AUTOTRANSFER: AutoML with Knowledge Transfer
- An Application to Graph Neural Networks

Kaidi Cao Jiaxuan You Jiaju Liu Jure Leskovec
Department of Computer Science
Stanford University
{kaidicao, jiaxuan, jiajuliu, jure}@cs.stanford.edu

Abstract

AutoML has demonstrated remarkable success in finding an effective neural ar-
chitecture for a given machine learning task defined by a specific dataset and an
evaluation metric. However, most present AutoML techniques consider each task
independently from scratch, which requires exploring many architectures, leading
to high computational cost. Here we propose AUTOTRANSFER, an AutoML solu-
tion that improves search efficiency by transferring the prior architectural design
knowledge to the novel task of interest. Our key insights are a task-model bank
that captures the model performance over a diverse set of GNN architectures and
tasks, and a computationally efficient task embedding that can accurately measure
the similarity between different tasks. Based on the task-model bank and the task
embeddings, we estimate the design priors of desirable models of the novel task,
by aggregating a similarity-weighted sum of the top-K design distributions on
tasks that are similar to the task of interest. The computed design priors can be
used with any AutoML search algorithm. We evaluate AUTOTRANSFER on six
datasets in the graph machine learning domain. Experiments demonstrate that (i)
our proposed task embedding can be computed efficiently, and that tasks with simi-
lar embeddings have similar best-performing architectures; (ii) AUTOTRANSFER
significantly improves search efficiency with the transferred design priors, reducing
the number of explored architectures by an order of magnitude. Finally, we release
GNN-BANK-101, a large-scale dataset of detailed GNN training information of
120,000 task-model combinations to facilitate and inspire future research.

1 Introduction

Deep neural networks are highly modular, requiring many design decisions to be made regarding
network architecture and hyperparameters. These design decisions form a search space that is
nonconvex and costly even for experts to optimize over, especially so when the optimization must
be repeated from scratch for each new use case. Automated machine learning (AutoML) is an
active research area that aims to reduce the human effort required for architecture design that usually
covers hyperparameter optimization and neural architecture search. AutoML has demonstrated
success [44} 26| 45,16, (15 [11] in many application domains.

Finding a reasonably good model for a new learning tasksﬂ in a computationally efficient manner is
crucial for making deep learning accessible to domain experts with diverse backgrounds. Efficient
AutoML is especially important in the graph learning domain for two reasons. First, graph learning
methods receive input data composed of a variety of data types and optimize over tasks that span

'In this paper, we refer to a fask as a dataset with a given dataset and an evaluation metric/loss, e.g.,
cross-entropy loss on node classification on the Cora dataset

NeurIPS 2022 New Frontiers in Graph Learning Workshop (NeurIPS GLFrontiers 2022).

Task Embedding Space

Design Distributions

_ Task-ModeI Bank / \ Agg
(historical performance records)
Task Agg Dim Epoch .. Val_loss o : K Bim
Cora sum 64 80 0.22) /, Epoch
Cora mean 128 200 0.26 ° ’
Y Novel Task
TUDD sum 64 200 0.46 e of interest/
TUDD mean 128 200 0.86] ° ~e Agg
TUDD max 256 800 0.52 e | | oim
Arxiv. mean 128 200 0.68
K ° o j Epoch

Figure 1: Overview of AUTOTRANSFER. Left: We introduce GNN-BANK-101, a large database
containing a diverse set of GNN architectures and hyperparameters applied to different tasks, along
with their training/evaluation statistics. Middle: We introduce a task embedding space, where
each point corresponds to a different task. Tasks are close in the embedding space have similar
corresponding top-performing models. Right: Given a new task of interest, we guide the AutoML
search by referencing the design distributions of the most similar tasks in the task embedding space.

an equally diverse set of domains and modalities such as recommendation [37} [14], physical sim-
ulation [30} 25]], and bioinformatics [43]]. This differs from computer vision and natural language
processing where the input data has a predefined, fixed structure that can be shared across different
neural architectures. Second, neural networks that operate on graphs come with a rich set of design
choices and a large set of parameters to explore. However, unlike other domains where a few pre-
trained architectures such as ResNet [[13]] and GPT-3 [5] dominate the benchmarks, it has been shown
that the best graph neural network (GNN) design is highly task-dependent [38]].

Although AutoML is promising, directly applying existing AutoML solutions to each graph learning
task is infeasible due to its massive computational overhead. Most present AutoML techniques
consider each task independently and in isolation. This leads to a high computational cost as many
architectures have to be examined before a good one is found.

Here we propose AUTOTRANSFER, an AutoML solution that drastically improves AutoML archi-
tecture search by transferring previous architectural design knowledge to the task of interest. Our
key innovation is to introduce a task-model bank that stores the performance of a diverse set of
GNN architectures and tasks to guide the search algorithm. To enable knowledge transfer, we define
a task embedding space such that tasks close in the embedding space have similar corresponding
top-performing architectures. The challenge here is that the task embedding needs to capture the
performance rankings of different architectures on different datasets, while being efficient to compute.
Our innovation here is to embed a task by using the condition number of its Fisher Information Matrix
of various randomly initialized models and also a learning scheme with generalization guarantee.
This way we implicitly capture the properties of the dataset as well as the learning task, while being
order of magnitudes faster (within seconds). We then estimate the design prior of desirable models
for the new task, by aggregating design distributions on tasks that are close to the task of interest.
Finally, we initiate a hyperparameter search algorithm with the task-informed design prior computed.

