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Abstract

Heterogeneous Information Network (HIN), where nodes and their attributes denote
real-world entities and links encode relationships between entities, are ubiquitous
in many applications. The presence of multiple types of nodes and links pose
significant challenges to the state-of-the-art methods for learning node embeddings
from heterogeneous graphs. To address these challenges, we consider three variants
of graph variational autoencoder models for heterogeneous networks that avoid the
computationally expensive sampling of meta-paths. The proposed methods also
maintain uncertainty estimates of node embeddings that help improve generaliza-
tion performance. We report the results of experiments on link prediction using
three different real-world heterogeneous network benchmark data sets that show
that the proposed methods significantly outperform state-of-the-art baselines.

1 Introduction

Graph-structured data, which naturally encodes the relations between individuals, are ubiquitous in
many real world applications, including e-commerce [1–4], social networks [5–7] and molecular
structures [8–10], among others. Such data present a range of machine learning problems, including
node classification [11] and link prediction [12]. Graph embedding techniques [13] aim to construct
low-dimensional information-preserving representations of graph-structured data. The past several
decades have seen an explosion of interest in algorithms for mining graph-structured data [14–16].
Of particular interest are Graph Neural Networks (GNNs) [17, 18], a type of deep neural networks
[19] that offer state-of-the-art performance on representation learning from graph-structured data.
Such techniques have found applications across many domains including recommender systems [20],
bioinformatics [21], drug discovery [22], social network analysis [23] and material science [24],
among others.

The earliest GNN methods [25–29] focused on node and link classification problems in homogeneous
networks, i.e., networks with only one type of nodes and links. However, many real-world applications
present heterogeneous graphs, i.e., graphs with multiple types of nodes and links. For example,
atoms in a chemical structure can be of different types, and atoms of different types may be linked by
different types of chemical bonds (heterogeneous edges). Similarly, a bibliographic graph consisting
of multiple types of nodes, namely, authors, papers, topics, and venues contain not only the edges
between nodes of the same type, e.g., papers (paper citation) but also edges that link nodes of different
types e.g., authors and papers (authorship) or papers and venues (publication). Such applications call
for effective GNN methods that work with heterogeneous graphs.

Existing approaches for learning embeddings of heterogeneous graphs rely on sampling meta-
paths [30], i.e., sequences of node types encoding relations between node types; for learning node
embeddings—different meta-paths express different semantic meanings. Most existing work, e.g.,
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[30], assumes that domain experts specify the meta-paths. While recent work, e.g., Wan et al. [31],
offers approaches to discovering meta-paths, their flexibility comes at a high computational cost.
Extracting meta-paths from heterogeneous graphs often involves dealing with with the attendant loss
of information. Meta-paths fail to account for possible differences in the importance of heterogeneous
links based on the types of nodes involved and their influence on nodes for which embedding is being
generated. Although some meta-path-free methods have been developed recently, e.g., Hussein et al.
[32], they generally limit that the edges to be between nodes of the same type.

Furthermore, heterogeneous graphs are often constructed from real-world data, e.g., collections of
articles in the case of citation networks. Both the data and the algorithms used to extract heterogeneous
graphs can introduce noise, and methods used to learn node embeddings from such graphs should be
sufficiently robust to cope with noise.

Against this background, this paper explores three node embedding techniques for heterogeneous
graphs. The key contributions of this paper are as follows:

1. We precisely define the problem of learning node embeddings from heterogeneous graphs
and highlight some of the deficiencies of the existing methods.

2. We introduce three novel heterogeneous graph embedding methods that directly utilize
the information encoded by a heterogeneous graph. These methods utilize a node and
link type-aware transformations to aggregate information from local neighborhoods around
nodes, taking into account, the heterogeneous nodes and links in the graphs. We maintain
uncertainty associated with the learned embeddings of nodes to improve the noise-tolerance
of the methods.

3. We evaluate the performance of the proposed models on the link-prediction task on three
heterogeneous graphs derived from three real-world data sets (IMDB, DBLP, and AMiner).
We present the results of experiments that demonstrate the superiority of the proposed
methods over the state-of-the-art baselines. Additionally, we visually inspect the learned
low-dimensional representations and analyze the effects of the models’ settings on the
predicted neighborhood of the graph.

