 0,

then TS-BOCU (Algorithm 1) incurs a T -period Bayesian regret bounded by

BayesRegret(T ) ≤ O

(
α
(√

T (A1γT +A2) ln (T 2τmt |C|) +
T∑

t=1

(E [Bϵt])
)

+ β
(√

ln (T 2τmt |C|) +
√
ln |C|+ p−1

min

√
T (A1γT +A2) ln (T 2τmt |C|)

))
(14)

where γT := max{(xt,ct)}T
t=1

(1/2) ln |I + σ−2KT | is the maximum information gain, B :=

maxx∈X ∥f(x)∥, τt := t2mab, A1 := ln(1 + σ−2)−1, A2 := 1
6Lm

2abπ5/2, and L, a and b are
kernel-dependent constants.
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Proof. Under the assumption that the kernel k is the squared exponential kernel or a Matérn kernel
with ν > 2, GP sample paths f satisfy the high probability bound P(sup(x,c)∈X×C |

∂f(x,c)
∂xi

| > J) ≤
ae−(J/b)2 for all i ∈ {1, ...,m} for some kernel-dependent constants a and b (Ghosal & Roy, 2006).

To enable the analysis of a continuous, infinite decision set X ⊂ Rm, we adopt the iterative dis-
cretization method first developed by Srinivas et al. (2010) and refined for Thompson sampling
by Kandasamy et al. (2018). The general idea is to use an increasingly fine sequence of discretiza-
tions of X and show that, due to the assumed high probability bound on the GP sample paths, a
decision x and its closest neighbour in the t-th discretization [x]t share very similar function values.

Recall that X is a compact and convex subset of Rm; for simplicity and without loss of generality,
in this proof, we assume X is a subset of the [0, 1]m hypercube. Let νt be the discretization of the
[0, 1]m hypercube at iteration t with τt := t2mab

√
π equally spaced decisions along each dimension.

Define
X̃t := X ∩ νt ,

such that |X̃t| ≤ τmt . [x]t is then defined as [x]t := argminx′∈X̃t
∥x− x′∥2. Note that

∥x− [x]t∥2 ≤ ∥x− [x]t∥1 ≤ m/τt for all x ∈ X .

In this proof, to reduce clutter, we define (making the dependence on ϵt, f,pt, d explicit)

vt(x) := v(x, ϵt; f,pt, d)

δt(x) := δ(x, ϵt; f,pt, d) .

The proof relies on an upper confidence bound sequence Ut of the form

Ut(x) := αv̂t(x) + βδ̂t(x)

v̂t(x) := inf
q∈U(pt,d,ϵt)

q⊤ut(x)

δ̂t(x) := max
ℓt(x)⪯φ⪯ut(x)

lim
h→0

1

h

(
inf

q∈U(pt,d,ϵt+h)
q⊤φ− inf

q∈U(pt,d,ϵt)
q⊤φ

)
ut(x) := µt−1(x) +

√
βtσt−1(x), ℓt(x) := µt−1(x)−

√
βtσt−1(x)

where {βt}Tt=1 is a sequence defined as βt = 2 ln((t2 + 1)|X̃t||C|(2π)−1/2).

The initial part of the proof adapts the method of Russo & Van Roy (2014) and Kandasamy et al.
(2018) in expressing the T -period Bayes regret of a Thompson sampling algorithm (accounting for
discretization) as:

BayesRegret(T ) =
T∑

t=1

E [gt(x
∗
t )− gt(xt)]

=

T∑
t=1

E [E [gt(x
∗
t )− gt(xt) |Ht]]

(i)
=

T∑
t=1

E[E[gt(x∗
t )− gt(xt) + Ut([xt]t)− Ut([x

∗
t ]t) + gt([x

∗
t ]t)− gt([x

∗
t ]t)

+ gt([xt]t)− gt([xt]t) |Ht]]

=

T∑
t=1

E
[
(Ut([xt]t)− gt([xt]t)) + (gt([x

∗
t ]t − Ut([x

∗
t ]t)) + (gt([xt]t)− gt(xt))

+ (gt(x
∗
t )− gt([x

∗
t ]t))

]
=

T∑
t=1

E
[
α(v̂t([xt]t)− vt([xt]t)) + β(δ̂t([xt]t)− δt([xt]t))

+ α(vt([x
∗
t ]t)− v̂t([x

∗
t ]t)) + β(δt([x

∗
t ]t)− δ̂t([x

∗
t ]t))

+ α(vt([xt]t)− vt(xt)) + β(δt([xt]t)− δt(xt))
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+ α(vt([x
∗
t ]t)− vt(x

∗
t )) + β(δt([x

∗
t ]t)− δt(x

∗
t ))
]

=

T∑
t=1

α (E [v̂t([xt]t)− vt([xt]t)] + E [vt([x
∗
t ]t)− v̂t([x

∗
t ]t)])︸ ︷︷ ︸

D1

+ β
(
E
[
δ̂t([xt]t)− δt([xt]t)

]
+ E

[
δt([x

∗
t ]t)− δ̂t([x

∗
t ]t)
])

︸ ︷︷ ︸
D2

+ α (E [vt([xt]t)− vt(xt)] + E [vt([x
∗
t ]t)− vt(x

∗
t )])︸ ︷︷ ︸

D3

+ β (E [δt([xt]t)− δt(xt)] + E [δt([x
∗
t ]t)− δt(x

∗
t )])︸ ︷︷ ︸

D4

where (i) follows since, conditioned on the history Ht, Ut is deterministic and xt and x∗
t are identi-

cally distributed due to the manner in which each xt is chosen (Thompson sampling), therefore [xt]
and [x∗

t ] are identically distributed as well.

Applications of Lemma A.1 to bound D1 (DRO objective regret), Lemma A.3 to bound D2 (DRO
derivative regret), Lemma A.6 to bound D3 (DRO objective discretization error), and Lemma A.7
to bound D4 (DRO derivative discretization error) bound the terms in the sum separately to arrive at

BayesRegret(T ) ≤ αO

(√
T (A1γT +A2) ln

(
T 2|X̃t||C|

)
+

T∑
t=1

E [Bϵt]

)

+ βO

(
p−1

min

√
T (A1γT +A2) ln

(
T 2|X̃t||C|

)
+

√
ln
(
T 2|X̃t||C|

)
+
√
ln |C|

)

+ α

(
π2

6
+

T∑
t=1

4E [Bϵt]

)
+

βπ2

3

≤ O

(
α
(√

T (A1γT +A2) ln (T 2τmt |C|) +
T∑

t=1

(E [Bϵt])
)

+ β
(√

ln (T 2τmt |C|) +
√

ln |C|+ p−1
min

√
T (A1γT +A2) ln (T 2τmt |C|)

))
which completes the proof.

A.3 PROOF OF LEMMA A.1

Lemma A.1. If the following assumptions hold:

1. The kernel k is the squared exponential kernel or a Matérn kernel with ν > 2;

2. for all t ≤ T , the true distribution p∗
t satisfies d(pt,p

∗
t ) ≤ ϵt for all t ≤ T ,

then the sequence of decisions {xt}Tt=1 chosen by Algorithm 1 has a corresponding sequence of
discretized decisions {[xt]t}Tt=1 that satisfies

T∑
t=1

E [v̂t([xt]t)− vt([xt]t)] + E [vt([x
∗
t ]t)− v̂t([x

∗
t ]t)] ≤ O

(√
T (A1γT +A2) ln

(
T 2|X̃t||C|

)
+

T∑
t=1

E [Bϵt]

)
(15)

where vt(x) := v(x, ϵt; f,pt, d), A1 := ln(1+σ−2)−1, A2 := 1
6Lm

2abπ5/2, L, a and b are kernel-
dependent constants, and B is a complexity parameter that depends on distribution distance d and
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f . For example, B has the following specific forms for maximum mean discrepancy (MMD) and
total variation (TV):

B :=

{
maxx∈X ∥f(x)∥M−1 if d = MMD ,

maxx∈X ∥f(x)∥ if d = TV .

