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ABSTRACT

The rise in internet usage has led to the generation of massive amounts of data,
resulting in the adoption of various supervised and semi-supervised machine learn-
ing algorithms, which can effectively utilize the colossal amount of data to train
models. However, before deploying these models in the real world, these must be
strictly evaluated on performance measures like worst-case recall and satisfy con-
straints such as fairness. We find that current state-of-the-art empirical techniques
offer sub-optimal performance on these practical, non-decomposable performance
objectives. On the other hand, the theoretical techniques necessitate training a
new model from scratch for each performance objective. To bridge the gap, we
propose SelMix, a selective mixup-based inexpensive fine-tuning technique for
pre-trained models, to optimize for the desired objective. The core idea of our
framework is to determine a sampling distribution to perform a mixup of features
between samples from particular classes such that it optimizes the given objective.
We comprehensively evaluate our technique against the existing empirical and
theoretically principled methods on standard benchmark datasets for imbalanced
classification. We find that proposed SelMix fine-tuning significantly improves the
performance for various practical non-decomposable objectives across benchmarks.

1 INTRODUCTION

The rise of deep networks has shown great promise by reaching near-perfect performance across
computer vision tasks (He et al., 2022; Kolesnikov et al., 2020; Kirillov et al., 2023; Girdhar et al.,
2023). It has led to their widespread deployment for practical applications, some of which have critical
consequences (Castelvecchi, 2020). Hence, these deployed models must perform robustly across the
entire data distribution and not just the majority part. These failure cases are often overlooked when
considering only accuracy as our primary performance metric. Therefore, more practical metrics like
Recall H-Mean (Sun et al., 2006), Worst-Case (Min) Recall (Narasimhan & Menon, 2021; Mohri
et al., 2019), etc., should be used for evaluation. However, optimizing these practical metrics directly
for deep networks is challenging as they cannot be expressed as a simple average of a function of
label and prediction pairs calculated for each sample (Narasimhan & Menon, 2021). Optimizing such
metrics with constraints is termed formally as Non-Decomposable Objective Optimization.

In prior works, techniques exist to optimize such non-decomposable objectives, but their scope has
mainly been restricted to linear models (Narasimhan et al., 2014; 2015a). Narasimhan & Menon
(2021), recently developed consistent logit-adjusted loss functions for optimizing non-decomposable
objectives for deep neural networks. After this work in supervised setup, Cost-Sensitive Self-Training
(CSST) (Rangwani et al., 2022) extends it to practical semi-supervised learning (SSL) setup, where
both unlabeled and labeled data are present. As these techniques optimize non-decomposable
objectives like Min-Recall, the long-tailed (LT) imbalanced datasets serve as perfect benchmarks for
these techniques. However, CSST pre-training on long-tailed data leads to sub-optimal representations
and hurts the mean recall of the models (Fig. 1). Further, these methods require re-training the
model from scratch to optimize for each non-decomposable objective, which decreases applicability.
Practical methods based on empirical insights have been developed to improve the mean performance
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Figure 1: Overview of Results on CIFAR-
10 LT (Semi-supervised). We evaluate
the models from SotA Semi-supervised
techniques of DASO (Oh et al., 2022),
ABC (Lee et al., 2021), CSST (Rangwani
et al., 2022) and proposed SelMix on differ-
ent non-decomposable objectives. We find
that SelMix produces the best performance
for the non-decomposable metric and con-
straints it is optimized for (blue). Further,
SelMix is an inexpensive fine-tuning tech-
nique compared to other expensive full pre-
training-based baselines.

of methods on long-tailed class-imbalanced datasets (DASO (Oh et al., 2022), ABC (Lee et al.,
2021), CoSSL (Fan et al., 2022) etc.). These methods mainly generate debiased pseudo-labels for
consistency regularization, leading to better semi-supervised classifiers. Despite their impressive
performance, these classifiers perform suboptimally for the non-decomposable objectives (Fig. 1).

In this paper, we develop SelMix, a technique that utilizes a pre-trained model for representations and
optimizes it for improving the desired non-decomposable objective through fine-tuning. We fine-tune
a pre-trained model that provides good representations with Selective Mixups (SelMix) between
data across different classes. The core contribution of our work is to develop a selective sampling
distribution on class samples to selectively mixup, such that it optimizes the given non-decomposable
objective (or metric) (Fig. 2). This SelMix distribution of mixup is updated periodically based
on feedback from the validation set so that it steers the model in the direction of optimization of
the desired metric. SelMix improves the decision boundaries of particular classes to optimize the
objective, unlike standard Mixup (Zhang et al., 2018) that applies mixups uniformly across all class
samples. Further, the SelMix framework can also optimize for non-linear objectives, addressing a
shortcoming of existing works (Rangwani et al., 2022; Narasimhan & Menon, 2021).

To evaluate the performance of SelMix, we perform experiments to optimize several different
non-decomposable objectives. These objectives span diverse categories of linear objectives (Min
Recall, Mean Recall), non-linear objectives (Recall G-mean, Recall H-mean), and constrained
objectives (Recall under Coverage Constraints). We find that the proposed SelMix fine-tuning
strategy significantly improves the performance on the desired objective, outperforming both the
empirical and theoretical state-of-the-art (SotA) methods in most cases (Fig. 1). In practical scenarios
where the distribution of unlabeled data differs from the labeled data, we find that the adaptive design
of SelMix with proposed logit-adjusted FixMatch (LA) leads to a significant 5% improvement over
the state-of-the-art methods, demonstrating its robustness to data distribution. Further, our SSL
framework extends easily to supervised learning and leads to improvement in desired metrics over
the existing methods. We summarize our contributions below:

• We evaluate existing theoretical frameworks (Rangwani et al., 2022) and empirical methods
(Oh et al., 2022; Wei et al., 2021b; Lee et al., 2021; Fan et al., 2022) on multiple practical non-
decomposable metrics. We find that empirical methods perform well on mean recall but poorly on
other practical metrics (Fig. 1) and vice-versa for the theoretical method.

• We propose SelMix, a mixup-based fine-tuning technique that uses selective mixup over classes to
mix up samples to optimize the desired non-decomposable metric objective. (Fig. 2).

• We evaluate SelMix in various supervised and semi-supervised settings, including ones where the
unlabeled label distribution differs from that of labeled data. We observe that SelMix with the
proposed FixMatch (LA) pre-training significantly outperforms existing SotA methods (Sec. 5).

2 RELATED WORKS

Semi-Supervised Learning in Class Imbalanced Setting. Semi-Supervised Learning are algorithms
that effectively utilizes unlabeled data and the limited labeled data present. A line of work has
focused on using consistency regularization and pseudo-label-based self-training on unlabeled data
to improve performance (e.g., FixMatch (Sohn et al., 2020), MixMatch (Berthelot et al., 2019b),
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Figure 2: We demonstrate the effect of the variants of mixup on feature representations (a). With
Mixup, the feature representation gets equal contribution in all directions of other classes (b). Unlike
this, in SelMix (c), certain class mixups are selected at a timestep t such that they optimize the desired
metric. Below is an overview of how the SelMix distribution is obtained at timestep t.

ReMixMatch (Berthelot et al., 2019a), etc.). However, when naively applied, these methods lead to
biased pseudo-labels in class-imbalanced (and long-tailed) settings. Various recent (Fan et al., 2022;
Oh et al., 2022) methods have been developed that mitigate pseudo-label bias towards the majority
classes. These include an auxiliary classifier trained on balanced data (ABC (Lee et al., 2021)), a
semantic similarity-based classifier to de-bias pseudo-label (DASO (Oh et al., 2022)), oversampling
minority pseudo-label samples (CReST (Wei et al., 2021a)). Despite their impressive accuracy, these
algorithms compromise performance measures focusing on the minority classes.

Non-Decomposible Metric Optimization. Despite their impressive accuracy, there still seems to be
a wide gap between the performance of majority and minority classes, especially for semi-supervised
algorithms. For such cases, suitable metrics like worst-case recall across classes (Mohri et al., 2019)
and F-measure (Eban et al., 2017) provide a much better view of the model performance. However,
these metrics cannot be expressed as a sum of performance on each sample; hence, they are non-
decomposable. Several approaches have been developed to optimize the non-decomposable metrics
of interest (Kar et al., 2016; Narasimhan et al., 2014; 2015a; Sanyal et al., 2018; Narasimhan &
Menon, 2021). In the recent work of CSST (Rangwani et al., 2022), cost-sensitive learning with
logit adjustment has been generalized to a semi-supervised learning setting for deep neural networks.
However, these approaches excessively focus on optimizing desired non-decomposable metrics,
leading to a drop in the model’s average performance (mean recall).

Variants of MixUp. After MixUp, several variants of mixup have been proposed in literature
like CutMix (Yun et al., 2019), PuzzleMix (Kim et al., 2020b), TransMix (Chen et al., 2022),
SaliencyMix (Uddin et al., 2020), AutoMix (Zhu et al., 2020) etc. However, all these methods have
focused on creating mixed-up samples, whereas in our work SelMix, we concentrate samples from
which classes (y, y′) are mixed up to improve the desired metric. Hence, it is complementary to
others and can be combined with them. We also provide further discussion in App. N.

3 PROBLEM SETUP

Notation: For two matrices A,B ∈ Rm×n with the same size, we define an inner product ⟨A,B⟩
as ⟨A,B⟩ = TrAB⊤ =

∑m
i=1

∑n
j=1AijBij . For a general function f : Rm×n → R for a matrix

variable X ∈ Rm×n, the directional derivative w.r.t V ∈ Rm×n is defined as:

∇V f(X) = lim
η→0

f(X + ηV )− f(X)

η
(1)

which implies f(X + ηV ) ≈ f(X) + η∇V f(X) for small η. In case the function f is differentiable,
we depict the gradient (derivative) matrix w.r.t X ∈ Rm×n as ∂f

∂X ∈ Rm×n with each entry given as:
( ∂f∂X )ij =

∂f
∂Xij

. For a comprehensive list of variable definitions used, please refer to Table. A.1.

Let’s examine the classification problem involving K classes, where the data points de-
noted as x are drawn from the instance space X , and the labels belong to the set Y de-
fined as [K]. In this classification task, we define a classifier F as a function that maps
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data points to labels. This function is constructed using a neural network-based scor-
ing function h, which consists of two parts: a feature extractor g that maps instances
x to a feature space Rd and a linear layer parameterized by weights W ∈ Rd×K .

Table 1: Objectives defined by confusion matrix entries.

Objective Definition

(ψAM) Mean Recall 1
K

∑
i∈[K]

Cii[h]∑
j∈[K] Cij [h]

(ψMR) Min. Recall minλ∈∆K−1

∑
i∈[K] λi

Cii[h]∑
j∈[K] Cij [h]

(ψHM) H-mean K

(∑
i∈[K]

∑
j∈[K] Cij [h]

Cii[h]

)−1

(ψAM
cons.) Mean Recall s.t.

min
λ∈RK

+

∑
i∈[K]

Cii[h]∑
j∈[K] Cij [h]

+

per class coverage ≥ τ
∑

j∈[K] λj

(∑
i∈[K] Cij [h] − τ

)

The classification decision is made by
selecting the label that corresponds to
the highest score in the output vector:
F (x) = argmaxi∈[K] h(x)i. The output
of this scoring function h(x) in RK is ex-
pressed as h(x) =W⊤g(x), in terms of
network parameters. We assume access
to samples from the data distribution D
for training and evaluation. We denote
the prior distribution over labels as π,
where πi = P(y = i) for i = 1, . . . ,K.
Now, let’s introduce the concept of the
confusion matrix, denoted as C[h], which is a key tool for assessing the performance of a classifier,
defined as Cij [h] = Ex,y∼D[1(y = i, argmaxl h(x)l = j)]. For brevity, we introduce the confusion
matrix in terms of scoring function h. The confusion matrix characterizes how well the classifier
assigns instances to their correct classes. An objective function ψ is termed “decomposable” if it can
be expressed as a function Φ : Y × Y → R. Specifically, ψ is decomposable if it can be written as
Ex,y [Φ(F (x), y)]. If such a function Φ doesn’t exist, the objective is termed “non-decomposable”.
In this context, we introduce the non-decomposable objective ψ, represented as ψ : ∆K×K−1 −→ R,
which is a function on the set of confusion matrices C[h], and expressed as ψ(C[h]). Our primary
aim is to maximize this objective ψ(C[h]) which can be used to express various practical objectives
found in prior research works (Cotter et al., 2019; Narasimhan et al., 2022), examples of which are
provided in Table 1 and their real-world usage is described below.