We evaluate AUTOTRANSFER on six datasets, including both node classification and graph classifica-
tion tasks. We show that our proposed task embeddings can be computed efficiently, and that the
distance measured between tasks correlates highly with model performance rankings. Furthermore,
we present that AUTOTRANSFER significantly improves search efficiency when using the transferred
design prior. AUTOTRANSFER reduces the number of explored architectures needed to reach a target
accuracy by an order of magnitude compared to SOTA baselines. Finally, we release GNN-BANK-
10 1—the first large-scale database containing detailed performance records for 120,000 task-model
combinations which were trained using 16,128 GPU hours—as a tool to facilitate future research.

2 Related Work

In this section, we summarize the related work on AutoML regarding its applications on GNNs, the
common search algorithms, and pioneering work regarding transfer learning and task embeddings.

AutoML for GNNs. Neural architecture search (NAS), a unique and popular form of AutoML
for deep learning, can be divided into two categories: multi-trial NAS and one-shot NAS. During
multi-trial NAS, each sampled architecture is trained separately. GraphNAS [10] and Auto-GNN [42]
are typical multi-trial NAS algorithms on GNNs which adopt an RNN controller that learns to suggest
better sets of configurations through reinforcement learning. One-shot NAS (e.g., [23} 27, 22])
involves encapsulating the entire model space in one super-model, training the super-model once, and
then iteratively sampling sub-models from the super-model to find the best one. In addition, there
is work that explicitly studies fine-grained design choices such as data augmentation [39]], message
passing layer type [[7, 9, 141], and graph pooling [33]. AUTOTRANSFER is the first AutoML solution
for GNNs that efficiently transfer design knowledge across tasks.

HPO Algorithms. Hyperparameter Optimization (HPO) algorithms search for the optimal model
hyperparameters by iteratively suggesting a set of hyperparameters and evaluating their performance.
Random search samples hyperparameters from the search space with equal probability. Despite not
learning from previous trials, random search is commonly used for its simplicity and is much more
efficient than grid search [2]. The TPE algorithm [3]] builds a probabilistic model of task performance
over the hyperparameter space and uses the results of past trials to choose the most promising next
configuration to train, which the TPE algorithm defines as maximizing the Expected Improvement
value [19]]. Evolutionary algorithms [28] 18] train multiple models in parallel and replace poorly
performing models with “mutated” copies of the current best models. AUTOTRANSFER is a general
AutoML solution and can be applied in combination with any of these HPO algorithms.

Transfer Learning in AutoML. Wong et al. [34] proposed to transfer knowledge across tasks by
reloading the controller of reinforcement learning search algorithms. However, this method assumes
that the search space on different tasks starts with the same learned prior. Unlike AUTOTRANSFER,
it cannot address the core challenge in GNN AutoML: the best GNN design is highly task-specific.
GraphGym([38]])) attempts to transfer the best architecture design directly with a metric space that
measures task similarity. GraphGym([38]]) computes task similarity by training a set of 12 anchor
models” to convergence which is computationally expensive. In contrast, AUTOTRANSFER designs
light-weight task embeddings which require minimal computations overhead.

Task Embedding. There is prior research trying to quantify task embeddings and similarities.
Similar to GraphGym, Taskonomy [40] estimates the task affinity matrix by summarizing final
losses/evaluation metrics using an Analytic Hierarchy Process [29]. From a different perspective,
Task2Vec [1]] generates task embeddings for a given task using the Fisher Information Matrix
associated with a pretrained probe network. This probe network is shared across tasks and allows
Task2Vec to estimate the Fisher Information Matrix of different image datasets. It cannot be directly
applied to GNNss as the inputs do not align across datasets. AUTOTRANSFER avoids the bottleneck
by using asymptotic statistics of the Fisher Information Matrix with randomly initiated weights.

3 Problem Formulation and Preliminaries

We first introduce formal definitions of data structures relevant to AUTOTRANSFER.

Definition 1 (Task) We denote a task as T = (D, L(+)), consisting of a dataset D and a loss function
L(+) related to the evaluation metric.

For each training attempt on a task 7*), we can record its model architecture M ;» hyperparameters
Hj, and corresponding value of loss I}, i.e., (M;, H;,1;). We propose to maintain a task-model bank
to facilitate knowledge transfer to future novel tasks.

Definition 2 (Task-Model Bank) A task-model bank B is defined as a collection of tasks, each with

multiple training attempts, in the form of B = {(T", {(MJ@, H;”, lgl))})}

R Rand Inits FIM Scale-Invariant Measure 1 Training Objective

= _ \ Taski Taskj Taski Taskk
Model M, f F ay 1 . . .
Z(l) Z(k)
e e

Task Feature Task Embedding ! zél) zé”

% Ze !
Model M, £ F a, E g E 5 E X E E X E

‘_l_’

N . o

Figure 2: Pipeline for extracting task embeddings. Left: To efficiently embed a task, we first
extract task features by concatenating features measured from R randomly initialized anchor models.
Then, we introduce a projection function g(-) with learned weights to transform the task features into
task embeddings. Right: Training objective for optimizing g(-) with triplet supervision.

AutoML with Knowledge Transfer. Suppose we have a task-model bank B. Given a novel task
T which has not been seen before, our goal is to quickly find a model that works reasonably well
on the novel task by utilizing knowledge from the task-model bank.