Proof. Define

qu
t := argmin

q∈U(pt,d,ϵt)

q⊤ut([xt]t)

qf
t := argmin

q∈U(pt,d,ϵt)

q⊤f([xt]t)

We first bound the sum of E [v̂t([xt]t)− vt([xt]t)] terms in Equation 15. The proof adapts the proof
techniques of of Kirschner et al. (2020) to the Thompson sampling algorithm.

T∑
t=1

E [v̂t([xt]t)− vt([xt]t)] =

T∑
t=1

E
[
qu
t
⊤ut([xt]t)− qf

t
⊤f([xt]t)

]
≤

T∑
t=1

E
[
p∗
t
⊤ut([xt]t)− qf

t
⊤f([xt]t)

]
=

T∑
t=1

E
[
p∗
t
⊤(ut([xt]t)− f([xt]t)) + (p∗

t − qf
t )

⊤f([xt]t)
]

(16)

We first focus on each E
[
p∗
t
⊤(ut([xt]t)− f([xt]t))

]
term. The following analysis repeatedly ap-

plies the law of total expectation and makes explicit the random variables with which the expecta-
tions are taken with respect to (recall that all expectations without explicit subscripts are taken with
respect to f and HT ).

E
[
p∗
t
⊤(ut([xt]t)− f([xt]t))

] (i)
= E

f,Ht\{ct}

[
p∗
t
⊤(ut([xt]t)− f([xt]t))

]
(17)

(ii)
= E

f,Ht\{ct}

[
E
ct

[ut([xt]t, ct)− f([xt]t, ct) | f,Ht \ {ct}]
]

= E
f,Ht

[ut([xt]t, ct)− f([xt]t, ct)]

= E
Ht

[
E
f
[ut([xt]t, ct)− f([xt]t, ct) |Ht]

]
(iii)
= E

Ht

[
ut([xt]t, ct)− E

f
[f([xt]t, ct) |Ht]

]
= E

Ht

[ut([xt]t, ct)− µt−1([xt]t, ct)]

= E
Ht

[√
βtσt−1([xt]t, ct)

]
= E

[√
βtσt−1([xt]t, ct)

]
(18)

where (i) follows since ut([xt]t) is a constant given all random variables in Ht except ct, and
f([xt]t) is a constant given f and xt; (ii) follows since ct ∼ p∗

t and ct is independent of f and
Ht \ {ct}; and (iii) follows since ut is a constant given Ht.

We refer to the proof of Theorem 4 in Tay et al. (2022) (Equation 81 onwards) to obtain

E
[
(p∗

t − qf
t )

⊤f([xt]t)
]
≤ 2E [Bϵt]

B :=

{
maxx∈X ∥f(x)∥M−1 if d = MMD ,

maxx∈X ∥f(x)∥ if d = TV .

17
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Substituting these into Equation 16, following Srinivas et al. (2010) and accounting for the dis-
cretization,

T∑
t=1

E [v̂t(xt)− vt(xt)] (19)

≤
T∑

t=1

E
[√

βtσt−1([xt]t, ct)
]
+ 2E [Bϵt] (20)

(i)

≤ E
[√

TβT

√∑T
t=1σ

2
t−1([xt]t, ct)

]
+ 2

T∑
t=1

E [Bϵt]

(ii)

≤ E
[√

TβT

√∑T
t=1(σ

2
t−1(xt, ct) +

4Lm
τt

)

]
+ 2

T∑
t=1

E [Bϵt]

= E

[√
TβT

√
2

3
Lm2abπ5/2 + σ2

∑T
t=1σ

−2σ2
t−1(xt, ct)

]
+ 2

T∑
t=1

E [Bϵt]

(iii)

≤ E

[√
TβT

√
2

3
Lm2abπ5/2 + ln(1 + σ−2)−1

∑T
t=1 ln(1 + σ−2σ2

t−1(xt, ct))

]
+ 2

T∑
t=1

E [Bϵt]

(iv)

≤

√
TβT

(
γT ln(1 + σ−2)−1 +

2

3
Lm2abπ5/2

)
+ 2

T∑
t=1

E [Bϵt] (21)

where (i) uses the Cauchy-Schwarz inequality; (ii) follows from Lemma A.9 for some kernel-
dependent constant L; (iii) follows since x/ ln(1 + x) ≥ 1 and is increasing for all x > 0 and
k(x, c;x, c) = 1, therefore σ−2σ2

t−1(xt, ct) ≤ σ−2 ln(1 + σ−2)−1 ln(1 + σ−2σ2
t−1(xt, ct)); and

(iv) follows from Lemma 5.3 in Srinivas et al. (2010) on bounding the sum of predictive variances
with the information gain of the selected points.

Remark A.2. Step (ii) of the above chain of inequalities is a necessary step that was omitted from
the proof of Theorem 11 in Kandasamy et al. (2018), in Equation 8 of their paper. The sum of
posterior variances of the discretized decisions {[xt]t}Tt=1 cannot be directly bound by the informa-
tion gain, since each [xt]t was not selected by the algorithm and are present only in the analysis.
The algorithm selects {xt}Tt=1, and thus Lemma A.9 is needed to bound the difference in posterior
variances.

We next bound the sum of E [vt([x
∗
t ]t)− v̂t([x

∗
t ]t)] terms in Equation 15 by adapting the proof of

Lemma 2 in Russo & Van Roy (2014). For any decision x ∈ X , re-define

qu
t := argmin

q∈U(pt,d,ϵt)

q⊤ut(x)

qf
t := argmin

q∈U(pt,d,ϵt)

q⊤f(x)

Considering the term at iteration t for any such x,

E [vt(x)− v̂t(x)] = E
[
qf
t
⊤f(x)− qu

t
⊤ut(x)

]
≤ E

[
qu
t
⊤(f(x)− ut(x))

]
= E

[∑
c∈C

qut,c(f(x, c)− ut(x, c))

]

≤ E

[∑
c∈C

qut,c(f(x, c)− ut(x, c))1[f(x, c)− ut(x, c) > 0]

]

≤ E

[∑
c∈C

(f(x, c)− ut(x, c))1[f(x, c)− ut(x, c) > 0]

]

18
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=
∑
c∈C

E [(f(x, c)− ut(x, c))1[f(x, c)− ut(x, c) > 0]]

=
∑
c∈C

E
Ht

[E [(f(x, c)− ut(x, c))1[f(x, c)− ut(x, c) > 0] |Ht]]

Conditioned on Ht, (f(x, c) − ut(x, c)) ∼ N (−
√
βtσt−1(x, c), σ

2
t−1(x, c)). Using the fact that,

if X ∼ N (µ, σ2) and µ ≤ 0, the expectation E [X1[X > 0]] =
∫∞
0

x
σ
√
2π

exp(−(x−µ)2

2σ2 ) dx ≤
σ√
2π

exp(−µ2

2σ2 ), we continue with

E [vt(x)− v̂t(x)] ≤
∑
c∈C

E
Ht

[
σt−1(x, c)√

2π
exp

(
−βt

2

)]
=
∑
c∈C

E
Ht

[
σt−1(x, c)

(t2 + 1)|X̃t||C|

]
≤ 1

(t2 + 1)|X̃t|

where the last inequality follows since k(x, c;x, c) = 1 by assumption, for all x ∈ X and c ∈ C.
The sum of E [vt([x

∗
t ]t)− v̂t([x

∗
t ]t)] terms can then be bounded with

T∑
t=1

E [vt([x
∗
t ]t)− v̂t([x

∗
t ]t)] ≤

T∑
t=1

∑
x∈X̃t

max(0,E [vt(x)− v̂t(x))]

≤
T∑

t=1

∑
x∈X̃t

1

(t2 + 1)|X̃t|

≤ 1 .