In real-world datasets, a common challenge arises from the inherent long-tailed and imbalanced
nature of the distribution of data. In such scenarios, relying solely on accuracy can lead to a deceptive
assessment of the classifier. This is because a model may excel in accurately classifying majority
classes but fall short when dealing with minority ones. To address this issue effectively, holistic
evaluation metrics like H-mean (Kennedy et al., 2010), G-mean (Wang & Yao, 2012; Lee et al., 2021),
and Minimum (worst-case) recall (Narasimhan & Menon, 2021) prove to be more suitable. These
metrics offer a comprehensive perspective, highlighting performance disparities between majority and
minority classes that accuracy might overlook. Specifically, the G-mean of recall can be expressed in

terms of the confusion matrix (C[h]) as: ψGM(C[h]) =
(∏

i∈[K]
Cii[h]∑

j∈[K] Cij [h]

) 1
K

. For the minimum

recall (ψMR), we use the continuous relaxation as used by (Narasimhan & Menon, 2021). By writing
the overall objective as min-max optimization over λ ∈ ∆K−1, we have maxh ψ

MR(C[h]) =

maxhminλ∈∆K−1

∑
i∈[K] λi

Cii[h]∑
j∈[K] Cij [h]

. Fairness is another area where such complex objectives
are beneficial. For example, prior works (Cotter et al., 2019; Goh et al., 2016) on fairness consider
optimizing the mean recall while constraining the predictive coverage (covi[C[h]] =

∑
j Cji) that

is the proportion of class i predictions on test data given as maxh
1
K

∑K
i=1 reci[h] s.t. covi[h] ≥

α
K ∀i ∈ [K]. Optimization of the above-constrained objectives is possible by using the Lagrange
Multipliers (λ ∈ RK≥0) as done in Sec. 2 of Narasimhan & Menon (2021). By expressing this
above expression in terms of C[h] and through linear approximation, the constrained objective
ψcons.(C[h]) can be considered as: maxh ψ

AM
cons.(C[h]) = maxhminλ∈RK

≥0

1
K

∑
i∈[K]

Cii[h]∑
j∈[K] Cij [h]

+∑
j∈[K] λj

(∑
i∈[K] Cij [h]−

α
K

)
. The λ for calculating the value of ψcons.(C[h]) and ψMR(C[h]),

is periodically updated using exponentiated or projected gradient descent as done in (Narasimhan
& Menon, 2021). We summarize ψ(C[h]) for all non-decomposable objectives we consider in this
paper in Table 1. Unlike existing frameworks (Narasimhan & Menon, 2021; Rangwani et al., 2022) in
addition to objectives that are linear functions of C[h], we can also optimize for non-linear functions
like (G-mean and H-mean) for neural networks.
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4 SELECTIVE MIXUP FOR OPTIMIZING NON-DECOMPOSABLE OBJECTIVES

This section introduces the proposed SelMix (Selective Mixup) procedure for optimizing desired
non-decomposable objective ψ. We a) first introduce a notion of selective (i, j) mixup (Zhang et al.,
2018) between samples of class i and j, b) we then define the change (i.e., Gain) in desired objective
ψ produced due to (i, j) mixup, c) to prefer (i, j) mixups which lead to large Gain in objective ψ,
we introduce a distribution PSelMix from which we sample (i, j) to form training batches d) we then
conclude by introducing a tractable approximation of change (i.e., gain) in metric for the network
WTg, e) we summarize the SelMix procedure by providing the Algorithm for training. We provide
theoretical results for the optimality of the SelMix procedure in Sec. 4.1. We elucidate each part of
SelMix in detail below and provide an overview of the proposed algorithm in Fig. 2.

Feature Mixup. In this work, we aim to optimize non-decomposable objectives with a framework
utilizing mixup (Zhang et al., 2018). Mixup minimizes the risk for a linear combination of samples
and labels (i.e. (x, y) and (x′, y′)) to achieve better generalization. Manifold Mixup (Verma et al.,
2019) extends this idea to have mixups in feature space, which we use in our work. However,
in vanilla mixup, the samples for mixing up are chosen randomly over the classes. This may
be useful in the case of accuracy but can be sub-optimal when we aim to optimize for specific
non-decomposable objectives (Table K.1) that may require a specific selection of classes in the
mixup. Hence, this work focuses on selective mixups between classes and uses them to optimize
non-decomposable objectives. Consider a K class classification dataset D containing sample pairs
(x, y). For convenience of notation, we denote the subset of instances with a particular label y = i
as Di = {x | (x, y) ∈ D, y = i}. For the unlabelled part of dataset D̃ containing x, we generate
these subsets D̃i = {x′ ∈ D̃ | i = argmaxl h(x)l} based on the pseudo label y′ = argmaxl h(x)l
from the model h. In addition to these training data, we also assume access to Dval containing (x, y).
Following semi-supervised mixup framework (Fan et al., 2022) in our work, the mixup between a
labeled and pseudo labeled pair of samples (i.e. (x, y) from D and x′ from D̃), the features g(x) and
g(x′) are mixed up, while the label is kept as y. The mixup loss for our model with feature extractor
g followed by a linear layer with weights W defined as:

Lmixup(g(x), g(x
′), y;W ) = LSCE(W

T(βg(x) + (1− β)g(x′)), y).

Here β ∼ U [βmin, 1], βmin ∈ [0, 1] and LSCE is the softmax cross entropy loss. We define (i, j)
mixups for classes i and j to be the mixup of samples x ∼ Di and x′ ∼ D̃j and minimization
of the corresponding Lmixup via SGD . For analyzing the effect of (i, j) mixups on the model, we
use the loss incurred by mixing the centroids of class samples (zi and zj), which are defined as
zk = Ex∼Dval

k
[g(x)] for each class k. This representative of the expected loss due to (i, j) mixup can

be expressed as:
Lmix
(i,j) = Lmixup(zi, zj , i;W ) ∀i, j ∈ [K]× [K]. (2)

Directional vectors using mixup loss. We define K2 directions as the derivative of the expected
mixup loss for each of the (i, j) mixup respectively w.r.t the weights W as Vi,j = −∂Lmix

(i,j)/∂W .
These directions correspond to the small change in weights W upon the minimization of Lmix

(i,j) by
stochastic gradient descent. Now we want to calculate the change in the non-decomposable objective
ψ along these directions Vi,j . Assuming the existence of directional derivatives in the span of K2

directions and fixed feature extractor g, we can write the following using Taylor Expansion (Eq. (1)):

ψ(C[W⊤g + ηV ⊤
i,jg]) = ψ(C[W⊤g]) + η∇Vijψ(C[W

⊤g]) +O(η2∥Vi,j∥2). (3)

In Eq. (3), since η is a small scalar, O(η2∥Vi,j∥2) is negligible. Hence the second term in Eq. (3)
denotes the major change in objective ψ due to minimization of the loss due to (i, j) mixup Lmix

(i,j) via
SGD. We define this as Gain (Gij) or increase in desired objective ψ for the (i, j) mixup:

Gij = ∇Vij
ψ(C[W⊤g]), where Vij = −

∂Lmix
(i,j)

∂W
∀(i, j) ∈ [K]× [K] (4)

Using this, we define the gain matrix asG = [Gi,j ]1<i,j<K corresponding to each of the (i, j) mixups.
We now define a general direction V , which is induced by mixing up samples from classes (i, j)
respectively, according to PMix(i, j) distribution defined over [K]×[K]. The expected weight change
induced by this distribution can be given as (due to linearity of derivatives): V =

∑
i,j PMix(i, j)Vi,j .
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The change in objective induced by the PMix(i, j) distribution can be similarly approximated using
the Taylor Expansion for the direction V =

∑
i,j PMix(i, j)Vi,j :

ψ(C[W⊤g + ηV ⊤g]) = ψ(C[W⊤g]) + η
∑
i,j

PMix(i, j)∇Vijψ(C[W
⊤g]) +O(η2∥V ∥2). (5)

To maximize change in objective (LHS), we maximize the second term (RHS), as the first term is
constant and the third is negligible for a small step η. On substituting ∇Vijψ(C[W

⊤g]) = Gij , the
second term corresponds to E[G] =

∑
i,j Gi,jPMix(i, j), which is expectation of gain over PMix.

Thus, maximization of the objective is equivalent to finding optimal PMix to maximize expected gain
E[G]. In practice to maximize objective ψ, we will first sample labels to mixup (y1, y2) from optimal
PMix (described below), then will pick x1, x2 from Dy1 , Dy2 uniformly to form a batch for training.

Selective Mixup Sampling Distribution. In our work, we introduce a novel sampling distribution
PSelMix for practically optimizing the gain in objective defined as follows:

PSelMix(i, j) = softmax(sG)ij . (6)

We aim to maximize E[G]. One strategy could be to only mixup samples from classes (i, j) respec-
tively, corresponding to maxi,j Gij or equivalently s→ ∞. However, this doesn’t work in practice as
we do n steps of SGD based on PSelMix the linear approximation in Eq. (3) becomes invalid, and later
the approximation in Thm. 4.1 (See Table K.1 for empirical evidence). Hence, we select the PMix to
be the scaled softmax of the gain matrix as our strategy, with s > 0 given as PSelMix. The proposed
PSelMix is the distribution which is an intermediate strategy between the random exploratory uniform
(s = 0) and greedy (s→ ∞) strategies which serves as a good sampling function for maximizing
gain. We provide theoretical results regarding the optimality of the proposed PSelMix in Sec. 4.1.

Estimation of Gain Matrix. This notion of gain, albeit accurate, is not practically tractable since ψ is
not differentiable w.r.tW in general, as the definition ofCij [h] = Ex,y∼D[1(y = i, argmaxl h(x)l =
j)] uses a non-smooth indicator function (Sec. C.2). To proceed further with this limitation, we
introduce a reformulation of C by defining the ith row Ci[h] of the confusion matrix in terms of
the ith row C̃i[h] of the unconstrained matrix C̃[h] ∈ RK×K as Ci[h] = πi · softmax(C̃i[h]). This
reformulation of the confusion matrix C by design satisfies the necessary constraints, given as∑
j Ci,j [h] = πi and

∑
i,j Ci,j [h] = 1 where 0 ≤ Ci,j [h] ≤ 1. We can now calculate the same

objective ψ(C̃[WTg]) in terms of C̃. The entries of gain matrix (G) with reformulation C̃ can be
analogously defined (Eq. (4)) in terms of C̃:

Gij = ∇Vij
ψ(C̃[W⊤g]), where Vij = −

∂Lmix
(i,j)

∂W
∀(i, j) ∈ [K]× [K]. (7)

The exact computation of Gij would be given as ⟨ ∂C̃∂W , Vij⟩ in case ∂C̃
∂W was defined. However,

this is not defined despite introducing the re-formulation due to the non-differentiability of C̃ w.r.t
W. However, with re-formulation under some mild assumptions, given in Theorem (4.1), we can
approximate Gij (first RHS term). We refer readers to Theorem C.3 for a more mathematically
precise statement. Further, we want to convey one advantage despite the proposed reformulation: we
do not require the actual computation of C̃ for gain calculation in Eq. (8) (first term). As all the terms
of ∂ψ(C̃)

∂C̃lk
which we require, can be computed analytically in terms of C, which makes this operation

inexpensive. We provide the ∂ψ(C̃)

∂C̃lk
for all ψ in Appendix Sec. D.

Theorem 4.1. Assume that ∥Vij∥ is sufficiently small. Then, the gain for the (i, j) mixup (Gij) can
be approximated using the following expression:

Gij =
∑
k,l

∂ψ(C̃)

∂C̃kl

(
(Vij)

⊤
l · zk

)
+O

(
ε(C̃,W ) + ∥Vij∥2

)
. (8)

where zk = Ex∼Dval
k
[g(x)] is the mean of the features of the validation samples belonging to class

k, used to characterize (i,j) mixups (Eq. (2)). The error term ε(C̃,W ) does not depend on Vij , and
under reasonable assumptions we can regard this term small (we refer readers to Sec. C.3).
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In the above theorem formulation, we approximate the change in the entries of the unconstrained
confusion matrix C̃i,j [h] with the change in logits for the classifier WTg with weight W along the
direction Vi,j as (Vij)⊤l · zk. The most non-trivial assumption of the theorem is that for each k, the
random vector V ⊤

ij g(x) has a small variance, where x ∼ Dval
k . Intuitively, if g is a sufficiently good

feature extractor, then feature vectors g(x) (x ∼ Dval
k ) are distributed near its mean, hence its linear

projections V ⊤
ij g(x) has a small variance. Therefore, it is a natural assumption if g is sufficiently

good. Moreover, this approximation works well in practice, as demonstrated empirically in Sec. 5.

Algorithm for training through PSelMix. We provide an algorithm for training a
neural network through SelMix. Our algorithm shares a high-level framework as
used by (Narasimhan et al., 2015b; 2022). The idea is to perform training cy-
cles, in which one estimates the gain matrix G through a validation set (D(val) and
uses it to train the neural network for a few Stochastic Gradient Descent (SGD) steps.

Algorithm 1 Training through SelMix
for t = 1 to T do

Compute P(t)
SelMix = softmax(sG(t)) using Thm. 4.1

for n SGD steps do
Y1, Y2 ∼ P(t)

SelMix,X1 ∼ U(DY1
),X2 ∼ U(D̃Y2

)

h(t+1) := SGD-Update(h(t),Lmixup, (X1, Y1, X2))
end for

end for
return h(T )

As our expressions of gain are based on a lin-
ear classifier, we primarily fine-tune the linear
classifier. The backbone is fine-tuned at a lower
learning rate η for slightly better empirical re-
sults (Sec. 5). Formally, we introduce the time-
dependent notations for gain (G(t)), the classi-
fier h(t), the SelMix distribution P(t)

SelMix, weight-
direction change V (t)

i,j due to the minimization
of Lmix

ij . As SelMix is a fine-tuning procedure,
we assume a feature extractor g and its linear classification layer, pre-trained with an algorithm like
FixMatch, to be provided as input. Another important step in our algorithm is the update of the
pseudo-labels of the unlabeled set, D̃(t). The pseudo-labels are updated with predictions from the
h(t). The algorithm is summarized in Alg. 1 and detailed in App. Alg. 2, and an overview is provided
in Fig. 2. In our practical implementation, we mask out entries of the gain matrix with negative gain
before performing the softmax operation (Eq. (6)). We further compare the SelMix framework to
others (Rangwani et al., 2022; Narasimhan & Menon, 2021), in the App. E.

