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Abstract

Equivariant Graph neural Networks (EGNs) are powerful in characterizing the1

dynamics of multi-body physical systems. Existing EGNs conduct flat message2

passing, which, yet, is unable to capture the spatial/dynamical hierarchy for com-3

plex systems particularly, limiting substructure discovery and global information4

fusion. In this paper, we propose Equivariant Hierarchy-based Graph Networks5

(EGHNs) which consist of the three key components: generalized Equivariant6

Matrix Message Passing (EMMP), E-Pool, and E-UnPool. In particular, EMMP7

is able to improve the expressivity of conventional equivariant message passing,8

E-Pool assigns the quantities of the low-level nodes into high-level clusters, while9

E-UnPool leverages the high-level information to update the dynamics of the low-10

level nodes. As their names imply, both E-Pool and E-UnPool are guaranteed to11

be E(n)-equivariant to meet the physical symmetry. Considerable experimental12

evaluations verify the effectiveness of our EGHN on several applications including13

multi-object dynamics simulation, motion capture, and protein dynamics modeling.14

1 Introduction15

Figure 1: The folding dynamics of proteins in the
cartoon format.

Understanding the multi-body physical systems16

is vital to numerous scientific problems, from17

microscopically how a protein with thousands18

of atoms acts and folds in the human body to19

macroscopically how celestial bodies influence20

each other’s movement. While this is exactly21

an important form of expert intelligence, re-22

searchers have paid attention to teaching a ma-23

chine to discover the physical rules from the24

observational systems through end-to-end train-25

able neural networks. Specifically, it is natural26

to use Graph Neural Networks (GNNs), which27

is able to model the relations between different28

bodies into a graph and the inter-body interac-29

tion as the message passing thereon [1, 15, 24, 25, 20].30

More recently, Equivariant GNNs (EGNs) [28, 8, 7, 26] have become a crucial kind of tool for31

representing multi-body systems. One desirable property is that their outputs are equivariant with32

respect to any translation/orientation/reflection of the inputs. With this inductive bias encapsulated,33

EGN permits the symmetry that the physical rules keep unchanged regardless of the reference34

coordinate system, enabling more enhanced generalization ability. Nevertheless, current EGNs only35

conduct flat message passing in the sense that each layer of message passing in EGN is formulated36

in the same graph space, where the spatial and dynamical information can only be propagated37
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node-wisely and locally. By this design, it is difficult to discover the hierarchy of the patterns within38

complex systems.39

Hierarchy is common in various domains. Imagine a complex mechanical system, where the particles40

are distributed on different rigid objects. In this case, for the particles on the same object, their states41

can be explained as the relative states to the object (probably the center) plus the dynamics of the42

object itself. We can easily track the behavior of the system if these “implicit” objects are detected43

automatically by the model we use. Another example, as illustrated in Figure 1, is the dynamics of a44

protein. Most proteins fold and change in the form of regularly repeating local structures, such as45

α-helix, β-sheet and turns. By applying a hierarchical network, we are more capable of not only46

characterizing the conformation of a protein, but also facilitating the propagation between thousands47

of atoms in a protein by a more efficient means. There are earlier works proposed for hierarchical48

graph modeling [12, 5, 32, 3, 17], but these studies focus mainly on generic graph classification, and49

more importantly, they are not equivariant.50

In this paper, we propose Equivariant Graph Hierarchy-based Network (EGHN), an end-to-end51

trainable model to discover local substructures of the input systems, while still maintaining the52

Euclidean equivariance. In a nutshell, EGHN is composed of an encoder and a decoder. The encoder53

processes the input system from fine-scale to coarse-scale, where an Equivariant-Pooling (E-Pool)54

layer is developed to group the low-level particles into each of a certain number of clusters that55

are considered as the particles of the next layer. By contrast, the decoder recovers the information56

from the coarse-scale system to the fine-scale one, by using the proposed Equivariant-Up-Pooling (E-57

UnPool) layer. Both E-Pool and E-UnPool are equivariant with regard to Euclidean transformations58

via our specific design. EGHN is built upon a generalized equivariant layer, which passes directional59

matrices over edges other than passing vectors in EGNN [26].60

To verify the effectiveness of EGHN, we have simulated a new task extended from the N-body61

system [15], dubbed M -complex system, where each of the M complexes is a rigid object comprised62

of a set of particles, and the dynamics of all complexes are driven by the electromagnetic force63

between particles. In addition to M-complex, we also carry out evaluations on two real applications:64

human motion caption [4] and the Molecular Dynamics (MD) of proteins [27]. For all tasks, our65

EGHN outperforms state-of-the-art EGN methods, indicating the efficacy and necessity of the66

proposed hierarchical modeling idea.67

2 Related Work68

GNNs for modeling physical interaction. Graph Neural Networks (GNNs) have been widely69

investigated for modeling physical systems with multiple interacting objects. As pioneer attempts,70

Interaction Networks [1], NRI [15], and HRN [19] have been introduced to reason about the physical71

interactions. With the development of neural networks enforced by physical priors, many works72

resort to injecting physical knowledge into the design of GNNs. As an example, inspired by73

HNN [11], HOGN [24] models the evolution of interacting systems by Hamiltonian equations74

to obtain energy conservation. Another interesting feature of physical systems lies in Euclidean75

equivariance, i.e., translation, rotation, and reflection. Several works first approach translation76

equivariance [29, 25, 20, 30]. Yet, dealing with rotation equivariance is non-trivial. TFN [28] and77

SE(3)-Transformer [8] leverages the irreducible representation of the SO(3) group, while LieConv [7]78

and LieTransformer [14] extend the realization of equivariance to Lie group. Apart from these works79

that resort to group representation theory, a succinct equivariant message passing scheme on E(n)80

group is depicted in EGNN [26]. GMN [13] further involves equivariant forward kinematics modeling81

particularly for constrained systems. [2] generalizes EGNN to involve covariant information with82

steerable vectors. [21] leverages frame averaging for general equivariance. [18] mainly studies83

sign and basis invariance. Despite the rich literature, these models either violate the equivariance,84

or inspect the system at a single granularity, both of which are vital aspects when tackling highly85

complicated systems like proteins.86

Hierarchical GNNs. There are also works that explore the representation learning of GNNs in87

hierarchies. Several GNNs [12, 5, 31] adopt graph coarsening algorithms to view the graph in88

multiple granularities. [9] leverages a U-net architecture with top-k pooling. Another line of work89

injects learnable pooling modules into the model. A differentiable pooling scheme DiffPool [32] has90

been introduced to learn a permutation-invariant pooling in an end-to-end manner. [3] replaces the91
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Figure 2: Illustration of the proposed EGHN. It consists of an encoder and a decoder, which are
equipped with E-Pool and E-UnPool, respectively. E-UnPool takes as the input the previous output
and the score matrix S from E-Pool and output the low-level system G.