Finally, combining this result with Equation 21 and substituting in the value of βT , we arrive at the
result

T∑
t=1

E [v̂t(xt)− vt(xt)] + E [vt(x
∗
t )− v̂t(x

∗
t )]

≤

√
2T

(
γT ln(1 + σ−2)−1 +

2

3
Lm2abπ5/2

)
ln
(
T 2|X̃t||C|(2π)−1/2

)
+ 2

T∑
t=1

E [Bϵt] + 1

= O

(√
T (A1γT +A2) ln

(
T 2|X̃t||C|

)
+

T∑
t=1

E [Bϵt]

)

where A1 := ln(1 + σ−2)−1 and A2 := 2
3Lm

2abπ5/2, which completes the proof.

A.4 PROOF OF LEMMA A.3

Lemma A.3. If the assumptions of Theorem 4.1 hold, then the sequence of decisions {xt}Tt=1 chosen
by Algorithm 1 has a corresponding sequence of discretized decisions {[xt]t}Tt=1 that satisfies

T∑
t=1

E
[
δ̂t([xt]t)− δt([xt]t)

]
+ E

[
δt([x

∗
t ]t)− δ̂t([x

∗
t ]t)
]

≤ O

(
p−1

min

√
T (A1γT +A2) ln

(
T 2|X̃t||C|

)
+

√
ln
(
T 2|X̃t||C|

)
+
√

ln |C|

)
(22)

where δt(x) := δ(x, ϵt; f,pt, d), A1 := ln(1 + σ−2)−1, A2 := 1
6Lm

2abπ5/2, and L, a and b are
kernel-dependent constants.
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Proof. Define the following:

φt(x) := argmax
ℓt(x)⪯φ⪯ut(x)

lim
h→0

1

h

(
min

q∈U(pt,d,ϵt+h)
q⊤φ− min

q∈U(pt,d,ϵt)
q⊤φ

)
q̂h
t := argmin

q∈U(pt,d,ϵt+h)

q⊤φt([xt]t)

q̂t := argmin
q∈U(pt,d,ϵt)

q⊤φt([xt]t)

qh
t := argmin

q∈U(pt,d,ϵt+h)

q⊤f([xt]t)

qt := argmin
q∈U(pt,d,ϵt)

q⊤f([xt]t)

We begin with each δ̂t([xt]t)− δt([xt]t) term, leaving out the sum and expectation for now.

δ̂t([xt]t)− δt([xt]t) = lim
h→0

1

h

(
(q̂h

t − q̂t)
⊤φt([xt]t)− (qh

t − qt)
⊤f([xt]t)

)
(i)
= lim

h→0

1

h

(
h(ei− − ei+)

⊤φt([xt]t)− h(ej− − ej+)
⊤f([xt]t)

)
= (ei− − ei+)

⊤φt([xt]t)− (ej− − ej+)
⊤f([xt]t)

= φt([xt]t)i− − φt([xt]t)i+ − f([xt]t)j− + f([xt]t)j+

≤ φt([xt]t)j− − f([xt]t)j− + f([xt]t)j+ − φt([xt]t)i+

(ii)

≤ φt([xt]t)j− − f([xt]t)j− + f([xt]t)o − φt([xt]t)o

≤ (ut([xt]t)j− − f([xt]t)j−) + (f([xt]t)o − ℓt([xt]t)o)

where (i) follows from applying Lemma A.12 and defining i− := argmini φt([xt]t)i, i+ :=
argmaxi{φt([xt]t)i : q̂t,i > 0}, and similarly defining j− and j+ with respect to f([xt]t) and
qt; and (ii) follows from applying Lemma A.13 where o is some index in [n].

Putting back the expectation, taking steps similar to those between Equation 17 and Equation 18 in
the proof of Lemma A.1,

E
[
δ̂t([xt]t)− δt([xt]t)

]
≤ E

[
(ut([xt]t)j− − f([xt]t)j−) + (f([xt]t)o − ℓt([xt]t)o)

]
= E

Ht\{ct}

[(
ut([xt]t)j− − E

f

[
f([xt]t)j− |Ht \ {ct}

])

+

(
E
f
[f([xt]t)o |Ht \ {ct}]− ℓt([xt]t)o

)]
= E

Ht\{ct}

[(
ut([xt]t)j− − µt−1([xt]t)j−

)
+ (µt−1([xt]t)o − ℓt([xt]t)o)

]
= E

Ht\{ct}

[√
βtσt−1([xt]t)j− +

√
βtσt−1([xt]t)o

]
≤ 2 E

Ht\{ct}

√
βt

[
max
c∈[n]

σt−1([xt]t)c

]
(i)

≤ 2 E
Ht\{ct}

[√
βt ·

1

pmin
p∗
t
⊤σt−1([xt]t)

]
=

2

pmin
E

Ht\{ct}

[
E
ct

[√
βtσt−1([xt]t, ct) |Ht \ {ct}

]]
=

2

pmin
E
Ht

[√
βtσt−1([xt]t, ct)

]
=

2

pmin
E
[√

βtσt−1([xt]t, ct)
]

(23)

20



Published as a conference paper at ICLR 2024

where (i) follows since maxc∈[n] σt−1([xt]t)c ≤
∑n

c=1 σt−1([xt]t)c ≤ 1
pmin

p∗
t
⊤σt−1([xt]t), by

definition of pmin in Assumption 4(a).

Observe that the right hand side of Equation 23 is that of Equation 18 in the proof of Lemma A.1
multiplied by a 2

pmin
constant. Summing over t and following the steps from Equation 20 to Equa-

tion 21 in the proof of Lemma A.1 yields

T∑
t=1

E
[
δ̂t(xt)− δt(xt)

]
≤ 2

pmin

√
TβT

(
γT ln(1 + σ−2)−1 +

2

3
Lm2abπ5/2

)
. (24)

We now bound the sum of E
[
δt(x

∗
t )− δ̂t(x

∗
t )
]

terms in Equation 22. For any decision x ∈ X ,

E
[
(δt(x)− δ̂t(x))1[δt(x)− δ̂t(x) > 0]

] (i)

≤ E
[
−δ̂t(x)1[δt(x)− δ̂t(x) > 0]

]
= E

Ht

[
E
f

[
−δ̂t(x)1[δt(x)− δ̂t(x) > 0] |Ht

]]
(ii)
= E

Ht

[
(−δ̂t(x))E

f

[
1[δt(x)− δ̂t(x) > 0] |Ht

]]
(iii)

≤ E
Ht

[
(−δ̂t(x))

]( √
2π

(t2 + 1)|X̃t|

)
(iv)

≤
2
√
2π
(√

βt +
√
2 ln |C|

)
(t2 + 1)|X̃t|

where (i) follows since δt(x) ≤ 0; (ii) follows since δ̂t(x) is a constant given Ht \ {ct}; (iii)
follows from Lemma A.4; and (iv) follows from Lemma A.5.