4.1 THEORETICAL ANALYSIS OF SELMIX

Convergence Analysis. For each iteration t = 1, . . . , T , Algorithm 1 updates the parameter W of
our network h =WT g as follows: (a) It selects a mixup pair (i, j) from the distribution P(t)

SelMix, (b)
and updates the parameter W by W (t+1) = W (t) + ηtṼ

(t), where Ṽ (t) = V
(t)
ij /∥V

(t)
ij ∥. Here, we

consider the normalized directional vector Ṽ (t) instead of V (t)
ij . We denote by Et−1 [·] the conditional

expectation conditioned on randomness with respect to mixup pairs up to time step t − 1. In the
convergence analysis, we make the following assumptions for the analysis. We assume that the
objective ψ as a function of W is concave, differentiable and the gradient is γ-Lipschitz, where γ > 0
(Wright, 2015; Narasimhan et al., 2022). We assume that there exists a constant c > 0 independent
of t satisfying the following condition Et−1

[
Ṽ (t)

]
· ∂ψ(W

(t))
∂W > c∥∂ψ(W

(t))
∂W ∥, that is, Ṽ (t) vector

has sufficient alignment with the gradient vector to maximize the objective ψ in expectation. Here,
we regard ψ as a function of W in ∂ψ(W (t))

∂W . Moreover, we assume that in the optimization process,
∥W (t)∥ does not diverge, i.e., we assume that for any t ≥ 1, we have ∥W (t)∥ < R with a constant
R > 0. In practice, this can be satisfied by adding ℓ2-regularization of W to the optimization. We
define a constant R0 > 0 as R0 = ∥W ∗∥ + R, where W ∗ = argmaxW ψ(W ). Using the above
mild assumptions, we have the following result (we provide a proof in Sec. C.1):
Theorem 4.2. For any t > 1, we have ψ(W ∗)−E

[
ψ(W (t))

]
≤ 4γR2

0

c2(t−1) , with an appropriate choice
of the learning rate ηt.

Theorem 4.2 states that the proposed Algorithm 1 leads to convergence to the optimal metric value
ψ(W ∗) if E

[
V

(t)
ij

]
is a reasonable directional vector for optimization of ψ.

Validity of the mixup sampling distribution. By formalizing the optimization process as an online
learning problem (a similar setting to that of Hedge (Freund & Schapire, 1997)), we state that our
sampling method is valid. For conciseness, we only provide an informal statement here and refer
to Sec. C.4 for a more precise formulation. We suppose that a mixup pair (i, j) is sampled by
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Table 2: Comparison of metric values with various Semi-supervised Long-Tailed methods on CIFAR-
10/100 LT under ρl = ρu setup. The best results are indicated in bold.

CIFAR-10 (ρl = ρu = 100, N1 = 1500,M1 = 3000) CIFAR-100 (ρl = ρu = 10, N1 = 150,M1 = 300)

Mean Rec. Min Rec. HM GM Mean Rec./Min Cov. Mean Rec. Min H-T Rec. HM GM Mean Rec./Min H-T Cov.

DARP (Kim et al., 2020a) 83.3±0.4 66.4±3.1 81.9±0.5 82.6±0.4 83.3±0.4/0.070±3e-3 56.5±0.2 39.6±1.1 48.7±1.3 55.4±0.5 56.5±0.2/0.0040±2e-3

CReST (Wei et al., 2021b) 82.1±0.6 68.2±3.2 81.0±0.7 81.6±0.7 82.1±0.6/0.073±5e-3 58.2±0.2 40.7±0.7 48.3±0.2 54.1±0.1 58.2±0.2/0.0083±2e-4

CReST+ (Wei et al., 2021b) 83.1±0.3 71.3±1.5 82.2±0.2 82.6±0.3 83.1±0.3/0.076±2e-3 57.8±0.8 42.1±0.7 48.2±0.6 53.8±0.9 57.8±0.8/0.0088±1e-4

ABC (Lee et al., 2021) 85.1±0.5 74.1±0.6 84.6±0.5 84.9±0.6 85.1±0.5/0.086±3e-3 59.7±0.2 46.4±0.6 50.1±1.2 55.6±0.4 59.7±0.2/0.0089±3e-4

CoSSL (Fan et al., 2022) 82.0±0.3 70.6±0.9 81.3±0.5 81.6±0.3 82.0±0.3/0.074±4e-3 57.9±0.4 46.3±0.5 53.7±0.8 55.2±0.7 57.9±0.4/0.0051±3e-4

DASO (Oh et al., 2022) 84.1±0.3 72.6±2.1 83.5±0.3 83.8±0.3 84.1±0.3/0.083±1e-3 60.6±0.2 40.9±0.4 49.1±0.7 55.9±0.1 60.6±0.2/0.0063±3e-4

CSST (Rangwani et al., 2022) 81.1±0.2 71.7±0.2 76.9±0.2 77.7±0.7 81.1±0.2/0.090±2e-4 57.2±0.2 48.4±0.3 47.7±0.8 53.5±0.4 57.2±0.2/0.0099±2e-3

FixMatch(LA) 79.7±0.6 55.9±1.9 76.7±0.1 78.3±0.1 79.7±0.6/0.056±3e-3 58.8±0.1 34.6±0.6 45.5±2.1 53.4±0.4 58.8±0.1/0.0053±1e-5

w/SelMix (Ours) 85.4±0.1 79.1±0.1 85.1±0.1 85.3±0.1 85.7±0.2/0.095±1e-3 59.8±0.2 57.8±0.5 53.8±0.5 56.7±0.4 59.6±0.5/0.0098±5e-5

a distribution P(t) on [K] × [K] for t = 1, . . . , T . We call a sequence of sampling distributions
P = (P(t))Tt=1 a policy, and call a policy P non-adaptive if P(t) is the same for all 1 ≤ t ≤ T . For
example, if P(t) is the uniform distribution for any t, then P is non-adaptive. Then, in Sec. C.4, we
shall prove the following statement regarding the optimality of PSelMix:
Theorem 4.3 (Informal). The SelMix policy PSelMix is approximately better than any non-adaptive
policy Pna = (P)Tt=1 in terms of the average gain if T is sufficiently large.

5 EXPERIMENTS

We demonstrate the effectiveness of SelMix in optimizing various Non-Decomposable objectives
across different labeled and unlabeled data distributions. Following conventions for Long-Tail
(LT) classification, Ni and Mi represent the number of samples in the ith class for the labeled and
unlabeled sets, respectively. The label distribution is exponential in nature, and the imbalance factor
ρ characterizes it. We define it as ρl = N1/NK , ρu = M1/MK . In our experiments, we consider
the LT semi-supervised version for CIFAR-10,100, Imagenet-100, and STL-10 datasets as done
by (Fan et al., 2022; Oh et al., 2022; Kim et al., 2020a; Lee et al., 2021; Rangwani et al., 2022).
For the experiments on the long-tailed supervised dataset, we consider the Long-Tailed versions of
CIFAR-10, 100, and ImageNet-1k. The parameters for the datasets are available in Tab. G.1.

Training Details: Our classifier comprises a feature extractor g : X → Rd and a linear layer
with weight W (see Sec. 3). In semi-supervised learning, we use the pre-trained Wide ResNet-28-
2 (Zagoruyko & Komodakis, 2016) with FixMatch (Sohn et al., 2020), replacing the loss function
with the logit adjusted (LA) cross-entropy loss (Menon et al., 2020) for debiased pseudo-labels.
Fine-tuning with SelMix (Alg. 1) includes cosine learning rate and SGD optimizer. In supervised
learning, we pre-train models with MiSLAS on ResNet-32 for CIFAR-10, CIFAR-100, and ResNet-50
for ImageNet-1k. We freeze batch norm layers and fine-tune the feature extractor with a low learning
rate to maintain stable mean feature statistics zk, as per our theoretical findings. Further details and
hyperparameters are provided in appendix Table G.1.

Evaluation Setup. We evaluate our work against baselines CReST, CReST+ (Wei et al., 2021b),
DASO (Oh et al., 2022), DARP (Kim et al., 2020a), and ABC (Lee et al., 2021) in semi-supervised
long-tailed learning. We assess the methods based on two sets of metric objectives: a) Unconstrained
objectives, including G-mean, H-mean, Mean (Arithmetic Mean), and worst-case (Min.) Recall. b)
Constrained objectives, involving maximizing recalls under coverage constraints. The constraint
requires coverage ≥ 0.95

K for all classes. For CIFAR-100, we optimize Min Head-Tail Recall/Min
Head-Tail coverage instead of Min Recall/Coverage due to its small size. The tail corresponds to
the least frequent 10 classes, and the head the rest 90 classes. For detailed metric objectives and
definitions, refer to Table G.3. We present results as mean and standard deviation across three seeds.

Matched Label Distributions. We report results for ρl = ρu, signifying matched labeled and
unlabeled class label distributions. SelMix outperforms FixMatch (LA), achieving a 5% Min Recall
boost for CIFAR-10 and a 9.8% improvement in Min HT Recall for CIFAR-100. SelMix also excels
in mean recall, akin to accuracy. Its strategy starts with tail class enhancement, transitioning to
uniform mixups (App. J).We delve into optimizing coverage-constrained objectives (covi[h] ≥ 0.95

K ).
Initially, we emphasize mean recall with coverage constraints, supported by CSST. However, SelMix,
a versatile method, accommodates objectives like H-mean with coverage (App. I). Table 2 reveals that
most SotA methods miss minimum coverage values, except CSST and SelMix. SelMix outperforms
CSST in mean recall while meeting constraints, as confirmed in our detailed analysis (App. K.1).

Unknown Label Distributions. We address the practical scenario where the labeled data’s label
distribution differs from that of the unlabeled data (γl ̸= γu). We assess two cases: a) Mismatched
Distributions. We evaluate various techniques on CIFAR-10 with two mismatched unlabeled dis-
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Figure 3: Comparison of metric for semi-supervised CIFAR-10 LT under ρl ̸= ρu and STL-10
ρu = NA assumption. For CIFAR-10-LT (semi-supervised) involve ρl = 100, ρu = 1, (uniform)
and ρl = 100, ρu = 1

100 (inverted). SelMix achieves significant gains over other baselines.
Table 3: Comparison results in supervised case for CIFAR-10,100 LT (ρ = 100). We use the
pre-trained model of MiSLAS (Zhong et al., 2021) in stage-1 and fine-tune using SelMix.

CIFAR-10 (ρl = 100) CIFAR-100 (ρl = 10)

Mean Rec. Min Rec. HM GM Mean Rec./Min Cov. Mean Rec. Min H-T Rec. HM GM Mean Rec./Min H-T Cov.

MisLaS (Stage 1) (Zhong et al., 2021) 72.7±0.3 45.6±2.3 70.3±1.4 72.5±0.9 72.7±0.3/0.045±2e-3 39.5±0.2 1.2±0.5 0.0±0.0 0.0±0.0 39.5±0.2/0.0001±2e-5

w/ Stage 2 (Zhong et al., 2021) 81.9±0.1 72.5±0.8 81.3±0.9 81.6±0.1 81.9±0.1/0.077±0.003 47.0±0.4 15.2±1.1 30.9±0.6 39.9±0.5 47.0±0.4/0.0055±2e-4

w/ SelMix (Ours) 83.3±0.2 79.2±0.7 82.6±0.5 82.8±0.3 82.8±0.2/0.095±0.002 48.3±0.1 41.3±1.4 38.2±0.8 42.3±0.5 47.8±0.2/0.0095±2e-4

Table 4: Results for scaling SelMix to large datasets ImageNet-1k LT and ImageNet100 LT.
ImageNet100-LT (ρ = 10) ImageNet1k-LT

Mean Rec. Min Rec. Mean Rec./Min Cov. Mean Rec. Min HT Rec. Mean Rec./Min Cov.

CSST (Rangwani et al., 2022) 59.1 12.1 59.1/0.003 MiSLAS (Stage 1) (Zhong et al., 2021) 45.4 4.1 45.4/0.00000
Fixmatch (LA) 69.9 6.0 69.9/0.002 w/ Stage 2 52.4 29.7 52.4/0.00068

w/ SelMix 73.5 24.0 73.1/0.009 w/ SelMix 52.8 45.1 52.5/0.00099

tributions: balanced (ρu = 1) and inverse ( 1
100 ). SelMix consistently outperforms all methods,

especially in min. Recall and coverage-constrained objectives (Fig. 3). b) Real World Unknown
Label Distributions. STL-10 provides an additional 100k samples with an unknown label distribution,
emulating scenarios where data is abundant but labels are scarce. SelMix, with no distributional
assumptions, outperforms SotA methods like CSST and CRest (which assume matched distribution)
in min-recall by a substantial 12.7% margin (Fig. 3). Detailed results can be found in App. H.