aggregation in DiffPool by node dropping for saving the computational cost. [17] further incorporates92

self-attention mechanism into the pooling network. [6] leverages junction tree to model molecular93

graph in multiple hierarchies. Nevertheless, these techniques, although permutation equivariant, lack94

the guarantee of geometric equivariance, limiting their generalization on real-world 3D physical data.95

3 The Proposed EGHN96

In this section, we first introduce the notations and formulation of our task, and then follow them up97

by presenting the design of the EMMP layer, which is the basic function in EGHN. Upon EMMP,98

we provide the details of how the proposed E-Pool and E-UnPool work. Finally, we describe the99

instantiation of the entire architecture.100

3.1 Notations and Formulation101

Each input multi-body system is modeled as a graph G consisting of N particles (nodes) V and the102

interactions (edges) E among them. For each node i, it is assigned with a feature tuple (Z
(0)
i ,h

(0)
i ),103

where the directional matrix Z
(0)
i ∈ Rn×m is composed of m n-dimension vectors, such as the104

concatenation of position xi ∈ R3 and velocity vi ∈ R3, leading to Z
(0)
i = [xi,vi] ∈ R3×2;105

hi ∈ Rc is the non-directional feature, such as the category of the atom in molecules. The edges are106

represented by an adjacency matrix A ∈ RN×N , which can either be constructed according to the107

geometric distance or physical connectivity. We henceforth abbreviate the entire information of a108

system, i.e., ({Z(0)
i ,h

(0)
i }Ni=1,A) as the notation G in if necessary.109

We are mainly interested in investigating the dynamics of the input system G in. To be formal,110

given the initial state (Z
(0)
i ,h

(0)
i ) of each particle, our task is to find out a function ϕ to predict its111

future state Z
(T )
i given the interactions between particles. As explored before [28, 8, 7, 26], ϕ is112

implemented as a GNN to encode the inter-particle relation. In addition, it should be equivariant to113

any translation/reflection/rotation of the input states, so as to obey the physics symmetry about the114

coordinates. It means, ∀g ∈ E(n) that defines the Euclidean group [26],115

ϕ({g ·Z(0)
i }Ni=1, · · · ) = g · ϕ({Z(0)

i }Ni=1, · · · ), (1)

where g ·Z(0)
i conducts the orthogonal transformation as RZ

(0)
i for both the position and velocity116

vectors and is additionally implemented as the translation xi + b for the position vector; the ellipsis117

denotes the input variables uninfluenced by g, including h
(0)
i and A.118

As discussed in Introduction, existing equivariant models [28, 8, 7, 26] are unable to mine the119

hierarchy within the dynamics of the input system by flat message passing. To address this pitfall,120

EGHN is formulated in the encoder-decoder form:121

Ghigh = Encode(G in),Gout = Decode(Ghigh,G in). (2)

Here, as illustrated in Figure 2, the encoder aims at clustering the particles of G in with similar122

dynamics into a group that is treated as the particle in the high-level graph Ghigh (the number of the123

nodes in Ghigh is smaller than G in). We have developed a novel component, E-Pool to fulfill this goal.124
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As for the decoder, it recovers the information of all particles in the original graph space under the125

guidance of the high-level system Ghigh, which is accomplished by the proposed E-UnPool. It is126

worth mentioning that both E-Pool and E-UnPool, as their names imply, are equivariant, and they127

are mainly built upon an expressive and generalized equivariant message passing layer, EMMP. To128

facilitate the understanding of our model, we first introduce the details of this layer in what follows.129

3.2 Equivariant Matrix Message Passing130

Given input features {(Zi,hi)}Ni=1, EMMP performs information aggregation on the same graph to131

obtain the new features {(Z ′
i,h

′
i)}Ni=1. The dimension of the output features could be different from132

Hij ,hij = MLP
(
Ẑ⊤

ij Ẑij ,hi,hj

)
, (3)

Mij = ẐijHij , (4)

h′
i = MLP

(
hi,

∑
j∈N (i)

hij

)
, (5)

Z ′
i = Zi +

∑
j∈N (i)

Mij , (6)

the input, unless the row dimension of Z ′
i should133

keep the same as Zi (i.e. equal to n). In detail,134

one EMMP layer is updated by Eq. 3-6, where135

MLP(·) is a Multi-Layer Perceptron, N (i) col-136

lects the neighbors of i, and Ẑij ∈ Rn×2m =137

(Zi−Z̄,Zj−Z̄) is a concatenation of the trans-138

lated matrices on the edge ij. Z̄ is the mean of139

all nodes for the position vectors and zero for140

other vectors. With the subtraction of Z̄, Ẑij is141

ensured to be translation invariant, and then Z ′
i is translation equivariant after the addition of Zi in142

Eq. 6. Specifically, the MLP in Eq. 3 takes as input the concatenation of the E(n)-invariant Ẑ⊤
ij Ẑij ,hi,143

and hj , mapping from R2m×2m+2c to R2m×m+c, and the output is split into Hij ∈ R2m×m and144

hij ∈ Rc. The formal proof for the E(n)-equivariance of EMMP is deferred to Appendix.145

Distinct from EGNN [26], the messages to pass in EMMP are directional matrices other than vectors.146

Although GMN [13] has also explored the matrix form, it is just a specific case of our EMMP147

by simplifying Ẑij = Zi − Zj . Indeed, we have the following theorem for the comparison of148

expressivity between EMMP, EGNN, and GMN, with the proof in Appendix.149

Theorem 1. EMMP can reduce to EGNN and GMN by specific choices of MLP in Eq. 3.150

Besides, since taking the inner product might induce a larger variance in the scale of input, in our151

implementation we also enforce a normalization Ẑ⊤
ij Ẑij/∥Ẑ⊤

ij Ẑij∥F before feeding the invariant152

Ẑ⊤
ij Ẑij into the MLP in Eq. 3, following the suggestion by GMN for better numerical stability.153

3.3 Equivariant Pooling154

Inspired by DiffPool, we propose E-Pool, an equivariant pooling module. Formally, E-Pool coarsens155

the low-level system G low = ({(Z low
i ,hlow

i )}Ni=1,A
low) into an abstract and high-level system156

Ghigh = ({(Zhigh
i ,hhigh

i )}Ki=1,A
high) with fewer particles, K < N . For this purpose, we first157

perform EMMP (Eq. 3-6) over the input system G to capture the local topology of each node.158

