
Parallelized Spatiotemporal Slot Binding for Videos

Gautam Singh 1 2 Yue Wang 2 3 Jiawei Yang 3 Boris Ivanovic 2 Sungjin Ahn * 4 Marco Pavone * 2 5 Tong Che 2

Abstract
While modern best practices advocate for scalable
architectures that support long-range interactions,
object-centric models are yet to fully embrace
these architectures. In particular, existing object-
centric models for handling sequential inputs, due
to their reliance on RNN-based implementation,
show poor stability and capacity and are slow
to train on long sequences. We introduce Paral-
lelizable Spatiotemporal Binder or PSB†, the first
temporally-parallelizable slot learning architec-
ture for sequential inputs. Unlike conventional
RNN-based approaches, PSB produces object-
centric representations, known as slots, for all
time-steps in parallel. This is achieved by refin-
ing the initial slots across all time-steps through a
fixed number of layers equipped with causal atten-
tion. By capitalizing on the parallelism induced
by our architecture, the proposed model exhibits a
significant boost in efficiency. In experiments, we
test PSB extensively as an encoder within an auto-
encoding framework paired with a wide variety
of decoder options. Compared to the state-of-the-
art, our architecture demonstrates stable training
on longer sequences, achieves parallelization that
results in a 60% increase in training speed, and
yields performance that is on par with or better
on unsupervised 2D and 3D object-centric scene
decomposition and understanding.

1. Introduction
A key function of the human brain is to translate the in-
coming stream of sensory inputs into a mental model of the
world. Studies suggest that this mental model is compo-
sitional, constructed from building blocks such as objects.

*Equal contribution 1Rutgers University 2NVIDIA Research
3University of Southern California 4KAIST 5Stanford University.
Correspondence to: Gautam Singh <singh.gautam@rutgers.edu>,
Tong Che <tongc@nvidia.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

†See our project page at this link.

Furthermore, the process by which this mental model is
constructed is systematic, enabling us to interpret unfamiliar
environments as a composition of familiar entities (Fodor
& Pylyshyn, 1988; Spelke & Kinzler, 2007; Lake et al.,
2017). This systematic compositionality is critical for build-
ing autonomous agents because it would enable them to
understand, plan, and act effectively and robustly in the
physical world.

Towards this goal, the most relevant field in deep learning
is that of object-centric learning (Greff et al., 2019; Lin
et al., 2020b; Locatello et al., 2020; Greff et al., 2020).
Object-centric learning aims to learn priors for grouping
or binding low-level and unstructured sensory activations
into a collection of vectors known as slots. Each slot cap-
tures a higher-level compositional entity such as an object.
Broadly, this grouping or binding emerges as a result of
architectural priors combined with self-supervised learning,
e.g., by performing auto-encoding with specialized encoder
and decoder architectures.

A notion that is widely acknowledged, but not yet fully em-
braced in object-centric learning, is to maximally utilize all
available data with increasingly scalable architectures capa-
ble of capturing long-range dependencies (Dosovitskiy et al.,
2020; Vaswani et al., 2017). Video data has been widely
adopted in self-supervised learning and object-centric learn-
ing since videos contain temporal information such as object
motion and behavior; learning from videos has been consis-
tently shown to provide richer representations than training
on static images (Kosiorek et al., 2018; Kipf et al., 2022;
Singh et al., 2022; Feichtenhofer et al., 2022). However,
current object-centric learning methods do not utilize the
full potential of sequential datasets because of RNN-based
modeling (Kipf et al., 2022; Singh et al., 2022; Elsayed
et al., 2022). RNNs lead to major scaling issues—training
instability on longer sequences due to gradient vanishing
or exploding leads to degenerated performance and an in-
creased training time complexity linear in sequence length
(Pascanu et al., 2013). On the other hand, current state-
of-the-art sequence models use parallelizable architectures
(Vaswani et al., 2017; Gu et al., 2021) instead of RNNs
to support fast and stable training on long sequences and
capture long-range temporal dependencies.

To address this important gap in object-centric learning,

1

https://parallel-st-binder.github.io

Parallelized Spatiotemporal Slot Binding for Videos

Figure 1. Conventional Spatiotemporal Binding versus Ours. Left: Conventional object-centric encoders summarize sequential sensory
inputs into slots via recurrence, analogous to RNNs. Right: On the other hand, our proposed object-centric encoder achieves this without
recurrence, allowing it to be parallelized over the sequence length, similarly to transformers.

in this work, we introduce Parallelizable Spatiotemporal
Binder or PSB, the first parallelizable slot learning architec-
ture for sequential inputs. PSB takes a sequence containing
a set of input features for each time-step and generates a
set of N -slot vectors corresponding to each time-step in a
parallelizable manner. Unlike conventional object-centric
learning models, which sequentially update N slots through
iteration over the input sequence, our novel PSB architecture
eliminates the need for such sequential iteration. Instead,
it produces slots for all time-steps in parallel by refining
initial slots through a fixed number of layers of our pro-
posed PSB block. A PSB block leverages causal attention
to allow each slot to directly see the input observations and
the past slot states of the current layer. PSB is a general-
purpose neural network module that can be used within any
arbitrary architecture. In this work, we evaluate PSB as an
encoder in various object-centric auto-encoding frameworks
and demonstrate its effectiveness.

Our contributions are as follows: i) We introduce the first
temporally parallelizable object-centric binding architecture,
designed to efficiently process sequential data and alleviate
the common drawbacks associated with RNNs. ii) We de-
velop two novel parallelizable object-centric auto-encoder
models by leveraging the proposed architecture as the en-
coder: one for 2D unposed videos and another for dynamic,
posed multi-camera 3D scene videos, marking a key model-
ing advancement for these problems. iii) Compared to the
recurrent state-of-the-art baseline, our encoder shows highly
stable training on longer sequences with parallelization, re-
sulting in 1.6× faster training speed. iv) Our encoder, when
paired with a wide variety of decoders such as an alpha-
mixture decoder, an auto-regressive transformer, NeRFs,
and SlotMixer, matches or exceeds the state-of-the-art recur-
rent baseline’s performance. Specifically, with the mixture
decoder for 2D videos, we observe improvements ranging
from 14.7-26.8% in FG-ARI and 2.9-7.6% in reconstruction
PSNR. For dynamic 3D scenes using NeRFs, improvements
range from 7.3-121% in slot linear-probing performance and
4-8% in PSNR for novel view synthesis. v) Via ablations,

we obtain useful insights about the proposed design.

2. PSB: Parallelizable Spatiotemporal Binder
In this section, we describe our proposed architecture Paral-
lelizable Spatiotemporal Binder or PSB. Our architecture
aims to encode or summarize a given T -length sequence
of features e1,1:L, . . . , eT,1:L (where et,1:L ∈ RL×D) into
a T -length sequence of N slot vectors s1,1:N , . . . , sT,1:N

(where st,1:N ∈ RN×D). For dynamic visual scenes, the N
slots belonging to a specific t, i.e., st,1:N , should capture an
object-centric state of the world at time-step t. Furthermore,
the n-th slots across all time-steps should consistently track
the state of one specific object.

Formally, PSB works by taking initial slots s
(0)
1:T,1:N and

transforming them conditioned on the input features e1:T,1:L

by applying M layers of our proposed PSB block:

s
(0)
1:T,1:N ← Initialize(),

s
(i)
1:T,1:N ← PSBBlocki(s

(i−1)
1:T,1:N , e1:T,1:L),

for i = 1, . . . ,M . The initialization of slots can be done via
learned parameters or by sampling them randomly from a
learned Gaussian. The output s(M)

1:T,1:N of the last PSB block
is considered as the slot representation for downstream use.

2.1. PSB Block

Broadly, a PSB block works by interleaving three operations:
(i) bottom-up attention by the slots on the input features, (ii)
self-attention among the slots, and (iii) an MLP.

