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ABSTRACT

We study how, in generative adversarial networks, variance in the discriminator’s
output affects the generator’s ability to learn the data distribution. In particular,
we contrast the results from various well-known techniques for training GANs
when the discriminator is near-optimal and updated multiple times per update to
the generator. As an alternative, we propose an additional method to train GANs
by explicitly modeling the discriminator’s output as a bi-modal Gaussian distribu-
tion over the real/fake indicator variables. In order to do this, we train the Gaus-
sian classifier to match the target bi-modal distribution implicitly through meta-
adversarial training. We observe that our new method, when trained together with
a strong discriminator, provides meaningful, non-vanishing gradients.

1 INTRODUCTION

Generative adversarial networks (Goodfellow et al., 2014) are a framework for training a generator
of some target (i.e., “real”) distribution without explicitly defining a parametric generating distri-
bution or a tractable likelihood function. Training the generator relies on a learning signal from a
discriminator or discriminator, which is optimized on a relatively simple objective to distinguish be-
tween (i.e., classify) generated (i.e., “fake”) and real samples. In order to match the true distribution,
the generator parameters are optimized to maximize the loss as defined by the discriminator, which
by analogy makes the generator and discriminator adversaries.

In recent years, GANs have attained strong recognition as being able to generate high-quality im-
ages with sharp edges in comparison to maximum-likelihood estimation-based methods (Dempster
et al., 1977; Kingma & Welling, 2013; Salakhutdinov & Hinton, 2009; Berthelot et al., 2017; Zhao
et al., 2016). Despite their recent successes, GANs can also be notoriously hard to train, suffering
from collapse (i.e., mapping its noise to a very small set of singular outputs), missing modes of the
real distribution (Che et al., 2017), and vanishing and/or unstable gradients (Arjovsky & Bottou,
2017). In practice, successful learning is highly reliant on hyperparameter-tuning and model choice,
and finding architectures that work with adversarial learning objectives with any / all of the above
problems can be challenging (Radford et al., 2015).

Many methods have been proposed to address learning difficulties associated with learning instabil-
ity.

• The use of autoencoders or posterior models in the generator or discriminator. These have
been shown help to alleviate mode collapse or stabilize learning (Larsen et al., 2015; Che
et al., 2017; Dumoulin et al., 2017; Donahue et al., 2016).

• Regularizing the discriminator, such as with input noise (Arjovsky & Bottou, 2017), in-
stance noise (Salimans et al., 2016), and gradient norm regularization (Roth et al., 2017).

• Alternate difference measures, such as integral probability metrics (IPMs, Sriperumbudur
et al., 2009) metrics. The most well-known of these use a dual formulation of the Wasser-
stein distance. These are implemented via either weight clipping (Arjovsky et al., 2017)
or gradient penalty (Gulrajani et al., 2017). These can yeild stable gradients, high-quality
samples and work on a variety of architectures.

On this last point, it is unclear whether the metric or the associated regularization used to impose
Lipschitz is important, as regularization techniques have also been shown to be effective with sta-
bilizing learning in f -divergences (Roth et al., 2017). In this paper, we study the integral role of
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variance in the discriminator’s output in the regime of the generated distribution and how it ulti-
mately affects learning. In the following sections, we describe theoretical motivations, an empirical
analysis from multiple variants of GANs, and finally propose a regularization scheme to combat
vanishing gradients on part of the discriminator when it is well-trained.

2 METHODS

The generative adversarial framework entails training a generating function Gθ : Z → X , where
z ∈ Z is noise sampled from a relatively simple prior (such as spherical Gaussian), p(z), and Gθ is
modeled by a deep neural network with parameters, θ. The objective is to find the optimal parameters
such that the induced or generated distribution, Qθ, matches a desired target distribution, P. In order
to accomplish this, adversarial models define a discriminator function, Dφ,d : X → R, modeled
by a deep neural network with parameters, φ. The objective of the discriminator is to estimate a
measure of distance or divergence, d(P,Qθ), between the two distributions, P and Qθ. In practice,
which divergence is best to estimate in this context is still a subject of debate, but it suffices to say
that the most common distances come from either the family of f -divergences (Nguyen et al., 2010;
Nowozin et al., 2016), such as the Jensen-Shannon divergence (JSD) or χ-squared divergence (Mao
et al., 2016) or Integral Probability Metrics (IPMs, Sriperumbudur et al., 2009; Mroueh & Sercu,
2017), such as the Wasserstein distance (Arjovsky et al., 2017; Gulrajani et al., 2017) and maximum
mean discrepancy (MMD, Sutherland et al., 2016; Li et al., 2017). Generally, the estimator given
by the family of functions defined by Dφ,d represent a family of lower-bounds of the respective
divergence:

d(P,Qθ) ≥ Vd(Dφ,d, Gθ,P). (1)