Then we apply the updated features of each node to predict which cluster it belongs to. This159

can be realized by a SoftMax layer to output a soft score for each of the K clusters. The clus-160

ter is deemed as a node of the high-level system, and its features are computed as a weighted161

combination of the low-level nodes with the scores it just derives. In summary, we proceed:162

{Z
′

i ,h
′

i}Ni = EMMP({Z low
i ,hlow

i }Ni ,Alow), (7)

si = Softmax(MLP(h
′

i)), (8)

Zhigh
j =

1∑N
i=1 sij

N∑
i=1

sijZ
′

i , (9)

hhigh
j =

1∑N
j=1 sij

N∑
i=1

sijh
low
i , (10)

Ahigh = S⊤AlowS, (11)

where Eq. 8 maps the invariant fea-163

ture h′
i into the score si ∈ RK of164

cluster assignment with Softmax per-165

formed long the feature dimension,166

and the score matrix is given by S =167

[sij ]N×K with si being its i-th row.168

By this design, it is tractable to verify169

that E-Pool is guaranteed to be E(n)170

equivariant (also permutation equiv-171

ariant). Specifically, the division by172

the row-wise sum
∑N

i=1 sij in Eq. 9 is173

essential, as it permits the translation174

equivariance, that is, 1∑N
i=1 sij

∑N
i=1 sij(Z

′

i + b) =
(

1∑N
i=1 sij

∑N
i=1 sijZ

′

i

)
+ b. This particular175
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property distinguishes our pooling from traditional non-equivariant graph pooling [32, 17]. Notice176

that the normalization in Eq. 10 is unnecessary since hi is a non-directional vector, but it is still177

adopted in line with Eq. 9. In practice, it is difficult to attain desirable clusters by using the SoftMax178

layer solely; instead, the pooling results are enhanced if we regulate the training process with an extra179

reconstruction loss related to the score matrix, whose formulation will be given in § 3.5.180

3.4 Equivariant UnPooling181

E-UnPool maps the information of the high-level system Ghigh back to the original system space G low,182

leading to an output system Gout. We project the features back to the space of the original low-level183

Zagg
i =

K∑
j=1

sijZ
high
j , (12)

hagg
i =

K∑
j=1

sijh
high
j , (13)

hout
i = MLP

(
Ẑ⊤

i Ẑi,h
low
i ,hagg

i

)
, (14)

Zout
i = Ẑih

out
i +Zagg

i , (15)

system by using the transposed scores derived in E-184

Pool. Then, the projected features along with the185

low-level features are integrated by an E(n) equiv-186

ariant function to give the final output. The pro-187

cedure of E-UnPool is given by Eq. 12-15, where188

Ẑi = [Z low
i − Z̄ low;Zagg

i − Z̄agg] is the column-wise189

concatenation of the mean-translated low-level ma-190

trix Z low
i and the high-level matrix Zagg

i , analogous to191

Eq. 3. One interesting point is that Eq. 12 is naturally192

equivariant in terms of translations, even without the193

normalization term used in Eq. 9. This is because the194

score matrix is summed to 1 for each row, indicating that
∑K

j=1 sij(Z
high
j +b) =

∑K
j=1 sijZ

high
j +b.195

We have the following theorem guaranteeing the equivariance, with all proofs deferred to Appendix.196

Theorem 2. EMMP, E-Pool, and E-UnPool are all E(n)-equivariant.197

3.5 Instantiation of the Architecture198

The overall architecture constitutes an equivariant U-Net [23] with skip-connections. We design the199

overall architecture as a sequence of EMMP, E-Pool, and E-UnPool in an encoder-decoder fashion,200

as depicted in Figure 2. The encoder is equipped with a certain number of E-Pools and EMMPs,201

while the decoder is realized with E-UnPools and EMMPs. For each E-UnPool in the decoder, as202

already defined in § 3.4, it is fed with the output of the previous layer, the score matrix S from203

E-Pool, and the low-level system G from EMMP in the corresponding layers of the encoder. Here,204

the so-called corresponding layers in E-Pool and E-UnPool are referred to the ones arranged in an205

inverse order; for example, in Figure 2, the final E-Pool corresponds to the first E-UnPool. With such206

design, it is straightforward, by the conclusion of Theorem 3, that the resulting EGHN still satisfies207

E(n)-equivariance.208

There is always one EMMP layer prior to each E-Pool or E-UnPool. This external EMMP plays209

a different role from the internal EMMP used in E-Pool (Eq. 7). One crucial difference is that210

they leverage different adjacency matrices. As we have introduced before, the adjacency matrix211

A can either be specified by geometric distance, i.e., distance-based, or physical connectivity, i.e.212

connectivity-based. 1. The external EMMP exploits a distance-based Aglobal whose element is213

valued if the distance between two particles is less than a threshold; by such means, we are able to214

characterize the force interaction between any two particles even they are physically disconnected.215

In higher-layer external EMMP, its Aglobal is created as a re-scored form (akin to Eq. 11) of Aglobal216

in lower layer, where the score matrix is obtained by its front E-Pool. 2. For the internal EMMP in217

E-Pool, it applies a connectivity-based Alocal that exactly reflects the physical connection between218

particles, for example, it is valued 1 if there is a bond between two atoms. In this way, E-Pool pays219

more attention to locally-connected particles when conducting clustering. Another point is that the220

external EMMP is relaxed as EGNN for modeling the radial interaction, whereas the internal EMMP221

uses the generalized form in § 3.2. As we will show in our experiments in § 4.4 and Appendix D.2,222

such design yields more favorable results compared with using any one of Aglobal and Alocal only.223

The training objective of EGHN is given by:224

L =

N∑
i=1

∥Zout
i −Zgt

i ∥
2
F + λ

L∑
l=1

∥(S(l))⊤A(l−1)S(l) − I∥2F , (16)
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Table 1: Prediction error (×10−2) on various types of simulated datasets. The “Multiple System”
contains J = 5 different systems. For each column, (M,N/M) indicates that each system contains
M complexes of average size N/M . Results averaged across 3 runs. “OOM” denotes out of memory.