2.1.1. BOTTOM-UP ATTENTION

In this step, the slots access the bottom-up information from
the inputs. For all t = 1, . . . , T in parallel, we perform:

st,1:N += CA
(
q=LN(st,1:N),kv=LN(e1:T,1:L)

)
,

where LN denotes layer normalization, CA denotes multi-
headed cross-attention, argument q denotes the query and

2

Parallelized Spatiotemporal Slot Binding for Videos

Algorithm 1 Parallelizable Spatiotemporal Binder (PSB) Block. The algorithm receives i) a T -length sequence of N slot
vectors denoted as s1:T,1:N ∈ RT×N×D, ii) a T -length sequence of L input feature vectors e1:T,1:L ∈ RT×L×D and iii)
an optional attention mask α ∈ {0, 1}T×T to enforce causal masking. The algorithm outputs the updated slots s1:T,1:N

conditioned on the input features e1:T,1:L.

1: Input: s ∈ RT×N×D, e ∈ RT×L×D, α ∈ {0, 1}T×T

2: Layer params: Cross-Attention CA; Self-Attention SA1, SA2; LayerNorm LN; MLP MLP
3: for t = 1 . . . T in parallel
4: st,1:N += CA

(
q=LN (st,1:N) ,kv=LN (e1:T,1:L) ,attn_mask=α

)
Slots attend input features.

5: for n = 1 . . . N in parallel
6: s1:T,n += SA1

(
qkv=LN(s1:T,n),attn_mask=α

)
Slots with the same index self-attend across time.

7: for t = 1 . . . T in parallel
8: st,1:N += SA2

(
qkv=LN(st,1:N)

)
Slots at the same time-step self-attend.

9: s1:T,1:N += MLP
(
LN(s1:T,1:N)

)
Slots undergo an MLP.

10: return s1:T,1:N

the argument kv denotes the key and the value which are the
same in this case. In implementing this cross-attention, we
make three key design choices. First, we provide an option
to apply causal masking to prevent the slots from seeing the
inputs of the future time-steps. This makes our model useful
as a perception module in agent-learning settings where the
agent typically does not have access to future observations.
Second, we employ inverted-attention and renormalization
(Locatello et al., 2020; Wu et al., 2023a) to introduce com-
petition among slots and to help them specialize to distinct
objects. Third, to incorporate invariance to translation-in-
time and to help the encoder generalize to any sequence
length, we recommend using relative positional bias (Raf-
fel et al., 2020) instead of absolute positional embedding
(Vaswani et al., 2017) to incorporate the temporal position
information in the attention process.

2.1.2. SLOT INTERACTION

Next, the slots self-attend, allowing each slot to read the
other slots to (i) facilitate efficient allocation of slot re-
sources to distinct objects, (ii) to help the slots align across
time, and (iii) to allow each slot to become more informative
by accessing the information of other slots. We execute this
self-attention via two decoupled steps:

Time-Axis Self-Attention. In conventional recurrent object-
centric encoders (Jiang et al., 2019; Lin et al., 2020a; Kipf
et al., 2022), each slot st,n is informed about its previous
states s<t,n through an independent RNN assigned per slot.
This conforms to the physical principle that distinct objects
evolve largely independently of each other over time, while
the temporal states of the same object are highly correlated.
Incorporating this principle, we perform self-attention be-
tween all slots along the time axis sharing the same index n.

Specifically, for all n = 1, . . . N in parallel:

s1:T,n += SA1

(
qkv=LN(s1:T,n)

)
,

where SA1 denotes multi-headed self-attention and the argu-
ment qkv denotes the query, key, and value which are the
same in this case. As before, we provide the option to apply
causal masking and we recommend using relative position
bias to incorporate the temporal position information.

Object-Axis Self-Attention. Next, we let the N slots of
each time-step interact, i.e., for all time-steps t = 1, . . . , T
in parallel:

st,1:N += SA2

(
qkv=LN(st,1:N)

)
,

where SA2 denotes multi-headed self-attention and the argu-
ment qkv denotes the query, key, and value which are the
same in the case of self-attention.

2.1.3. PROCESSING GATHERED INFORMATION VIA MLP

To process the information gathered via the bottom-up at-
tention and slot interaction steps, the slots are fed to an MLP
for all t = 1, . . . , T and n = 1, . . . N in parallel:

st,n += MLP
(
LN(st,n)

)
,

The resulting slots are then passed to the downstream lay-
ers. The operation of a PSB block is also summarized in
Algorithm 1. Note that all operations described above are
performed through residual connections, making the PSB
block suitable for deep stacking (He et al., 2016).

3. Object-Centric Learning via Parallelizable
Spatiotemporal Binder

In this section, we outline two application scenarios of our
proposed encoder.

3

Parallelized Spatiotemporal Slot Binding for Videos

3.1. 2D Unposed Videos

In this setting, we perform unsupervised object-centric rep-
resentation learning from 2D unposed videos. For this, we
adopt the video auto-encoding framework of (Kipf et al.,
2022; Singh et al., 2022). In particular, a video contains
T frames x1, . . . ,xT where each frame is an RGB image
xt ∈ RC×H×W . Our goal is to encode it into slot represen-
tations s1,1:N , . . . , sT,1:N , where st,1:N ∈ RN×D denotes
a collection of N slot vectors for the t-th time-step.

To achieve this, we first encode each frame xt via a CNN
and flatten the resulting feature map, producing L feature
vectors per frame: et = CNNϕ(xt) ∈ RL×D. On these
features, we apply our proposed PSB encoder to obtain the
slots: s1,1:N , . . . , sT,1:N = PSBϕ(e1, . . . , eT). This slot in-
ference process is trained in a self-supervised manner by
decoding the slots and trying to reconstruct the original
video frames. We consider two decoder choices. For vi-
sually simple datasets, we test an alpha-mixture decoder
which is trained with MSE reconstruction loss L(ϕ, θ) =
||xt − Decoderθ(st,1:N)||2 (Locatello et al., 2020). For vi-
sually complex datasets, we test the auto-regressive image-
transformer decoder (Singh et al., 2021; 2022) which is
trained with cross-entropy loss to reconstruct a DVAE rep-
resentation of the video frames. (See Appendix D.3.2)

3.2. 3D Posed Multi-Camera Videos

In this setting, we perform unsupervised object-centric rep-
resentation learning on dynamic 3D scenes. In this setup,
we aim to learn slot representations for a given T -length
sequence of posed multi-camera observations denoted by
X1, . . . ,XT . Here, each Xt consists of K distinct obser-
vations or views corresponding to the K cameras in the
scene i.e., Xt = xt,1, . . . ,xt,K . Each view xt,k belongs to
RC×H×W where H and W are the image height and width,
respectively and C is the number of channels. Since these
are posed observations, C = 9 which includes 3 channels
for RGB pixel color, 3 channels for the camera ray origin,
and 3 for camera ray direction.

Novel View Prediction. We adopt a novel view prediction
framework to train the model where a certain fraction of the
input views are held out and the remaining are passed to
the encoder to infer the slots. The slots are then decoded
via a viewpoint-conditioned decoder that tries to predict
all the available views—both the held-out and the shown
ones. This is a common practice in 3D scene representation
learning frameworks (Kumar et al., 2018; Singh et al., 2019;
Sajjadi et al., 2022).

Set Latent Scene Representation (SLSR). To encode the
views, we adopt the backbone of Sajjadi et al. (2022). For
each time-step, we feed the K ′ (out of K) visible views to
a CNN to obtain a feature map. We flatten the feature maps

of each view, stack them together for all K ′ views, and feed
them to a transformer. The transformer’s output is known
as Set Latent Scene Representation or SLSR:

ẽt,k = CNNϕ(xt,k) =⇒ et = Transformerϕ(ẽt,1:K′),

where et ∈ RL×D is the SLSR for the time-step t and is a
collection of L feature vectors.