In Goodfellow et al. (2014), Vd is called the value function. Optimization of the discriminator
function by maximizing the value function roughly corresponds to finding the supremum over all
Dφ,d. The GAN objective is the central quantity of interest in the adversarial saddle-point problem,
given P, p(z), Gθ, and Dφ,d:

min
θ

max
φ

VJSD?(Dφ,d, Gθ,P) = min
θ

max
φ

Ex∼P[logD(x)] + Ex∼Qθ [log (1−D(x))]. (2)

where VJSD?(Dφ,d, Gθ,P) is a lower bound to JSD? = 2∗JSD−2 log 2. Here,D = σ◦φ 1 is the
composition of the sigmoid function, σ(y) = 1

1+exp(−y) , and a neural network, φ. More generally,
Nowozin et al. (2016) more formally define a GAN objective in terms of a family of f -divergences:

Vf (Dφ,d,P, Gθ) = Ex∼P[ψf (x)]− Ex∼Qθ [f
†(ψf (x))], (3)

where f† is a convex conjugate to the f -divergence generator function and ψf = gf ◦ φ is the
composition of a nonlinearity and neural network, such that gf respects the domain of the domain
of the corresponding f -divergence.

2.1 STRONG OR WEAK METRIC?

The above family of f -divergence estimators such as the JSD one above are powerful and can pro-
duce generators with high quality samples on complex datasets (Radford et al., 2015), but there is
some evidence that they provide poor learning signals for the generator parameters, θ. As shown in
Arjovsky & Bottou (2017), the JS divergence will be flat everywhere important if P and Qθ both lie
on low-dimensional manifolds (as is likely the case with real data) and do not prefectly align. In
principle, one would think that a better divergence estimate (tighter bound) to a strong divergence
metric would provide the most meaningful learning signal for the generator. In practice, however,
as we optimize the JSD discriminator, it will have zero gradients on X and hence provide almost no
learning signal for the generator. In addition, the proxy loss, Ex∼Qθ [logD(x)], which is commonly
used as an alternative to the GAN objective in training the discriminator can be highly unstable, and
is generally plagued by missing modes and model collapse. Finally, as we will show below, other
f -divergences (e.g., Mao et al., 2016) suffer different types of instabilities that can make training
difficult to impossible.

1Here, we introduce a slight abuse of notation, using φ to represent a deep neural network and its parameters.
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Some of the above observations motivate the use of a “weaker” metric that use weaker topologies
than that of f -divergences, notably the earth-movers distance or Wasserstein distance (Arjovsky
et al., 2017). Besides being a useful information metric for computing the distance between two dis-
tributions, the Wasserstein distance has the nice property of being differentiable nearly everywhere,
and thus provides a better convergence properties on the generator. The Kantorovich-Rubinstein
dual problem of estimating the Wasserstein distance involves the GAN objective:

W1(P,Qθ) ≥ VW (Dφ,d,P, Gθ) = Ex∼P [D(x)]− Ex∼Qθ [D(x)] : ||D||L ≤ 1, (4)

where D is constrained to be in the set of Lipschitz-1 functions 2. This GAN objective is a lower-
bound for the Wasserstein, as we saw with f -GANs and the f -divergences, and adversarial models
that follow this metric are called Wasserstein GANs (WGAN Arjovsky et al., 2017). The Lipchitz
constraint should ensure a smoothness or continuity or the gradients being given to the generator. In
principle then, under this constraint, one can train the discriminator to optimality without having to
worry about any catastrophic effects on the generator.

The difficulty, however, is in constraining D to be Lipschitz, and it is conventional to use some
sort of regularization (Arjovsky et al., 2017; Gulrajani et al., 2017). However, questions remain
regarding said regularization and whether the supremum of the resulting family of functions is close
enough to the true Wasserstein distance. In addition, there is strong evidence that regularization on
f -GANs can improve training stability (Roth et al., 2017), indicating that having a looser bound
over a constrained family of discriminator functions may in principle be a better strategy for training
a GAN.