Single System Multiple Systems
(3, 3) (5, 5) (5, 10) (10, 10) (3, 3) (5, 5) (5, 10) (10, 10)

Linear 35.15±0.01 35.22±0.00 30.14±0.00 31.44±0.01 35.91±0.01 35.29±0.01 30.88±0.01 32.49±0.01

TFN [28] 25.11±0.15 29.35±0.17 26.01±0.22 OOM 27.33±0.21 29.01±0.13 25.57±0.14 OOM
SE(3)-Tr. [8] 27.12±0.26 28.87±0.09 24.48±0.35 OOM 28.14±0.16 28.66±0.10 25.00±0.28 OOM
MPNN [10] 16.00±0.11 17.55±0.19 16.15±0.08 15.91±0.15 16.76±0.13 17.58±0.11 16.55±0.21 16.05±0.16

RF [16] 14.20±0.09 18.37±0.12 17.08±0.03 18.57±0.30 15.17±0.10 18.55±0.12 17.24±0.11 19.34±0.25

EGNN [26] 12.69±0.19 15.37±0.13 15.12±0.11 14.64±0.27 13.33±0.12 15.48±0.16 15.29±0.12 15.02±0.18

EGHN 11.58±0.01 14.42±0.08 14.29±0.40 13.09±0.66 12.80±0.56 14.85±0.03 14.50±0.08 13.11±0.92

where ∥ · ∥F computes the Frobenius norm, L is the number of E-Pools in the encoder, and λ is the225

trade-off weight. The first term is to minimize the mean-square-error between the output state Zout
i226

and the ground truth Zgt
i . The second term is the connectivity loss that encourages more connects227

within the pooling nodes and less cuts among pooling clusters [33]. For training stability, we first228

perform row-wise normalization of (S(l))⊤A(l−1)S(l) before substituting it into Eq. 16.229

4 Experiments230

We contrast the performance of the proposed EGHN against a variety of baselines including the231

equivariant and non-equivariant GNNs, on one simulation task: the M -complex system, and the two232

real-world applications: human motion capture and molecular dynamics on proteins. We also carry233

out a complete set of ablation studies to verify the optimal design of our model.234

4.1 Simulation Dataset: M -complex System235

Data generation. We extend the N -body simulation system from [15] and generate the M-complex236

simulation dataset, in order to introduce hierarchical structures in the data. Specifically, we initialize a237

system with N charged particles {xi,vi, ci}Ni=1 distributed on M disjoint complex objects {Sj}Mj=1,238

where xi,vi, ci are separately the position, velocity, and charge for each particle. Within each239

complex Sj , the particles are connected by rigid sticks, yielding geometric objects like sicks, triangles,240

tetrahedrons, etc. The dynamics of all M complexes are driven by the electromagnetic force between241

every pair of particles. The task here is to predict the final positions {xT
i }Ni of all particles when242

T = 1500 given their initial positions and velocities. Without knowing which complex each particle243

belongs to, we will also test if our EGHN can group the particles correctly just based on the244

distribution of the trajectories. We independently sample J different systems, each of which has245

M complexes with the number of particles sampled from a uniform distribution with mean N/M .246

A dataset consists J systems with M complexes, N/M average size of complex is abbreviated as247

(M,N/M, J). We adopt Mean Squared Error (MSE) as the evaluation metric for the experiments.248

Implementation details. We assign the node feature as the norm of the velocity ∥vi∥2, and the249

edge attribute as cicj for the edge connecting node i and j, following the setting in [26]. We250

also concatenate an indicator, which is set as 1 if a stick presents and 0 otherwise, to the edge251

feature, similar to [13]. We use a fully connected graph (without self-loops) as Aglobal, since the252

interaction force spans across each pair of particles in the system. The adjacency matrix A reflects the253

connectivity of the particles formed by the complexes. We set the number of clusters the same as the254

number of complexes in the dataset. The comparison models include: Linear Prediction (Linear) [26],255

SE(3)-Transformer (SE(3)-Tr.) [8], Radial-Field (RF) [16], GNN and EGNN [26]. For all these256

models, we employ the codes and architectures implemented by [26]. Detailed hyper-parameter257

settings are in Appendix.258

Results. Table 1 reports the overall performance of the comparison models on eight simulation259

datasets with different configurations. From Table 1, we have the following observations: 1. Clearly,260

EGHN surpasses all other approaches in all cases, demonstrating the general superiority of its design.261
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Figure 3: Visualization on M-complex systems. Left: the prediction of EGNN. Middle: the prediction
of EGHN. Right: the pooling results of EGHN with each color indicating a cluster. In the left and
middle figure, ground truth in red, and prediction in blue. Best viewed by colour printing.
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Figure 4: Visualization on Motion Capture. Left: the prediction of EGNN. Middle: the prediction
of EGHN. Right: the pooling results of EGHN with each color indicating a cluster. In the left and
middle figure, ground truth in red, and prediction in blue. Best viewed by zooming in.

2. Increasing the number of complexes (M ) or the number of particles (N ) always increases the262

complexity of the input system, but this does not necessarily hinder the performance of EGHN.263

For example, in both the single-system and multiple-system cases, EGHN even performs better264

when the system is changed from (5, 5) to (5, 10) and (10, 10). We conjecture that, with more265

particles/complexes, larger systems also provide more data samples to enhance the training of EGHN.266

3. When increasing the diversity of systems (J) by switching from the single-system mode to multi-267

system mode, the performance of EGHN only drops slightly, indicating its adaptability to various268

scenarios. Visualization. we visualize in Figure 3 the predictions of EGNN and our EGHN on the269

(3, 3, 1) scenario. We find that EGHN predicts the movements of the rigid objects more accurately270

than EGNN, especially for the large objects. In the right sub-figure, we also display the pooling271

results of EGHN, outputted by the score matrix of the final E-Pool layer. It is observed that EGHN is272

able to detect the correct cluster for each particle. This is interesting and it can justify the worth of273

designing hierarchical architecture for multi-body system modeling.274

4.2 Motion Capture275

We further evaluate our model on CMU Motion Capture Databse [4]. We primarily focus on two276

activities, namely walking (Subject #35) [15] and running (Subject #9). With regard to walking, we277

leverage the random split adopted by [13], which includes 200 frame pairs for training, 600 for278

validation, and another 600 for testing. As for running, we follow a similar strategy and obtain a split279

with 200/240/240 frame pairs. The interval between each pair is 30 frames in both scenarios. In this280

task the joints are edges and their intersections are the nodes.281

Implementation details. As discussed in [8], many real-world tasks, including our motion capture282

task here, break the Euclidean symmetry along the gravity axis (z−axis), and it is beneficial to make283

the equivariant models aware of where the top is. To this end, we augment the node feature by the284

coordinate of the z−axis, resulting in models that are height-aware while still equivariant in the285

horizontal directions. This operation is also applied to all baselines. Since the interaction of human286
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EGHNEGNNMPNN
(a) (b)

MSE: 0.314MSE: 1.920MSE: 0.925

Alpha helix Alpha helix Alpha helix

Figure 5: Visualization on the MDAnalysis dataset. (a) The predictions of MPNN, EGNN, and
EGHN. Ground truth is in red. The top-1 MSE of EGHN is also much smaller that that of MPNN
and EGHN. (b) The pooling assignment of EGHN.

body works along the joints, we propose to involve the edge in Aglobal if it connects the nodes within287

two hops in G. For the number of clusters K, we empirically find that K = 5 yields promising results288

for both walking and running.289

Table 2: MSE (×10−2) on the motion
capture dataset averaged across 3 runs.