The sum of E
[
δt([x

∗
t ]t)− δ̂t([x

∗
t ]t)
]

then becomes

T∑
t=1

E
[
δt([x

∗
t ]t)− δ̂t([x

∗
t ]t)
]
≤

T∑
t=1

E
[
(δt([x

∗
t ]t)− δ̂t([x

∗
t ]t))1[δt([x

∗
t ]t)− δ̂t([x

∗
t ]t) > 0]

]
≤

T∑
t=1

∑
x∈X̃t

E
[
(δt(x)− δ̂t(x))1[δt(x)− δ̂t(x) > 0]

]

≤
T∑

t=1

∑
x∈X̃t

2
√
2π
(√

βt +
√
2 ln |C|

)
(t2 + 1)|X̃t|

≤ 2
√
2π
(√

βT +
√
2 ln |C|

)
.

Combining this result with Equation 24 and substituting in the value of βT yields

T∑
t=1

E
[
δ̂t([xt]t)− δt([xt]t)

]
+ E

[
δt([x

∗
t ]t)− δ̂t([x

∗
t ]t)
]

≤ 2

pmin

√
TβT

(
γT ln(1 + σ−2)−1 +

1

6
Lm2abπ5/2

)
+ 2

√
2π
(√

βT +
√
2 ln |C|

)
= O

(
p−1

min

√
T (A1γT +A2) ln

(
T 2|X̃t||C|

)
+

√
ln
(
T 2|X̃t||C|

)
+
√

ln |C|

)

where A1 := ln(1 + σ−2)−1 and A2 := 1
6Lm

2abπ5/2, which completes the proof.

21



Published as a conference paper at ICLR 2024

A.5 PROOF OF LEMMA A.4

Lemma A.4. Under the assumptions and definitions of Lemma A.3, for any x ∈ X and t ≤ T ,

E
f

[
1[δt(x)− δ̂t(x) > 0] |Ht

]
≤

√
2π

(t2 + 1)|X̃t|
.

Proof. Let A be the event {δt(x)− δ̂t(x) > 0}, and B be the event {ℓt(x) ⪯ f(x) ⪯ ut(x)}c, i.e.,
the event that f(x) is outside the confidence bounds.

E
f

[
1[δt(x)− δ̂t(x) > 0] |Ht

]
= P(A |Ht)

(i)

≤ P(B |Ht)

= P

(⋃
c∈C

{{f(x, c) < ℓt(x, c)} ∪ {f(x, c) > ut(x, c)}} |Ht

)
(ii)

≤
∑
c∈C

P ({f(x, c) < ℓt(x, c)} |Ht)

+ P ({f(x, c) > ut(x, c)} |Ht)

(iii)

≤ 2|C|P (X < 0) (25)

where (i) follows since, by the definition of δ̂t(x), if f(x) is inside the confidence bounds, δt(x)−
δ̂t(x) ≤ 0, therefore Bc ⊆ Ac and A ⊆ B; (ii) applies the union bound; and (iii) follows by
defining the random variable X distributed as N (

√
βt, 1) and recognizing that, conditioned on Ht,

both f(x, c) − ℓt(x, c) and ut(x, c) − f(x, c) are distributed as N (
√
βtσt−1(x, c), σ

2
t−1(x, c)).

Using Φ to denote the distribution function of the standard normal random variable,

P (X < 0) = P
(
X −

√
βt < −

√
βt

)
= Φ

(
−
√

βt

)
(i)

≤ 1

2
e−

βt
2

=

√
2π

(t2 + 1)|X̃t||C|
where (i) follows from the Chernoff bound (Mastin & Jaillet, 2013). Combining this result with
Equation 25 completes the proof.

A.6 PROOF OF LEMMA A.5

Lemma A.5. Under the assumptions and definitions of Lemma A.3, for any x ∈ X and t ≤ T ,

E
Ht

[
−δ̂t(x)

]
≤ 2

(√
βt +

√
2 ln |C|

)
.

Proof. Define

q̂h := argmin
q∈U(pt,d,ϵt+h)

q⊤φt(x)

q̂ := argmin
q∈U(pt,d,ϵt)

q⊤φt(x) .

−δ̂t(x) = lim
h→0

1

h

(
(q̂− q̂h)⊤φt(x)

)
(i)
= φt(x)i+ − φt(x)i−
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≤ max
c∈C

φt(x, c)−min
c∈C

φt(x, c)

≤ max
c∈C

ut(x, c)−min
c∈C

ℓt(x, c)

= max
c∈C

(
µt−1(x, c) +

√
βtσt−1(x, c)

)
−min

c∈C

(
µt−1(x, c)−

√
βtσt−1(x, c)

)
(ii)

≤ 2
√
βt +max

c∈C
µt−1(x, c)−min

c∈C
µt−1(x, c)

where (i) follows from Lemma A.12; and (ii) follows since k(x, c;x, c) = 1 and hence the posterior
variance σt−1(x, c) ≤ 1 for all t, x and c. Taking expectations,

E
Ht

[
−δ̂t(x)

]
≤ 2
√
βt + E

Ht

[
max
c∈C

µt−1(x, c)

]
− E

Ht

[
min
c∈C

µt−1(x, c)

]
(26)

We now bound EHt
[maxc∈C µt−1(x, c)]. Recall the closed form of the posterior mean µt−1(x, c):

µt−1(x, c) = kt−1(x, c)
⊤(Kt−1 + σ2I)−1yt−1

= at−1(x, c)
⊤yt−1

where we have defined at−1(x, c) := (Kt−1+σ2I)−1kt−1(x, c). Now, denote the relevant random
variables in Ht as Xt−1 = {xτ}t−1

τ=1 and Ct−1 = {cτ}t−1
τ=1, with yt−1 having its usual definition.

E
Ht

[
max
c∈C

µt−1(x, c)

]
= E

Xt−1,Ct−1

[
E

yt−1

[
max
c∈C

at−1(x, c)
⊤yt−1 |Xt−1,Ct−1

]]
. (27)

Since yt−1 conditioned on Xt−1,Ct−1 is distributed as N (0,Kt−1 + σ2I), for each
c ∈ C, at−1(x, c)

⊤yt−1 is distributed as N (0,at−1(x, c)
⊤(Kt−1 + σ2I)at−1(x, c)) =

kt−1(x, c)
⊤(Kt−1 + σ2I)−1kt−1(x, c) = 1− σ2

t−1(x, c). Hence,

E
yt−1

[
max
c∈C

at−1(x, c)
⊤yt−1 |Xt−1,Ct−1

]
= E [Z] (28)

Z := max
c∈C

Ac

Ac ∼ N (0, 1− σ2
t−1(x, c)) .

The random variables Ac are in general not independent. However, the following method3 to upper
bound E [Z] does not assume independence. Letting b be some strictly positive constant,

ebE[Z]
(i)

≤ E
[
ebZ
]

= E
[
max
c∈C

ebAc

]
≤
∑
c∈C

E
[
ebAc

]
(ii)
= |C|e 1

2 b
2(1−σ2

t−1(x,c))
2

(iii)

≤ |C|e 1
2 b

2

where (i) applies Jensen’s inequality; (ii) uses the definition of the moment generating function of
a Gaussian random variable; and (iii) follows since the posterior variance 0 ≤ σ2

t−1(x, c) ≤ 1.
Setting b =

√
2 ln |C| and rearranging the terms, we arrive at

E [Z] ≤
√
2 ln |C| .

Combine this result with Equation 27 and Equation 28 to conclude that

E
Ht

[
max
c∈C

µt−1(x, c)

]
≤
√

2 ln |C| .