2.2 THE IMPORTANCE OF VARIANCE

Taking the perspective provided in the previous section, our goal becomes to train a discriminator to
near-optimality in the hopes that this will improve learning in the generator. A well-known scenario
is one in which the discriminator can perfectly discern samples from P from samples from Qθ.
Moreover, (Arjovsky & Bottou, 2017) show that the discriminator is likely to be constant in the
regime of Qθ, thus emitting zero gradients and no learning signal for the generator. Consider such a
discriminator; if x,y ∼ Qθ are samples, then as the generator attempts to minimize any discrepancy
between P and Qθ, the slope of the tangent hyperplane connecting (x, φ(x)) and (y, φ(y)) likely
obeys

|φ(x)− φ(y)|
dX (x,y)

= 0 (5)

where dX (·, ·) is a metric defined on X . This roughly corresponds to a flat discriminator over Qθ
which doesn’t emit any gradients and impedes the generator from learning. As a result, we find

Ex∼Qθ

[
∂φ

∂x
(x)

]
= 0. (6)

Alternatively, a flat discriminator in the regime of Qθ can be interpreted as having minimal variance
(see Figure 1). That is, when the discriminator is mostly constant over P and Qθ, the discriminator’s
unnormalized output distribution is peaked and tends to mimic a bi-modal Dirac distribution. This is
because, in a sense, the discriminator acts as a bi-modal mapping: real examples from P are mapped
to, for example, 1 while generated examples from Qθ(x) are mapped to 0. In contrast, when the
discriminator is non-constant over the data/generated manifolds and exhibits variance in its output
over within P and/or Qθ, its unnormalized output distribution is spread out and not peaked.

2.3 VARIANCE REGULARIZING GANS

Following these observations, we propose a regularization technique targetting the discriminator via
meta-adversarial learning. We hypothesize that constraining the discriminator’s output distribution

2Though the K-Lipschitz condition suffices, in practice, it is common to use 1-Lipschitz as this does not
change the optimization in any meaningful way.
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Figure 1: The red line represents the discriminator’s output, the blue and green lines represent the
real and fake distributions, respectively. Top: When the discriminator is near-perfect, it’s unnormal-
ized output distribution is peaked. Bottom: Variance in discriminator output within the data and/or
generated distribution will result in variance in its unnormalized output distribution. Note that the
discriminator’s output need not be in the range (0, 1), we provide just an example here.

to follow a mixture of Gaussians will have the same effect as the use of different metrics and/or
regularization as seen in works discussed above.

Let p(y|l = 0) and p(y|l = 1) be two univariate Gaussian distributions with unit variance and means
µf and µr, respectively, and where the indicator variable as values, l = 0 that corresponds to “fake”
or generated and l = 1 that corresponds to real. Define the mixture:

p?φ(y) =
1

2
(p(y|l = 0) + p(y|l = 1)). (7)

Depending on the location of the means, this Gaussian classifier has an associated classification error
that is directly related to their overlap. In principle, the classifier defines a bound on a difference
or distance between two distributions defined by the values of the indicator variable, l = 0 and
l = 1. As the discriminator is really a classifier that in principle is trying to minimize the Bayes risk,
under the above constraint, the bound is maximized when the means, µf and µr, are as far apart
as possible. This is obviously undesirable as this can lead to the same problems mentioned in the
previous sections. Here we will take a different strategy: keep the means and variance fixed so that
the associated classifier has a fixed error rate. This will enforce a sort of fixed “weakness” on the
discriminator, which corresponds to a fixed “looseness” on the lower bound defined by the classifier.

We ensure the discriminator’s output follows p?φ(y) through adding two additional discriminators
which are trained in a similar was as the original GAN formulation:

min
φ

max
R

VR(R, φ) = E{y(i)}mi=1∼Nr(y)

[
logR({y(i)}i)

]
+ E{x(i)}i∼P

[
log (1−R({φ(x(i))}i))

]
(8)

min
φ

max
F

VF (F , φ) = E{y(i)}mi=1∼Nf (y)

[
logF({y(i)}i)

]
+ E{x(i)}i∼Qθ [log (1−F({φ(xi)}i))]

(9)

where F and R are the are the fake and real output discriminators, respectively, each parametrized
by a two-layer MLP. F’s goal is to discern a batch of real values {yi}i drawn from a Gaussian with
mean µf and unit variance from a batch taken from the discriminator’s output over fake samples.
Likewise,R follows a similar protocol for real samples. It is important to note that comparisons are
performed batch-wise rather than per sample. In essence, F and R are meta-discriminators which
instill a regularizing effect on the discriminator.