Subject #35 Subject #9
Walk Run

MPNN [10] 36.1 ±1.5 66.4 ±2.2
RF [16] 188.0 ±1.9 521.3±2.3
TFN [28] 32.0 ±1.8 56.6 ±1.7
SE(3)-Tr. [8] 31.5 ±2.1 61.2 ±2.3
EGNN [26] 28.7 ±1.6 50.9 ±0.9
GMN [13] 21.6 ±1.5 44.1 ±2.3

EGHN 8.5 ±2.2 25.9 ±0.3

Results. Table 2 summarizes the whole results of all mod-290

els on two subjects. Here, we supplement an additional291

baseline GMN [13] for its promising performance on this292

task. Excitingly, EGHN outperforms all compared base-293

lines by a large margin on both activities. Particularly, on294

Subject #35, the prediction error of EGHN is 8.5× 10−2,295

which is much lower than that of the best baseline, i.e.,296

GMN (21.6× 10−2). Visualization. To investigate why297

EGHN works, we depict the skeletons estimated by both298

EGNN and EGHN on Subject #9 in Figure 4. It shows299

that EGHN is able to capture more fine-grained details on300

certain parts (e.g. the junction between the legs and the301

body) than EGNN. When we additionally visualize the302

pooling outcome in the right sub-figure, we interestingly find that EGHN is capable of classifying303

the two right-left hands into the same cluster even they are spatially disconnected. A similar result304

is observed for the arms and feet. This is reasonable as EGHN checks not only if two particles are305

spatially close to each other but also if they share the similar dynamics.306

4.3 Molecular Dynamics on Proteins307

We adopt AdK equilibrium trajectory dataset [27] via MDAnalysis toolkit [22] to evaluate our308

hierarchical model. The AdK equilibrium trajectory dataset involves the MD trajectory of apo309

adenylate kinase simulated with explicit water and ions in NPT at 300 K and 1 bar. The atoms’310

positions of the protein are saved every 240 ps for a total of 1.004 µs as frames.311

Implementation details. We split the dataset into train/validation/test sets along the timeline that312

contain 2481/827/878 frame pairs respectively. We choose T = 15 as the span between the input313

and prediction frames. We ignore the hydrogen atoms to focus on the prediction of large atoms. We314

further establish the global adjacency matrix as the neighboring atoms within a distance of 10Å.315

The atoms’ velocities of the protein at each frame are computed by subtracting the positions to the316

previous frame’s positions. We further leverage MDAnalysis to extract the protein backbone in order317

to reduce the data scale. Even so, TFN and SE(3)-Transformer still run out of memory, and thus we318

compare our model with the rest of baselines. Detailed hyper-parameters are in Appendix.319

Table 3: Prediction error (MSE) on protein MD.
Linear RF [16] MPNN [10] EGNN [26] EGHN

2.890 2.846 2.322 2.735 1.843

Results. The prediction MSE is de-320

picted in Table 3. Our EGHN yields321

significantly lower error on protein322

MD compared with the baselines,323

achieving 1.843 MSE, while the sec-324

ond best model MPNN has an MSE of 2.322. However, MPNN is non-equivariant, and we find325
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that its MSE will dramatically increase to 605.7 if we apply a random rotation of the protein during326

testing. Compared with EGNN, our EGHN exhibits its superiority thanks to the hierarchical modeling,327

particularly favorable on large and complex systems like proteins.328

Qualitative comparisons. We visualize the protein structure of top-1 predictions generated by329

different models in cartoon format in Fig. 5 (a), with more visualization examples provided in330

Appendix. In Fig. 5 (a), the structure in red indicates the ground truth, while the other colors indicate331

the prediction. We can observe that EGHN tracks the folding and dynamics of the protein more332

precisely than the baselines. For example, in the the bottom region, EGHN gives a close-fitting result333

of the alpha helix structure while the predictions from MPNN and EGNN have an obvious shift334

compared with the ground truth. To validate the power of the E-Pool, we further visualize the pooling335

clusters in Fig. 5 (b). Interestingly, the pooling assignment exhibits certain clusters in some structures336

of the protein. It suggests that EGHN discovers local repetitive sub-structures of the protein; for337

instance, it detects the alpha helix structure in the middle of the protein.338

4.4 Ablation Studies339

Table 4: Ablation studies on the motion capture
dataset. Numbers are MSE (×10−2).

Subject #35 Subject #9
Walk Run

EGHN (K = 5) 8.5 25.9
EGHN (K = 3) 10.1 41.4
EGHN (K = 8) 14.9 26.8

w/o Equivariance 19.7 40.9
w/o Hierarchy 21.9 42.1
Replace by EGNN 22.3 42.5

w/o Connectivity loss 10.5 28.8
Aglobal only 17.4 31.5
Alocal only 16.8 33.5

We investigate the necessity of our proposed340

components on motion capture dataset in Ta-341

ble 4. We study the following questions:342

Q1. How will the performance of EGHN change,343

if we vary the number of clusters (K)? We344

modify the number of clusters K from 5 to 3345

and 8, both of which yield worse performance.346

Specifically, we find that decreasing K on “Run”347

results in a larger degradation of performance,348

possibly because the activity “Run” is with com-349

plicated kinematics and it will be more difficult350

to learn if the joints are shared across a too small351

number of clusters. We provide potential guid-352

ance on choosing K in Appendix D.1. Q2. How353

do our proposed two components EMMP and hi-354

erarchical modeling contribute? We replace all EMMP layers in our model by typical non-equivariant355

MPNN, and the performance drops from 8.5 to 19.7 on Walk, supporting that maintaining equiv-356

ariance is vital. We further set si = 1i in all E-Pool and E-UnPool and observe that removing357

hierarchy is detrimental to accurate prediction. Moreover, by replacing all EMMPs with EGNNs,358

the performance also drops, which aligns with our analysis on the stronger expressivity of EMMP359

over EGNN. Complete studies are deferred to Appendix D.2 and D.3. Q3. How does the connectivity360

loss (the second term in Eq. 16) help? By dropping the connectivity loss, we observe a larger predic-361

tion error. This justifies the necessity of using the connectivity loss to focus more on intra-cluster362

connections against the inter-cluster edges. Q4. How about using the same adjacency matrix for363

all EMMP instead of distinguishing them as Aglobal in the external EMMPs and Alocal in internal364