3due to Sivaraman at https://math.stackexchange.com/q/89147.
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Finally, observe that minc∈C µt−1(x, c) = maxc∈C −µt−1(x, c). Since yt−1 conditioned on
Xt−1,Ct−1 has mean 0, −µt−1(x, c) has the same distribution as µt−1(x, c). We use this fact
to conclude from Equation 26 with our previous result that

E
Ht

[
−δ̂t(x)

]
≤ 2

(√
βt +

√
2 ln |C|

)
which completes the proof.

A.7 PROOF OF LEMMA A.6

Lemma A.6. If the kernel k is the squared exponential kernel or a Matérn kernel with ν > 2, then
for all t ≤ T and x ∈ X ,

E [|vt(x)− vt([x]t)|] ≤ 2E [Bϵt] +
1

2t2
(29)

where B is a complexity parameter that depends on distribution distance d and f . For example, B
has the following specific forms for maximum mean discrepancy (MMD) and total variation (TV):

B :=

{
maxx∈X ∥f(x)∥M−1 if d = MMD ,

maxx∈X ∥f(x)∥ if d = TV .

Proof. For this proof, define

q1 := argmin
q∈U(pt,d,ϵt)

q⊤f(x)

q2 := argmin
q∈U(pt,d,ϵt)

q⊤f([x]t)

E [|vt(x)− vt([x]t)|] = E
[∣∣q⊤

1 f(x)− q⊤
2 f([x]t)

∣∣]
= E

[∣∣(q1 − q2)
⊤f(x) + q⊤

2 (f(x)− f([x]t))
∣∣]

≤ E
[∣∣(q1 − q2)

⊤f(x)
∣∣+ ∣∣q⊤

2 (f(x)− f([x]t))
∣∣]

(i)

≤ 2E [Bϵt] + E
[∣∣q⊤

2 (f(x)− f([x]t))
∣∣]

(ii)

≤ 2E [Bϵt] +
1

2t2

where (i) follows the proof of Theorem 4 in Tay et al. (2022) (Equation 81 onwards) since q1 and
q2 are at most 2ϵt distance from each other via the triangular inequality with pt; and (ii) follows
from Lemma A.8, which completes the proof.

A.8 PROOF OF LEMMA A.7

Lemma A.7. If the following assumptions hold:

1. The kernel k is the squared exponential kernel or a Matérn kernel with ν > 2;

2. the distribution distance d is the total variation (TV) distance,

then for all t ≤ T and x ∈ X ,

E [|δt(x)− δt([x]t)|] ≤
1

t2
. (30)

Proof. For this proof, define

qh
1 := argmin

q∈U(pt,d,ϵt+h)

q⊤f(x)

q1 := argmin
q∈U(pt,d,ϵt)

q⊤f(x)
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qh
2 := argmin

q∈U(pt,d,ϵt+h)

q⊤f([x]t)

q2 := argmin
q∈U(pt,d,ϵt)

q⊤f([x]t)

E [|δt(x)− δt([x]t)|] = E
[∣∣∣∣ limh→0

1

h

(
(qh

1 − q1)
⊤f(x)− (qh

2 − q2)
⊤f([x]t)

)∣∣∣∣]
(i)
= E

[∣∣∣∣ limh→0

1

h

(
h(ei− − ei+)

⊤f(x)− h(ej− − ej+)
⊤f([x]t)

)∣∣∣∣]
= E

[∣∣(ei− − ei+)
⊤f(x)− (ej− − ej+)

⊤f([x]t)
∣∣]

= E
[∣∣f(x)i− − f(x)i+ − f([x]t)j− + f([x]t)j+

∣∣]
≤ E

[∣∣f(x)j− − f([x]t)j− + f([x]t)j+ − f(x)i+
∣∣]

(ii)

≤ E
[∣∣(f(x)j− − f([x]t)j−) + (f([x]t)o − f(x)o)

∣∣]
(iii)

≤ 1

t2

where (i) follows from applying Lemma A.12 and defining i− := argmini f(x)i, i+ :=
argmaxi{f(x)i : q1,i > 0}, and similarly defining j− and j+ with respect to f([x]t) and q2;
and (ii) follows from applying Lemma A.13 where o is some index in [n]; and (iii) follows from
applying Lemma A.8, which completes the proof.

A.9 PROOF OF LEMMA A.8

Lemma A.8. If the kernel k is the squared exponential kernel or a Matérn kernel with ν > 2, then
for all t ≤ T , x ∈ X and c ∈ C,

E [|f(x, c)− f([x]t, c)|] ≤
1

2t2
. (31)

Proof. Recall that, under the assumption that the kernel k is the squared exponential ker-
nel or a Matérn kernel with ν > 2, GP sample paths f satisfy the high probability bound
P(sup(x,c)∈X×C |

∂f(x,c)
∂xi

| > J) ≤ ae−(J/b)2 for all i ∈ {1, ...,m} for some kernel-dependent con-
stants a and b (Ghosal & Roy, 2006). The lemma then follows directly from the proof of Lemma 12
in Kandasamy et al. (2018), by choosing L in that proof to be supi=1,...,m sup(x,c)∈X×C |

∂f(x,c)
∂xi

|,
and noting that the presence of the context variable does not affect the ℓ1 norm since it is the same
in (x, c) and ([x]t, c).

A.10 PROOF OF LEMMA A.9

Lemma A.9. If the kernel k is the squared exponential kernel or a Matérn kernel with ν > 2, then
for all t ≤ T , x ∈ X and c ∈ C,∣∣σ2

t−1(x, c)− σ2
t−1([x]t, c)

∣∣ ≤ 4Lm

τt

where L is a kernel-dependent constant.

Proof. The proof relies on the following lemma developed in Shekhar & Javidi (2020) and re-stated
as in Li & Scarlett (2022):

Lemma A.10 (Shekhar & Javidi (2020), Proposition 1 and Remark 5). For any f in the RKHS
Hk associated with kernel k with RKHS norm ∥f∥Hk

less than Ψ, if the kernel k is the squared
exponential kernel or a Matérn kernel with ν > 2, and Ψ is constant, then f is guaranteed to be
Lipschitz continuous with some constant L depending only on the kernel parameters.
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We will first show that the terms making up the GP posterior covariance at any iteration t are in Hk

with RKHS norms bounded by fixed constants, as in the proof of Lemma F.2 in Vakili et al. (2022).
With the above lemma, this implies their Lipschitz continuity, which allows the discretization error
to be bounded.

To simplify notation, define the joint decision-context space Z := X ×C, and joint decision-context
vectors z ∈ Z , z = (x, c) for some x and c. The kernel k originally denoted k(x, c;x′, c′) can now
be simply denoted k(z, z′), and the kernel vectors and matrices as defined at the start of Sec. 4 can
be cast in terms of z similarly. The posterior variance at iteration t σ2

t−1(x, c) Equation 8 can now
be simply denoted σ2

t−1(z). Let [z]t denote ([x]t, c).

Define

q(z, ·) := v(z)⊤kt−1(·)
v(·) := (Kt−1 + σ2I)−1kt−1(·)

Note that σ2
t−1(z) = k(z, z)− q(z, z).

∥k(z, ·)∥Hk
=
√

⟨k(z, ·), k(z, ·)⟩Hk
=
√
k(z, z) = 1

by the reproducing property and the assumption that k(z, z) = 1 for all z.