Results on SelMix in Supervised Learning. To further demonstrate the generality of SelMix, we test
it for optimizing non-decomposable objectives via fine-tuning a recent SotA work MisLaS (Zhong
et al., 2021) for supervised learning. In comparison to fine-tuning stage-2 of MisLaS, SelMix-based
fine-tuning achieves better performance across all objectives as in Table 3, for both CIFAR 10,100-LT.

Analysis of SelMix. We demonstrate SelMix’s scalability on large-scale datasets like Imagenet-1k
LT and Imagenet-100 LT and its ability to improve the objective compared to the baseline Tab. 4,
with minimal additional compute cost (∼ 2 min.) (see Table L.1), through Thm. C.8, we show the
advantage of SelMix over uniform random sampling and the limitations of a purely greedy policy (ref.
Table K.1 for empirical evidence). We observe improved feature extractor learning by comparing a
trainable backbone to a frozen one (Tab. K.4). Additionally, our work can be combined with other
mixup variants like (Kim et al., 2020b; Yun et al., 2019), leading to performance enhancements (Tab.
K.5) demonstrating the diverse applicability for the proposed SelMix method. We refer readers to the
Appendix for details on complexity (Sec. B, L), analysis (Sec. K), and limitations (Sec. M).

6 CONCLUSION AND DISCUSSION

We study the optimization of practical but complex metrics like the G-mean and H-mean of Recalls,
along with objectives with fairness constraints in the case of neural networks. We find that SotA
techniques achieve sub-optimal performance in terms of these practical metrics, notably on worst-case
recall. These metrics and constraints are non-decomposable objectives, for which we propose a Selec-
tive Mixup (SelMix) based fine-tuning algorithm for optimizing them. The algorithm selects samples
from particular classes to a mixup to improve a tractable approximation of the non-decomposable
objective. Our method, SelMix, can improve on the majority of objectives in comparison to both
theoretical and empirical SotA methods, bridging the gap between theory and practice. We expect the
SelMix fine-tuning technique to be used for improving existing models by improving on worst-case
and fairness metrics inexpensively.
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APPENDIX

A NOTATION

We provide a summary of notations in Table A.1.

Table A.1: Table of Notations used in Paper.

K Number of classes
Y := [K] Label space

x Instance
y Label
η Learning rate
X Instance space
d Feature space

h : X → RK a neural network based scoring function
C[h] Confusion matrix for the classifier h

∆n−1 ⊂ Rn the n− 1-dimensional probability simplex
ψ : ∆K2−1(⊂ RK×K) → R a function defined on the set of confusion matrices (ψ(C[h]) is the metric

of h)
πi prior for class i ∈ [K]

g : X → Rd a feature extractor (backbone)
f : Rd → ∆K−1 the final classifier such that h = argmaxi fi ◦ g
W ∈ Rd×K the weight of the final layer

zk the centroid of features of class samples given as Ex∼Dval
k

[g(x)]

Lmixup(xi, xj , yi;W ) the loss for mixup between labeled sample (xi, yi) and unlabeled sample
xj

Lmix
(ij) the expected loss due to (i, j) mixup
Gij gain upon performing (i, j) mixup
Vij the directional vector (matrix) defined by the (i, j) mixup

⟨A,B⟩ (where A,B ∈ Rm×n) TrAB⊤

∇Aχ (where A ∈ Rd×K) the directional derivative of a function χ with the directional vector
(matrix) A

s the inverse temperature parameter for the softmax
C̃ Unconstrained extension for confusion matrix C
Di Subset of data with label i
D̃i Subset of data with pseudo-label i
P a distribution on [K]× [K]

P = (Pt)Tt=1 a policy (a sequence of distributions Pt)
G(P) the expected average gain of P
Nk the number of samples in the k-th labeled class
Mk the number of samples in the k-th unlabeled class
ρl the class imbalanced factor of the labeled dataset (max1≤i,j≤K Ni/Nj)
ρu the class imbalanced factor of the unlabeled dataset
H The set of first 90% classes that contains the majority of samples
T The set of last 10% classes that contains the minority of samples

∥A∥F the Frobenius norm of a matrix

B COMPUTATIONAL COMPLEXITY

We discuss the computational complexity of SelMix and that of an existing method (Rangwani
et al., 2022) for non-decomposable metric optimization in terms of the class number K. We note
that to the best of our knowledge, CSST (Rangwani et al., 2022) is the only existing method for
non-decomposable metric optimization in the SSL setting.
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Proposition B.1. The following statements hold:

1. In each iteration t in Algorithm 1, computational complexity for P(t)
SelMix is given as O(K3).

2. In each iteration of CSST (Rangwani et al., 2022), it needs procedure that takes O(K3)
time.

Here, the Big-O notation hides sizes of parameters of the network other than K (i.e., the number of
rows of W ) and the size of the validation dataset.

Proof. 1. Computational complexity for the confusion matrix is given as O(K3) since there are
K2 entries and for each entry, evaluating h(t)(x) takes O(K) time for each validation data x. For
each 1 ≤ k ≤ K, computational complexity for zk is O(K). We compute {softmax(zk)}1≤k≤K ,
which takes O(K2) time. The (m, l)-th entry of the matrix νij is given as −ηζm(δil − softmaxi(ζ)),
where 1 ≤ m ≤ d, 1 ≤ l ≤ K, and ζ = βzi + (1 − β)zj ∈ Rd. Therefore, once we compute
{softmax(zk)}1≤k≤K , computational complexity for {νij}1≤i,j≤K is O(K3). For each 1 ≤ l ≤ K,

we put vl =
∑K
k=1

∂ψ(C(t))

∂C̃kl
zk. Then computational complexity for {vl}1≤l≤K is O(K2). Since

G
(t)
ij =

∑K
l=1(ν

(t)
ij )⊤l · vl is a sum of K dot products of d-dimensional vectors, once we compute

{vl}l, computational complexity for {G(t)
ij }1≤i,j≤K is O(K3). Thus, computational complexity for

P(t)
SelMix is given as O(K3).

2. In each iteration t, CSST needs computation of a confusion matrix at validation dataset. Since there
are K2 entries and for each entry, h(t)(x) takes O(K) time for each validation data x, computational
complexity for the confusion matrix is given as O(K3). Thus, we have our assertion.

C ADDITIONAL THEORETICAL RESULTS AND PROOFS OMITTED IN THE
PAPER

C.1 CONVERGENCE ANALYSIS

We provide convergence analysis of Algorithm 1. For each iteration t = 1, . . . , T , Algorithm 1
updates parameter W as follows:

1. It selects a mixup pair (i, j) from the distribution P(t)
SelMix.

2. and updates parameter W by W (t+1) =W (t) + ηtṼ
(t), where Ṽ (t) = V

(t)
ij /∥V

(t)
ij ∥.

Here, we consider the normalized directional vector Ṽ (t) instead of V (t)
ij and ∥ · ∥ denotes the

Euclidean norm. We denote by Et−1 [·] the conditional expectation conditioned on randomness with
respect to mixup pairs up to time step t− 1.

Assumption C.1. The function ψ (as a function of W ) is concave, differentiable, the gradient ∂ψ
∂W

is γ-Lipschitz, i.e., ∥ ∂ψ∂W − ∂ψ
∂W ′ ∥ ≤ γ∥W −W ′∥ where γ > 0. There exists a constant c > 0

independent of t satisfying

Et−1

[
Ṽ (t)

]
· ∇ψ(W (t))

∥∇ψ(W (t))∥
> c, (9)

where ∇ψ(W (t)) = ∂ψ(W (t))
∂W , that is, Ṽ (t) vector has sufficient alignment with the gradient. More-

over, we make the following technical assumption. We assume that in the optimization process,
∥W (t)∥ does not diverge, i.e., we assume that for any t ≥ 1, we have

∥W (t)∥ < R

with a constant R > 0. In practice, this can be satisfied by adding ℓ2-regularization of W to the
optimization. We define a constant R0 > 0 as R0 = ∥W ∗∥ + R, where W ∗ = argmaxW ψ(W ).
We note that a similar boundedness condition using a level set is assumed by (Wright, 2015).
Theorem C.2. Under the above assumptions and notations, we have the following result. For any
t > 1, we have

sup
W

ψ(W )− E
[
ψ(W (t))

]
≤ 4γR2

0

c2(t− 1)
,
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with an appropriate choice of the learning rate ηt.

Proof. By the Taylor’s theorem, for each iteration t, there exists s = st ∈ [0, 1] such that
ψ(W (t+1)) = ψ(W (t))+ηt∇ψ(ξ) · Ṽ (t), where ξ =W (t)+sηtṼ

(t). We decompose ηt∇ψ(ξ) · Ṽ (t)

as ηt(∇ψ(ξ)−∇ψ(W (t))) · Ṽ (t) + ηt∇ψ(W (t)) · Ṽ (t).

First, we provide a lower bound of the first term. Since ∇ψ is Lipschitz, we have ∥∇ψ(ξ) −
∇ψ(W (t))∥ ≤ γ∥ξ − W (t)∥ ≤ γηt. Thus, by the Cauchy-Schwartz, we have ηt(∇ψ(ξ) −
∇ψ(W (t))) · Ṽ (t) ≥ −γη2t . Next, we consider the second term. By the assumption on the co-
sine similarity (9), we have

ηt∇ψ(W (t)) · Et−1

[
Ṽ (t)

]
≥ cηt∥∇ψ(W (t))∥

where c > 0 is a constant independent of t. Here we note that when taking the expectation Et−1 [·],
we can regard W (t) as a non-random variable. Thus, we have

E
[
ψ(W (t+1))

]
= E

[
ψ(W (t)) + ηt∇ψ(ξ) · Ṽ (t)

]
≥ E

[
ψ(W (t))

]
− γη2t + cηtE

[
∥∇ψ(W (t))∥

]
By letting ηt = c

2γE
[
∥∇ψ(W (t))∥

]
, we see that

E
[
ψ(W (t+1))

]
≥ E

[
ψ(W (t))

]
+
c2

4γ

(
E
[
∥∇ψ(W (t))∥

])2
We define ϕt = supW ψ(W )− E

[
ψ(W (t))

]
. By the above argument, we have

ϕt+1 ≤ ϕt −
c2

4γ

(
E
[
∥∇ψ(W (t))∥

])2
. (10)

Then, we can prove the statement by a similar argument to Theorem 1 in (Wright, 2015) as follows.
Let W ∗ = argmaxWψ(W ). By the concavity of ψ and the definition of R0, we have

ψ(W ∗)− ψ(W (t)) ≤ ∥∇ψ(W (t))∥∥W ∗ −W (t)∥ ≤ ∥∇ψ(W (t))∥R0.

Therefore, we have
ϕt ≤ R0E

[
∥∇ψ(W (t))∥

]
.

By this inequality and (10), we have

ϕt − ϕt+1 ≥ Aϕ2t ,

where A = c2

4γR2
0

. Thus, noting that ϕt+1 ≤ ϕt holds by (10), we have

1

ϕt+1
− 1

ϕt
=
ϕt − ϕt+1

ϕtϕt+1
≥ ϕt − ϕt+1

ϕ2t
≥ A.

Therefore, it follows that
1

ϕt
≥ 1

ϕ1
+ (t− 1)A ≥ (t− 1)A.

This completes the proof.

C.2 A FORMAL STATEMENT OF THEOREM 4.1 AND REMARKS ON NON-DIFFERENTIABILITY

We provide a more formal statement of Theorem 4.1 (Theorem C.3) and provide its proof.

Theorem C.3. For a matrix A ∈ Rn×m, we denote by ∥A∥F the Frobenius norm of A. We fix the
iteration of the gradient descent and assume that the weight W takes the value W (0) and C̃ takes the
value C̃(0).
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We assume that the following inequality holds for all k ∈ [K] and l ∈ [K] uniformly W ∈ N0, where
N0 is an open neighbourhood of W (0):

|Exk

[
softmaxl(W⊤g(xk))

]
− softmaxl(C̃k)| ≤ ε.

We also assume that on N0, C̃ can be regarded as a smooth function of W and the Frobenius norm of
the Hessian is bounded on N0. Furthermore, we assume that the following small variance assumption
with ε̃ > 0 for all k:

K∑
m=1

Vxk

[
(W⊤g(xk))m

]
≤ ε̃.

Then if ∥∆W∥F is sufficiently small, there exist a positive constant c > 0 depending only on K with
c = O(poly(K)) and a positive constant c′ > 0 such that the following inequality holds:∣∣∣∣∣Gij −

K∑
k=1

∂ψ

∂C̃k
(∆W )⊤zk

∣∣∣∣∣ ≤ c

∥∥∥∥ ∂ψ∂C
∥∥∥∥
F

(ε+ ε̃) + c′(∥∆W∥2F + ∥∆C̃∥2F).

Here ∆W = ν̃tij and C̃k is a column vector such that the k-th row of C̃ is given as C̃k, and we
consider Jacobi matrices at C̃ = C̃(0) and the corresponding value of C.

We provide some remarks.