The rest of the paper is organized as follows. Section 2 summarizes related work. Section 3 provides a
precise description of the problem of learning node embeddings from heterogeneous graphs. Section
4 elaborates on our assumptions and describes the learning algorithms . Section 5 compares the the
proposed methods with that of state-of-the-art baselines using several real-world data sets. Section 6
concludes the paper with a summary and an outline of some directions for further research.

2 Related Work

2.1 Heterogeneous Graph Neural Networks

Most existing work on heterogeneous graph neural networks (H-GNNs) tend to utilize the meta-
paths [30] to adapt current homogeneous graph embedding methods, such as Kipf and Welling
[25], Perozzi et al. [33], Grover and Leskovec [34], Wang et al. [35], to work with heterogeneous
graphs. Metapath2vec [36] designs meta-paths to guide the random walks in a heterogeneous graph
and then follows the skip-gram model to learn the latent representations of the vertices. Inspired by
Metapath2vec [36], Shi et al. [37] propose HERec to fuse different representations learned in the view
of different meta-path schemes. Both Metapath2vec and HERec are optimized for link prediction.

To optimize the embeddings for a specific task, Chen and Sun [38] unify task-guided and linkage-
guided objectives to learn the heterogeneous graph embeddings. Wang et al. [39] introduce two-
level hierarchical attention to GNN, in which node-level attention captures the relations between
neighboring nodes encoded by the meta paths, and semantic-level attention aggregates multiple
meta-paths for each node in the graph.

Unlike previous meta path-based models that perform selective aggregation of information from node
neighborhoods, HetSANN [40] directly utilizes a HIN for more informative representations without
using meta-paths to improve both efficiency and performance of the resulting methods relative to
state-of-the-art baselines.
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2.2 Variational Methods

Inspired by Kingma and Welling [41], VGAE [26] takes a Bayesian approach to link prediction
problem by extending GCNs using a Variational Auto-Encoder [41]. Unlike previous works [33, 34,
42] on unsupervised learning with structured graph data, VGAE treats the latent representations of
the nodes as random variables. The posterior distribution associated with such random variables is
approximated using factorized variational distribution, whose mean and variance are modelled by
multi-layered GNNs. BAM [43] is a stochastic version of the basic the attention mechanism wherein
the non-negative elements of the attention matrix are used to represent their uncertainty.

3 Problem Statement
Table 1: Table of Main Symbols

Symbols Definition
GH Heterogeneous Graph
V Node/Vertices Set
E Edge Set
R Relation Set
T Node Type Set
A Adjacency Matrix
Â Normalized Adjacency Matrix
D Degree Matrix
ϕ() Mapping function from V to T
Xt Feature Matrix of nodes of type t
X List of all types of Feature Matrices
l Layer number

H
(ℓ)
ϕ(i) Hidden representation matrix of nodes

of type ϕ(i) at layer l
zi Embedding of Node i

h
(ℓ)
i Hidden representation of node i at layer l

W
(ℓ)
ϕ(i),ϕ(j) Weight matrix for transforming

Nodes of type ϕ(j) to ϕ(i) at layer l
a
(ℓ)
r Attention weights for relation r

θ
(ℓ)
ij Attention Coefficient between node i and j
f() Activation function
ζ() Matrix Stacking/Concatenating Operator

We define a heterogeneous graph
GH = (V, E ,R), where V represents
the set of nodes, E represents the set
of edges and R denotes the types of
relations that exist in such a graph.
We consider a graph with N = |V|
number of nodes.

Each node v ∈ V is assumed to
have a type ϕ(v) = t ∈ T where
ϕ(·) : V → T is the mapping from V
to T . An edge e ∈ E in such a graph
is defined as a triplet e = (i, j, r),
where r ∈ R is the type of rela-
tionship between nodes i ∈ V and
j ∈ V and is dictated by the types
of the nodes linked by the edge, i.e.,
< ϕ(i), ϕ(j) >. Each node in the
graph is associated with set of node
features. For nodes of type t ∈ T ,
the set of features is compactly rep-
resented by the feature matrix Xt ∈
RNt×Ft , where Nt is the number of
nodes of type t and Ft is the number
of the features for nodes of type t.

Further, A denotes the adjacency ma-
trix representation of GH with undi-
rected edges, such that Aij = Aji and Aii = 1 (self loop). The degree matrix D is given by:

Dij =

{ ∑N
j=1 Aij if i = j
0 if otherwise

A normalized adjacency matrix is given by: Â = D−1/2AD−1/2.