∥q(z, ·)∥2Hk
=
〈
v(z)⊤kt−1(·),v(z)⊤kt−1(·)

〉
Hk

(i)
= v(z)⊤Kt−1v(z)

= v(z)⊤
(
Kt−1 + σ2I− σ2I

)
v(z)

= v(z)⊤
(
Kt−1 + σ2I

)
v(z)− v(z)⊤

(
σ2I
)
v(z)

= q(z, z)− σ2v(z)⊤v(z)

≤ q(z, z)

(ii)

≤ k(z, z) = 1

where (i) follows from the reproducing property, and (ii) follows since the GP posterior variance
σ2
t−1(z) could be negative if this inequality were not true for all z.

Since ∥k(z, ·)∥Hk
≤ 1 and ∥q(z, ·)∥Hk

≤ 1, by Lemma A.10, k(z, ·) and q(z, ·) are Lipschitz
continuous with some kernel-dependent constant L. Since z was arbitrarily chosen, k([z]t, ·) and
q([z]t, ·) are also L-Lipschitz continuous. Recall that the choice of discretization X̃t leads to
∥z− [z]t∥2 ≤ m

τt
. Using these facts,

|k(z, z)− k([z]t, [z]t)| ≤ |k(z, z)− k([z]t, z)|+
Lm

τt

≤ |k(z, z)− k(z, z)|+ 2Lm

τt

=
2Lm

τt
.

By the same argument, |q(z, z)− q([z]t, [z]t)| ≤ 2Lm
τt

. We thus conclude with∣∣σ2
t−1(z)− σ2

t−1([z]t)
∣∣ = |k(z, z)− q(z, z)− k([z]t, [z]t) + q([z]t, [z]t)|
≤ |k(z, z)− k([z]t, [z]t)|+ |q([z]t, [z]t)− q(z, z)|

≤ 4Lm

τt

which concludes the proof.

A.11 PROOF OF LEMMA A.11

Lemma A.11. Without loss of generality, suppose the entries of f ∈ Rn are ordered such that
f1 ≥ f2 ≥ ... ≥ fn. For a given reference probability distribution p and margin ϵ, let k be the first
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index such that
∑k

i=1 pi >
ϵ
2 . If d is the total variation distance and q is a probability vector such

that, if k < n,

qi =


0, for 1 ≤ i < k,∑k

j=1 pj −
ϵ
2 , for i = k,

pi, for k + 1 ≤ i < n,

pn + ϵ
2 , for i = n,

or if k = n or k does not exist (i.e.,
∑n

i=1 pi ≤
ϵ
2 ),

qi =

{
0, for 1 ≤ i < n,

1, for i = n,

then q ∈ argminq∈U(p,d,ϵ) q
⊤f .

Proof. q is the solution to the convex optimization problem

min
q∈Rn

g0(q) := q⊤f

s.t. gi(q) := −qi ≤ 0, 1 ≤ i ≤ n

gn+1(q) := ∥q− p∥1 − ϵ ≤ 0

h(q) := 1⊤q = 1 .

q is optimal if there exists Lagrange multipliers λ ∈ Rn+1,λ ⪰ 0 and ν ∈ R such that the Karush-
Kuhn-Tucker (KKT) conditions are satisfied (Rockafellar, 1997, Theorem. 28.3). These conditions
require the primal feasibility of q and the dual feasibility of λ as well as the following conditions
on complementary slackness and stationarity:

λigi(q) = 0, 1 ≤ i ≤ n+ 1

0 ∈ ∂g0(q) +

n+1∑
i=1

λi∂gi(q) + ν∂h(q)

where ∂ denotes the subdifferential.

We first verify that q is feasible. It is straightforward to see that 1⊤q = 1 and q ⪰ 0 in all cases.
We now show that ∥p− q∥1 ≤ ϵ. In the case that k < n,

∥p− q∥1 =

n∑
i=1

|pi − qi|

=

k−1∑
i=1

pi + |pk − qk|+ |pn − qn|

=

k−1∑
i=1

pi +

∣∣∣∣∣pk −

(
k∑

i=1

pi −
ϵ

2

)∣∣∣∣∣+ ∣∣∣pn −
(
pn +

ϵ

2

)∣∣∣
=

k−1∑
i=1

pi +

∣∣∣∣∣ ϵ2 −
k−1∑
i=1

pi

∣∣∣∣∣+ ϵ

2

= ϵ

where the last equality follows since
∑k−1

i=1 pi ≤ ϵ
2 by definition of k. In the case that k = n or k

does not exist,

∥p− q∥1 =

n−1∑
i=1

pi + (1− pn)

= 2

n−1∑
i=1

pi
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≤ ϵ

where the last inequality follows since
∑n−1

i=1 pi ≤ ϵ
2 since k = n or k does not exist.

Clearly, if k = n or k does not exist, q is optimal since q⊤f = mini fi, which is the minimum
expected value that any probability distribution can attain. We continue to verify the complementary
slackness and stationarity conditions in the case that k < n. The subdifferentials are

∂g0(q) = {f}
∂gi(q) = {−ei}, 1 ≤ i ≤ n

∂h(q) = {1}
where ei is a vector with all entries equal to 0 except the i-th entry. The subdifferential of gn+1

depends on q− p which has the form

q− p =


−pi, for 1 ≤ i < k,∑k−1

j=1 pj −
ϵ
2 , for i = k,

0 for k + 1 ≤ i < n,
ϵ
2 , for j = n .

The entries of the subdifferential of gn+1 are then given by

∂gn+1(q)i ∈


{−1}, for 1 ≤ i < k,

{−1} if
∑k−1

j=1 < ϵ
2 , [−1, 1] otherwise for i = k,

[−1, 1], for k + 1 ≤ i < n,

{1}, for i = n

Without loss of generality, we set the k-th entry of ∂gn+1(q) to be −1.

To satisfy complementary slackness, since gi < 0 for k ≤ i ≤ n,

λi = 0, for k ≤ i ≤ n .

It remains to choose the values of λi for 1 ≤ i < k, λn+1, and ν such that they satisfy dual feasibility
and stationarity.

The stationarity condition can be seen as a system of n + 1 equations. In addition to the dual
variables, we introduce auxiliary variables ai ∈ [−1, 1] for k + 1 ≤ i < n, indicating the specific
value of the subgradient at index i that satisfy the stationarity equations since the subdifferential for
these indices is the range [−1, 1]. The stationarity equations then become

fi − λi − λn+1 + ν = 0, for 1 ≤ i < k, (32)
fk − λn+1 + ν = 0, (33)
fi + λn+1ai + ν = 0, for k + 1 ≤ i < n, (34)
fn + λn+1 + ν = 0 . (35)

To satisfy Equation 33 and Equation 35, choose

ν = −fn − λn+1

λn+1 =
fk − fn

2
≥ 0 .

For 1 ≤ i < k, to satisfy Equation 32, choose each λi to be

λi = fi − λn+1 + ν

= fi − fk ≥ 0 .

For k + 1 ≤ i < n, to satisfy Equation 34, choose each ai to be

ai =
−ν − fi
λn+1

=
fk − fi
fk − fn

− fi − fn
fk − fn

∈ [−1, 0]

where the last inclusion arises since fk−fi
fk−fn

∈ [0, 1] and fi−fn
fk−fn

∈ [0, 1]. Since all KKT conditions
are satisfied, q is optimal and the proof is complete.
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A.12 PROOF OF LEMMA A.12

Lemma A.12. If d is the total variation distance and qϵ := argminq∈Ud(p,ϵ)
q⊤f , then for all

h ≤ qϵ,k where k := argmaxj{fj : qϵ,j > 0},

qϵ+h − qϵ = h(ei − ek)

where ek is a vector with all entries equal to 0 except the k-th entry and i = argmini fi.