Independence of the choices of C̃. Although the matrix C̃ is not uniquely determined since the
softmax function is not one-to-one, the approximation (the first term of the RHS of (8)) is unique
as the derivative of all these are unique. We explain this more in detail. In the approximation
formula, we only need jacobian ∂ψ/∂C̃ = ∂ψ

∂C
∂C

∂C̃
. We note that gradient of the softmax function

can also be written as a function of the softmax function (i.e., ∂σl

∂ξm
= δlmσl(ξ)− σl(ξ)σm(ξ), where

σl(ξ) = softmaxl(ξ) for ξ ∈ RK , 1 ≤ l,m ≤ K). Therefore, the first term of the RHS of eq (8) is
uniquely determined even if C̃ is not uniquely determined.

Non-smoothness of the indicator functions. In Theorem C.3, we assume that C and C̃ as smooth
functions W , however strictly speaking this assumption does not hold since the indicator functions
are not differentiable. Thus, in the definition of Gij , we used surrogate functions of the indictor
functions. In the following, we provide more detailed explanation. In Eq. (4), we define the gain
Gij by a directional derivative of ψ(C) with respect to weight W . However, strictly speaking, since
the definition of the confusion matrix C involves the indicator function, ψ(C) is not a differentiable
function of W . Moreover, even if gradients are defined, they vanish because of the definition of the
indicator function. In the assumption of Theorem C.3 (a formal version of Theorem 4.1), we assume
C̃ is a smooth function of W and it implies C is a differentiable function of W . This assumption
can be satisfied if we replace the indicator function by surrogate functions of the indicator functions
in the definition of the confusion matrix C. More precisely, we replace the definition of Cij [h] =
πiEx∼Pi [1(h(x) = j)] by πiEx∼Pi [sj(f(x))]. Here h(x) = argmaxk fk(x) as before, Pi is the
class conditional distribution P (x|y = i) and sj is a surrogate function of p 7→ 1(argmaxi pi = j)

satisfying 0 ≤ sj(p) ≤ 1 for any 1 ≤ j ≤ K, p ∈ ∆K−1 and
∑K
j=1 sj(p) = 1 for any p ∈ ∆K−1.

To compute Gij , one can directly use the definition of Eq. (4) with the smoothed confusion matrix
using surrogate functions of the indicator function. However, an optimal choice of the surrogate
function is unknown. Therefore, in this paper, we introduce an unconstrained confusion matrix C̃
and the approximation formula Theorem 4.1 (Theorem C.3). An advantage of introducing C̃ and
the approximation formula is that the RHS of the approximation formula

∑
k,l

∂ψ(C̃)

∂C̃kl

(
(νij)

⊤
l · zk

)
does not depend on the choice of the surrogate function if we use formulas provided in Sec. D with
the original (non-differentiable) definition of C (error terms such as ε in Theorem C.3 do depend on
the surrogate function). Since the optimal choice of the surrogate function is unknown, this gives a
reliable approximation.

C.3 PROOF OF THEOREM C.3

Proof. In this proof, to simplify notation, we denote softmax(z) by σ(z) for z ∈ RK . In this proof,
we fix the iteration of the gradient descent and assume that the weight W takes the value W (0) and C̃
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takes the value C̃(0). We assume in an open neighborhood ofW (0), we have a smooth correspondence
W 7→ C̃ and that if the value of W changes from W0 to W0 + ∆W , then C̃ changes from C̃0 to
C̃0 + ∆C̃. To prove the theorem, we introduce the following three lemmas. We note that by the
assumption of the theorem and Lemma C.5, the assumption (13) of Lemma C.6 can be satisfied with

ε1 = c′′(ε+ ε̃),

where c′′ > 0 is a constant depending only on K with c′′ = O(poly(K)). Then by Lemma C.6,
there exist constants c1 = c1(K) and c2 = c2(K) depending on only K with c1, c2 = O(poly(K))
such that the following inequality holds for all k:∥∥∥∥∥ ∂C∂C̃k

∣∣∣∣
C̃k=C̃

(0)
k

(
∆C̃k − (∆W )⊤zk

)∥∥∥∥∥
F

≤ c1ε1 + c2(∥∆C̃k∥2F + ∥(∆W )⊤zk∥2F). (11)

Then, we have the following:∣∣∣∣∣ ∂ψ∂C̃∆C̃ −
K∑
k=1

∂ψ

∂C̃k
(∆W )⊤zk

∣∣∣∣∣ =
∣∣∣∣∣ ∂ψ∂C ∂C

∂C̃
∆C̃ −

K∑
k=1

∂ψ

∂C

∂C

∂C̃k
(∆W )⊤zk

∣∣∣∣∣
=

∣∣∣∣∣ ∂ψ∂C
K∑
k=1

∂C

∂C̃k
∆C̃k −

K∑
k=1

∂ψ

∂C

∂C

∂C̃k
(∆W )⊤zk

∣∣∣∣∣
≤
∥∥∥∥ ∂ψ∂C

∥∥∥∥
F

∥∥∥∥∥
K∑
k=1

∂C

∂C̃k

(
∆C̃k − (∆W )⊤zk

)∥∥∥∥∥
F

Here, by fixing an order on [K]× [K], we regard ∂ψ

∂C̃
, ∂C
∂C̃

and ∆C̃ as a K2-dimensional row vector, a
K2 ×K2-matrix, and a K2-dimensional column vector, respectively. Moreover, we consider Jacobi
matrices at C̃ = C̃(0). Then, the assertion of the theorem from this inequality, (11), Lemma C.4.

Lemma C.4. Under assumptions and notations in the proof of Theorem C.3, there exists a constant
c > 0 such that ∣∣∣∣Gij − ∂ψ

∂C̃

∣∣∣∣
C̃=C̃(0)

∆C̃

∣∣∣∣ ≤ c∥∆W∥2F.

Proof. By the assumption of the mapping W 7→ C̃ and the Taylor’s theorem, there exists c1 > 0
such that ∥∥∥∥∥∆C̃ −

(
∂C̃

∂W

)∣∣∣∣∣
W=W0

∆W

∥∥∥∥∥
F

≤ c1∥∆W∥2F. (12)

By definition of Gij , we have the following:∣∣∣∣Gij − ∂ψ

∂C̃

∣∣∣∣
C̃=C̃(0)

∆C̃

∣∣∣∣ = ∣∣∣∣ ∂ψ∂W ∆W − ∂ψ

∂C̃
∆C̃

∣∣∣∣
=

∣∣∣∣∣ ∂ψ∂C̃ ∂C̃

∂W
∆W − ∂ψ

∂C̃
∆C̃

∣∣∣∣∣
≤ c1

∥∥∥∥ ∂ψ
∂C̃

∥∥∥∥
F

∥∆W∥2F .

Here we consider Jacobi matrices at W =W0 and corresponding values. The last inequality follows
from the fact that the matrix norm ∥ · ∥F is sub-multiplicative and Eq. (12).

Lemma C.5. Under assumptions and notations in the proof of Theorem C.3, there exist a positive
constant c = c(K) depending only on K with c = O(poly(K)) such that:

|E
[
σl(W

⊤g(xk))
]
− σl(W

⊤zk)| ≤ c

K∑
m=1

V
[
(W⊤g(xk))m

]
,

for any 1 ≤ k, l ≤ K.
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Proof. This can be proved by applying the Taylor’s theorem to σl. We fix k, l and apply the Taylor’s
theorem to the function ξ 7→ σl(ξ) at ξ =W⊤zk =W⊤E [g(xk)]. Then there exists ξ0 ∈ RK such
that

σl(ξ) = σl(W
⊤zk) +

∂σl
∂ξ

∣∣∣∣
ξ=W⊤zk

(ξ −W⊤zk) +
1

2
(ξ −W⊤zk)

⊤Hk(ξ −W⊤zk),

where Hk = ∂2σl

∂ξ2

∣∣∣
ξ=ξ0

. By noting that ∂σl

∂ξm
= δlmσl(ξ)− σl(ξ)σm(ξ) (here δlm is the Kronecker’s

delta), it is easy to see that there exists a constant c′l depending only on l and K such that ∥H∥F < c′l
and c′l = O(poly(K)). By letting ξ =W⊤g(xk) in the above equation and taking the expectation of
the both sides, we obtain the assertion of the lemma with c = 1

2 maxl≤[K] c
′
l.

Lemma C.6. Under assumptions and notations in the proof of Theorem C.3, we assume there exists
ε1 > 0 such that the following inequality holds for all k and l for any W in an open neighborhood of
W (0) and corresponding C̃: ∣∣∣σl(W⊤zk)− σl(C̃k)

∣∣∣ ≤ ε1. (13)

Furthermore, we assume that ∥(∆W )⊤zk∥F is sufficiently small for all k. Then there exist constants
c1 = c1(K) and c2 = c2(K) depending on only K with c1, c2 = O(poly(K)) such that∥∥∥∥∥ ∂C∂C̃k

∣∣∣∣
C̃k=C̃

(0)
k

(
∆C̃k − (∆W )⊤zk

)∥∥∥∥∥
F

≤ c1ε1 + c2(∥∆C̃k∥2F + ∥(∆W )⊤zk∥2F).

Here, C̃k (resp. ∆C̃k) is a column vector such that the k-th row vector of C̃ (resp. ∆C̃) is given
as C̃k (resp. ∆C̃k). Moreover, when defining Jacobi matrices, we regard C as a K2-vector and
consider a K2 ×K Jacobi matrix ∂C

∂C̃k

∣∣∣
C̃k=C̃

(0)
k

at C̃k = C̃
(0)
k .

Proof. Since (13) holds all W in an open neighborhood of W (0) and corresponding C̃, we apply the
Taylor’s theorem to the function ξ 7→ σl(ξ) at ξ = (W (0))⊤zk and ξ = C̃

(0)
k . Then by (13) and the

same argument in the proof of Lemma C.5, we have∣∣∣∣∣ ∂σl∂ξ

∣∣∣∣
ξ=µk

∆µk −
∂σl
∂ξ

∣∣∣∣
ξ=C̃

(0)
k

∆C̃k

∣∣∣∣∣ ≤ ε1 + c′2(∥∆µk∥2F + ∥∆C̃k∥2F),

where µk = (W (0))⊤zk, ∆µk = (∆W )⊤zk. Noting that (∂σl

∂ξ )m is given as δmlσl(ξ)−σm(ξ)σl(ξ),
(13) and the assumption that ∥∆µk∥F is sufficiently small, we see that there exists a constant
c′1, c

′
2 > 0 depending only on K with c′1, c

′
2 = O(poly(K)) such that the following inequality holds:∣∣∣∣∣ ∂σl∂ξ

∣∣∣∣
ξ=C̃

(0)
k

(
∆µk −∆C̃k

)∣∣∣∣∣ ≤ c′1ε1 + c′2(∥∆µk∥2F + ∥∆C̃k∥2F). (14)

Next, we consider entries of the K2-vector ∂C

∂C̃k

∣∣∣
C̃k=C̃

(0)
k

(∆C̃k −∆µk). Here as previously men-

tioned by fixing an order on [K]× [K], we regard ∂C

∂C̃k
as a K2 ×K-matrix. For (k, l) ∈ [K]× [K],

by the definition of the mapping C̃ 7→ C, (k, l)-th entry of ∂C

∂C̃k

∣∣∣
C̃k=C̃

(0)
k

(∆C̃k −∆µk) is given as

πk
∂σl

∂ξ

∣∣∣
ξ=C̃

(0)
k

(∆C̃k −∆µk). By (14), we see that there exist constants c′′1 , c
′′
2 depending only on K

and c′′1 , c
′′
2 = O(poly(K)) such that∥∥∥∥∥ ∂C∂C̃k

∣∣∣∣
C̃k=C̃

(0)
k

(
∆C̃k − (∆W )⊤zk

)∥∥∥∥∥
F

≤ c′′1ε1 + c′′2(∥∆C̃k∥2F + ∥(∆W )⊤zk∥2F).

Since constants c′′1 , c
′′
2 may depend on (k, l) by taking c1 = max(k,l) c

′′
1 and c2 = max(i,l) c

′′
2 , we

have the assertion of the lemma.
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C.4 VALIDITY OF THE MIXUP SAMPLING DISTRIBUTION

In this section, Motivated by Algorithm 1, we consider the following online learning problem and
prove validity of our method. For each time step t = 1, . . . , T , an agent selects pairs (i(t), j(t)) ∈
[K]× [K], where random variables (i(t), j(t)) follows a distribution P(t) on [K]× [K]. We call a
sequence of distributions (P(t))Tt=1 a policy. For (i, j) ∈ [K] × [K] and 1 ≤ t ≤ T , we assume
that random variable G(t)

ij is defined. We regard G(t)
ij as the gain in the metric when performing

(i, j)-mixup at iteration t in Algorithm 1. We assume that G(t)
ij is random variable due to randomness

of the validation dataset, X1, X2, and the policy. Furthermore, we assume that when selecting
(i(t), j(t)), the agent observes random variables G(t)

ij for (i, j) ∈ [K]× [K] but cannot observe the

true gain defined by E
[
G

(t)
ij

]
. The average gain G

(T )
(P) of a policy P = (P(t))Tt=1 is defined as

G
(T )

(P) = 1
T

∑T
t=1 E

[
G

(t)

i(t)j(t)

]
,where (i(t), j(t)) follows the distribution P(t) and the expectation

is taken with respect to the randomness of the policy, validation dataset, X1, X2. This problem setting
is similar to that of Hedge (Freund & Schapire, 1997) (i.e., online convex optimization). However, in
the problem setting of Hedge, the agent observes gains (or losses) after performing an action but in
our problem setting, the agent have random estimations of the gains before performing an action. We
note that even in this setting, methods such as argmax with respect to G(t)

ij may not perform well

due to randomness of G(t)
ij and errors in the approximation (Refer Sec. 5 for evidence).