In this paper, we focus on AutoML for graph learning tasks, though our developed technique is
general and can be applied to other domains. We define the input graph as G = {V, E'}, where V is
the node set and £ C V' x V is the edge set. Furthermore, let y denote its output labels, which can
be node-level, edge-level or graph-level. A GNN parameterized by weights 6 then outputs a posterior
distribution P(G, y, 0) for label predictions.

4 Proposed Solution: AUTOTRANSFER

In this section, we introduce the proposed AUTOTRANSFER solution. AUTOTRANSFER uses the task
embedding space as a tool to understand the relevance of previous architectural designs to the target
task. The designed task embedding captures the performance rankings of different architectures on
different tasks while also being efficient to compute. We first introduce a theoretically motivated
solution to extract a scale-invariant performance representation of each task-model pair. We use these
representations to construct task features (Section[d.2) and further learn task embeddings (Section
4.3). These embeddings form the task embedding space that we finally use during the AutoML search

(Section[d-4).

4.1 Basics of the Fisher Information Matrix (FIM)
Given a GNN defined above, its Fisher Information Matrix (FIM) F' is defined as
F =Eqy[Volog P(G,y,0) Volog P(G,y,0)"].

which formally is the expected covariance of the scores with respect to the model parameters. There
are two popular geometric views for the FIM. First, the FIM is an upper bound of the Hessian and
coincides with the Hessian if the gradient is 0. Thus, the FIM characterizes the local landscape of
the loss function near the global minimum. Second, similar to the Hessian, the FIM models the loss
landscape with respect not to the input space, but to the parameter space. In the information geometry
view, if we add a small perturbation to the parameter space, we have

KL(P(G,y,0)|P(G,y,0 4+ df)) = do " Fdp.

where KL(-, -) stands for Kullback-Leibler divergence. It means that the parameter space of a model
forms a Riemannian manifold and the FIM works as its Riemannian metric. The FIM thus allows us
to quantify the importance of a model’s weights in a ways that is applicable to a variety of different
architectures.

4.2 FIM-based Task Features

Scale-invariant Representation of Task-Model Pairs. We aim to find a scale-invariant represen-
tation for each task-model pair which will form the basis for constructing task features. The major
challenge in using the FIM to represent GNN performance is that graph datasets do not have a
universal, fixed input structure, so it is infeasible to find a single pretrained model and extract its FIM.
However, training multiple networks poses a problem as the FIMs computed for different networks
are not directly comparable. We choose to use multiple networks but additionally propose to use
asymptotic statistics of the FIM associated with randomly initialized weights. The theoretical justifi-
cation for the relationship between the asymptotic statistics of the FIM and the trainability of neural
networks was studied in [20} [24] to which we refer the readers. We hypothesize that such a measure
of trainability encodes loss landscapes and generalization ability and thus correlates with final model
performance on the task. Another issue relates to input structures of graph datasets is that different
models have a different number of parameters. We note that each GNN architecture design can be
represented as a sequence of pre-processing layers, message passing layers, and post-processing
layers. Pre-process layers and post-process layers are Multilayer Perceptron (MLP) layers, of which
the dimensions vary across different tasks due to different input/output structures. On the contrary,
message passing layers are commonly regarded as the key design for GNNs and the number of weight
parameters can remain the same across tasks. In this light, we only consider the FIM with respect to
the parameters in message passing layers so that the number of parameters considered stays the same
for all datasets. We further approximate the FIM by only considering the diagonal entries, which
implicitly neglects the correlations between parameters. We note that this is common practice when
analyzing the FIMs of deep neural networks, as the full FIM is massive (quadratic in the number of
parameters) and infeasible to compute even on modern hardware. Similar to Pennington and Worah
[24], we consider the first two moments of FIM

1 1
my = —tr[F] and my = —tr[F?] (1)
n n

and use a = my/m? as the scale-invariant representation. The computed « is lower bounded by 1
and captures how concentrated the spectrum is. A small « indicates the loss landscape is flat, and its
corresponding model design enjoys fast first-order optimization and potentially better generalization.
To encode label space information into each task, we propose to train only the last linear layer of
each model on a given task, which can be done efficiently. The parameters in other layers are frozen
after being randomly initialized. We take the average over R initializations to estimate the average a.

Constructing Task Features. We denote task features as measures extracted from each task that
characterize its important traits. The design of task features should reflect our final objective: to use
these features to identify similar tasks and transfer the best design distributions. Thus, we select U
model designs as anchor models and concatenate the scale-invariant representations a,, of each design
as task features. To retain only the relative ranking among anchor model designs, we normalize the
concatenated feature vector to a scale of 1. We let z¢ denote the normalized task feature.

4.3 From Task Features to Task Embeddings

The task feature z introduced above can be regarded as a means of feature engineering. We construct
the feature vector with domain knowledge, but there is no guarantee it functions as anticipated. We
thus propose to learn a projection function g(-) : RY — R” that maps task feature z t to final task
embedding z. = g(zs). We do not have any pointwise supervision that can be used as the training
objective. Instead, we consider the metric space defined by GraphGym. The distance function in
GraphGym-computed using the Kendall rank correlation between performance rankings of anchor
models trained on the two compared tasks-correlates nicely with our desired knowledge transfer
objective. It is not meaningful to enforce that task embeddings mimic GraphGym’s exact metric
space, as GraphGym’s metric space can still contain noise, or does not fully align with the transfer
objective. We consider a surrogate loss that enforces only the rank order among tasks. To illustrate,
let us consider tasks 79, T, T(¥) and their corresponding task embeddings, zéz), z(j), zék). Note
that z, is normalized to 1 so zél)Tz(g]) measures the cosine similarity between tasks 7(? and 7).
Let dg4 (-, -) denote the distance estimated by GraphGym. We want to enforce

20720 5 20720 i 4 (1@, 70 < 4y (7O, TR,

To achieve this, we use the margin ranking loss as our surrogate supervised objective function:
£,(200, 21,209,) = max(0, —y - (27 21 — 2{)" () + margin). @)

Here if dy (T, TW) < d,(T®, T*)), then we have its corresponding label y = 1, and y = —1
otherwise. Our final task embedding space is then a FIM-based metric space with cosine distance

)) NT s
function, where the distance is defined as d, (T(Z), T)) =1- zgl) z((f). Please refer to the detailed
training pipeline at Algorithm [2]in the Appendix.