Proof. The proof uses the closed form of qϵ prescribed in Lemma A.11. Observe that the index k
defined here is the same as that defined in Lemma A.11 when it exists, and that when h ≤ qϵ,k, the
index k for qϵ+h is the same as that for qϵ. The result follows from subtracting the closed form of
qϵ+h from qϵ. When k does not exist in Lemma A.11, then qϵ+h = qϵ and k = i in this Lemma,
thus the result still holds.

A.13 PROOF OF LEMMA A.13

Lemma A.13. Let φ and f be vectors in Rn, and suppose without loss of generality that the entries
of φ are ordered such that φ1 ≥ φ2 ≥ ... ≥ φn. Let q̂ := argminq∈Ud(p,ϵ)

q⊤φ and q :=

argminq∈Ud(p,ϵ)
q⊤f , with d being the total variation distance. Let i := argmaxj{φj : q̂j > 0}

and j := argmaxi{fi : qi > 0}. Then, there exists some index ℓ ∈ [n] such that

fj − φi ≤ fℓ − φℓ .

Proof. The result is trivial when i = j. The rest of this proof focuses on the case of i ̸= j. The
proof uses the closed form of qϵ prescribed in Lemma A.11. Observe that the index i defined here
is the same as k defined in Lemma A.11 when it exists. When k does not exist in Lemma A.11,
then j = argmini fi and choosing ℓ = i satisfies the inequality. We now focus on the case when it
exists.

Suppose j > i. Then, by the ordering of entries in φ, choosing ℓ = j satisfies the inequality. If j < i,
then we require the existence of an index ℓ such that ℓ ≥ i and fℓ ≥ fj . As a proof of contradiction,
suppose such an index does not exist, i.e., for all m ≥ i, fm < fj . Then, by Lemma A.11, qm ≥ pm
for all m ≥ i. Let o := argmink fk. Again by Lemma A.11, qo = po+

ϵ
2 . With these facts, consider

a lower bound on the amount of probability mass in q, attained by supposing o ≥ i and qk = 0 for
all k < i, k ̸= j:

n∑
k=1

qk ≥ qj +

n∑
k=i

qk +
ϵ

2

= qj +

n∑
k=i

pk +
ϵ

2

>

n∑
k=i

pk +
ϵ

2
= 1

where the last equality uses Lemma A.11 on q̂. We have arrived at a contradiction, since the amount
of probability mass in q must sum to 1. Thus, when j < i, there must always exist an index ℓ such
that ℓ ≥ i and fℓ ≥ fj . Choosing this index ℓ satisfies the inequality and completes the proof.

A.14 PROOF OF PROPOSITION 4.2

Proposition 4.2. If the distribution distance d is the total variation (TV) distance, then the deriva-
tive upper confidence bound δ̂t(x) defined in Equation 11 exists.

Proof. Recall the definition of δ̂t(x):

δ̂t(x) := max
ℓt(x)⪯φ⪯ut(x)

lim
h→0

1

h

(
min

q∈U(pt,d,ϵt+h)
q⊤φ− min

q∈U(pt,d,ϵt)
q⊤φ

)
.
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The extreme value theorem for metric spaces states that a continuous function attains its maxi-
mum on a compact set. Thus, a sufficient condition to guarantee the existence of δ̂t(x) is that
limh→0

1
h

(
minq∈U(pt,d,ϵt+h) q

⊤φ−minq∈U(pt,d,ϵt) q
⊤φ
)

is a continuous function.

From an application of Danskin’s theorem (Bertsekas, 1999, Prop. B.25), we obtain that the optimal
value of a distributionally robust convex optimization problem minq∈U(pt,d,ϵt) q

⊤φ is a convex
function of φ ∈ Rn. This implies that the function is Lipschitz continuous on the compact set
A := {φ : ℓt(x) ⪯ φ ⪯ ut(x)} (Rockafellar, 1997, Theorem. 10.4), a stronger condition of
continuity. Thus, 1

h

(
minq∈U(pt,d,ϵt+h) q

⊤φ−minq∈U(pt,d,ϵt) q
⊤φ
)

is a continuous function on
A. It remains to be shown that the limit as h → 0 of this function is also continuous.

First rewrite Equation 11 as the limit of functions indexed by positive integers m ∈ Z+ by defining
h = 1

m :

δ̂t(x) = max
ℓt(x)⪯φ⪯ut(x)

ζ(φ)

ζ := lim
m→∞

ζm

ζm(φ) := m

(
min

q∈U(pt,d,ϵt+
1
m )

q⊤φ− min
q∈U(pt,d,ϵt)

q⊤φ

)
By the uniform limit theorem, if each ζm is continuous and converges uniformly to ζ, then ζ is
continuous. Recall the definition of uniform convergence: ζm converges uniformly to ζ if for all
η > 0, there exists an M such that, for all m ≥ M and all φ ∈ A, |ζ(φ)− ζm(φ)| < η.

We have previously shown that each ζm is continuous for any choice of convex distribution distance
d. We now prove the uniform convergence of ζm when d is the total variation (TV) distance.

For some φ ∈ A, consider a permutation σ of the entries of φ such that (breaking ties arbitrarily,
without loss of generality)

φσ1 ≥ φσ2 ≥ ... ≥ φσn .

To ease notation, for the rest of this proof, we drop the iteration t subscript from the reference
distribution pt and the margin ϵt. Apply the permutation σ to φ and the reference distribution p to
get

φσ := (φσ1
, φσ2

, ..., φσn
)

pσ := (pσ1 , pσ2 , ..., pσn)

Now define
qσ
ϵ := min

q∈U(pσ,d,ϵt)
q⊤φσ

Under this permutation of entries, qσ
ϵ will have the form prescribed in Lemma A.11. Note that we

are solving an equivalent problem since the objective and constraint functions are all finite sums of
vector entries (a feature of TV) and permuting them does not change their sums. As in Lemma A.11,
let k be the first index such that

∑k
i=1 p

σ
i > ϵ

2 . Then, noting that k does not exist if
∑n

i=1 p
σ
i ≤ ϵ

2 ,
define

cφ :=

{∑k
i=1 p

σ
i − ϵ

2 , if k exists,
∞, otherwise.

If k exists, for any m > 1
cφ ,

ζm(φ) = m(qσ
ϵ+ 1

m
− qσ

ϵ )
⊤φ

=
1

h
(qσ

ϵ+h − qσ
ϵ )

⊤φ

(i)
=

1

h

(((
qσϵ,k − h

2

)
φσ
k +

(
qσϵ,n +

h

2

)
φσ
n)

)
−
(
qσϵ,kφ

σ
k + qσϵ,nφ

σ
n

))
=

1

2
(φσ

n − φσ
k)

where (i) uses the closed form prescribed in Lemma A.11 and the fact that, for h < cφ, the in-
dex k stays the same. Since the final term is a constant with respect to m, we conclude that
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ζm(φ) = limi→∞ ζi(φ) = ζ(φ) when m > 1
cφ . If k does not exist, for any m > 0,

ζm(φ) = limi→∞ ζi(φ) = ζ(φ) = 0 since all terms in this sequence share the same form ac-
cording to Lemma A.11.

Consider the index set {σ1, σ2, ..., σk} ⊆ [n] (order does not matter). Every φ ∈ A is associated
with one such index set by the above construction. A can therefore be partitioned into a finite
number of equivalence classes (specifically, 2n classes), where each such equivalence class contains
all φ ∈ A with the same index set.