Meanwhile, the original GAN formulation is only slightly perturbed, as the generator tries to match
Qθ to P while the discriminator attempts to differentiate real and fake samples. The discriminator’s
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loss objective combines equations 8 and 9:

Lφ = −E{xi}mi=1∼Qθ [logF({φ(x(i))}i)]− E{xi}mi=1∼P[logR({φ(x(i))}i)]. (10)

The generator’s loss function is:

LGθ = Ex∼Qθ [φ(x)]− Ex∼P [φ(x)] , (11)

standard of IPMs. In practice, however, we find that driving the discriminator’s output towards µr
using a least squares loss also works well:

L′Gθ = Ex∼Qθ
[
(φ(x)− µr)2

]
. (12)

Algorithm 1 Variance Regularizing Adversarial Learning (VRAL) using meta-discriminators. De-
fault parameter values are α = 10−4, β1 = 0.5, β2 = 0.999, ε = 3 × 10−6, m = 64. nbatches is
determined by the chosen dataset.
Input: nF,R,φ, the number of updates to perform on F ,R and φ per update to Gθ.

1: while θG not converged do
2: for i = 1 . . . nbatches do
3: for k = 1 . . . nF,R,φ do

4: Sample{y(i)}mi=1 ∼ Nf (y), {y(i)}mi=1 ∼ Qθ
5: gF ← ∇θF 1

m

∑m
i=1

[
logF({y(i)}i) + log (1−F({φ(y(i))}i))

]
6: θF ← θF + α · Adam(gF , β1, β2, ε)

7: Sample{y(i)}mi=1 ∼ Nr(y), {x(i)}mi=1 ∼ P
8: gR ← ∇θR 1

m

∑m
i=1

[
logR({y(i)}i) + log (1−R({φ(x(i))}i))

]
9: θR ← θR + α · Adam(gR, β1, β2, ε)

10: Sample{x(i)}mi=1 ∼ P, {y(i)}mi=1 ∼ Qθ
11: gφ ← ∇θφ 1

m

∑m
i=1

[
logF({φ(y(i))}i) + logR({φ(x(i))}i)]

]
12: θφ ← θφ + α · Adam(gφ, β1, β2, ε)

13: Sample{x(i)}mi=1 ∼ P, {y(i)}mi=1 ∼ Qθ
14: gG ← ∇θG 1

m

∑m
i=1

[
φ(y(i))− φ(x(i))

]
15: θG ← θG − α · Adam(gG, β1, β2, ε)

The training procedure for our proposed GAN with regularizing networks is similar to standard GAN
training, however requiring each of the meta-discriminators to be updated prior to the discriminator
update. In practice, we update F ,R and D the same nF,R,D number of times per generator update.
The full training procedure is presented in algorithm 1.

Our current formulation of Variance Regularizing GANs aims to fix Ex∼P [φ(x)] and Ex∼Qθ [φ(x)]
at values µr and µf , respectively. However, this can become problematic during optimization as
the discriminator’s goal is to maximize the difference between these two means. To accommo-
date, we subtract the mean of the discriminator’s output over a batch of fake samples. This useful
insight results in the modified objective in which the discriminator’s output over fake examples
is no longer fixed to a distribution centered at µf , but can move around and preserves unit vari-
ance. Consequently, each occurrence of {φ(x(i))}i where x ∼ Qθ in equation 10 is replaced with
{φ(x(i))}i − Ex∼Qθ [φ(x)]. As we will show in subsequent sections, this modification proves ex-
tremely helpful.