EMMPs as discussed in § 3.5? When we apply Aglobal or Alocal for all EMMPs, the performance365

drops dramatically, implying that the external and internal EMMPs play different roles in EGHN, and366

should be equipped with different adjacency matrices to model the interactions of different scopes.367

5 Discussion368

Limitation. In the current form the number of clusters K is fixed in EGHN as an empirical369

hyperparameter. Future works include extending E-Pool to dynamically adjust K for systems with370

different scales for enhancing the flexibility of the hierarchical model.371

Conclusion. In this paper, we propose Equivariant Graph Hierarchy-based Network (EGHN) to372

model and represent the dynamics of multi-body systems. EGHN leverages E-Pool to group the373

low-level nodes into clusters, and E-UnPool to restore the low-level information from the high-level374

systems with the aid of the corresponding E-Pool layer. The fundamental layer of EGHN lies in375

Equivariant Matrix Message Passing (EMMP) to characterize the topology and dynamics expressively.376

Experimental evaluations on M-complex systems, Motion-Capture, and protein MD, show that EGHN377

consistently outperforms other non-hierarchical EGNs as well as non-equivariant GNNs.378
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A Proofs474

A.1 Proof of Theorem 1475

Theorem 3. EMMP can reduce to EGNN and GMN by specific choices of MLP in Eq. 3.476

Proof. For simplicity, we denote Zi − Z̄ as Z̄i, which infers Z̄i − Z̄j = Zi −Zj .477

For EMMP, GMN [13], and EGNN [26], we rewrite their messages (Eq. 3-4) below.478

MEMMP
ij = ẐijMLP1

(
Ẑ⊤

ij Ẑij

)
,

=
[
Z̄i Z̄j

]
MLP1

([
Z̄⊤

i Z̄i Z̄⊤
i Z̄j

Z̄⊤
j Z̄i Z̄⊤

j Z̄j

])
.

MGMN
ij = (Zi −Zj)MLP2

(
(Zi −Zj)

⊤(Zi −Zj)
)
.

MEGNN
ij = (xi − xj)MLP3

(
(xi − xj)

⊤(xi − xj)
)
.

1. We first prove that EMMP can reduce to GMN.479

Let MLP1 = fout◦MLP2◦fin, where fin(

[
a11 a12

a21 a22

]
) = (a11−a12)−(a21−a22), fout(a) =

[
a
−a

]
,480

and “◦” is the function composition. By this relaxation, EMMP reduces to:481

MEMMP
ij =

[
Z̄i Z̄j

]
fout ◦ MLP2 ◦ fin

([
Z̄⊤

i Z̄i Z̄⊤
i Z̄j

Z̄⊤
j Z̄i Z̄⊤

j Z̄j

])
,

=
[
Z̄i Z̄j

]
fout ◦ MLP2

(
Z̄⊤

i (Z̄i − Z̄j)− Z̄⊤
j (Z̄i − Z̄j)

)
,

=
[
Z̄i Z̄j

]
fout

(
MLP2

(
(Zi −Zj)

⊤(Zi −Zj)
))

,

=
[
Z̄i Z̄j

] [ MLP2

(
(Zi −Zj)

⊤(Zi −Zj)
)

−MLP2

(
(Zi −Zj)

⊤(Zi −Zj)
)] ,

= (Zi −Zj)MLP2

(
(Zi −Zj)

⊤(Zi −Zj)
)
,

= MGMN
ij .

2. We then prove that GMN can reduce to EGNN using similar derivations as above.482

Denote Zi = [xi,vi], and we can similarly let MLP2 = fout ◦MLP3 ◦fin, where fin(

[
a11 a12

a21 a22

]
) =483

a11, and fout(a) =

[
a
0

]
. Therefore, we have that484

MGMN
ij = [xi − xj vi − vj ] fout ◦ MLP3 ◦ fin

([
(xi − xj)

⊤(xi − xj) (xi − xj)
⊤(vi − vj)

(vi − vj)
⊤(xi − xj) (vi − vj)

⊤(vi − vj)

])
,

= [xi − xj vi − vj ] fout ◦ MLP3

(
(xi − xj)

⊤(xi − xj)
)
,

= [xi − xj vi − vj ]

[
MLP3

(
(xi − xj)

⊤(xi − xj)
)

0

]
,

= (xi − xj)MLP3

(
(xi − xj)

⊤(xi − xj)
)
,

= MEGNN
ij ,

which concludes the proof.485

This theorem basically implies that the expressivity of our EMMP is stronger than that of GMN or486

EGNN.487

A.2 Proof of Theorem 2488

Theorem 4. EMMP, E-Pool, and E-UnPool are all E(n)-equivariant.489
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Proof. 1. We first prove that EMMP is E(n)-equivariant.490

For any g ∈ E(n), we have g ·Z = RZ + b where R ∈ R3×3,R⊤R = I and b ∈ R3. We use the491

superscript ∗ to denote the resulting output after applying the group action g to the input. Initially, we492

have Z∗ = RZ + b, and h∗
i = hi. Similarly, Z̄∗ = RZ̄ + b. We proceed the proof step by step,493

following the definition of EMMP in Eq. 3-6:494

Ẑ∗
ij = [Z∗

i − Z̄∗,Z∗
j − Z̄∗] = [RZi + b− (RZ̄ + b),RZj + b− (RZ̄ + b)] = RẐij ,

H∗
ij = MLP

(
(RẐij)

⊤RẐij ,hi,hj

)
= MLP

(
Ẑ⊤

ij Ẑij ,hi,hj

)
= Hij ,

M∗
ij = Ẑ∗

ijH
∗
ij = RẐijHij = RMij ,

h′∗
i = MLP

hi,
∑

j∈N (i)

Hij

 = h′
i,

Z ′∗
i = RZ + b+

∑
j∈N (i)

RMij = R(Z +
∑

j∈N (i)

Mij) + b = RZ ′
i + b,

which verifies that EMMP is E(n)-equivariant.495

2. We then prove that E-Pool is E(n)-equivariant.496

Zhigh,∗
j =

1∑N
i=1 sij

N∑
i=1

sij(RZ ′
i + b) = R(

1∑N
i=1 sij

N∑
i=1

sijZ
′
i) + b = RZhigh

j + b,

hhigh,∗
j =

1∑N
j=1 sij

N∑
i=1

sijh
low
i = hhigh

j ,

Ahigh,∗ = S⊤AlowS = Ahigh,

which clearly shows that E-Pool is E(n)-equivariant, while the high-level adjacency matrix Ahigh is497

E(n)-invariant, which is crucial for maintaining the equivariance of the high-level EMMP.498

3. Finally we prove that E-UnPool is E(n)-equivariant.499

Zagg,∗
i =

K∑
j=1

sij(RZhigh
j + b) = R(

K∑
j=1

sijZ
high
j ) + b = RZagg

i + b,

hagg,∗
i = hagg

i ,

hout,∗
i = MLP

(
(RẐi)

⊤(RẐi),h
low
i ,hagg

i

)
= hout

i ,

Zout,∗
i = RẐih

out
i +RZagg

i + b = RZout
i + b.