Slot Learning using PSB. Next, we provide the SLSRs
e1, . . . , eT to our proposed encoder PSB and obtain slots:
s1,1:N , . . . , sT,1:N = PSBϕ(e1, . . . , eT). We then decode
the slots to reconstruct the available pixels of both the novel
and the visible views. We employ viewpoint-aware decoders
that take a ray (origin and direction) as input and predict
the pixel color conditioned on the slot representation. In
particular, to render a ray r of a time-step t, we can describe
the decoding process as: ĉ = Decoderθ(r, st,1:N), where
c ∈ R3. To train the complete model, we minimize the
MSE loss of the predicted pixel against the true color of the
pixel i.e., L(ϕ, θ) = ||ĉ− c||2.

Decoder Options. We consider two 3D decoders: NeRF
(Mildenhall et al., 2020) and SlotMixer (Sajjadi et al., 2022).
For NeRF, we maintain an MLP gslot

θ which, for a given 3D
coordinate o and a viewing direction d, returns a color value
and a density value conditioned on a slot representation:
cn, σn = gslot

θ (o,d, sn). Combining the outputs for N slots
s1, . . . , sN , we obtain the combined density σ =

∑N
n=1 σn

and color c =
∑N

n=1 cnσn/σ. To obtain the color of an im-
age pixel, we shoot the corresponding ray from the camera,
sample Nbins+1 points along the ray, and integrate the colors
along the ray as:

∑Nbins
i=1 Tiαici, where Ti =

∏i−1
j=1(1− αi)

is the transmittance, and αi = 1− exp(−σi||oi+1 − oi||2)
is the opacity. To capture complex static topography, we
investigate incorporating a static field and a sky field follow-
ing Yang et al. (2023a), decoupling the static field modeling
from the dynamic field modeling. For SlotMixer, we use its
default implementation (Sajjadi et al., 2022). For a detailed
description of the decoders, see Appendix D.4.3 and D.4.4.

4. Related Work
A large body of work has emerged on the topic of learn-
ing compositional and object-centric scene representations
(Chen et al., 2016; Higgins et al., 2017; Burgess et al., 2019;
Greff et al., 2019; Locatello et al., 2020; Greff et al., 2017;
Engelcke et al., 2019; Engelcke et al., 2021; Anciukevicius
et al., 2020; von Kügelgen et al., 2020; Greff et al., 2020;
Singh et al., 2021; Chang et al., 2022; Zhang et al., 2022;
Löwe et al., 2022; 2023; Stanić et al., 2023; Jiang et al.,
2023; Wu et al., 2023b; Jia et al., 2023). Most architectures
for videos start as static scene models that are extended by
applying the same model recurrently on the video frames,
thus making them non-parallelizable unlike ours (Kosiorek
et al., 2018; Crawford & Pineau, 2019; Lin et al., 2020a;

4

Parallelized Spatiotemporal Slot Binding for Videos

MOVi-A MOVi-B
0

20

40

60

80

100

V
id
eo

F
G
-A

R
I

Unsupervised Video Segmentation

Ours SAVi

MOVi-A MOVi-B
0

5

10

15

20

25

30

35

P
S
N
R

Recon. PSNR

Figure 2. Unsupervised Object-Centric Learning on MOVi-A
and MOVi-B using Spatial Broadcast Decoder. We compare our
proposed encoder with the recurrence-based baseline encoder SAVi
(Kipf et al., 2022). Top-Left: Video-level FG-ARI score (↑). Top-
Right: Reconstruction PSNR (↑). Bottom: Slot linear probing per-
formances (↑). Reported are the R2 score for continuous-valued
object factors (position and color) and classification accuracy for
categorical object factors (shape, size, and material). We observe
that our encoder surpasses the recurrent baseline SAVi in terms of
FG-ARI and PSNR, and does markedly better in linear-probing
performance for complex factors such as the object shape.

Kipf et al., 2022; Greff et al., 2019; Veerapaneni et al., 2019;
Elsayed et al., 2022; Singh et al., 2022; Zadaianchuk et al.,
2023). This is also true for 3D-aware object-centric learning
where static scene models (Chen et al., 2020; Li et al., 2020;
Yu et al., 2021; Stelzner et al., 2021; Castrejon et al., 2022;
Jabri et al., 2023; Jia et al., 2023) are sometimes extended
to handle dynamic 3D scenes via recurrence (Crawford &
Pineau, 2020; Li et al., 2021). While exceptions to this exist
(Kabra et al., 2021; Henderson & Lampert, 2020; Gopalakr-
ishnan et al., 2022), however, these learn global slots for the
entire episode instead of per time-step slots in a paralleliz-
able manner like ours. Orthogonal to object-centric learning,
efforts to resolve concerns of scalability and parallelizability
of RNNs have a long history (Oord et al., 2016; Van den
Oord et al., 2016; Chang et al., 2017; Vaswani et al., 2017;
Dauphin et al., 2017; Li et al., 2018; Gu et al., 2021; Trinh
et al., 2018). However, ours is the first work that tackles the
question of bringing such scalability and parallelization to
object-centric learning. For an extended discussion of the
related work, see Appendix A.

20 40 60 80 100
0

1

2

3

4

5

6
·10−3

Epochs

V
al
id
at
io
n
M
S
E

MOVi-A

Ours (Ttrain = 6)

Ours (Ttrain = 12)

SAVi (Ttrain = 6)

SAVi (Ttrain = 12)

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

·10−2

Epochs

MOVi-B

0 50 100 150 200
0

1

2

Episode Length
L
at
en
cy

(s
)

Encoder Latency vs. Episode Length

Ours
SAVi

Figure 3. Computational Drawbacks of RNN-based Object-
Centric Learning. We compare our proposed encoder with the
recurrent baseline SAVi. Top: We show validation loss curves
(mean and standard deviation computed over 5 seeds) for training
runs on MOVi-A and MOVi-B. Ttrain denotes the length of each
training episode. We note that as we increase the episode length
from 6 to 12, SAVi becomes highly unstable while our model
continues to train smoothly. Bottom: We report the time taken (in
seconds) to perform one training step plotted as a function of the
episode length. We observe a speed-up of about 1.6× over SAVi.

5. Experiments
In experiments, we demonstrate the advantages of our pro-
posed parallelizable encoder compared to the conventional
recurrent slot learning approach. We evaluate performance
in two object-centric learning settings, specifically: i) learn-
ing from unposed 2D videos, and ii) learning from posed
multi-camera videos of dynamic 3D scenes.

5.1. Learning from 2D Unposed Videos

5.1.1. SETUP

Datasets. In this setting, we evaluate on the MOVi bench-
mark (Greff et al., 2022) comprising five datasets: MOVi-A,
MOVi-B, MOVi-C, MOVi-D, and MOVi-E. We only use the
RGB frames without any auxiliary inputs or supervision.

Baselines. We implement our model following the descrip-
tion in Section 3.1 and evaluate our proposed encoder paired
with two decoders: an alpha-mixture decoder (see Appendix

5

Parallelized Spatiotemporal Slot Binding for Videos

Figure 4. Object-Centric Learning on MOVi-A using Our Pro-
posed Encoder. We visualize a given video and its reconstruction
and decomposition into objects using the proposed model. We
note that object identity is consistently maintained over time as
evidenced by the segment colors across frames.

D.3.1) for visually simple MOVi-A and B datasets and an
autoregressive transformer decoder (see Appendix D.3.2)
for visually complex MOVi-C, D and E datasets. For both
decoder choices, we compare the performance by substitut-
ing our proposed encoder with the current state-of-the-art
and one of the most popular neural network architectures for
learning sequential slot representations from videos (Kipf
et al., 2022; Elsayed et al., 2022). This amounts to a com-
parison with unsupervised SAVi (Kipf et al., 2022) when
using an alpha-mixture decoder and STEVE (Singh et al.,
2022) when using an autoregressive transformer decoder.