Our objective is to impute the unobserved edges in the graph. This is achieved by learning the latent
representations {zi} of all the nodes, utilizing the structural information and the attributes of the
nodes. The likelihood of an edge between node i and j is predicted using a transformation of the
latent representations zi and zj , as explained in the next section. The key notations used in the paper
are presented in Table 1.

4 Node Embedding Methods for Heterogeneous Graphs

This section introduces three new representation learning algorithms for heterogeneous graphs. We
observe that nodes of different types may be described by different sets of features with disparate
semantic interpretations. Furthermore, the roles and the importance of nodes may vary according to
their type. Hence, we introduce an attention mechanism that can weigh the neighbor’s contributions
differently. Furthermore, it is helpful to model the uncertainty associated with the latent representation.
The models introduced below is designed to achieve all these objectives.
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Table 2: Summary of Heterogeneous Variational Graph Auto-encoder Models

Prior Prior on
Model GCN Het-GCN HetSANN on z Attn. Coef.
GVAE ✓ × × ✓ N/A

H-GVAE × ✓ × ✓ N/A
HetSANN-GVAE × × ✓ ✓ ×

HetSANN-BAM-GVAE × × ✓ × ✓

4.1 Heterogeneous Graph Variational Auto Encoder

The Heterogeneous Graph Variational Autoencoder (H-GVAE) model incorporates uncertainty in the
latent representation of the nodes and uses a node type specific transformation to accommodate the
differences in features associated with different types of nodes. More precisely, we seek to compute
the posterior distribution of the latent representation of the nodes p(Z = {zi}|X ,A), where zi is the
latent vector corresponding to node i. The prior distribution of the latent variables is assumed to be
standard normal, i.e., p(Z) =

∏N
i=1 p(zi) =

∏N
i=1 N (zi|0, I). Because computing the true posterior

is difficult and intractable, we approximate it using a variational distribution of the following form:

q(Z|X ,A) =

N∏
i=1

q(zi|X ,A)) =

N∏
i=1

N (zi|µi,σi). (1)

The variational parameters µ = {µi} and σ = {σi} are computed by stacking the latent representa-
tion matrices for each node type as given below:

µ = ζ(HGCNµ(X ,A)) and logσ = ζ(HGCNσ(X ,A)). (2)

Here, ζ(·) is the stacking operator and HGCN (Heterogeneous Graph Convolution Network) is a
special kind of GNN layer that we elaborate next. Using the reparametrization trick [41], one can
sample from the variational posterior zi ∼ q(zi|X ,A) as

zi = µi + σi ⊙ ϵ; ϵ ∼ N (0, 1).

While designing the lth layer of the Heterogeneous Graph Convolution Network (HGCN), we assume
that the representation of node i is given by h

(ℓ)
i , which is updated as follows:

h
(ℓ)
i = f

(∑
j∈Ni

ÂijW
(ℓ)
ϕ(i),ϕ(j)h

(ℓ−1)
j

)
. (3)

Here h
(0)
i is set to Xi, the observed attributes of the ith node. We assume the existence of a weight

matrix W(ℓ)
ϕ(i),ϕ(j) for transforming the latent representation of the source node j to match the semantic

interpretation of the target node i. The learned representations of all nodes of type ϕ(i) are compactly
preserved in the matrix H

(ℓ)
ϕ(i). Further H(ℓ) contains the collection of all the matrices {H(ℓ)

t }t∈T . A
layer that employs Eq. (3) is conveniently addressed as Heterogeneous Graph Convolution Network
(HGCN).

The transformation W
(ℓ)
ϕ(i),ϕ(j) makes HGCN fundamentally different from the standard update

equation of other GNN algorithms [29]. Since the different set of nodes may live in disparate
semantic space, it is necessary to map the latent representation to a shared semantic space before
aggregating information from the neighbors. For example, in an author-paper-venue network, the
author’s attributes may not have any semantic correlation with those of the venues or the papers.
Hence, while aggregating information from the papers a given author has written, it is necessary to
transform the latent representation of the papers in the process of learning the latent representation
of the author. Note that such transformation is superfluous for a pair of nodes of a similar type and
hence is not relevant for learning embedding in a homogeneous graph.

The decoder in HGVAE is an inner product model followed by a Sigmoid activation function. It is
derived from the loss function of Mikolov et al. [44] and unsupervised loss of Hamilton et al. [45],
which encourages that nodes with high topological similarity must have similar representation:
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p(A|Z) =
N∏
i=1

N∏
j=1

p(Aij |zi, zj);

p(Aij = 1|zi, zj) = σ(z⊤i zj).