We call a policy P = (P(t))Tt=1 non-adaptive (or stationary) if P(t) is the same for all t = 1, . . . , T ,
i.e, if there exists a distribution P(0) on [K] × [K] such that P(t) = P(0) for all t = 1, . . . , T . A
typical example of non-adaptive policies is the uniform mixup, i.e., P(t) is the uniform distribution
on [K] × [K]. Another example is P(t) = δ(i(0),j(0)) for a fixed (i(0), j(0)) ∈ [K] × [K] (i.e.,
the agent performs the fixed (i(0), j(0))-mixup in each iteration). Similarly to Hedge (Freund &
Schapire, 1997) and EXP3 (Auer et al., 2002), we define PSelMix = (P(t)

SelMix)
T
t=1 by P(t)

SelMix =

softmax((s
∑t
τ=1G

(τ)
ij )1≤i,j≤K), where s > 0 is the inverse temperature parameter. The following

theorem states that PSelMix is better than any non-adaptive policy in terms of the average expected
gain if T is large:

Theorem C.7. We assume that G(t)
ij is normalized so that |G(t)

ij | ≤ 1. Then, for any non-adaptive

policy P(0) = (P(0))Tt=1, we have G
(T )

(PSelMix) +
2 logK
sT ≥ G

(T )
(P(0)).

Proof of Theorem C.7. This can be proved by standard argument of the proof of the mirror descent
method (see e.g. (Lattimore & Szepesvári, 2020), chapter 28).

Denote by ∆ ⊂ RK×K the probability simplex of dimensionK2−1. Let (i0, j0) ∈ K×K be the best
fixed mixup hindsight. Since any non-adaptive policy is no better than the best fixed mixup in terms
of G, we may assume that P(0) = (π0)t, where π0 is the one-hot vector in ∆ defined as (π0)ij = 1
if (i, j) = (i0, j0) and 0 otherwise for 1 ≤ i, j ≤ K. Let F be the negative entropy function, i.e.,
F (p) =

∑K
i,j=1 pij log pij . For p ∈ ∆ and G ∈ RK×K , we define ⟨p,G⟩ =

∑K
i,j=1 pijGij . Then,

it is easy to see that p(t) = P(t)
SelMix defined above is given as the solution of the following:

p(t) = argminp∈∆ −s⟨p,G(t)⟩+D(p, p(t−1)). (15)

Here D denotes the KL-divergence and we define p(0) = (1/K2)1≤i,j≤K = argminp∈∆ F (p).
Since the optimization problem (15) is a convex optimization problem, by the first order optimality
condition, we have

⟨π0 − p(t), G(t)⟩ ≤ 1

s

{
D(π0, p

(t−1))−D(π0, p
(t))−D(p(t), p(t−1))

}
.
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By summing the both sides and taking expectation, we have

TG
(T )

(P(0))− TG
(T )

(PSelMix) ≤
1

s

{
D(π0, p

(0))−D(π0, p
(T ))−

T∑
t=1

D(p(t), p(t−1))

}

≤ 1

s
D(π0, p

(0)).

Here the second inequality follows from the non-negativity of the KL-divergence. Since p(0) =
argminp F (p), by the first-order optimality condition, we have D(π0, p

(0)) ≤ F (π0) − F (p(0)).
Noting that F (π0) ≤ 0, we have the following

TG
(T )

(P(0))− TG
(T )

(PSelMix) ≤
−F (p(0))

s
=

logK2

s
.

This completes the proof.

C.5 A VARIANT OF THEOREM C.7

In the case when P(t)
SelMix is defined similarly to Hedge (Freund & Schapire, 1997), i.e., P(t)

SelMix =

softmax((s
∑t−1
τ=1G

(τ)
ij )ij), then by the standard analysis, we can prove the following.

Theorem C.8. We assume that G(t)
ij is normalized so that |G(t)

ij | ≤ 1. Then, with an appropriate

choice of the parameter s, for any non-adaptive policy P(0) = (P(0))Tt=1, we have G
(T )

(PSelMix) +

2
√
logK/

√
T ≥ G

(T )
(P(0)).

First we introduce the following lemma, which is due to (Freund & Schapire, 1997). Although,
one can prove the following result by a standard argument, we provide a proof for the sake of
completeness.

Lemma C.9 (c.f. (Freund & Schapire, 1997)). We assume that G(t)
i,j ∈ [0, 1] for all t and 1 ≤ i, j ≤

K. For (i, j) ∈ [K]× [K], we define Si,j =
∑T
t=1 E

[
G

(t)
i,j

]
. For a policy P = (Pt)Tt=1, we define

SP :=
∑T
t=1 E

[
G

(t)
it,jt

]
. Then, we have the following inequality:

−2 logK + s max
(i,j)∈[K]×[K]

Si,j ≤ (exp(s)− 1)SPSelMix
.

Proof. This lemma can be proved by a standard argument, but for the sake of completeness, we
provide a proof. We put A = [K]× [K], at = (i(t), j(t)) and in the proof we simply denote PSelMix

by P . For a ∈ A and 1 ≤ t ≤ T + 1, we define wa,t as follows. We define wa,1 = 1/K2 for all
a ∈ A and wa,t+1 = wa,t exp(sG

(t)
a ). We also define Wt =

∑
a∈A wa,t. Then, the distribution Pt

is given as the probability (wa,t/Wt)a∈A by definition. Noting that exp(sx) ≤ 1 + (exp(s)− 1)x
for x ∈ [0, 1], we have the following inequality:

Wt+1 =
∑
a∈A

wa,t+1 =
∑
a∈A

wa,t exp(sG
(t)
a )

≤
∑
a∈A

wa,t(1 + exp(s− 1)G(t)
a ).

Thus, we have

Wt+1 ≤
∑
a∈A

wa,t(1 + exp(s− 1)G(t)
a )

=Wt

(
1 + (exp(s)− 1)EPt

[
G(t)
at

])
,

where EPt [·] denotes the expectation with respect to at. By repeatedly apply the inequality above,
we obtain:

WT+1 ≤
T∏
t=1

(
1 + (exp(s)− 1)EPt

[
G(t)
at

])
.
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Let a ∈ A be any pair. By this inequality and WT+1 ≥ wa,T+1 = 1
K2 exp(s

∑T
t=1G

(t)
a ), we have

the following:

1

K2
exp(s

T∑
t=1

G(t)
a ) ≤

T∏
t=1

(
1 + (exp(s)− 1)EPt

[
G(t)
at

])
.

By taking log of both sides and log(1 + x) ≤ x, we have

−2 logK + s

T∑
t=1

G(t)
a ≤

T∑
t=1

log
(
1 + (exp(s)− 1)EPt

[
G(t)
at

])
≤ (exp(s)− 1)

T∑
t=1

EPt

[
G(t)
at

]
.

By taking the expectation with respect to the randomness of G(t)
i,j , we obtain the following:

−2 logK + sSa ≤ (exp(s)− 1)SP .

Since a ∈ [K]× [K] is arbitrary, we have the assertion of the lemma.

We can prove Theorem C.7 by Lemma C.9 as follows:

Proof of Theorem C.7. Let (i∗, j∗) be the best fixed Mixup pair hindsight, i.e., (i∗, j∗) =
argmax(i,j)∈[K]×[K] Si,j . Since any non-adaptive (or stationary) policy is no better than δ(i∗,j∗), to
prove the theorem, it is enough to prove the following:

Si∗,j∗ ≤ SP + 2
√
T logK. (16)

Here in this proof, we simply denote PSelMix by P . To prove (16), we define the pseudo regret RT
by RT = Si∗,j∗ − SP . Then by Lemma C.9, we have

RT ≤ (exp(s)− 1− s)Si∗,j∗ + 2 logK

exp(s)− 1
.

We put s = log(1 + α) with α > 0. Then we have

RT ≤ (α− log(1 + α))Si∗,j∗ + 2 logK

α
.

We note that the following inequality holds for α > 0:

α− log(1 + α)

α
≤ 1

2
α

Then it follows that:

RT ≤ 1

2
αSi∗,j∗ +

2 logK

α
≤ 1

2
αT +

2 logK

α
.

Here the second inequality follows from Si∗,j∗ ≤ T . We take α = 2
√

logK
T . Then we have

RT ≤ 2
√
T logK. Thus, we have the assertion of the theorem.

D UNCONSTRAINED DERIVATIVES OF METRIC

For any general metric ψ(C[h]) the derivative w.r.t the unconstrained confusion matrix C̃[h] is ex-
pressible purely in terms of the entries of the confusion matrix. This is becauseC[h] = softmax(C̃[h])
The derivative using the chain rule is expressed as follows,

∂ψ(C[h])

∂C̃ij [h]
=
∑
k,l

∂ψ(C[h])

∂Ckl[h]
· ∂Ckl[h]
∂C̃ij [h]

(17)
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We observe that in Eq. 17 the partial derivative ∂ψ(C[h])
∂Ckl[h]

is purely a function of entries of C[h]
since ψ(C[h]) itself is a function of entries of C[h]. The second term is the partial derivative of
our confusion matrix w.r.t the unconstrained confusion matrix. Since C and C̃ are related by the
following relation Cij [h] = softmax(C̃i[h])j . By virtue of the aforementioned map ∂Ckl[h]

∂C̃ij [h]
also

happens to be expressible in terms of C[h]:

∂Ckl[h]

∂C̃ij [h]
=


0, k ̸= i

−Cil[h]·Cij [h]

πval
i

, i = k, l ̸= j

Cij [h]−
C2

ij [h]

(πval
i )2

, i = k, l = j

(18)

Let us consider the metric mean recall ψAM(C[h]) = 1
K

∑
i

Cii[h]∑
j Cij [h]

. The derivative of ψAM(C[h])

w.r.t the unconstrained confusion matrix C̃ can be expressed in terms of the entries of the confusion
matrix. This is a useful property of this partial derivative since we need not infer the inverse map
from C → C̃ inorder to evaluate the partial derivative in terms of C̃. It can be expressed follows:

∂ψAM(C[h])

∂C̃ij [h]
=

−Cij [h]·Cii[h]

K(πval
i )2

, m ̸= n

Cii[h]

K·πval
i

− C2
ii[h]

K·(πval
i )2

, m = n
(19)

Hence we can conclude that for a metric defined as a function of the entries of the confusion matrix,
the derivative w.r.t the unconstrained confusion matrix (C̃) is easily expressible using the entries of
the confusion matrix (C).

E COMPARISON OF SELMIX WITH OTHER FRAMEWORKS

In our work, we optimize the non-decomposable objective function by using Mixup (Zhang et al.,
2018). In recent works, Mixup training has been shown to be effective specifically for real-world sce-
narios where the long-tailed imbalance is present in the dataset (Zhong et al., 2021; Fan et al., 2022).
Further, mixup has been demonstrated to have a data-dependent regularization effect (Zhang et al.,
2021). Hence, this provides us the motivation to consider optimization of the non-decomposable objec-
tives which are important for long-tailed imbalanced datasets, in terms of directions induced by Mix-
ups.However, this mixup-induced data-dependent regularization is not present for works (Narasimhan
& Menon, 2021; Rangwani et al., 2022), which use consistent loss functions without mixup. Hence,
this explains the superior generalization demonstrated by SelMix (mixup based) on non-decomposable
objective optimization for long-tailed datasets.

F UPDATING THE LAGRANGE MULTIPLIERS

F.1 MIN. RECALL AND MIN OF HEAD AND TAIL RECALL

Consider the objective of optimizing the worst-case(Min.) recall, ψMR(C[h]) =
minλ∈∆K−1

∑
i∈[K] λiReci[h] = minλ∈∆K−1

∑
i∈[K] λi

Cii[h]∑
j∈[K] Cij [h]

, as in Table G.3. the

Lagrange multipliers are sampled from a K − 1 dimensional simplex and λi = 1 if recall of ith class
is the lowest and the remaining lagrange multiplers are zero. Hence, a good approximation of the
lagrange multipliers at a given time step t can be expressed as:

λ
(t)
i =

e−ωRec(t)i [h]∑
j∈[K] e

−ωRec(t)j [h]
(20)

This has some nice properties such as the Lagrange multipliers being a soft and momentum-free
approximation of their hard counterpart. This enables SelMix to compute a sampling distribution
P(t)

SelMix that neither over-corrects nor undercorrects based on the feedback from the validation set.
For sufficiently high ω this approximates the objective to the min recall.
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F.2 MEAN RECALL UNDER COVERAGE CONSTRAINTS

For the objective where we wish to optimize for the mean recall, subject to the constraint that all
the classes have a coverage above α

K , where if α = 1 is the ideal case for a balanced validation
set. We shall relax this constraint and set α = 0.95, ψAM

cons.(C[h]) = minλ∈RK
+

1
K

∑
i∈[K] Reci[h] +∑

j∈[K] λj
(
Covj [h]− α

K

)
= minλ∈RK

+

1
K

∑
i∈[K]

Cii[h]∑
j∈[K] Cij [h]

+
∑
j∈[K] λj

(∑
i∈[K] Cij [h]−

α
K

)
.