500

Indeed, with Theorem 4 we immediately have that any cascade of EMMP, E-Pool, and E-UnPool is501

also E(n)-equivariant. This indicates that our resulting EGHN is E(n)-equivariant.502

B Implementation Details503

Baselines. For the baselines, we leverage the codebases maintained by [13]1 and [26]2, which are504

released under MIT license. We tune the hyper-parameters around the suggested hyper-parameters as505

specified in [13] and [26] for the baselines. Specifically, for MPNN [10], RF [16] and EGNN [26],506

we tune the learning rate from {1e-4, 5e-4, 1e-3}, weight decay {1e-12, 1e-10, 1e-8, 1e-4}, batch507

1https://github.com/hanjq17/GMN
2https://github.com/vgsatorras/egnn
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size {50, 100, 200}, hidden dim {32, 64, 128} and the number of layers {2, 4, 6, 8}. For TFN [28]508

and SE(3)-Transformer [8], we set the degree to 2 due to memory limitation, and select the learning509

rate from {5e-4, 1e-3, 5e-3}, weight decay {1e-10, 1e-8}, batch size {25, 50, 100}, hidden dim {32,510

64} and the number of layers {2, 4}. We report the best results searched within these ranges of511

hyper-parameters for the baselines. We use an early-stopping of 50 epochs for all methods. Note that512

the kinematics decomposition trick in GMN [13] requires a specific design to enforce hard constraints513

for any new system, which cannot be directly applied to our simulation dataset and protein MD.514

Besides, both TFN and SE(3)-Transformer run out of memory on protein MD, and we thus omit their515

results in Table 3.516

EGHN. For our EGHN, on simulation dataset, we use batch size 50, and the number of clusters the517

same as the complexes in the dataset. On motion capture, we use batch size 12, and the number of518

clusters K = 5 on both datasets. On MD dataset, we use batch size 8, and the number of clusters519

K = 15. Table 5 depicts the rest of detailed hyper-parameter configurations. Notably, to control520

the computational budget of EGHN compared with the baselines, we set the maximum number of521

encoder/decoder layers as 4, while for the baselines we set the maximum number of layers as 8,522

ensuring fair comparison. All experiments are conducted on NVIDIA Tesla V100 GPU.523

Table 5: Hyper-parameters of EGHN.

Dataset learning rate λ weight decay Encoder Layer Decoder Layer

(3, 3, 1) 0.0005 4 1e-4 4 2
(3, 3, 5) 0.001 4 1e-4 4 2
(5, 5, 1) 0.0003 2 1e-6 4 2
(5, 5, 5) 0.001 0.1 1e-12 4 2
(5, 10, 1) 0.0001 4 1e-4 2 2
(5, 10, 5) 0.0005 4 1e-4 4 2
(10, 10, 1) 0.0005 2 1e-6 4 2
(10, 10, 5) 0.0003 1 1e-8 4 2

Mocap Walk 0.0004 1 1e-6 2 2
Mocap Run 0.0003 1 1e-6 4 1

MD 0.0005 0.1 1e-8 4 2

Distance-based
𝑨"#$%&#

cutoff

Connectivity-based
𝑨#$'&#

Figure 6: An illustration of Aglobal and Alocal.

Besides, to gain more insights of our design of Aglobal and Alocal, we provide an illustration in524

Fig. 6. Our intuition is that the relation modeling in different hierarchy levels might contain different525

semantics. For example, in the external EMMP, we use Aglobal since we would like the model to526

capture and gather the interaction forces based on the distance between nodes (atoms). As for the527

internal EMMP, the topology of the graph, i.e., the connectivity, plays an important role in determining528

the topological information (such as the bond connection in molecules and proteins) which is crucial529

for performing pooling and unpooling. Our connectivity loss, by sharing a similar idea, also enforces530

a stronger connectivity on the pooling assignment by encouraging connected nodes to be pooled into531

the same cluster and penalizing the others. By this design, EGHN is designed to be more flexible and532

the ablations also verify the efficacy of leveraging Aglobal and Alocal in external and internal EMMP,533

respectively.534
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Furthermore, in order to keep a fair comparison between EGHN and the baselines, we augment the535

edge feature of the baselines by taking into account the information of Aglobal and Alocal. Specifically,536

for the set of edges we employ Aglobal, while extending a channel on the edge feature by an indicator537

function that takes the value 1 if this edge also belongs to Alocal and 0 otherwise. On all the three538

datasets, it is satisfied that Alocal is always a subset of Aglobal by our choices. Therefore, through such539

augmentation, we exactly keep the same edge information between EGHN and baselines without any540

unfairness.541

Our implementation is provided in the following anonymous repository https://anonymous.542

4open.science/r/EGHN_code.543

More explanations on the connectivity loss. Intuitively, the connectivity loss encourages pooling544

assignments with more edges within the pooled clusters and fewer in between. In particular, the loss545

reaches its minimum, i.e., 0, if and only if node i and j belong to the same cluster for each edge546

(i, j) ∈ E .547

C Learning Curve548

We provide the learning curve of EGHN and EGNN on (3, 3, 1) of the M -complex dataset. It is549

illustrated that EGHN converges faster and the corresponding testing loss is lower as well, yielding550

better performance than EGNN.551
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Figure 7: The learning curves of EGHN and EGNN on (3, 3, 1) of the M -complex dataset.

D More ablation studies552

D.1 The impact of the number of clusters K553

We thoroughly investigate how the number of clusters influence the model performance on all datasets.554

For M -complex System, we sweep over 1 to 5 in the Complex (3, 3) single system. For Mocap555

dataset, we sweep over 1 to 8. For Protein MD, we vary K from 1, 5, 10, 15, 20, 25. The results are556

depicted in Table 6, 7, and 8. We also provide the number of nodes of each system in these tables. A557

visualization can be found in Fig. 8.558
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Figure 8: Prediction MSE w.r.t. the number of clusters K.
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Table 6: MSE (×10−2) on Complex (3, 3) w.r.t. the number of clusters K.