(4)

The weight parameters W(ℓ)
ϕ(i),ϕ(j) are learned by optimizing the Evidence Lower Bound (ELBO) as

given below:
L = Eq(Z|X ,A) log p(A|Z)− DKL [q(Z|X ,A)∥p(Z)] . (5)

4.2 HetSANN-GVAE

The H-GVAE model successfully resolves the problem of utilizing information from HIN for learning
node embeddings. Further, motivated by Hong et al. [40] (HetSANN), we introduce a type-aware
attention mechanism to implicitly weigh the heterogeneous neighbours of a node in the propagation
rule. The HetSANN Graph Variational Autoencoder (HetSANN-GVAE) model is similar to H-GVAE
in that it maintains uncertainty in the latent representation, the only difference being that HetSANN
layers are used to calculate the parameters of the variational distribution instead of HGCN layers.
Thus, the preceding Eq. (2) now assumes the following form:

µ = ζ(HetSANNµ(X ,A)) and logσ = ζ(HetSANNσ(X ,A)).

Corresponding to each relation r, we compute the attention coefficients η(ℓ)ij , which are parameterized

by attention weights a(ℓ)r , and is very similar to the attention mechanism used in NLP applications.
The key and query vectors in an attention head are the node features and their neighbourhood features
in a relation.

η
(ℓ)
ij = LeakyReLU(a(ℓ)r (τ(h

(ℓ−1)
i ,h

(ℓ−1)
j )) (6)

where
τ(h

(ℓ−1)
i ,h

(ℓ−1)
j ) = (W

(ℓ)
ϕ(i),ϕ(i)h

(ℓ−1)
i ||W(ℓ)

ϕ(i),ϕ(j)h
(ℓ−1)
j ). (7)

Here η
(ℓ)
ij indicates the importance of node j to node i corresponding to the relation r; calculated

using the bi-linear scoring function given in Eq. (7). For simplicity, we have assumed in Eq. (6)
that there is only one type of edge/relation between nodes of type ϕ(j) and ϕ(i). However, it is
straightforward to generalize our framework to accommodate multiple types of edges between nodes
of type ϕ(j) and ϕ(i). Eq. (6) yields attention coefficients between each pair of nodes in relation
r, regardless of whether an edge exists between them. We aim to maintain attention coefficients
only between nodes and their neighbors in the graph; hence we use the adjacency matrix as a mask
to impose structural information about the graph into the attention coefficients. Therefore, {η(ℓ)i,j }j
is computed for all nodes j ∈ Ni, where Ni are the neighbour nodes of i and η

(ℓ)
ij = 0 if j ̸∈ Ni.

{η(ℓ)ij }j values are normalized using softmax function across all neighbors of i yielding the following
definition of the attention coefficients:

θ
(ℓ)
ij = softmaxj(η

(ℓ)
ij ) =

exp η
(ℓ)
ij∑

k∈Ni
exp η

(ℓ)
ik

.

The implicit weighting between nodes obtained using type-aware attention is used to aggregate the
information from each node’s neighbors in the graph in the node’s embedding. Unlike Kipf and
Welling [25], Wu et al. [27] and the aforementioned H-GVAE, where information from neighbours is
aggregated using a pre-computed normalized adjacency matrix, HetSANN-GVAE uses the trainable
attention coefficients between nodes aiding the model’s performance. Hence, the latent representation
are aggregated using θ

(ℓ)
ij instead of Â and (3) changes to:

h
(ℓ)
i = f(

∑
j∈Ni

θ
(ℓ)
ij W

(ℓ)
ϕ(i),ϕ(j)h

(ℓ−1)
j ).

Here, h(ℓ)
i represents the output from only one attention head. The model can accommodate multiple

attention heads resulting in multiple h
(ℓ)
i . These representations can be concatenated or added as

suggested by Vaswani et al. [46] for improving the stability of the attention mechanism. The inference
model, generator model and the ELBO remain the same as Eq. (1), Eq. (4) and Eq. (5).
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4.3 HetSANN-BAM-GVAE

Adding uncertainty to the attention weights allows the model to accommodate the node type specific
differences in the semantics of nodes and links in a heterogeneous graph. Hence, we further improve
the HetSANN aggregation by integrating it with probabilistic attention modules Fan et al. [43].