For practical purposes, we look at a related constrained optimization problem,

ψAM
cons.(C[h]) = min

λ∈RK
+

1

λmax + 1

 1

K

∑
i∈[K]

Reci[h] +
∑
j∈[K]

λj

(
Covj [h]−

α

K

)
Such that if

(
Covi[h]− α

K

)
< 0, then λi increases, and vice-versa for the converse case. Also, if ∃i

s.t.
(
Covi[h]− α

K

)
< 0, then this implies that 1

λmax+1 → 0+ and λmax
λmax+1

→ 1−, which forces h to
satisfy the constraint

(
Covi[h]− α

K

)
> 0. Based on this, a momentum free formulation for updating

the lagrangian multipliers is as follows:

λi = max
(
0,Λmax

(
1− e

Covi[h]− α
K

τ

))

Here, λmax is the maximum value that the Lagrange multiplier can take. A large value of λmax
forces the model to focus more on the coverage constraints that to be biased towards mean recall
optimization. τ is a hyperparameter that is usually kept small, say 0.01 or so, which acts as sort of a
tolerance factor to keep the constraint violation in check.

G EXPERIMENTAL DETAILS

The baselines (Table 2) are evaluated with the SotA base pre-training method of FixMatch + LA
using DASO codebase (Oh et al., 2022), whereas CSST (Rangwani et al., 2022) is done through their
official codebase .

G.1 HYPERPARAMETER TABLE

The detailed values of all hyperparameters specific to each dataset has been mentioned in Table G.1.

Table G.1: Table of Hyperparameters for Semi-Supervised datasets.

Parameter CIFAR-10
(All distributions)

CIFAR-100
(ρl = 10, ρu = 10) STL-10 Imagenet-100(ρl = ρu = 10)

Gain scaling (s) 10.0 10.0 2.0 10.0
ωMin. Rec 40 20 20 20
λmax 100 100 100 100
τ 0.01 0.01 0.01 0.01
α 0.95 0.95 0.95 0.95

Batch Size 64 64 64 64
Learning Rate(f ) 3e-4 3e-4 3e-4 0.1
Learning Rate(g) 3e-5 3e-5 3e-5 0.01

Optimizer SGD SGD SGD SGD
Scheduler Cosine Cosine Cosine Cosine

Total SGD Steps 10k 10k 10k 10k
Resolution 32 X 32 32 X 32 32 X 32 224 X 224

Arch. WRN-28-2 WRN-28-2 WRN-28-2 WRN-28-2
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Table G.2: Table of Hyperparameters for Supervised Datasets.

Parameter CIFAR-10
(ρ = 100)

CIFAR-100
(ρ = 100) Imagenet-1k LT

Gain scaling (s) 10.0 10.0 10.0
ωMin. Rec 50 25 100
λmax 100 100 100
τ 0.01 0.01 0.001
α 0.95 0.95 0.95

Batch Size 128 128 256
Learning Rate(f ) 3e-3 3e-3 0.1
Learning Rate(g) 3e-4 3e-4 0.01

Optimizer SGD SGD SGD
Scheduler Cosine Cosine Cosine

Total SGD Steps 2k 2k 2.5k
Resolution 32 X 32 32 X 32 224 X 224

Arch. ResNet-32 ResNet-32 ResNet-50

G.2 EXPERIMENTAL DETAILS FOR SUPERVISED LEARNING

We show our results on 3 datasets: CIFAR-10 LT (ρ = 100), CIFAR-100 LT (ρ = 100) (Krizhevsky
& Hinton, 2009) and Imagenet-1k (Russakovsky et al., 2015) LT. For our pre-trained model, we use
the model trained by stage-1 of MiSLAS(Zhong et al., 2021), which uses a mixup-based pre-training
as it improves calibration. For CIFAR-10,100 LT (ρ = 100) we use ResNet-32 while for Imagenet-1k
LT, we use ResNet-50. The detailed list of hyperparameters have been provided in Tab. G.2. Unlike
semi-supervised fine-tuning, we do not require to refresh the pseudo-labels for the unlabelled samples
since we already have the true labels. The backbone is trained at a learning rate 1

10

th of the linear
classifier learning rate. The batch norm is frozen across all the layers. The detailed algorithm can
be found in Alg. 2 and is very similar to its semi-supervised variant. We report the performance
obtained at the end of fine-tuning.

Algorithm 2 Training through SelMix .

Input: Data (D,Dval), iterations T , classifier h(0), metric function ψ
for t = 1 to T do
h(t) = h(t−1), C(t) = E(x,y)∼Dval [C[h(t)]]

V
(t)
ij = −η ∂L

mix
ij

∂W ∀ i, j (4)

G
(t)
ij =

∑
k,l

∂ψ(C(t))

∂C̃kl
(V

(t)
ij )⊤l · zk ∀ i, j

P(t)
SelMix = softmax(sG(t)) // Compute Sampling distribution and update pseudo-label

for n SGD steps do
Y1, Y2 ∼ P(t)

SelMix
X1 ∼ U(DY1) , X2 ∼ U(DY2) // sample batches of data

h(t) := SGD-Update(h(t),Lmixup, (X1, Y1, X2))
end for

end for
Output: h(T )

H RESULTS FOR CASE WITH UNKNOWN LABELED DISTRIBUTION

In this section, we provide a full-scale comparison of all the methods of the case when the labeled
distribution does not match the unlabeled data distribution, simulating the scenario when label
distribution is unknown. The main paper presents the summary plots for these results in Fig. 3. The
Table H.1, we present results for the case when for CIFAR-10 once the unlabeled data follow an
inverse label distribution i.e. (ρl = 100, ρu = 1

100 ) and the case when the unlabeled data is distributed
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Table G.3: The Expression of Non-Decomposable Objectives we consider in our paper.

Metric Definition

Mean Recall (ψAM ) 1
K

∑
i∈[K]

Cii[h]∑
j∈[K] Cij [h]

G-mean (ψGM )
(∏

i∈[K]
Cii[h]∑

j∈[K] Cij [h]

) 1
k

H-mean (ψHM ) K
(∑

i∈[K]

∑
j∈[K] Cij [h]

Cii[h]

)−1

Min. Recall (ψMR) minλ∈∆K−1

∑
i∈[K] λi

Cii[h]∑
j∈[K] Cij [h]

Min of Head and Tail class recall (ψMR
HT )

min(λH,λT )∈∆1

λH
|H|
∑
i∈H

Cii[h]∑
j∈[K] Cij [h]

+λT
|T |
∑
i∈T

Cii[h]∑
j∈[K] Cij [h]

Mean Recall s.t. per class coverage ≥ α
K (ψAMcons.) minλ∈RK

+

1
K

∑
i∈[K]

Cii[h]∑
j∈[K] Cij [h]

+
∑
j∈[K] λj

(∑
i∈[K] Cij [h]−

α
K

)
Mean Recall s.t. minimum of head min(λH,λT )∈R2

≥0

1
K

∑
i∈[K]

Cii[h]∑
j∈[K] Cij [h]

+ λH

(∑
i∈[K],j∈H

Cij [h]
|H| − 0.95

K

)
and tail class coverage ≥ α

K (ψAMcons.(HT)) +λT

(∑
i∈[K],j∈T

Cij [h]
|T | − 0.95

K

)
H-mean s.t. per class coverage ≥ α

K (ψHMcons. ) minλ∈RK
+
K
(∑

i∈[K]

∑
j∈[K] Cij [h]

Cii[h]

)−1

+
∑
j∈[K] λj

(∑
i∈[K] Cij [h]−

α
K

)

H-mean s.t. minimum of head min(λH,λT )∈R2
≥0
K
(∑

i∈[K]

∑
j∈[K] Cij [h]

Cii[h]

)−1

+ λH

(∑
i∈[K],j∈H

Cij [h]
|H| − 0.95

K

)
and tail class coverage ≥ α

K (ψHMcons.(HT)) +λT

(∑
i∈[K],j∈T

Cij [h]
|T | − 0.95

K

)

uniformly across all classes (ρl = 100, ρu = 1). In both cases, we find that SelMix can produce
significant improvement across metrics. Further, we also compare our method in the practical setup
where unlabeled data distribution is unknown. This situation is perfectly emulated by the STL-10
dataset, which also contains an unlabeled set of 100k images. Table H.2 presents results for different
approaches on the STL-10 case. We observe that SelMix produces superior results compared to
baselines and is robust to the mismatch in distribution between labeled and unlabeled data.

Table H.1: Comparison on metric objectives for CIFAR-10 LT under ρl ̸= ρu assumption. Our
experiments involve ρu = 100, ρl = 1 (uniform) and ρu = 100, ρl = 1

100 (inverted). SelMix
achieves significant gains over other SSL-LT methods across all the metrics.

CIFAR-10 (ρl = 100, ρu = 1
100 , N1 = 1500,M1 = 30) CIFAR-10 (ρl = 100, ρu = 1, N1 = 1500,M1 = 3000)

Mean Rec. Min Rec. HM GM Mean Rec./Min Cov. Mean Rec. Min Rec. HM GM Mean Rec./Min Cov.

FixMatch 71.3±1.1 28.5±2.6 61.3±2.7 67.1±1.7 71.3±1.1 / 0.030±2e-3 82.8±1.3 59.1±5.8 80.6±2.1 82.3±1.5 82.8±1.3 / 0.059±6e-3

DARP 79.7±0.8 60.7±2.4 78.1±0.9 78.9±0.9 79.7±0.8 / 0.065±2e-3 84.8±0.7 66.9±3.1 83.5±0.8 85.2±0.7 84.8±0.7 / 0.067±3e-3

CReST 71.3±0.9 40.3±3.0 65.8±1.5 68.6±1.2 71.3±0.9 / 0.040±5e-3 85.7±0.3 68.7±1.7 84.6±0.14 85.1±0.1 85.7±0.3 / 0.075±7e-4

CReST+ 72.8±0.8 45.2±2.5 68.4±1.3 70.6±1.1 72.8±0.8 / 0.047±3e-3 86.4±0.2 71.7±1.9 85.6±0.2 86.1±0.1 86.4±0.2 / 0.078±1e-3

DASO 79.2±0.2 64.6±1.9 78.1±0.1 78.6±0.8 79.2±0.2 / 0.072±3e-3 88.6±0.4 78.2±1.6 88.4±0.5 88.5±0.4 88.6±0.4 / 0.089±1e-3

ABC 80.8±0.4 65.1±0.8 79.6±0.3 80.7±0.6 80.8±0.4 / 0.073±5e-3 88.6±0.4 74.8±2.9 88.2±0.7 88.6±0.3 88.6±0.4 / 0.086±4e-3

CoSSL 78.6±1.0 66.3±2.9 77.2±1.2 77.8±1.1 78.6±1.0 / 0.070±1e-3 88.7±0.9 76.1±2.9 88.2±1.1 88.5±1.0 88.7±0.9 / 0.084±8e-3

CSST 77.5±1.5 72.1±0.2 76.5±4.9 76.8±5.2 77.5±1.5 / 0.091±3e-3 87.6±0.7 78.1±0.3 86.1±0.7 87.1±0.2 87.6±0.7 / 0.091±1e-3

FixMatch(LA) 75.5±1.5 45.1±4.4 71.1±2.5 73.3±1.9 75.5±1.5 / 0.046±4e-3 90.1±0.4 75.8±2.1 89.5±0.7 89.7±0.5 90.1±0.4 / 0.083±1e-3

w/SelMix (Ours) 81.3±0.5 74.3±1.2 81.0±0.8 80.9±0.5 81.7±0.8 / 0.091±3e-3 91.4±1.2 84.7±0.7 91.3±1.1 91.3±1.2 91.4±1.2 / 0.096±1e-3

I OPTIMIZATION OF H-MEAN WITH COVERAGE CONSTRAINTS

We consider the objective of optimizing H-mean subject to the constraint that all classes must
have a coverage ≥ α

K . For CIFAR-10, when the unlabeled data distribution matches the labeled
data distribution, uniform or inverted, SelMix is able to satisfy the coverage constraints. A similar
observation could be made for CIFAR-100, where the constraint is to have the minimum head and tail
class coverage above 0.95

K . For STL-10, SelMix fails to satisfy the constraint because the validation
dataset is minimal (500 samples compared to 5000 in CIFAR). We want to convey here that as CSST
is only able to optimize for linear metrics like min. recall its performance is inferior on complex
objectives like optimizing H-mean with constraints. This shows the superiority of the proposed
SelMix framework.
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Table H.2: Comparison across methods when label distribution ρu is unknown. We use the STL-10
dataset for comparison in such a case.

STL-10 (ρl = 10, ρu = NA, N1 = 450,
∑
iMi = 100k)

Mean Rec. Min Rec. HM GM HM/Min Cov. Mean Rec./Min Cov.