Metrics. To measure the performance, we report the video-
level FG-ARI score, slot linear probing performance and
the reconstruction PSNR. The video-level FG-ARI score is
a common metric (Kipf et al., 2022; Elsayed et al., 2022;
Kabra et al., 2021) to measure whether a video is accurately
decomposed into slot-based representation and whether the
decomposition is consistent across the time-steps. We take
episode length to be 6. The linear probing performance for
evaluating the representational informativeness of slots is
measured in terms of R2 score for continuous object factors
and classification accuracy for the discrete object factors
following Dang-Nhu (2021) (see Appendix E.1). The recon-
struction PSNR measures how well the input frames can be
reconstructed from the representation. For a fair comparison,
we use an identical spatial-broadcast decoder for all base-
lines and datasets. For MOVi-C, D, and E, where the models
are trained using an autoregressive transformer decoder, we
freeze the slots and train a slot-conditioned spatial-broadcast
decoder for evaluating FG-ARI and PSNR.

5.1.2. RESULTS

Unsupervised Scene Decomposition and Representation.
In terms of scene decomposition performance, in Fig. 2,
we note that our proposed encoder demonstrates a signif-
icantly superior FG-ARI score compared to the recurrent

MOVi-C MOVi-D MOVi-E
0

20

40

60

80

100

V
id
eo

F
G
-A

R
I

Unsupervised Video Segmentation

Ours STEVE

MOVi-C MOVi-D MOVi-E
0

5

10

15

20

25

30

35

P
S
N
R

Recon. PSNR

Ours STEVE

Figure 5. Unsupervised Video Segmentation on MOVi-C, D and
E using Autoregressive Image-Transformer Decoder. We com-
pare ours with STEVE which is based on the recurrent encoder
of Kipf et al. (2022). Left: Video-level FG-ARI score (↑). Right:
Reconstruction PSNR (↑).

encoder baseline SAVi. In terms of representation quality,
in Fig. 2, we note that our encoder achieves a significantly
better PSNR compared to the baseline. Furthermore, ours
shows better overall linear-probing performance over the
object factors, with a particularly marked improvement for
the shape factor. The shape factor—being more complex
than other factors like color—indicates that our encoder
is capable of learning more expressive object representa-
tions than the recurrent baseline. Importantly, this improved
expressiveness does not compromise the object-centric de-
composition, as evidenced by our superior FG-ARI scores.

Training Stability on Long Episodes. Fig. 3 demonstrates
the training stability of our encoder compared to the re-
current SAVi model. Owing to our encoder’s ability to
directly attend to any previous time-step without relying
on recurrence, it exhibits high stability and trains smoothly
on longer episodes. In contrast, the SAVi model displays
considerable instability due to its recurrence mechanism,
which is susceptible to gradient explosion.

Training Speed on Long Episodes. Fig. 3 also compares
the duration of a single training step as a function of the
episode length. Thanks to our parallelizable implementation
which eliminates the need to iterate explicitly over the entire
sequence length, our encoder demonstrates superior speed
on very long sequences.

Compatibility with Expressive Decoders. Expressive de-
coders, e.g., autoregressive image transformers, have been
advantageous for object-centric learning in visually complex
scenes (Singh et al., 2021; 2022; Jiang et al., 2023; Wu et al.,
2023b). Since these decoders have been typically paired
with the Slot Attention family of encoders, it becomes a
question whether our proposed encoder also maintains com-
patibility with such powerful decoders or not. In Fig. 5, we
evaluate our encoder on visually complex scenes using the
autoregressive transformer decoder. We find that while our

6

Parallelized Spatiotemporal Slot Binding for Videos

(a) NeRF Decoder

(b) SlotMixer Decoder

Figure 6. Comparison of Encoders in Dynamic 3D Scenes. We
compare the encoder performances trained with two decoder op-
tions: NeRF (top) and SlotMixer (bottom). Reported are the R2

score (↑) for continuous-valued object factors (position, size, and
color) and classification accuracy (↑) for categorical object factors
(shape and material). With both decoders, our encoder surpasses
SAVi as well as the static 3D scene models, with a noticeably large
margin in the case of NeRF decoder.

segmentation performance is slightly worse, the difference
is not substantial. Therefore, in scenarios where training
efficiency and stability are prioritized, our proposed encoder
with powerful decoders remains a preferred option.

5.2. Learning from 3D Posed Multi-Camera Videos

5.2.1. SETUP

Datasets. In this setting, we evaluate on two datasets: Dy-
namic 3D CLEVR-Simple and Dynamic 3D CLEVR-Natural-
Ego. We synthesize these datasets as extensions of the
CLEVR dataset to incorporate physical dynamics, multiple
cameras, 3D camera pose information, moving ego observer,
and visual complexity. We visualize these datasets in Fig. 7
and 15. For more details, see Appendix C.

Baselines. We implement our model following the descrip-
tion in Section 3.2 and evaluate the proposed encoder paired
with two decoders: NeRF (Mildenhall et al., 2020; Yu et al.,
2021; Stelzner et al., 2021) and SlotMixer (Sajjadi et al.,
2022). For both decoder choices, we compare the perfor-

(a) Dynamic 3D CLEVR-Simple

(b) Dynamic 3D CLEVR-Natural-Ego

Figure 7. Unsupervised Dynamic 3D Scene Understanding. We
visualize the RGB rendering of the individual slots and the RGB
and depth rendering from all slots taken together for time-steps:
t = 1 and t = 6. The model was trained as described in Section
3.2 with a NeRF decoder. We note the 3D scene decomposition,
consistent alignment of slots across time-steps, and unsupervised
depth inference. See the GIF version in the supplementary.

Simple Natural-Ego
15

18

21

24

27

30

N
o
ve
l
V
ie
w

P
S
N
R

NeRF Decoder

Ours + NeRF

SAVi + NeRF

uORF (Slot Attn. + NeRF)

Simple Natural-Ego
15

18

21

24

27

30

SlotMixer Decoder

Ours + SlotMixer

SAVi + SlotMixer

OSRT (Slot Attn. + SlotMixer)

Figure 8. Novel View Synthesis in Dynamic 3D Scenes. We
compare the PSNR (↑) of generated views on novel viewpoints.
We note improved performance with a large margin relative to
SAVi and by a smaller margin relative to static 3D scene models.

7

Parallelized Spatiotemporal Slot Binding for Videos

mance by substituting our proposed encoder with: (i) SAVi
encoder, the current state-of-the-art for learning sequen-
tial slot representations from sequential inputs based on
recurrence; and (ii) Slot Attention applied independently
to each time-step. This use of Slot Attention corresponds
to the uORF framework of Yu et al. (2021) when using a
NeRF decoder and to the OSRT framework of Sajjadi et al.
(2022) when using a SlotMixer decoder, the two state-of-
the-art models for 3D-aware slot learning from static 3D
scene observations. Since the focus of this study is on en-
coder architecture, for fair comparison, we use an identical
SLSR backbone and identical decoder architectures across
all compared models while substituting only the encoder
that produces the slots.

Metrics. To measure performance, we focus on three main
aspects of interest: i) representation quality, ii) novel view
synthesis and iii) unsupervised segmentation across time
and cameras. To measure representation quality, we per-
form slot linear probing and report the classification accu-
racy for the categorical object factors and the R2-score for
the continuous-valued object factors following Dang-Nhu
(2021) (see Appendix E.1). To measure the performance on
novel view synthesis, we report the PSNR on novel views
that were not shown to the encoder. For segmentation, we
report FG-ARI computed in 4 ways to measure represen-
tational consistency: (i) per camera per time-step, (ii) per
camera across time-steps, (iii) across cameras per time-step,
and (iv) across cameras and time-steps.