9 nodes 1 2 3 4 5

MSE 14.86 13.21 11.58 12.05 12.92

Table 7: MSE (×10−2) on Mocap Walk w.r.t. the number of clusters K.

31 nodes 1 2 3 4 5 6 7 8

MSE 19.8 16.8 10.1 8.1 8.5 10.5 11.2 14.9

Table 8: MSE (×10−2) on Protein MD w.r.t. the number of clusters K.

855 nodes 1 5 10 15 20 25

MSE 2.132 2.234 2.127 1.843 2.189 2.245

We have these investigations: 1. On all datasets, the performance degenerates when K = 1, since559

all nodes in the system are pooled into one cluster and therefore there are no learnable cluster560

assignments. It verifies the necessity of modeling hierarchies in multi-body systems. 2. The systems561

with larger scale enjoys larger K in practice. It indicates that for the systems with larger number562

of nodes, it is beneficial to choose larger K to better model their complex hierarchies. 3. For the563

Complex (3,3) system, it is interesting that the best performance is obtained when K = 3, since564

it contains 3 disjoint complexes. This implies that it is also possible to choose K by some prior565

knowledge assessed from data.566

D.2 The choice of internal and external modules567

In this subsection we provide ablation study that compares the performance of different choices568

between internal/external EMMP/EGNN. The experimental results are exhibited in Table 9.

Table 9: MSE (×10−2) on two motion capture datasets and two M -Complex systems.

Internal External Mocap Walk Mocap Run Complex (3, 3) Complex (5, 5)

EGNN EGNN 22.3 42.5 12.51 15.77

EMMP EGNN 8.5 21.9 11.58 14.42

EMMP EMMP 8.1 21.1 11.82 14.36

569

We have the following observations:570

• When applying EMMP in either internal or external message passing, the performance571

consistently improves against EGNN. This verifies that the proposed EMMP is potentially572

more advantageous on modeling interactions, which aligns with our theoretical analysis that573

EMMP is more expressive than EGNN (c.f. Theorem 3).574

• Compared with external EMMP, more significant improvements are obtained when applying575

EMMP as the internal message passing layers (e.g., 22.3 → 8.5 on MocapWalk). Note576

that the internal message passing layers are those right before our pooling layer, which577

are responsible for passing and aggregating messages towards the high-level cluster nodes.578

Therefore, we speculate the reason might be that compared with the flat message passing579

layers (the external EMMPs), the internal EMMPs require much higher expressivity and580

capacity since they need to fuse the message of all nodes towards their corresponding cluster581

nodes.582

• In the Complex (3, 3) scenario, changing from EGNN to EMMP in external message583

passing slightly affects the performance, probably because the interactions between nodes584

in M -complex are Coulomb forces which can be well covered by EGNN. Nevertheless, on585
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the mocap dataset where interactions are much more complicated, leveraging EMMP is586

consistently more advantageous over EGNN.587

D.3 The hierarchy ablation study with identity assignments.588

We summarize in Table 10 the results of more ablation studies on all datasets (simulation, mocap,589

and protein), where EGHN w/o hier is implemented by setting the cluster assignment to identity, i.e.,590

si = 1i.591

Table 10: MSE (×10−2) on five datasets with and without identity assignments.

Complex (3,3) Complex (5,5) Mocap Walk Mocap Run Protein MD

EGHN 11.58 14.42 8.5 25.9 1.84

EGHN w/o hier 12.24 15.18 21.9 42.1 2.00

As illustrated in Table 10, the hierarchical structure is consistently beneficial to the model performance592

across M -complex simulation, Motion Capture, and Protein MD. This supports the validity and593

efficacy of our designed equivariant hierarchy module.594

E Training time comparison595

We evaluate the training time on simulation and motion capture datasets for the baselines and EGHN.596

Table 11 depicts the average training time per epoch (in seconds). All models are trained on a597

NVIDIA V100 GPU.598

Table 11: The average training time per epoch (in seconds) on two datasets.

MPNN [10] TFN [28] SE(3)-Tr. [8] EGNN [26] GMN [13] EGHN

Complex (3, 3) 1.21 7.81 23.25 1.45 1.58 1.69

MocapWalk 0.92 6.85 18.96 1.21 1.49 1.41

EGHN is almost as efficient as EGNN and GMN, while only adding marginal computational overhead599

compared to MPNN, since the computations related to equivariance and pooling are efficient. The600

irreps-based methods TFN and SE(3)-Transformer yield significantly longer training time.601

F Comparison with additional baselines602

We also compare with SEGNN [2] on M -complex systems. The results are in Table 12. SEGNN603

performs better than EGNN particularly when the system is large (e.g., on (5, 10) or (10, 10). Still,604

EGHN consistently outperforms these baselines by a significant margin.

Table 12: Prediction error (×10−2) on various types of simulated datasets. The “Multiple System”
contains J = 5 different systems. For each column, (M,N/M) indicates that each system contains
M complexes of average size N/M . Results averaged across 3 runs. “OOM” denotes out of memory.

Single System Multiple Systems
(3, 3) (5, 5) (5, 10) (10, 10) (3, 3) (5, 5) (5, 10) (10, 10)

EGNN [26] 12.69 15.37 15.12 14.64 13.33 15.48 15.29 15.02
SEGNN [2] 14.04 15.62 15.01 14.31 13.88 16.01 15.41 14.78
EGHN 11.58 14.42 14.29 13.09 12.80 14.85 14.50 13.11

605
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G More Visualizations606

In this section, we provide more visualization results. Figure 10, Figure 11, and Figure 12 illustrate607

more visualization examples on (5, 5, 1) of the simulation dataset, walking on the motion capture608

dataset, and the MD dataset, respectively.609

We further provide more predictions and pooling results of EGHN in Fig. 9. It is observed that EGHN610

gives accurate predictions with desirable pooling assignments.611

Figure 9: More visualizations and pooling results. Ground truth in red. The prediction of EGHN in
blue.
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Figure 10: Visualization on M -complex dataset. Left: the prediction of EGNN. Middle: the prediction
of EGHN. Right: the pooling results of EGHN with each color indicating a cluster. Ground truth in
red, and prediction in blue. Best viewed by colour printing and zooming in.
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Figure 11: Visualization on Mocap Walk. Left: the prediction of EGNN. Middle: the prediction of
EGHN. Right: the pooling results of EGHN with each color indicating a cluster. Ground truth in red,
and prediction in blue. Best viewed by colour printing and zooming in.
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Figure 12: More visualizations on protein MD. Ground truth in red. The prediction of EGHN in
green.
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