4.4 AutoML Search Algorithm with Task Embeddings

Most existing search algorithms do not leverage information about the optimal parameters found for
previous tasks and usually require a few runs to warm up the search. This is because it is nontrivial to
estimate the performance of a set of configurations given its performance on a different task. With
our learned task embeddings, we are able to efficiently relate useful training trials in our task-model
bank with the task of interest.

To transfer knowledge to a novel task, a naive idea would be to directly carry over the best model
configuration from the closest task in the bank. However, even a high Kendall rank correlation
between model performance rankings of two tasks 7, T() does not guarantee the best model
configuration in task 7() will also achieve the best performance on task 7). In addition, since task
similarities are subject to noise, this naive solution may struggle when there exist multiple reference
tasks that are all highly similar.

To make the knowledge transfer more robust to such failure cases, we introduce the notion of
design distributions that depend on top performing model designs and propose to transfer design
distributions rather than the best design configurations. Formally, consider a task 7 in the task-
model bank B, associated with its trials {(M ;’), H J(»l), ly))}. We can summarize its designs as a list
of configurations C' = {cy, ..., cw }, such that all potential combinations of model architectures M
and hyperparameters H fall under the Cartesian product of the configurations. For example, c; might
be the instantiation of aggregation layers, and ¢, might be the start learning rate. We then define
design distributions as random variables ¢, Cs, ..., cy each corresponding to a hyperparameter.
Each random variable c is defined as the frequency distribution of the design choices used in the top
K trials. We multiply all distributions for the individual configurations {c1, ..., cy } to approximate
the overall task’s design distribution P(C|TW) =], P(c,|T®).

During inference, given a novel task 7("™), we select a close task subset S by thresholding task
embedding distances, i.e., S = {T(i) |de(T(”), T(i)) < dipres }- We then derive the transferred design
prior P (C |T(")) of the novel task by weighting design distributions from the close task subset S.

ZTWGS de(T<n1>,T<i))P(C|T(i))

P(CITM) = T
ZT(i)es do (T, T()

3)

The inferred design prior for the novel task can then be used to guide various search algorithms.
The most natural choice for a few trial regime is random search. Rather than sampling each design
configuration following a uniform distribution, we propose to sample from the task-informed design
prior P;(C|T(™). Please refer to Appendix |Alto check how we augment other search algorithms.

For AUTOTRANSFER, we can preprocess the task-model bank B into B, =
{(D(i),ﬁ(i)(o)),zéz),P(CwT(i))} as our pipeline only requires using task embedding z.”
and design distribution P(C|T (1)) rather than detailed training trials. A detailed search pipeline is
summarized in Algorithm [I]

5 Experiments

5.1 Experimental Setup

Task-Model Bank: GNN-BANK-101. To facilitate AutoML research with knowledge transfer, we
collected GNN-BANK-101 as the first large-scale graph database that records reproducible design

Algorithm 1 Summary of AUTOTRANSFER search pipeline

Require: A processed task-model bank B, = {(D(i),E(i)(-)),zéi),P(C’|T(i))}, a novel task
T = (D(”), £ ()), U anchor models M, ..., My, R specifies the number of repeats.

1: foru=1toU do

2: forr=1to R do

3: Initialize weights 6 for anchor model M,, randomly

4: Estimate FIM F «+ Ep[Vglog P(M,,y,0) Velog P(M,,y,0)"]
5: Extract scale-invariant representation aq(f) — mgy/ m% following Eq.
6: end for

T Gy mean(ag,,l)7 agf), s a&v))

8: end for

9:

zfn + concat(ay, as, ..., ay)

_
=4

zgn) - g(z;n))
. T .
- Select close task subset S + {T(*)|1 — 220 < ihres }
. Get design prior P,(C|T(™)) by aggregating subset S following Eq.
. Start a HPO search algorithm with the task-informed design prior P;(C|T(™))

—_
W N =

configurations and detailed training performance on a variety of tasks. Specifically, GNN-BANK-101
currently includes six tasks for node classification (AmazonComputers [31], AmazonPhoto [31], Cite-
Seer [36]], CoauthorCS [31]], CoauthorPhysics [31]], Cora [36]) and six tasks for graph classification
(PROTEINS [17], BZR [17], COX2 [17], DD [17], ENZYMES [17], IMDB-M [17]). Our design
space follows [38]], and we extend the design space to include various commonly adopted graph
convolution and activation layers. Please refer to Table[2]in the Appendix for details. We extensively
run 10,000 different models for each task, leading to 120,000 total task-model combinations, and
record all training information including train/val/test loss. Generating the benchmark takes 16,128
GPU hours on an NVIDIA T4 GPU. We plan to release GNN-BANK-101 to inspire further research
in this direction.