5.2.2. RESULTS

3D-Aware Object-Centric Scene Representation and De-
composition. Fig. 6a and 6b show our evaluation of linear-
probing performance on slots to predict object factors. With
both NeRF and SlotMixer decoder, our proposed encoder
surpasses the SAVi baseline as well as the static 3D scene
models, with a greater gap when the NeRF decoder is used.
A drawback of applying static scene models e.g., uORF and
OSRT, on dynamic scenes is that they can suffer in produc-
ing aligned slot representations across time, evidenced by
the FG-ARI score (reported in Fig. 9 in Appendix) computed
for measuring temporal consistency. Another noteworthy
point is that while temporal models like SAVi should the-
oretically benefit from the motion information that static
scene models cannot access, SAVi’s recurrent implemen-
tation and the resulting training instability prevent it from
leveraging temporal information effectively—leading to its
worse performance than even the static models.

Novel View Synthesis. In Fig. 8, we report the PSNR of gen-
erated views on unseen camera viewpoints i.e., viewpoints
that were not given to the encoder to infer the slot representa-
tion. This metric measures the model’s understanding of the
underlying scene geometry as well as the slot representation

quality. We observe that our model consistently surpasses
both SAVi and per-timestep Slot Attention in performance.

5.3. Ablation Study

Learned vs. Random Slot Initialization. In Fig. 10 and 11
in the appendix, we evaluate the impact of initializing slots
by randomly sampling them from a learned Gaussian. In this
variant, we note a generally worse performance compared
to initializing slots as learned parameters.

Decoupled vs. Joint Slot Interaction. In Fig. 10 and 11 in
the appendix, we also analyze the effect of decoupling the
slot-slot self-attention along the time and object axes versus
letting all NT slots interact via a single self-attention step.
In terms of performance alone, we do not notice a clear
advantage of either version. However, it is also important to
acknowledge the memory complexity: the joint interaction
version requires O(N2T 2) memory which can be costlier
and hurt scalability compared to using the decoupled version
which requires a lower O(NT 2) +O(N2T) memory.

No Inverted Attention and Renormalization. In Fig. 10
in the appendix, we evaluate the impact of using standard
dot-product attention instead of inverted attention and renor-
malization that introduces competition among slots in the
bottom-up attention step (Locatello et al., 2020; Wu et al.,
2023a). Without inverted attention, we find that the video de-
composition performance as measured by FG-ARI becomes
worse, suggesting that inverted attention is a beneficial in-
ductive bias to keep.

6. Discussion
In conclusion, this work introduces a novel temporally-
parallelizable object-centric binding architecture for effi-
ciently processing sequential data to learn slot represen-
tations, overcoming the drawbacks of conventional RNN-
based architectures. We present two novel auto-encoder
models utilizing this architecture for unsupervised object-
centric learning, tailored for 2D unposed videos and dy-
namic 3D scene videos. Our comprehensive evaluations
across various decoders demonstrate the proposed architec-
ture’s superior performance and computational efficiency.

Limitations and Avenues. We note the limitations of the
current work and avenues to address them via future work.
First, while our proposed design replaces RNNs with at-
tention, thus providing the benefit of speed and paralleliza-
tion, it also incurs a quadratic memory complexity in terms
of sequence length. To address this, future explorations
can consider the use of recent advances e.g., parallelizable
SSMs (Gu et al., 2021), based on our framework. How-
ever, we should consider the fact that many of today’s best-
performing architectures are based on Transformers which
also incur greater computation costs than their RNN-based

8

Parallelized Spatiotemporal Slot Binding for Videos

predecessors. However, Transformers are still widely used
because their benefits outweigh their costs. We hope to see
a similar outcome via our proposed encoder where the ben-
efits of scalability should outweigh the costs in the long run.
Second, it is of interest to apply the proposed architecture to
longer episodes and real scenes to utilize the full potential
of our scalable approach. Third, the proposed framework
can be used to build object-centric dynamics models that
can find applications in various agent learning scenarios,
e.g., planning for autonomous vehicles, robotics, and RL.

Impact Statement
This paper presents a representation learning method for im-
ages and videos. While the proposed model uses generation
as an objective function, the goal of the proposed model is
not on generation but the quality of representation. There-
fore, the negative impact of the proposed model on potential
fake image generation is little. As the proposed method is
very general representation method, it can be used in any
application that might include the use of any intention.

Acknowledgements
Sungjin Ahn is supported by Brain Pool Plus Program (No.
2021H1D3A2A03103645) through the National Research
Foundation of Korea (NRF) funded by the Ministry of Sci-
ence and ICT.

References
Anciukevicius, T., Lampert, C. H., and Henderson,

P. Object-centric image generation with factored
depths, locations, and appearances. arXiv preprint
arXiv:2004.00642, 2020.

Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M.,
and Schmid, C. Vivit: A video vision transformer. In
Proceedings of the IEEE/CVF international conference
on computer vision, pp. 6836–6846, 2021.

Bertasius, G., Wang, H., and Torresani, L. Is space-time
attention all you need for video understanding? In ICML,
volume 2, pp. 4, 2021.

Burgess, C. P., Matthey, L., Watters, N., Kabra, R., Higgins,
I., Botvinick, M., and Lerchner, A. Monet: Unsupervised
scene decomposition and representation. arXiv preprint
arXiv:1901.11390, 2019.

Castrejon, L., Ballas, N., and Courville, A. Inferno: In-
ferring object-centric 3d scene representations without
supervision. In ICLR2022 Workshop on the Elements of
Reasoning: Objects, Structure and Causality, 2022.

Chang, M., Griffiths, T. L., and Levine, S. Object repre-
sentations as fixed points: Training iterative refinement
algorithms with implicit differentiation. arXiv preprint
arXiv:2207.00787, 2022.

Chang, S., Zhang, Y., Han, W., Yu, M., Guo, X., Tan, W.,
Cui, X., Witbrock, M., Hasegawa-Johnson, M. A., and
Huang, T. S. Dilated recurrent neural networks. Advances
in neural information processing systems, 30, 2017.

Chen, C., Deng, F., and Ahn, S. Roots: Object-centric
representation and rendering of 3d scenes. J. Mach. Learn.
Res., 22:259:1–259:36, 2020.

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever,
I., and Abbeel, P. Infogan: Interpretable representation
learning by information maximizing generative adversar-
ial nets. In Advances in neural information processing
systems, pp. 2172–2180, 2016.

Crawford, E. and Pineau, J. Exploiting spatial invariance
for scalable unsupervised object tracking. arXiv preprint
arXiv:1911.09033, 2019.

Crawford, E. and Pineau, J. Learning 3d object-oriented
world models from unlabeled videos. In Workshop on
Object-Oriented Learning at ICML, 2020.

Dang-Nhu, R. Evaluating disentanglement of structured
representations. arXiv preprint arXiv:2101.04041, 2021.

Dauphin, Y. N., Fan, A., Auli, M., and Grangier, D. Lan-
guage modeling with gated convolutional networks. In
International conference on machine learning, pp. 933–
941. PMLR, 2017.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Du, Y., Smith, K. A., Ulman, T., Tenenbaum, J. B., and Wu,
J. Unsupervised discovery of 3d physical objects from
video. ArXiv, 2021.

Elsayed, G. F., Mahendran, A., van Steenkiste, S., Greff,
K., Mozer, M. C., and Kipf, T. SAVi++: Towards end-
to-end object-centric learning from real-world videos.
In Advances in Neural Information Processing Systems,
2022.

Engelcke, M., Kosiorek, A. R., Jones, O. P., and Posner, I.
Genesis: Generative scene inference and sampling with
object-centric latent representations, 2019.

Engelcke, M., Jones, O. P., and Posner, I. Genesis-v2: In-
ferring unordered object representations without iterative
refinement. arXiv preprint arXiv:2104.09958, 2021.

9

Parallelized Spatiotemporal Slot Binding for Videos

Feichtenhofer, C., Fan, H., Li, Y., and He, K. Masked
autoencoders as spatiotemporal learners. ArXiv,
abs/2205.09113, 2022.