In HetSANN-BAM-GVAE, we consider a Bayesian model with a prior distribution p(S) and likeli-
hood p(A|Z); where S is the set of attention coefficients in the model. Hence, θ(ℓ)ij coefficients of

the HetSANN layer are replaced by their stochastic counterparts, i.e., HetSANNBAM layer with S
(ℓ)
ij

coefficients. The mechanism for calculating S
(ℓ)
ij remains the same as in Eq. (6), but a prior belief is

incorporated in the weights, which helps in regularization.

In an attention mechanism, importance weights are calculated between the key-query vector pairs.
These weights are non-negative and follow simplex constraints. Hence, the prior distribution over
such weights needs to enforce such constraints on the samples. A natural choice for such a prior is
the Dirichlet distribution. Unfortunately, Dirichlet distribution is non-reparameterizable and hence
cannot be used in a model that uses gradient descent-based optimization. Fan et al. [43] suggest a
reparameterizable, non-negative distribution, such as Weibull or Log-Normal, to generate the samples
and normalize subsequently to satisfy the simplex constraint.

We use the Weibull distribution, with parameters k and λ, as the variational distribution. The Gamma
distribution, with parameters α and β, is used as a prior. The parameter k in the Weibull variational
posterior is the global hyper-parameter for the attention coefficients. Since we do not use a contextual
prior [43], α and β are kept fixed hyper parameters for p(S). Using an amortized variational inference,
λ is computed using:

λ
(ℓ)
ij = expS

(ℓ)
ij / expΓ(1 +

1

k
),

where Γ is the Gamma function. Note that we use a Weibull distribution because it is reparametrizable
and produces non-negative samples.

Ŝ
(ℓ)
ij = λ

(ℓ)
ij (− log(1− ϵ))1/k; ϵ ∼ Uniform(0, 1)

The sampled values {Ŝ(ℓ)
ij }j are normalized using the softmax activation to satisfy the simplex

constraint of the attention coefficients i.e.
∑

j Ŝ
(ℓ)
ij = 1. These samples are then used in the

propagation rule for the HetSANNBAM layer:

h
(ℓ)
i = f(

∑
j∈Ni

Ŝ
(ℓ)
ij W

(ℓ)
ϕ(i),ϕ(j)h

(ℓ−1)
j ). (8)

Eq. (8) is the operation which is computed in the HetSANNBAM layer. After stacking multiple layers
of representations, we obtain the final representation Z:

Z = ζ(HetSANNBAM(X ,A)).

Since the Weibull distribution closely resembles the Gamma distribution and the KL divergence of the
Weibull distribution from a Gamma distribution has an analytical form [47], the Gamma distribution
is used as a prior:

DKL (Weibull(k, λ)∥Gamma(α, β)) = γα/k − α log λ

+ log k + βλΓ(1 + 1/k)− γ − 1− α log β + log Γ(α),
(9)

where γ is the Euler’s constant. Putting it all together, the ELBO for the model is:

L = Eq(S) log p(A|Z)−DKL [q(S)∥p(S)] .

Here, DKL [q(S)∥p(S)] has a non-analytical form because of the dependencies between different
stochastic layers. Hence, the joint distributions p(S) and q(S) are decomposed into a product of
conditionals which have an analytic solution. These conditionals are derived using the dependencies
between the stochastic layers and has the form q(S(ℓ)|S(1:ℓ−1)) and p(S(ℓ)|S(1:ℓ−1)). This alternative
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tractable KL-Divergence is represented using Λ and results in a semi-analytical form of the ELBO as
given below:

L = Eq(S) log p(A|Z)−
L∑

ℓ=1

Eq(S(1:ℓ−1))DKL

[
q(S(ℓ)|S(1:ℓ−1))

∥∥∥p(S(ℓ)|S(1:ℓ−1))
]
.

The generator model remains the same as that specified by Eq. (4). The ELBO is optimized with
respect to all of the parameters of the model.

5 Experiments

In this section, we empirically compare the performance of each of the models presented in Section 4
with state-of-the-art baselines on the link prediction task using three heterogeneous graph benchmark
data sets.