Benchmark Datasets. We benchmark AUTOTRANSFER on six different datasets following prior
work [27]]. Our datasets include three standard node classification datasets (CoauthorPhysics [31]],
CoraFull [4] and OGB-Arxiv [16l]), as well as three standard benchmark graph classification datasets,
(COX2 [17], IMDB-M [17] and PROTEINS [17]). CoauthorPhysics and CoraFull are transductive
node classification datasets, so we randomly assign nodes into train/valid/test sets following a
50%:25%:25% split [27]. We randomly split graphs following a 80%:10%:10% split for the three
graph classification datasets [27]. We follow the default train/valid/test split for the OGB-Arxiv
dataset [[16]. To make sure there is no information leakage, we temporarily remove all records related
to the task from our task-model bank if the dataset we benchmark was collected in the bank.

Baselines. We compare our methods with the state-of-the-art approaches for GNN AutoML. We
use GCN and GAT with default architectures following their original implementation as baselines.
For multi-trial NAS methods, we consider GraphNAS [10]]. For one-shot NAS methods, we include
DARTS [23]] and GASSO [27]]. GASSO is designed for transductive settings, so we omit it for graph
classification benchmarks. We further provide results of HPO algorithms based on our proposed
search space as baselines: Random, Evolution, and TPE.

We by default allow searching 30 trials maximum for all the algorithms, i.e., an algorithm can train 30
different models and collect the model with the best accuracy. We use the default setting for one-shot
NAS algorithms (DARTS and GASSO), as they only train a super-model once and can efficiently
evaluate different architectures. We are mostly interested in studying the few-trial regime where most
advanced search algorithms degrade to random search. Thus we additionally include a random search
(3 trials) baseline where we pick the best model out of only 3 trials. Runtime analysis and additional
experimental details can be found in Appendix

5.2 Experiments on Search Efficiency

Results come from the original paper [27].

Table 1: Performance comparisons of AUTOTRANSFER and other baselines. We report the average
test accuracy and the standard deviation over ten runs. With only 3 trials AUTOTRANSFER already
outperform most SOTA baselines with 30 trials.

Node Graph
Method Physics CoraFull 0GB-Arxiv Cox2 IMDB PROTEINS
79.234£2.19 50.4043.02 74.84+2.82
GAT (30 trials) 95.71£0.24 65.92£0.68 68.824+0.32 | 81.56+4.17 49.67+4.30 75.30+3.72
GraphNAS (30 trials) 92.771+0.84 63.13£3.28 65.90+£2.64 | 77.73+1.40 46.93+3.94 72.51+£3.36
DARTS 95.28+1.67 67.59£2.85 69.02£1.18 | 79.8243.15 50.261+4.08 75.04+£3.81

GASS(f]

Random (3 trials)

96.38 68.89 70.52

95.161+0.55 61.24+£4.04 67.92+£1.92
TPE (30 trials) 96.41+0.36 66.37+1.73 71.35+£0.44 | 82.27+2.01 50.33+£4.00 79.46+£1.28
HyperBand (30 trials) 96.56+0.30 67.75+£1.24 71.60+0.36 | 82.21+1.79 50.86+3.45 79.32%1.16

AUTOTRANSFER (3 trials) 96.641+0.42 69.27+0.76 71.4240.39 | 82.13+1.59 52.33+2.13 77.81+£2.19
AUTOTRANSFER (30 trials) | 96.91£0.27 70.05+0.42 72.214£0.27 | 86.52+1.58 54.93+1.23 81.25+1.17

76.88+£3.17 45.79+4.39 72.47+£2.57

GCN (30 trials) 95.88+0.16 67.12+0.52 70.46+0.18

We evaluate AUTOTRANSFER by reporting the average best test accuracy among all trials considered
over ten runs of each algorithm in Table[I] The test accuracy collected for each trial is selected at
the epoch with the best validation accuracy. By comparing results from random search (3 trials) and
AUTOTRANSFER (3 trials), we show that our transferred task-informed design prior significantly
improves test accuracy in the few-trial regime, and can be very useful in environments that are where
computationally constrained. Even if we increase the number of search trials to 30, AUTOTRANSFER
still demonstrates non-trivial improvement compared with TPE, indicating that our proposed pipeline
has advantages even when computational resources are abundant. Notably, with only 3 search trial,
AUTOTRANSFER surpasses most of the baselines, even those that use 30 trials.

To better understand the sample efficiency of AUTOTRANSFER, we plot the best test accuracy found
at each trial in Figure [3|for OGB-Arxiv and TU-PROTEINS datasets. We notice that the advanced
search algorithms (Evolution and TPE) have no advantages over random search at the few-trial
regime since the amount of prior search data is not yet sufficient to infer potentially better design
configurations. On the contrary, by sampling from the transferred design prior, AUTOTRANSFER
achieves significantly better average test accuracy in the first few trials. The best test accuracy at trial
3 of AUTOTRANSFER surpasses its counterpart at trial 10 for every other methods.

Search Curves on OGB-Arxiv Search Curves on TU-PROTEINS
72
80
70
68 75
Q Q
3 3
< <
D 66 k7
° 870
Method Method
64 —— Random —— Random
Evolution 65 Evolution
62 — TPE — TPE
—— AutoTransfer —— AutoTransfer
60 60
2 4 6 8 10 2 4 6 8 10
Trials Trials

Figure 3: Performance comparisons in the few-trial regime. At trial ¢, we plot the best test accuracy
among all models searched from trial 1 to trial . AUTOTRANSFER can reduce the number of
trials needed to search by an order of magnitude (see also Table[3|in Appendix).