Feng, L., Hajimirsadeghi, H., Bengio, Y., and Ahmed, M. O.
Latent bottlenecked attentive neural processes. arXiv
preprint arXiv:2211.08458, 2022.

Fodor, J. A. and Pylyshyn, Z. W. Connectionism and cogni-
tive architecture: A critical analysis. Cognition, 28(1-2):
3–71, 1988.

Gopalakrishnan, A., Irie, K., Schmidhuber, J., and van
Steenkiste, S. Unsupervised learning of temporal ab-
stractions with slot-based transformers. arXiv preprint
arXiv:2203.13573, 2022.

Greff, K., van Steenkiste, S., and Schmidhuber, J. Neu-
ral expectation maximization. In Advances in Neural
Information Processing Systems, pp. 6691–6701, 2017.

Greff, K., Kaufman, R. L., Kabra, R., Watters, N., Burgess,
C., Zoran, D., Matthey, L., Botvinick, M., and Lerchner,
A. Multi-object representation learning with iterative
variational inference. In International Conference on
Machine Learning, pp. 2424–2433. PMLR, 2019.

Greff, K., van Steenkiste, S., and Schmidhuber, J. On
the binding problem in artificial neural networks. arXiv
preprint arXiv:2012.05208, 2020.

Greff, K., Belletti, F., Beyer, L., Doersch, C., Du, Y., Duck-
worth, D., Fleet, D. J., Gnanapragasam, D., Golemo, F.,
Herrmann, C., Kipf, T., Kundu, A., Lagun, D., Laradji,
I., Liu, H.-T. D., Meyer, H., Miao, Y., Nowrouzezahrai,
D., Oztireli, C., Pot, E., Radwan, N., Rebain, D., Sabour,
S., Sajjadi, M. S. M., Sela, M., Sitzmann, V., Stone, A.,
Sun, D., Vora, S., Wang, Z., Wu, T., Yi, K. M., Zhong, F.,
and Tagliasacchi, A. Kubric: a scalable dataset generator.
2022.

Gu, A., Goel, K., and R’e, C. Efficiently modeling
long sequences with structured state spaces. ArXiv,
abs/2111.00396, 2021.

Guo, J., Deng, N., Li, X., Bai, Y., Shi, B., Wang, C., Ding,
C., Wang, D., and Li, Y. Streetsurf: Extending multi-view
implicit surface reconstruction to street views. ArXiv,
abs/2306.04988, 2023.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Henderson, P. and Lampert, C. H. Unsupervised object-
centric video generation and decomposition in 3d. Ad-
vances in Neural Information Processing Systems, 33:
3106–3117, 2020.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(gelus). arXiv: Learning, 2016.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X.,
Botvinick, M. M., Mohamed, S., and Lerchner, A. beta-
vae: Learning basic visual concepts with a constrained
variational framework. In ICLR, 2017.

Ho, J., Kalchbrenner, N., Weissenborn, D., and Salimans, T.
Axial attention in multidimensional transformers. arXiv
preprint arXiv:1912.12180, 2019.

Jabri, A., van Steenkiste, S., Hoogeboom, E., Sajjadi, M.
S. M., and Kipf, T. Dorsal: Diffusion for object-centric
representations of scenes ${et al.}$. 2023.

Jaegle, A., Gimeno, F., Brock, A., Vinyals, O., Zisserman,
A., and Carreira, J. Perceiver: General perception with it-
erative attention. In International conference on machine
learning, pp. 4651–4664. PMLR, 2021.

Jia, B., Liu, Y., and Huang, S. Improving object-centric
learning with query optimization. In The Eleventh Inter-
national Conference on Learning Representations, 2023.

Jiang, J., Janghorbani, S., De Melo, G., and Ahn, S. Scalor:
Generative world models with scalable object represen-
tations. In International Conference on Learning Repre-
sentations, 2019.

Jiang, J., Deng, F., Singh, G., and Ahn, S. Object-centric
slot diffusion. NeurIPS, 2023.

Kabra, R., Zoran, D., Erdogan, G., Matthey, L., Creswell,
A., Botvinick, M., Lerchner, A., and Burgess, C. P. Si-
mone: View-invariant, temporally-abstracted object rep-
resentations via unsupervised video decomposition. arXiv
preprint arXiv:2106.03849, 2021.

Kipf, T., Elsayed, G. F., Mahendran, A., Stone, A., Sabour,
S., Heigold, G., Jonschkowski, R., Dosovitskiy, A., and
Greff, K. Conditional Object-Centric Learning from
Video. In International Conference on Learning Rep-
resentations (ICLR), 2022.

Kosiorek, A. R., Kim, H., Posner, I., and Teh, Y. W. Sequen-
tial attend, infer, repeat: Generative modelling of moving
objects. In Neural Information Processing Systems, 2018.

Kosiorek, A. R., Strathmann, H., Zoran, D., Moreno, P.,
Schneider, R., Mokrá, S., and Rezende, D. J. Nerf-vae:
A geometry aware 3d scene generative model. In Interna-
tional Conference on Machine Learning, pp. 5742–5752.
PMLR, 2021.

Kumar, A., Eslami, S., Rezende, D. J., Garnelo, M., Viola,
F., Lockhart, E., and Shanahan, M. Consistent generative
query networks. arXiv preprint arXiv:1807.02033, 2018.

10

Parallelized Spatiotemporal Slot Binding for Videos

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gersh-
man, S. J. Building machines that learn and think like
people. Behavioral and brain sciences, 40:e253, 2017.

Lee, J., Lee, Y., Kim, J., Kosiorek, A. R., Choi, S., and Teh,
Y. W. Set transformer. 2018.

Li, N., Eastwood, C., and Fisher, R. Learning object-
centric representations of multi-object scenes from multi-
ple views. Advances in Neural Information Processing
Systems, 33:5656–5666, 2020.

Li, N., Raza, M. A., Hu, W., Sun, Z., and Fisher, R. Object-
centric representation learning with generative spatial-
temporal factorization. Advances in Neural Information
Processing Systems, 34:10772–10783, 2021.

Li, S., Li, W., Cook, C., Zhu, C., and Gao, Y. Independently
recurrent neural network (indrnn): Building a longer and
deeper rnn. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 5457–5466,
2018.

Lin, Z., Wu, Y.-F., Peri, S., Fu, B., Jiang, J., and Ahn,
S. Improving generative imagination in object-centric
world models. In International Conference on Machine
Learning, pp. 6140–6149. PMLR, 2020a.

Lin, Z., Wu, Y.-F., Peri, S. V., Sun, W., Singh, G., Deng,
F., Jiang, J., and Ahn, S. Space: Unsupervised object-
oriented scene representation via spatial attention and
decomposition. ArXiv, abs/2001.02407, 2020b.

Liu, Z., Ning, J., Cao, Y., Wei, Y., Zhang, Z., Lin, S., and
Hu, H. Video swin transformer. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pp. 3202–3211, 2022.

Locatello, F., Weissenborn, D., Unterthiner, T., Mahendran,
A., Heigold, G., Uszkoreit, J., Dosovitskiy, A., and Kipf,
T. Object-centric learning with slot attention. Advances
in Neural Information Processing Systems, 33:11525–
11538, 2020.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. arXiv preprint arXiv:1711.05101, 2017.

Löwe, S., Lippe, P., Rudolph, M., and Welling, M. Complex-
valued autoencoders for object discovery. arXiv preprint
arXiv:2204.02075, 2022.

Löwe, S., Lippe, P., Locatello, F., and Welling, M. Ro-
tating features for object discovery. arXiv preprint
arXiv:2306.00600, 2023.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,
Ramamoorthi, R., and Ng, R. Nerf: Representing scenes
as neural radiance fields for view synthesis. Commun.
ACM, 65:99–106, 2020.