5.1 Benchmark Data

We perform experiments with three different data sets:IMDB, DBLP, and AMiner. These data sets
also come with labels of the nodes. We ignore such labels since we aim to impute the edges and learn
the embeddings based on the adjacency graph (It would be interesting to incorporate information
supplied by the node labels to construct a supervised loss function for link prediction). To reduce
memory footprint and computational overhead, we further prune the DBLP and the AMiner data
sets by randomly removing a fraction of the nodes. The details of the IMDB datasets and the pruned
DBLP and AMiner datasets are as follows:

1. IMDB is an online database about movies that contains three types of nodes; 4278 Movies
(M), 2081 Directors (D), and 5257 Actors (A). The features of the nodes in this data set are
represented as bag-of-words, containing the key-words related to a specific type of node.
The IMDB data set contains only two types of edges; 4278 Movie-Director edges and 12828
Movie-Author edges. For meta-path based schemes we have used MAM, MDM, MDMAM,
MAMDM, AMA and DMD.

2. The DBLP dataset used for the experiments is a subset of the original dataset, a heteroge-
neous academic graph data set extracted by Gao et al. [48], Ji et al. [49]. The original dataset
contains 4057 Authors (A), 14328 Papers (P), 7723 Terms (T), and 20 Venues (V) with
19645 Author-Paper edges, 85810 Paper-Term edges, and 14328 Paper-Venue edges. The
reduced data set used in this paper contains 2303 Authors (A), 5328 Papers (P), 4007 Terms
(T), and 9 Venues (V) with 7127 Author-Paper edges, 31740 Paper-Term edges, and 5328
Paper-Venue edges. The features of the authors, papers, and terms all have bag-of-words
representation, whose dimensions are reduced further using PCA [50]. For meta-path based
schemes we have used APA, TPT, VPV, PAP, PTP, PVP, APTPA, PTPAPVP, TPAPVPT and
APVPTPA.

3. AMiner is a dataset extracted by Hong et al. [40], where the authors remove the venue nodes
from the AMiner academic graph, leaving only 8052 Authors (A) and 20201 Papers (P).
This data set contains 31224 publishing relations (Author-Paper), 44551 citation relations
(Paper-Paper), and 32029 collaboration relations (Author-Author). Features of the papers
are a bag of words representing the keywords. Each author in this graph has five features –
the number of citations, H-Index, P-index with equal A-index, and P-index with unequal
A-index. We further prune this graph, resulting in 3588 Authors (A) and 8129 Papers (P)
with 7519 publishing relations (Author-Paper), 7100 citation relations (Paper-Paper), and
11852 collaboration relations (Author-Author). Note that not all papers are connected to
a legitimate author, making link prediction in such a noisy graph even more challenging.
Furthermore, out of the 3 data sets, this one is the most densely connected with only 2 types
of nodes. In such a graph, random walks based method usually perform really well; thus
providing a challenge to non-random walks methods. For meta-path based schemes we have
used PP, PAP, PAPP, PPAP, PAPAP, AA, APA, APAA, AAPA and APAPA.

5.2 Baseline Methods

We considered the following baseline methods:
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1. Node2vec [34] is an algorithmic framework for representational learning on homogeneous
graphs, which is a generalized version of DeepWalk [33]. We apply it to our datasets by
ignoring the heterogeneity of graph structure and dropping all node features. After obtain-
ing the representations for the nodes, edge features are generated using binary operators.
These edge features are then used in a logistic regression classifier to predict binary values
indicating whether an edge is present. Average, Hadamard, L-1, and L-2 operators are used
as the binary operators, and the best results out of the four operators are presented in Table 3

2. HAN [39] is a heterogeneous GNN model that computes node representations from multiple
meta-path-based homogeneous graphs and uses the attention mechanism to combine them.
To generate edges from node representations, we use the inner product decoder from Eq. (4).
Meta-path adjacency matrices are obtained by multiplying sub-type adjacency matrices. E.g.,
in the IMDB dataset, the MAM meta-path matrix is obtained by multiplying the adjacency
matrix MvA and AvM (Transpose of MvA).

3. GVAE [26] We use a homogeneous GVAE as a baseline model. That is, we treat the
heterogeneous graph as if it were a homogeneous graph. Note that this model assumes that
the features of all the nodes lie in the same semantic space and are of the same dimensionality.
However, as discussed in the previous sections, the nodes in HIN may have attributes of
different sizes based on the nodes’ type. To resolve such discordance, we equalize the
dimensionality of features across node types by padding them with zeros as needed.

5.3 Experimental Setup

The edges of the datasets are randomly split into training, test, and validation with 85%, 10%, and 5%
split percentages . Node2vec models parameters are the same for all the datasets. For Node2vec we
set the walklength to 50 and number of walks to 10. The window size is set to 10 and the embedding
dimension size is 128 for both Node2vec.