5.3 Analysis of Task Embeddings

Qualitative analysis of task features. To examine the quality of the proposed task features, we
visualize the proposed task similarity matrix (Figure [4] (b)) along with the task similarity matrix
(Figure[d](a)) proposed in GraphGym. We show that our proposed task similarity matrix captures
similar patterns as GraphGym'’s task similarity matrix while being computed much more efficiently
by omitting training. We notice that the same type of tasks, i.e., node classification and graph
classification, share more similarities within each group. As a sanity check, we examined that the

GraphGym Task Similarity Proposed Task Similarity Correlation with Ranking of Task Similarity
R B EEEEE 1o
Method
AmazonPhoto_node-] || H BEEER [] 08 ® TaskFeature
Citeseer_node] | H BN EEE H Task Embedding
conrarcssose [l CTR EEE EE u L. =
Coauthorphysics_node-JNII B BEEE B 5 04 § s o
Cora_node-| . .-... [os % L4 M
TU_PROTEINS_graph- . . . ™ E 02 A4
TU_BZR_graph 00 i 3
TU_COX2_graph- o
TU_DD_graph-} . . —02 {
TU_ENZYMES_graph-. I

-04

mmmmmmmmmmmm
aaaaaaaaaaaa
g 8 8 8 g8 g8 g & § g g8 ¢€

mmmmmm

o wos.ror [I

:::::::::

MES_graph-,
0rCS_

g £

TU_cox2

TU_IMDB.

g
(=]

Coautt
the

TU_PROTEINS.

TU_EN
TU_ENZYMES,

s

o

Figure 4: (a) GraphGym’s task similarity between all pairs of tasks (computed from the Kendall
rank correlation between performance rankings of anchor models trained on the two compared
tasks), a higher value represents a higher similarity. (b) The proposed task similarity computed
by computing the dot-product between extracted task features. (c) The Kendall rank correlation of
similarity rankings of the other tasks with respect to the central task between the proposed method
and GraphGym.

closest task in bank with respect to CoraFull is Cora. The top 3 closest tasks for OGB-Arxiv are
AmazonComputers, AmazonPhoto, and CoauthorPhysics, all of which are node classification tasks.

Generalization of projection function g(-). We proposed the projection function g(-) with trainable
weights with the goal of getting task embeddings that better capture our knowledge transfer objective
through this surrogate supervision. To investigate whether the trained ¢(-) can generalize to novel
tasks, we conduct leave-one-out cross validation with all tasks in our task-model bank. Concretely,
for each task considered as a novel task T("), we use the rest of the tasks, along with their distance
metric dg (-, -) estimated by GraphGym, to train the projection function g(-). For each method (Task
Feature, Task Embedding, and GraphGym), we sort all other tasks based on the defined similarity
with respect to the central novel task. We calculate Kendall rank correlation over similarities of tasks
for Task Feature and Task Embedding against GraphGym. We plot the average rank correlation and
the standard deviation over ten runs on Figure] (c). We conclude that with the trained projection
function g(-), our task embeddings correlate better with GraphGym’s estimation across the board
compared to using task feature embeddings, indicating that our proposed learning pipeline for task
embedding can generalize to novel tasks.

6 Conclusion

In this paper, we study how to improve AutoML search efficiency by transferring existing architectural
design knowledge to novel tasks of interest. We introduce a rask-model bank that captures the
performance over a diverse set of GNN architectures and tasks. We also introduce a computationally
efficient task embedding that can accurately measure the similarity between different tasks. We
release GNN-BANK-101, a large-scale database that records detailed GNN training information of
120,000 task-model combinations. We hope this work can facilitate and inspire future research in
efficient AutoML to make deep learning more accessible to a general audience.

Acknowledgements

We thank Xiang Lisa Li, Hongyu Ren, Yingxin Wu for discussions and for providing feedback on our
manuscript. We also gratefully acknowledge the support of DARPA under Nos. HR00112190039
(TAMI), N660011924033 (MCS); ARO under Nos. WI11NF-16-1-0342 (MURI), W91 1NF-16-1-
0171 (DURIP); NSF under Nos. OAC-1835598 (CINES), OAC-1934578 (HDR), CCF-1918940
(Expeditions), NIH under No. 3U54HG010426-04S1 (HuBMAP), Stanford Data Science Initiative,

Wu Tsai Neurosciences Institute, Amazon, Docomo, GSK, Hitachi, Intel, JPMorgan Chase, Juniper
Networks, KDDI, NEC, and Toshiba.

The content is solely the responsibility of the authors and does not necessarily represent the official
views of the funding entities.

References

[1] Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu Maji,
Charless C Fowlkes, Stefano Soatto, and Pietro Perona. Task2vec: Task embedding for meta-

learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
6430-6439, 2019.

[2] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal
of machine learning research, 13(2), 2012.

[3] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Baldzs Kégl. Algorithms for hyper-
parameter optimization. Advances in neural information processing systems, 24, 2011.

[4] Aleksandar Bojchevski and Stephan Giinnemann. Deep gaussian embedding of graphs: Unsu-
pervised inductive learning via ranking. arXiv preprint arXiv:1707.03815, 2017.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

[6] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target
task and hardware. arXiv preprint arXiv:1812.00332, 2018.

[7] Shaofei Cai, Liang Li, Jincan Deng, Beichen Zhang, Zheng-Jun Zha, Li Su, and Qingming
Huang. Rethinking graph neural architecture search from message-passing. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6657-6660,
2021.