Nguyen-Phuoc, T. H., Richardt, C., Mai, L., Yang, Y., and
Mitra, N. Blockgan: Learning 3d object-aware scene
representations from unlabelled images. Advances in
neural information processing systems, 33:6767–6778,
2020.

Niemeyer, M. and Geiger, A. Giraffe: Representing scenes
as compositional generative neural feature fields. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pp. 11453–11464, 2021.

Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K.,
Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A.,
and Kavukcuoglu, K. Wavenet: A generative model for
raw audio. arXiv preprint arXiv:1609.03499, 2016.

Pascanu, R., Mikolov, T., and Bengio, Y. On the difficulty
of training recurrent neural networks. In International
conference on machine learning, pp. 1310–1318. Pmlr,
2013.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research,
21(1):5485–5551, 2020.

Sajjadi, M. S., Duckworth, D., Mahendran, A., van
Steenkiste, S., Pavetic, F., Lucic, M., Guibas, L. J., Greff,
K., and Kipf, T. Object scene representation transformer.
Advances in Neural Information Processing Systems, 35:
9512–9524, 2022.

Sajjadi, M. S., Mahendran, A., Kipf, T., Pot, E., Duckworth,
D., Lučić, M., and Greff, K. Rust: Latent neural scene
representations from unposed imagery. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 17297–17306, 2023.

Sajjadi, M. S. M., Meyer, H., Pot, E., Bergmann, U. M.,
Greff, K., Radwan, N., Vora, S., Lucic, M., Duckworth,
D., Dosovitskiy, A., Uszkoreit, J., Funkhouser, T. A.,
and Tagliasacchi, A. Scene representation transformer:
Geometry-free novel view synthesis through set-latent
scene representations. 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
6219–6228, 2021.

Seitzer, M., van Steenkiste, S., Kipf, T., Greff, K., and
Sajjadi, M. S. Dyst: Towards dynamic neural scene
representations on real-world videos. arXiv preprint
arXiv:2310.06020, 2023.

Sharma, P., Tewari, A., Du, Y., Zakharov, S., Ambrus, R.,
Gaidon, A., Freeman, W. T., Durand, F., Tenenbaum, J. B.,
and Sitzmann, V. Seeing 3d objects in a single image via
self-supervised static-dynamic disentanglement. arXiv
preprint arXiv:2207.11232, 2022.

11

Parallelized Spatiotemporal Slot Binding for Videos

Singh, G., Yoon, J., Son, Y., and Ahn, S. Sequential neural
processes. Advances in Neural Information Processing
Systems, 32, 2019.

Singh, G., Deng, F., and Ahn, S. Illiterate dall-e learns
to compose. In International Conference on Learning
Representations, 2021.

Singh, G., Wu, Y.-F., and Ahn, S. Simple unsuper-
vised object-centric learning for complex and natural-
istic videos. Advances in Neural Information Processing
Systems, 35:18181–18196, 2022.

Spelke, E. S. and Kinzler, K. D. Core knowledge. Develop-
mental science, 10(1):89–96, 2007.

Stanić, A., Gopalakrishnan, A., Irie, K., and Schmidhuber,
J. Contrastive training of complex-valued autoencoders
for object discovery. arXiv preprint arXiv:2305.15001,
2023.

Stelzner, K., Kersting, K., and Kosiorek, A. R. Decom-
posing 3d scenes into objects via unsupervised volume
segmentation. ArXiv, abs/2104.01148, 2021.

Trinh, T., Dai, A., Luong, T., and Le, Q. Learning longer-
term dependencies in rnns with auxiliary losses. In In-
ternational Conference on Machine Learning, pp. 4965–
4974. PMLR, 2018.

Turki, H., Zhang, J. Y., Ferroni, F., and Ramanan, D. Suds:
Scalable urban dynamic scenes. 2023 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pp. 12375–12385, 2023.

Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals,
O., Graves, A., et al. Conditional image generation with
pixelcnn decoders. Advances in neural information pro-
cessing systems, 29, 2016.

Van Steenkiste, S., Kurach, K., Schmidhuber, J., and Gelly,
S. Investigating object compositionality in generative
adversarial networks. Neural Networks, 130:309–325,
2020.

Vaswani, A., Shazeer, N. M., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
Attention is all you need. In Neural Information Process-
ing Systems, 2017.

Veerapaneni, R., Co-Reyes, J. D., Chang, M., Janner, M.,
Finn, C., Wu, J., Tenenbaum, J. B., and Levine, S. Entity
abstraction in visual model-based reinforcement learning.
arXiv preprint arXiv:1910.12827, 2019.

von Kügelgen, J., Ustyuzhaninov, I., Gehler, P., Bethge,
M., and Schölkopf, B. Towards causal generative scene
models via competition of experts. arXiv preprint
arXiv:2004.12906, 2020.

Wu, T., Zhong, F., Tagliasacchi, A., Cole, F., and Oztireli, C.
D2nerf: Self-supervised decoupling of dynamic and static
objects from a monocular video. arxiv preprint [2022-07-
07], 2022.

Wu, Y.-F., Greff, K., Deepmind, G., Elsayed, G. F., Mozer,
M. C., Kipf, T., and van Steenkiste, S. Inverted-attention
transformers can learn object representations: Insights
from slot attention. 2023a.

Wu, Z., Hu, J., Lu, W., Gilitschenski, I., and Garg, A. Slotd-
iffusion: Object-centric generative modeling with diffu-
sion models. NeurIPS, 2023b.

Yang, J., Ivanovic, B., Litany, O., Weng, X., Kim, S. W., Li,
B., Che, T., Xu, D., Fidler, S., Pavone, M., and Wang, Y.
Emernerf: Emergent spatial-temporal scene decomposi-
tion via self-supervision. ArXiv, abs/2311.02077, 2023a.

Yang, Z., Chen, Y., Wang, J., Manivasagam, S., Ma, W.-C.,
Yang, A. J., and Urtasun, R. Unisim: A neural closed-
loop sensor simulator. In CVPR, 2023b.

Yoon, J., Singh, G., and Ahn, S. Robustifying sequential
neural processes. In International Conference on Ma-
chine Learning, pp. 10861–10870. PMLR, 2020.

Yu, H.-X., Guibas, L. J., and Wu, J. Unsupervised discovery
of object radiance fields. ArXiv, abs/2107.07905, 2021.

Zadaianchuk, A., Seitzer, M., and Martius, G. Object-
centric learning for real-world videos by predict-
ing temporal feature similarities. arXiv preprint
arXiv:2306.04829, 2023.

Zhang, R., Che, T., Ivanovic, B., Wang, R., Pavone, M.,
Bengio, Y., and Paull, L. Robust and controllable object-
centric learning through energy-based models. arXiv
preprint arXiv:2210.05519, 2022.

12

Parallelized Spatiotemporal Slot Binding for Videos

A. Additional Related Work
Additional Works in Object-Centric Learning. Some works leverage GANs to generate scenes from object-centric
noise latents (Van Steenkiste et al., 2020; Nguyen-Phuoc et al., 2020; Niemeyer & Geiger, 2021), however, these focus on
static scenes and at the same time, do not provide an encoder to learn slots, although such an encoder may be learned as a
post-processing step after the GAN is trained. (Du et al., 2021) seeks to learn 3D bounding boxes from 2D videos, however,
it requires heavy use of manual hand-crafted priors to perform the back-projection from 2D masks to 3D bounding boxes.

Related Transformer Architectures for Videos. Some architectures have focused on applying transformers on videos
(Bertasius et al., 2021; Arnab et al., 2021; Liu et al., 2022), however, note that these video transformer models work with
patch-level representations and do not seek to learn object-centric slots in an unsupervised manner like ours.