Observe that, for φ1 and φ2 in the same class, cφ1 = cφ2 , since cφ only depends on p, ϵ, and the
index set. Give each index set a meta-index a ∈ [2n], and let ca denote the value of cφ shared by all
φ in index set a. Now choose

M > max
a∈[2n]

1

ca

where the maximum is guaranteed to exist since all ca > 0 and the maximization is over a finite set.
For all m ≥ M and all φ ∈ A, ζm(φ) = ζ(φ) and thus |ζm(φ)−ζ(φ)| = 0. We thus have uniform
convergence, which completes the proof.

B EMPIRICAL STUDY OF TS-BOCU WITH WRONG HYPERPARAMETERS

We also study the performance of TS-BOCU on various uncertainty objectives when the hyperpa-
rameters are purposely misconfigured, i.e., when TS-BOCU is given values of α, β and ϵ that differ
from that of the true uncertainty objective. The results are shown in Fig. 3 for the DRO, WCS,
and GEN objectives (identical to those in Sec. 5), and TS-DRO (TS-BOCU with α = 1, β = 0),
TS-WCS (α = 0, β = 1), and TS-GEN (α = 1, β = 1), evaluated on all uncertainty objectives
including those with different values of α, β and ϵ. We first observe that TS-BOCU with the same
hyperparameters as the true uncertainty objective generally performs close to the best, as expected.
The next interesting observation is that, under the DRO and WCS objectives, TS-GEN always per-
forms better than the other ‘wrong’ algorithm (i.e., better than TS-WCS under the DRO objective,
and better than TS-DRO under the WCS objective). This empirically supports the interpretation
that choosing values of α and β to be both greater than 0 results in an algorithm that ‘interpolates’
between DRO (α = 1) and RS (β = 1) objectives in the sense that it performs decently well on both
and can be seen as ‘robust’ to the choice of uncertainty objective used to evaluate performance.

C EXPERIMENTAL DETAILS

C.1 EXPERIMENTAL SETTINGS

Supposing the decisions have dimension m and the contexts have dimension ℓ, all experiments have
domain [0, 1]m × [0, 1]ℓ by normalizing to this set from their original domains. We set the number
of decisions |X | = 1024, and the number of contexts |C| = n = 64. The reference distribution pt at
all iterations is a Gaussian with mean 0.5 · 1ℓ and covariance 0.2 · Iℓ (where 1ℓ and Iℓ are a vector
of ones and the identity matrix respectively), discretized into a probability vector of size n. The true
distribution p∗

t at all iterations is a uniform distribution over [0, 1]ℓ discretized into a probability
vector of size n. The margin at all iterations is d(pt,p

∗
t ).

During the learning procedure, we use a GP with mean 0 and a ARD squared exponential kernel with
k(x, c;x, c) = 1 and lengthscale 0.1 for each dimension. We set the observational noise standard
deviation σ = 0.01, and the number of initial observations at the start of each learning procedure to
be 5.

For TS-BOCU, we approximate sampling from the posterior using random Fourier features (Rahimi
& Recht, 2007) with 1024 features. For all UCB algorithms, we set βt = 2 for all iterations.

Samples from GP prior: m = 2, ℓ = 2. The GP prior is the same as that used in the learning
procedure described above.

Hartmann 3-D: m = 2, ℓ = 1. The first two variables in the input are the decisions, while the
remaining is the context. This function is described at https://www.sfu.ca/˜ssurjano/
hart3.html.
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Figure 3: Mean and one standard error (over 10 RNG seeds) of cumulative regret (lower is better)
incurred against iterations by the acquisitions TS-DRO (TS-BOCU with α = 1, β = 0), TS-WCS
(α = 0, β = 1), TS-GEN (α = 1, β = 1) with varying objective functions, uncertainty objectives,
and distribution distances.
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Plant growth simulator: m = 1, ℓ = 1. This underlying function is the mean function of a het-
eroscedastic GP fit to private training data on the growth of Marchantia plants within a nutrient
medium as a function of pH (with domain [2.5, 6.5]) and amount of ammonium NH3 (with domain
[0, 30] in mM). This underlying function is the same as that in Tay et al. (2022).

COVID-19 infection simulator: m = 2, ℓ = 3. This underlying function is a function fit to
COVID-19 simulator outputs with kernel ridge regression, using the same kernel as described
above. The simulator was obtained from https://github.com/peter-i-frazier/
group-testing. The decision variables are proportions of test kits allocated to 3 different
sub-groups, the context variables are the initial number of cases within these sub-groups and the
transmission probability, and the output is the number of resultant cases. This underlying function
is the same as that in Tay et al. (2022). For the full list of simulator hyperparameters, refer to their
code.

The experiments were implemented in Python using NumPy (Harris et al., 2020), PyTorch (Paszke
et al., 2019), GPyTorch (Gardner et al., 2018) and BoTorch (Balandat et al., 2020). For full details,
refer to the code repository at <disclosed-on-publication>.

C.2 BASELINES

In this section, we provide details on the baselines UCB-BOCU-1 and UCB-BOCU-2. These base-
lines are naive extensions of the UCB algorithm for DRBO from Kirschner et al. (2020) that are
computationally tractable but (as far as we can tell) have no theoretical guarantees on their perfor-
mance.

UCB-BOCU-1:

U
(1)
t (x) := αv̂t(x) + βδ̂t(x)

v̂
(1)
t (x) := min

q∈U(pt,d,ϵt)
q⊤ut(x)

δ̂
(1)
t (x) :=

1

h̃

(
min

q∈U(pt,d,ϵt+h̃)
q⊤ut(x)− min

q∈U(pt,d,ϵt)
q⊤ℓt(x)

)
.

At each iteration t, UCB-BOCU-1 chooses xt = argmaxx∈X U
(1)
t (x). As compared to the true

upper confidence bound Ut described in the main paper, UCB-BOCU-1 replaces the maximization
over all functions φ in the derivative upper bound term with a difference between the worst-case
expected values using the upper and lower confidence bounds of the function values. Note that the
limit as h → 0 is infinity if ut(x) ≻ ℓt(x), and as such the limit is replaced with a small constant
h̃ > 0. Supposing that the derivative definition in the objective were similarly replaced with h̃,
UCB-BOCU-1 actually uses a derivative upper bound that upper bounds the true derivative with
high probability. However, the regret analysis that emerges from this choice leads to a factor of h̃−1

on the regret upper bound. Since we tend to choose small values of h̃ for a good finite difference
estimation of the derivative, this leads to a very large upper bound on the regret which explains the
poor empirical performance.

UCB-BOCU-2:

U
(2)
t (x) := αv̂t(x) + βδ̂t(x)

v̂
(2)
t (x) := min

q∈U(pt,d,ϵt)
q⊤ut(x)

δ̂
(2)
t (x) := lim

h→0

1

h

(
min

q∈U(pt,d,ϵt+h)
q⊤ut(x)− min

q∈U(pt,d,ϵt)
q⊤ut(x)

)
.

At each iteration t, UCB-BOCU-2 chooses xt = argmaxx∈X U
(2)
t (x). UCB-BOCU-2 replaces

the maximization over all functions φ in the derivative upper bound term by simply choosing the
upper confidence bound function instead. Unlike UCB-BOCU-1, the limit exists and the value
of the derivative upper bound converges. This possibly explains its better empirical performance.
However, there is no theoretical guarantee that this choice of derivative upper bound has a high
probability of being greater than or equal to the true derivative, and thus there is (as far as we can
tell) no theoretical upper bound on the regret incurred by UCB-BOCU-2.
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