[8] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

[9] Yuhui Ding, Quanming Yao, Huan Zhao, and Tong Zhang. Diffmg: Differentiable meta graph
search for heterogeneous graph neural networks. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, pages 279-288, 2021.

[10] Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue Hu. Graph neural architecture search.
In Christian Bessiere, editor, Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI-20, pages 1403—-1409. International Joint Conferences on Artificial
Intelligence Organization, 7 2020. URL https://doi.org/10.24963/ijcai.2020/195,

[11] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun.
Single path one-shot neural architecture search with uniform sampling. In European Conference
on Computer Vision, pages 544-560. Springer, 2020.

[12] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770-778, 2016.

[14] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In Proceedings of
the 43rd International ACM SIGIR conference on research and development in Information
Retrieval, pages 639-648, 2020.

10

https://doi.org/10.24963/ijcai.2020/195

[15] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. In Proceedings of the European conference
on computer vision (ECCV), pages 784-800, 2018.

[16] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
Advances in neural information processing systems, 33:22118-22133, 2020.

[17] Sergei Ivanov, Sergei Sviridov, and Evgeny Burnaev. Understanding isomorphism bias in graph
data sets, 2019.

[18] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, lain Dunning, Karen Simonyan, et al. Population based
training of neural networks. arXiv preprint arXiv:1711.09846, 2017.

[19] Donald R Jones. A taxonomy of global optimization methods based on response surfaces.
Journal of global optimization, 21(4):345-383, 2001.

[20] Ryo Karakida, Shotaro Akaho, and Shun-ichi Amari. Universal statistics of fisher information in
deep neural networks: Mean field approach. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 1032-1041. PMLR, 2019.

[21] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[22] Yanxi Li, Zean Wen, Yunhe Wang, and Chang Xu. One-shot graph neural architecture search
with dynamic search space. In Proc. AAAI Conf. Artif. Intell, volume 35, pages 8510-8517,
2021.

[23] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In
International Conference on Learning Representations, 2018.

[24] Jeffrey Pennington and Pratik Worah. The spectrum of the fisher information matrix of a
single-hidden-layer neural network. Advances in neural information processing systems, 31,

2018.

[25] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-
based simulation with graph networks. In International Conference on Learning Representations,
2020.

[26] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture
search via parameters sharing. In International conference on machine learning, pages 4095—
4104. PMLR, 2018.

[27] Yijian Qin, Xin Wang, Zeyang Zhang, and Wenwu Zhu. Graph differentiable architecture search
with structure learning. Advances in Neural Information Processing Systems, 34, 2021.

[28] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan,
Quoc V Le, and Alexey Kurakin. Large-scale evolution of image classifiers. In International
Conference on Machine Learning, pages 2902-2911. PMLR, 2017.

[29] Roseanna W Saaty. The analytic hierarchy process—what it is and how it is used. Mathematical
modelling, 9(3-5):161-176, 1987.

[30] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and
Peter Battaglia. Learning to simulate complex physics with graph networks. In International
Conference on Machine Learning, pages 8459-8468. PMLR, 2020.

[31] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Giinnemann.
Pitfalls of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

[32] Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

11

[33] Lanning Wei, Huan Zhao, Quanming Yao, and Zhigiang He. Pooling architecture search for
graph classification. In Proceedings of the 30th ACM International Conference on Information
& Knowledge Management, pages 2091-2100, 2021.

[34] Catherine Wong, Neil Houlsby, Yifeng Lu, and Andrea Gesmundo. Transfer learning with
neural automl. Advances in neural information processing systems, 31, 2018.

[35] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018.

[36] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning
with graph embeddings. In International conference on machine learning, pages 40-48. PMLR,
2016.

[37] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery &
data mining, pages 974-983, 2018.

[38] Jiaxuan You, Zhitao Ying, and Jure Leskovec. Design space for graph neural networks. Advances
in Neural Information Processing Systems, 33:17009—17021, 2020.

[39] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning
automated. In International Conference on Machine Learning, pages 12121-12132. PMLR,
2021.

[40] Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and Silvio
Savarese. Taskonomy: Disentangling task transfer learning. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 3712-3722, 2018.

[41] Huan Zhao, Quanming Yao, and Weiwei Tu. Search to aggregate neighborhood for graph neural
network. arXiv preprint arXiv:2104.06608, 2021.

[42] Kaixiong Zhou, Qingquan Song, Xiao Huang, and Xia Hu. Auto-gnn: Neural architecture
search of graph neural networks. arXiv preprint arXiv:1909.03184, 2019.

[43] Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side effects with
graph convolutional networks. Bioinformatics, 34(13):1457-1466, 2018.

[44] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578, 2016.

[45] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable
architectures for scalable image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 8697-8710, 2018.

12

A Additional Implementation Details

Runtime analysis. We have empirically shown that AUTOTRANSFER can significantly improve
search efficiency by reducing the number of trials needed to achieve reasonably good accuracy.
The only overhead we introduced is the procedure of estimating task embeddings. Since we use a
randomly initialized architecture, extracting each task feature only requires at most one forward and a
few backward passes from a single minibatch of data. The wall-clock time depends on the size of the
network and data structure. In our experiments, it typically takes a few seconds on an NVIDIA T4
GPU. We repeat the task feature extraction process 5 times for each anchor model, and for a total of
12 anchor models. Thus, the wall-clock time of the overhead for computing task embedding of novel
task is within a few minutes. We note the length of this process is generally comparable to one trial of
training on a small-sized dataset, and the time saved is much more significant for large-scale datasets.