2.4 META-ADVERSARIAL LEARNING

In future sections, we show our method which uses meta-discriminators to regularize the discrimina-
tor’s output distribution to be successful. However, this same technique can be applied to encourage
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GANs exhibit other desirable properties. To this end, we demonstrate how we can enforce the dis-
criminator to approximate aK-Lipschitz function. Consider a similar setup to Variance Regularizing
GANs in which only one meta discriminatorM is used, and its objective is

LM =− E{y(i)}i∼N (y;µ∗,σ∗)

[
logM({y(i)}i)

]
− E{x(i)}i∼P,{y(i)}i∼Qθ

[
log

(
1−M

({
|φ(x(i))− φ(y(i))|

dX (x,y)

}
i

))]
,

(13)

where µ∗ = K and σ∗ can vary, but is typically close to 0 (e.g. 0.1). The discriminator’s objective
is almost identical to equation 10, but its goal is to now maximize the second term in the above
equation. In essence, the single meta-discriminator M is distinguishing samples drawn from a
Gaussian distribution fixed at µ∗ versus the slope of the hyperplane between x and y, where x and
y are real and generated examples, respectively.

3 RELATED WORK

Linear Discriminant Analysis (LDA) is a commonly used technique for dimensionality reduction
and/or binary classification. Consider two sets of classes, P and Qθ, and a set of observations
{φ(x)}, where each x ∈ X (i.e., φ(x) may be interpreted as the result of dimensionality reduction
on x). The objective is to preserve the discrepancy between classes while maintaining intra-class
variance. Let pφ(φ(x);x ∼ P) and pφ(φ(x);x ∼ Qθ) be the probability densities of each class,
assumed to follow a Gaussian distribution with means µr and µf and variances σ2

r and σ2
f , respec-

tively. For the sake of simplicity, assume σ2
r = σ2

f = 1. The LDA classification rule is then to
predict φ(x) belonging to the class of samples from Qθ if

(φ(x)− µr)2 − (φ(x)− µf )2 > T, (14)

otherwise P, and T is a chosen threshold. Notice that when φ(x) is near µr, the LHS of equation 14
becomes small (assuming φ(x) is far from µf ) and vice-versa when φ(x) is close to µf .

McGan (Mroueh et al., 2017) employs mean and covariance feature matching between P and Qθ. To
achieve this, a function Φ : X → Rm, parametrized as a deep neural network, which maps x ∈ X
to an embedding space is learned. The objective is to minimize the mean and covariance between
Φ(P) and Φ(Qθ). More recently, Fisher GANs (Mroueh & Sercu, 2017) constrain the second order
raw moments of the discriminator such that 1

2 (Ex∼P[φ2(x)] + Ex∼Qθ [φ
2(x)]) = 1 using Lagrange

multipliers. This approach slightly differs from Variance-Regularizing GANs, which enforce that
variance, the second order central moments of the discriminator, are equal to 1. Nonetheless, Fisher
GANs are similar to Variance Regularizing GANs as they aim to stabilize variance in the discrimi-
nator’s output, although not explicitly defining a distribution which it should follow.

4 EMPIRICAL RESULTS

4.1 GAN ARCHITECTURE

We run experiments on the CIFAR-10 (Krizhevsky & Hinton, 2009) and CelebA (Liu et al., 2015)
datasets for image generation. We use a DCGAN (Radford et al., 2015) model in all experiments and
perform all parameter updates using the Adam optimizer (Kingma & Ba, 2015). For our proposed
method, the meta-discriminators F andR are MLPs with 28 hidden units with a sigmoid output.

4.2 ANALYSIS

Having established theoretical motivations for a well-trained discriminator, we show how many
GAN algorithms fail to preserve variance in the discriminator output when trained at large ratios,
such as 50 discriminator updates per generator update. We train the standard GAN, standard GAN
using proxy loss (i.e., − logD loss), Least Squares GAN (Mao et al., 2016), Wasserstein GAN
and our proposed method (both with and without subtracting means) on CIFAR-10 with a varying
number of discriminator updates per generator update.
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a) Standard b) − logD loss c) Least Squares d) Wasserstein e) VRAL f) Subtract Means

Figure 2: Generated CIFAR-10 samples using the standard GAN, GAN with − logD loss, Least
Squares GAN, Wasserstein GAN, and two versions of VRAL (with and without subtracting means)
over various training ratios. The top row shows results from training each method at a 1:1 training
ratio. Likewise, the second, third, and fourth shows show results from 10:1, 25:1 and 50:1 train-
ing. The standard and least squares GANs are not robust to such large training ratios while others
continue to generate sharp images.