FixMatch 72.7±0.7 43.2±7.1 67.7±1.5 71.6±1.3 67.7±1.5 / 0.048±1e-2 72.7±0.7 / 0.048±1e-2

DARP 76.5±0.3 54.7±1.9 74.0±0.5 75.3±0.4 74.0±0.5 / 0.058±2e-3 76.5±0.3 / 0.058±2e-3

CReST 70.1±0.3 48.2±2.2 67.1±1.1 67.8±1.1 67.1±1.1 / 0.066±2e-3 70.1±0.3 / 0.066±2e-3

DASO 78.1±0.5 55.8±3.7 76.6±1.1 77.2±0.2 76.6±1.1 / 0.083±3e-3 78.1±0.5 / 0.083±3e-3

ABC 77.5±0.4 55.4±6.7 74.7±1.5 76.3±0.9 74.7±1.5 / 0.079±7e-3 77.5±0.4 / 0.079±7e-3

CSST 79.2±1.5 50.8±2.9 78.3±2.6 78.9±2.1 78.3±2.6 / 0.081±6e-3 79.2±1.5 / 0.081±6e-3

FixMatch(LA) 78.9±0.4 56.4±1.9 76.5±1.1 77.8±0.8 76.5±1.1 / 0.066±5e-3 78.9±0.4 / 0.066±5e-3

w/SelMix (Ours) 80.9±0.5 68.5±1.8 79.1±1.2 80.1±0.4 79.1±1.2 / 0.088±1e-3 80.9±0.1 / 0.088±1e-3

Table I.1: Comparison of methods for optimization of H-mean with coverage constraints.

CIFAR-10 CIFAR-10 CIFAR-10 CIFAR-100 STL-10
ρl = 100, ρu = 1

100 ρl = ρu = 100 ρl = 100, ρu = 1 ρl = ρu = 10 ρl = 10, ρu = NA
N1 = 1500,M1 = 30 N1 = 1500,M1 = 3000 N1 = 1500,M1 = 3000 N1 = 150,M1 = 300 N1 = 450,

∑
iMi = 100k

HM Min Cov. HM Min Cov. HM Min Cov. HM Min H-T Cov. HM Min Cov.

DARP 78.1±0.9 0.065±3e-3 81.9±0.5 0.070±3e-3 83.5±0.8 0.067±3e-3 48.7±1.3 0.0040±2e-3 74.0±0.5 0.058±2e-3

CReST 65.8±1.5 0.040±5e-3 81.0±0.7 0.073±5e-3 84.6±0.2 0.075±7e-4 48.3±0.2 0.0083±2e-4 67.1±1.1 0.066±2e-3

DASO 78.1±0.1 0.072±3e-3 83.5±0.3 0.083±1e-3 88.4±0.5 0.089±1e-3 49.1±0.7 0.0063±3e-4 76.6±1.1 0.083±3e-3

ABC 79.6±0.3 0.073±5e-3 84.6±0.5 0.086±3e-3 88.2±0.7 0.086±1e-3 50.1±1.2 0.0089±2e-4 74.7±1.5 0.079±7e-3

CSST 76.5±4.9 0.081±6e-3 76.9±0.2 0.093±3e-4 86.7±0.7 0.092±1e-3 47.7±0.8 0.0098±2e-4 78.3±2.6 0.081±6e-3

FixMatch (LA) 78.3±0.8 0.064±1e-3 76.7±0.1 0.056±3e-3 89.3±0.2 0.086±1e-3 45.5±2.1 0.0053±1e-4 74.6±1.7 0.066±5e-3

w/SelMix (Ours) 81.0±0.8 0.095±1e-3 85.1±0.1 0.095±1e-3 91.3±0.7 0.096±1e-3 53.8±0.5 0.0098±1e-4 79.1±1.2 0.088±1e-3

(a) Initial Stage (t = 0 SGD
steps)

(b) Intermediate Stage (t = 5k
SGD steps)

(c) Final Stage (t = 10k SGD
steps)

Figure J.1: Evolution of gain matrix for mean recall optimized run for CIFAR-10 LT (ρl = ρu).

J EVOLUTION OF GAIN MATRIX WITH TRAINING

From the above collection of gain matrices, which are taken from different time steps of the training
phase, we observe that (|max(G(t))|) of the gain matrix decreases with increase in SGD steps t, and
settles on a negligible value by the time training is finished. This could be attributed to the fact that as
the training progresses, the marginal improvement of the gain matrix decreases.

Another phenomenon we observe is that initially, during training, only a few mixups (particularly tail
class ones) have a disproportionate amount of gain associated with them. A downstream consequence
of this is that the sampling function PSelMix prefers only a few (i, j) mixups. Whereas, as the training
continues, it becomes more exploratory rather than greedily exploiting the mixups that give the
maximum gain at a particular timestep.

K ANALYSIS

We use a subset of Min. Recall, Mean Recall and Mean Recall with constraints for analysis.

a) Sclability and Computation. To demonstrate scalability of our method we show results on
ImageNet100-LT for semi and ImageNet-LT for fully supervised settings. Similar to other datasets,
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(a) Initial Stage (t = 0 SGD
steps)

(b) Intermediate Stage (t = 3k
SGD steps)

(c) Final Stage (t = 10k SGD
steps)

Figure J.2: Evolution of gain matrix for min. recall optimized run for CIFAR-10 LT (ρu = ρl).

Table K.1: Results for sampling policies for PMix
(CIFAR-10 LT, semi-supervised) ρ = 100.

Method Mean Min Min Mean
Recall Coverage Recall Recall

Uniform Policy 83.3 0.072 70.5 83.3
Greedy Policy 83.6 0.093 78.2 81.8
SelMix Policy 84.9 0.094 79.1 84.1

Table K.2: Comparison of finetuning the feature
extractor vs only the linear classification layer
(CIFAR-10 LT, semi-supervised) ρ = 100

Method Mean Min Min Mean
Recall Coverage Recall Recall

Frozen g 83.5 0.089 77.3 84.1
Finetuning g 85.4 0.095 79.1 84.5

we find in Table 4 SelMix is able to improve over SotA methods across objectives. Further, SelMix
has the same time complexity as CSST (Rangwani et al., 2022) baseline. (Refer Sec. L & Sec. B).

b) Comparison of Sampling Policies. We compare the sampling policies (PMix): the uniform
mixup policy, the greedy policy of selecting the max gain mixup and the SelMix policy (Table
K.1). We find that other policies in comparison to SelMix are unstable and lead to inferior results.
We compare furtherthe performance of a range of sampling distribution by varying the inverse
distribution temperature s in PSelMix. We find that intermediate values of s = 10 work better in
practice (Fig. K.1).

c) Fine-Tuning. In Table K.2 we observe that fine-tuning g leads to improved results in comparison
to keeping it frozen. We further show in App. L that fine-tuning with SelMix is computationally
cheap compared to CSST for optimizing a particular non-decomposable objective.

K.1 DETAILED PERFORMANCE ANALYSIS OF SELMIX MODELS

As in SelMix, we have provided results for fine-tuned models for optimizing specific metrics on
CIFAR-10 (ρl = ρu) in Table 2. In this section, we analyze all these specific models on all other sets
of metrics. We tabulate our results in Table K.3. It can be observed that when the model is trained for
the particular metric for the diagonal entries, it performs the best on it. Also, we generally find that
all models trained through SelMix reasonably perform on other metrics. This demonstrates that the
models produced are balanced and fair in general. As a rule of thumb, we would like the users to
utilize models trained for constrained objectives as they perform better than others cumulatively.

Table K.3: Values of all metric values for individually optimized runs for CIFAR-10 LT (ρl = ρu)

Optimized On
Observed Metric Mean Rec. Min. Rec. HM GM Mean Rec./Min Cov. HM/Min Cov.

Mean Rec. 85.4 77.6 85.0 85.1 85.4/0.089 85.0/0.089
Min. Rec. 84.2 79.1 84.1 84.2 84.2/0.091 84.1/0.091

HM 85.3 77.7 85.1 85.2 85.3/0.091 85.1/0.091
GM 85.3 77.5 85.1 85.3 85.3/0.091 85.1/0.091

Mean Rec./Min. Cov. 85.7 75.9 84.7 84.8 85.7/0.095 84.7/0.095
HM/Min Cov. 85.1 76.2 84.8 84.9 85.1/0.095 84.8/0.095

K.2 COMPARISON BETWEEN FIXMATCH AND FIXMATCH (LA)

We find that using logit-adjusted loss helps in training feature extractors, which perform much
superior in comparison to the vanilla FixMatch Algorithm (Table K.4). However, our method SelMix
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Figure K.1: We show ablation on the inverse temperature parameter (s) v/s the performance on the
mean recall. For a mean recall optimized run a very small s yields a sampling function close to a
uniform sampling, whereas a very large s ends up close to a greedy sampling strategy.

is able to improve both the FixMatch and the FixMatch (LA) variant. We advise users to use the
FixMatch (LA) algorithm for better results.

Table K.4: Comparison of the FixMatch and FixMatch (LA) methods with SelMix.

Method Mean Min Min Mean
Recall Coverage Recall Recall

FixMatch 76.8 0.037 36.7 76.8
w/ SelMix 84.7 0.094 78.8 82.7
FixMatch (LA) 82.6 0.065 63.6 82.6
w/ SelMix 85.4 0.095 79.1 84.1

K.3 VARIANTS OF MIXUP

As SelMix is a distribution on which class samples (i, j) to be mixed up, it can be easily be combined
with different variants of mixup (Yun et al., 2019; Kim et al., 2020b). To demonstrate this, we replace
the feature mixup that we perform in SelMix, with CutMix and PuzzleMix. Table K.5 contains
results for various combinations for optimizing the Mean Recall and Min Recall across cases. We
observe that SelMix can optimize the desired metric, even with CutMix and PuzzleMix. However,
the feature mixup we performed originally in SelMix works best in comparison to other variants.
This establishes the complementarity of SelMix with the different variants of Mixup like CutMix,
PuzzleMix, etc., which re-design the procedure of mixing up images.

L COMPUTATIONAL REQUIREMENTS

The experiments were done on Nvidia A5000 GPU (24 GB). While the fine-tuning was done on a
single A5000, the pre-training was done using PyTorch data parallel on 4XA5000. The pre-training
was done until no significant change in metrics was observed and the fine-tuning was done for 10k
steps of SGD with a validation step every 50 steps. A major advantage of SelMix over CSST is
that the process of training a model optimized for a specific objective requires end to end training
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Table K.5: Comparison of SelMix when applied to various Mixup variants.

Method Mean Min
Recall Recall

FixMatch 79.7±0.6 55.9±1.9

w/ SelMix (CutMix) 84.8±0.2 75.3±0.1

w/ SelMix (PuzzleMix) 85.1±0.3 75.2±0.1

w/ SelMix (Features-Ours) 85.4±0.1 79.1±0.1

Table L.1: Comparison of time taken across datasets, for the calculation of Gain using SelMix (Alg. 1)
was done on GPU (NVIDIA RTX A5000).

Dataset CIFAR-10 LT (ρ = 100) (CIFAR-100 LT ρ = 100) Imagenet-1k LT

0.02 sec. 1.3 sec. 124 sec.

which is computationally expensive(∼10 hrs on CIFAR datasets). Our finetuning method takes a
fraction (∼1hr on CIFAR datasets) of what it requires in computing time compared to CSST. An
analysis for computing the Gain through Alg. 1, is provided in Table L.1. We observe that even for
the ImageNet-1k dataset, the gain calculation doesn’t require large amount of GPU time. Further, an
efficient parallel implementation across classes can further reduce time significantly.

M LIMITATION OF OUR WORK

In our current work, we mostly focus on our algorithm’s correctness and empirical validity of
SelMix across datasets. Another direction that could be further pursued is improving the algorithm’s
performance by efficiently parallelizing the operations across GPU cores, as the operations for each
class are independent of each other. The other direction for future work could be characterization
of the classifier obtained through SelMix, using a generalization bound. Existing work (Zhang
et al., 2021) on the mixup method for accuracy optimization showed that learning with the vicinal
risk minimization using mixup leads to a better generalization error bound than the empirical risk
minimization. It would be interesting future work to show a similar result for SelMix.

N ADDITIONAL RELATED WORKS

Selective Mixup for Robustness. The paper SelecMix (Hwang et al., 2022) creates samples for robust
learning in the presence of bias by mixing up samples with conflicting features, with samples with
bias-aligned features. The paper demonstrates that learning on these samples leads to improved out-
of-distribution accuracy, even in the presence of label noise. This paper selects the samples to mixup
based on the similarity of the labels, to improve mixup performance on regression tasks. Existing
works (Hwang et al., 2022; Yao et al., 2022; Palakkadavath et al., 2022) show that mixups help
train classifiers with better domain generalization. Teney et al. (2023) show that resampling-based
techniques often come close in performance to mixup-based methods when utilizing the implicit
sampling technique used in these methods. It has been shown that mixup improves the feature
extractor and can also be used to train more robust classifiers (Hwang et al., 2022). Palakkadavath
et al. (2022) show that it is possible to generalize better to unknown domains by making the model’s
feature extractor invariant to both variation in the domain and any interpolation of a sample with
similar semantics but different domains.

Black-Box Optimization. We further note that there are some recent works (Li et al., 2023; Wierstra
et al., 2014) which aim to fine-tune a model based on local target data for an specific objective,
however these methods operate in a black-box setup whereas SelMix works in a white-box setup with
full access to model and its gradients.
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