For GNN based models, we observe overfitting in the IMDB dataset if we use more than one layer.
For both DBLP and AMiner, however, we use two layers. For attention based models, We assign
three different attention heads for each semantic relation for the models that use attention. For DBLP
and AMiner, we use two layers with five attention heads in the first layer and three attention heads in
the second layer. Each attention head’s values are concatenated in each set if the layer is not the last;
otherwise, the values get summed up.

For GNN based models, we set the output dimension size to 32 for all the experiments with the IMDB
data set. We set the hidden layer’s size to 32 and the output dimension to 16 for the experiments
with DBLP and AMiner. For the HetSANN-BAM-GVAE model, the parameters of the Gamma
prior distribution are α = 1e − 17 and β = 1e − 15. For the Weibull variational posterior, k
is set to 10. The learning rates for GVAE and H-GVAE are 0.01 and for HetSANN-GVAE and
HetSANN-BAM-GVAE are 0.005. All the models are trained using the Adam optimizer [51].

We use the same parameters that produce the best results on the validation set to predict links on
the test set. We report the mean performance on the test set obtained across 15 runs with random
initialization on fixed data set splits.

5.4 Link Prediction Results

The results of our experiments are shown in table 3.

Table 3 shows that that on IMDB and DBLP data, random walk based methods which do not use
node features perform substantially worse than the graph neural network based methods. Among
the graph based methods, GVAE, which treats a heterogeneous graph as a homogeneous graph, and
therefore fails to make use of semantic and structural information provided by the heterogeneous
graph, produces unsatisfactory results compared to the rest of the graph based models. Even though
H-GVAE does not use attention whereas HAN does, the performance of H-GVAE is comparable to
that of HAN on IMDB and DBLP data, and substantially superior to that of HAN on AMiner data.
HetSANN-GVAE substantially outperforms H-GVAE. This suggests the effectiveness of utilizing the
structural and semantic information in heterogeneous graphs in HetSANN-GVAE. HetSANN-BAM-
GVAE outperforms all other methods on all data sets.
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Table 3: AUC and AP results Results for Link Prediction
Dataset Metrics Node2vec GVAE HAN H-GVAE HetSAAN HetSAAN

GVAE BAM
GVAE

IMDB AUC 0.6310 0.8907 0.9025 0.9012 0.9441 0.9503
AP 0.6354 0.9166 0.9191 0.9163 0.9522 0.9549

DBLP AUC 0.8152 0.8296 0.8676 0.8536 0.8917 0.8985
AP 0.7910 0.8566 0.8814 0.8912 0.9182 0.9214

AMiner AUC 0.8565 0.8150 0.7432 0.8411 0.8476 0.8588
AP 0.8531 0.8430 0.7901 0.8634 0.8771 0.8821

(a) GVAE

(b) HetSANN-BAM-GVAE

Figure 1: T-SNE projections of
the embeddings for the IMDB
dataset. RGB colors indicate
Movies, Directors and Actors
respectively.

We further note that AMiner data presents challenges for most of
the models due to the fact that it is partially homogeneous and
partially heterogeneous graph. HAN underperforms all the other
models on AMiner data. It could be the case that HAN needs better
and perhaps longer meta-path, but specifying such a meta-path is
itself a notoriously difficult task. Interestingly, Node2vec performs
reasonably well compared to the best performing model, i.e., the
HetSANN-BAM-GVAE.

The main observation deduced from the T-SNE projections is about
the discriminative power of the models—the GVAE model clus-
ters the majority of the nodes whose edges have been inaccurately
predicted towards the center. The introduction of transformations
for the heterogeneous features and variational attention modules
improves the discriminative power as the distance between the clus-
ters increases, an indicator of the ability to distinguish between the
different neighborhood structures.

6 Conclusion

We considered three variants of graph variational autoencoders for
learning node embeddings from heterogeneous graphs. Two of
the three proposed variants outperform several state-of-the-art base-
lines on three real-world benchmark data sets on the link prediction
task. Their superior performance can be attributed to their ability
to incorporate the structural and semantic information supplied by
heterogeneous graphs, to model the uncertainty of node embeddings,
and to to exploit node type specific attention variables. Further
improvements are possible, e.g., by using better decoders [52, 53],
or utilizing a better prior [54–58]. These possibilities offer some
exciting directions for future work.
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