a) Standard b) − logD loss c) Least Squares d) Wasserstein e) VRAL f) Subtract
Means

Figure 3: Histograms depicting the discriminator’s unnormalized output distribution for the standard
GAN, GAN with − logD loss, Least Squares GAN, Wasserstein GAN and our proposed method
when trained with various training ratios. In descending order, the results in each row correspond to
1:1, 10:1, 25:1 and 50:1 training ratios.
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a) Standard b) − logD loss c) Least Squares

d) Wasserstein e) VRAL f) Subtract Means

Figure 4: The discriminator’s gradient norms w.r.t. generated samples during training for each
method. Note that values are averaged over 50 batches.

a) 1:1 training b) 10:1 training

c) 25:1 training d) 50:1 training

Figure 5: Samples and discriminator output histograms from training at various training ratios on
CelebA.

We find that variance in the discriminator’s unnormalized output distribution directly correlates with
the generator’s ability to learn if the discriminator is well-trained. Figure 2 shows samples from
updating the discriminator 50 times per generator update (which we refer to as 50:1 training), while
figure 3 demonstrates the discriminator’s expected real-valued output over the training set. Inter-
estingly, the discriminators in standard and Least Squares GANs exhibit almost no output variance
within P or Qθ, suggesting the discriminator is constant over these regimes in image space and
would emit zero gradients w.r.t. any generated sample, hence hindering learning in the generator.
Notice that these methods fail to learn at a 50:1 ratio Furthermore, the generated samples also posit
that some amount of variance is necessary; GANs using − logD and Wasserstein losses are able
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a) 1:1 training b) 10:1 training c) 25:1 training d) 50:1 training

Figure 6: Generated images on CelebA by forcing the discriminator to be 1-Lipschitz using a single
meta-discriminator.

to generate sharp samples while the discriminator in these instances is imperfect and exhibits some
level of uncertainty amongst the generated samples.

Our hypothesis of (near) zero gradients is evidently supported as we contrast the discriminator’s
gradient norms for any particular GAN at varying update ratios. Figure 4 indicates that as the
discriminator achieves perfection by being updated more frequently than the generator, ||∇x∼QθLφ||
approaches zero. However, the standard GAN with − logD loss and Wasserstein GAN are much
more robust to large update ratios. The discriminators of these methods don’t map all samples,
real or fake, to a single value, hence providing a meaningful learning signal for the generator and
avoiding the vanishing gradient scenario. Our proposed method follows this line of reasoning, as the
meta-discriminators prevent the discriminator from achieving perfection, regardless of update ratio.

4.3 1-LIPSCHITZ DISCRIMINATORS

Adhering to our earlier discussion of using a single meta-discriminator to force the discriminator
to approximate a K-Lipschitz function, we trained a meta-discriminatorM to perform batch-wise
discrimination between samples drawn fromN (y;µ∗ = 1, σ∗ = 0.1) and |φ(x)−φ(y)|dX (x,y) where x ∼ P,
y ∼ Qθ. See figure 6 for results. More work is needed to robustly train GANs using meta-adversarial
learning.

5 CONCLUSIONS

In this paper, we have demonstrated the importance of intra-class variance in the discriminator’s out-
put. In particular, our results show that methods whose discriminators tend to map inputs of a class
to single real values are unable to provide a reliable learning signal for the generator. Furthermore,
variance in the discriminator’s output is essential to allow the generator to learn in the presence of
a well-trained discriminator. We proposed a technique, conceptually in line with LDA, which en-
sures the discriminator’s output distribution follows a specified prior. Taking a broader perspective,
we also introduced a new regularization technique called meta-adversarial learning, which can be
applied to ensure enforce various desirable properties in GANs.
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Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. In Proceedings of the 34th
International Conference on Machine Learning, pp. 214–223, 2017.

David Berthelot, Tom Schumm, and Luke Metz. Began: Boundary equilibrium generative adversar-
ial networks. arXiv preprint arXiv:1703.10717, 2017.

Tong Che, Yanran Li, Athul Paul Jacob, Yoshua Bengio, and Wenjie Li. Mode regularized generative
adversarial networks. In International Conference on Learning Representations, 2017.

9



Under review as a conference paper at ICLR 2018

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the royal statistical society. Series B (methodological), pp. 1–38,
1977.
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