Details for task-model-bank training. Our GNN model specifications are summarized in Table
Our code base was developed based on GraphGym [38]. For all the training trials, We use the Adam
optimizer and cosine learning rate scheduler (annealed to 0, no restarting). We use L2 regularization
with a weight decay of 5e-4. We record losses and accuracies for training, validation and test splits
every 20 epochs.

Training details for AUTOTRANSFER. We summarize the training procedure for the projection
function g(+) in Algorithm We set U = 12 and R = 5 throughout the paper. We use the same set
of anchor model designs as those in GraphGym. We use a two-layer MLP with a hidden dimension
of 16 to parameterize the projection function g(-). We use the Adam optimizer with a learning rate of
5e-3. We use margin = 0.1 and train the network for 1000 iterations with a batch size of 128. We
adopt K = 16 when selecting the top K trials that are used to summarize design distributions.

Details for adapting TPE, evolution algorithms. We hereby illustrate how to compose the search
algorithms with the transferred design priors. TPE is a Bayesian hyperparameter optimization method,
meaning that it is initialized with a prior distribution to model the search space and updates the prior
as it evaluates hyperparemeter configurations and records their performance. We replace this prior
distribution with the task-informed design priors. As evolutionary algorithms generally initialize a
large population and iteratively prune and mutate existing networks, we replace the random network
initialization with the task-informed design priors. As we mainly focus on the few trial search regime,
we set the fully random warm-up trials to 5 for both TPE and evolution algorithms.

Code, dataset release. We will make source code and collected task-model bank public at the time
of publication.

Table 2: Design choices in our search space

Type | Choices
Convolution GeneralConv [38]], GCNConv [21],SAGEConv [12],GINConv [35],GATConv [32]
Number of heads 1,2,4
Aggregation Sum, Mean-Pooling, Max-Pooling
Activation ReLU, pReLU, leaky_ReLU, ELU [8]
Hidden dimension 64,256
Layer connectivity Stack, Skip-Sum, Skip-Concat
Pre-process layers 1,2
Message passing layers 2,4,6,8
Post-process layers 2,3
Learning rate 0.1, 0.001
Training epochs 200, 800, 1600

B Additional Discussion

Limitations. In principle, AUTOTRANSFER leverages the correlation between model performance
rankings among tasks to efficiently construct model priors. Thus, it is less effective if the novel
task has large task distances with respect to all tasks in the task-model bank. In practice, users can

13

Algorithm 2 Training Pipeline for the projection function g(-)

Require: Task features {z}i) |T(i)} extracted for each task from the task-model bank. Distance
measure dg (-, -) estimated in GraphGym.

1: for each iteration do

2: Sample 7", 7G), T(*%)

300 29,29 20 g(z1), (=), g(2')
4y« 1ifdy(TW, 7)) < dy (T, T*) else —1
5. Optimize objective function £, (2", 29 2 4 in Eq.
6: end for

continuously add additional search trials to the bank. As the bank size grows, it will be less likely
that a novel task has a low correlation with all tasks in the bank.

Social Impact. Our long-term goal is to provide a seamless GNN infrastructure that simplifies the
training and deployment of ML models on structured data. Efficient and robust AutoML algorithms
are crucial to making deep learning more accessible to people who are interested but lack deep
learning expertise as well as those who lack the massive computational budget AutoML traditionally
requires. We believe this paper is an important step to provide Al tools to a broader population and
thus allow for Al to help enhance human productivity. We will release a dataset containing GNN
training information to promote future research. The datasets we used for experiments are among the
most widely-used benchmarks, which should not contain any undesirable bias. Besides, training/test
losses and accuracies are highly summarized statistics that we believe should not incur potential
privacy issues.

C Additional Results

Search efficiency. We summarize the average number of trials needed to surpass the average best
accuracy found by TPE with 30 trials in Table 3] We show that AUTOTRANSFER reduces the number
of explored architectures by an order of magnitude.

Table 3: Average number of search trials needed to surpass the average best result found by TPE with
30 trials

Node Graph

‘ Physics CoraFull 0GB-Arxiv C0x2 IMDB PROTEINS

3 2 3 3 6

Num. of Trials 4
96.64+0.42 67.85£1.31 71.424+0.39 | 82.96 £1.75 52.334+2.13 80.21%1.21

Accuracy

Ablation study on number of achor models. Here we empirically demonstrate how the number of
anchor models affect the rank correlation in Table[d] While 3 anchor models is not enough to capture
the task distance, we found that 9 and 12 has a satisfactory tradeoff between capturing task distance
and computational efficiency.

Table 4: Average Kendall rank correlation of similarity rankings of the other tasks with respect to the
central task between the proposed method and GraphGym.

Num. of anchor models | 3 6 9 12

Task Feature 0.03£0.34 0.11+£0.36 0.16+0.34 0.18+0.30
Task Embedding 0.12£0.28 0.26+0.30 0.36+0.24 0.43£0.22

14

	Introduction
	Related Work
	Problem Formulation and Preliminaries
	Proposed Solution: AutoTransfer
	Basics of the Fisher Information Matrix (FIM)
	FIM-based Task Features
	From Task Features to Task Embeddings
	AutoML Search Algorithm with Task Embeddings

	Experiments
	Experimental Setup
	Experiments on Search Efficiency
	Analysis of Task Embeddings

	Conclusion
	Additional Implementation Details
	Additional Discussion
	Additional Results