3D Scene Representation Learning. Several works develop auto-encoders for learning to represent 3D scenes (Kumar
et al., 2018; Singh et al., 2019; Yoon et al., 2020; Sajjadi et al., 2021; Seitzer et al., 2023), including without available
camera pose information (Sajjadi et al., 2023). Another line of work seeks to develop generalizable NeRFs that can learn a
NeRF representation without needing per-scene optimization. For this, they are equipped with an encoder that provides a
representation given the input views via a single feedforward pass (Kosiorek et al., 2021). However, these representations
are not decomposed in an object-centric manner. Static-dynamic decomposition has been pursued in this line (Sharma
et al., 2022), however, it does not provide per-object decomposition without post-processing. Another parallel line of work
aims to learn implicit scene representations via per-scene NeRF training (Yang et al., 2023b; Guo et al., 2023; Turki et al.,
2023; Yang et al., 2023a; Wu et al., 2022). However, lacking an encoder, expensive training is needed to train them, and
representations of distinct scenes carry different semantics. Furthermore, object-centric decomposition requires non-trivial
post-processing.

Related Architectures for Compression and Attention. Another line of work seeks to summarize or compress the input
activations into a small number of latents without asking for object-centric decomposition of the inputs. If such is the goal,
our architecture may still find use in such applications. Along this line, several architectures have been proposed (Jaegle
et al., 2021; Feng et al., 2022; Yoon et al., 2020; Lee et al., 2018; Wu et al., 2023a). In implementing the self-attention
among slots, our axis-wise attention (along time and object axis) can be seen to be similar to axial attention (Ho et al., 2019),
which provides memory cost savings.

B. Additional Experiment Results
B.1. FG-ARI Performance on Dynamic 3D Scenes

We report and compare the FG-ARI computed along several axes in order to measure segmentation consistency within
a view, segmentation across time-steps but with the same camera, segmentation across cameras within a time-step, and
segmentation across both cameras and time-steps. We note that when it comes to being consistent across both time-steps
and cameras, our encoder outperforms all baselines. We also note that applying static 3D scene models (i.e., OSRT and
uORF) per time-step independently can lead to poor consistency in the slots across time, as the slots of each time-step are
not aware of the slots of the other time-steps.

B.2. Analysis of the Proposed Encoder on Dynamic 3D Datasets

In Fig. 11, we ablate the design choices underlying our proposed encoder on the dynamic 3D datasets.

B.3. Effect of Decoupling Static and Dynamic Fields in NeRF Decoder

In Fig. 12, we ablate this aspect and report the results. We find that static-dynamic decoupling improves performance both
in terms of representation quality as suggested by the linear-probing result as well as in terms of unsupervised segmentation.
The improvement is more marked in the visually complex and egocentric CLEVR-Natural-Ego dataset.

B.4. Length Generalization on Longer-Than-Training Sequences

In Fig. 13, we report the video-level FG-ARI score on MOVi-A and MOVi-B for sequence lengths: 6, 12, 18, and 24; while
the training sequence length used is 6. For our model, we use a sliding-window approach to apply the model on longer
sequence i.e., the slots of each time-step are inferred from the sequence of most recent 6 frames. For SAVi, we follow

13

Parallelized Spatiotemporal Slot Binding for Videos

(a) NeRF Decoder (b) SlotMixer Decoder

Figure 9. FG-ARI Performance on Dynamic 3D Scenes. We report and compare the FG-ARI computed along several axes in order to
measure segmentation consistency within a view, segmentation across time-steps but with the same camera, segmentation across cameras
within a time-step, and segmentation across both cameras and time-steps.

MOVi-A MOVi-B
0

20

40

60

80

100

V
id
eo

F
G
-A

R
I

Unsupervised Video Segmentation

Time-Axis Interaction

Joint Interaction

Random Initialization

No Inverted Attention

MOVi-A MOVi-B
0

5

10

15

20

25

30

35

P
S
N
R

Recon. PSNR

(a) FG-ARI and PSNR
(b) Linear Probes

Figure 10. Analysis of the Proposed Encoder on MOVi-A and MOVi-B. We report and compare the following: Left: Unsupervised
segmentation performance and Reconstruction quality. Right: Linear-probing performance.

the default approach by running the recurrence on the entire available sequence. On moderately longer sequence lengths
i.e., 6 and 12, our model outperforms the baseline SAVi, showing better object-centric decomposition and consistency. On
even longer sequences, i.e., sequence lengths 18 and 24, our performance is matched or slightly worse than SAVi, pointing
towards an area of improvement for the proposed model.

B.5. Video Transformer + Spatial Pooling

We conducted an experiment with a standard transformer encoder and tested it on MOVi-A and MOVi-B. We first describe
how we implemented it, followed by the results.

• Encoder (Video Transformer + Spatial Pool). We feed each video frame to a CNN to obtain a 16× 16-shaped feature
map per frame. For a 6-frame video, this leads to feature vectors of shape 6× 16× 16. We flatten these features into a
single set of size 6× 16× 16 = 1536, add spatial and temporal positional embeddings, and feed them to a transformer.
The output of the transformer is unflattened back to shape 6× 16× 16. As we have too many features per frame (i.e.,
16× 16 = 256 features per frame), we cannot directly treat them as object representations or slots. Following (Kabra
et al., 2021), we spatially pool the features to reduce them to a total of 16 features per frame—which we consider to be
slots.

• Decoder (Spatial Broadcast Decoder). These slots are then decoded to reconstruct the input frames using an identical
decoder as used for our model and other baselines on MOVi-A and MOVi-B.

We report the video-level FG-ARI to measure decomposition and linear probing performance to measure the slot repre-
sentation quality. As can be seen in Table 1, using a video transformer with spatial pooling yields worse object-centric

14

Parallelized Spatiotemporal Slot Binding for Videos

(a) Dynamic 3D CLEVR-Simple
(b) Dynamic 3D CLEVR-Natural-Ego

Figure 11. Analysis of the Proposed Encoder on Dynamic 3D Scene Understanding. We report and compare the following: Left:
Linear-probing performance. Right: Unsupervised segmentation performance.

(a) Dynamic 3D CLEVR-Simple (b) Dynamic 3D CLEVR-Natural-Egocentric

Figure 12. Effect of Static-Dynamic Decoupling in the NeRF Decoder. We report and compare the following: Left: Unsupervised
segmentation performance. Right: Linear-probing performance.

Dataset Metric Video Transformer + Spatial Pool Ours

MOVi-A

Video FG-ARI 44.66 67.01
Position Probe 0.952 0.970

Color Probe 0.542 0.759
Shape Probe 0.476 0.718

Material Probe 0.868 0.954
Size Probe 0.841 0.950

MOVi-B

Video FG-ARI 43.29 47.57
Position Probe 0.837 0.850

Color Probe 0.199 0.589
Shape Probe 0.245 0.456

Material Probe 0.721 0.854

Table 1. Analysis of a baseline model that leverages a video transformer followed by spatial pooling to obtain slots versus our proposed
encoder.

decomposition and representation in the learned slots. Furthermore, on examining the segments qualitatively, we noted that
when using the video transformer, the segments divide the image into square-shaped patches instead of meaningful objects.

B.6. Analysis of Memory and FLOPs

In this section, we report the memory consumption and the FLOPs incurred by the proposed slot learning architecture
compared to the RNN-based baseline SAVi.

15

Parallelized Spatiotemporal Slot Binding for Videos

6 12 18 24
0

20

40

60

80

100

Test Video Length

V
id
eo

F
G
-A
R
I
(i
n
%
)

MOVi-A

Ours
SAVi

6 12 18 24
0

20

40

60

80

100

Test Video Length

MOVi-B

Figure 13. Generalization on Sequence Length Longer than Training. We report the video-level FG-ARI score on MOVi-A and
MOVi-B for sequence lengths: 6, 12, 18, and 24; while the training sequence length used is 6. For our model, we use a sliding-window
approach to apply the model on longer sequence i.e., the slots of each time-step are inferred from the sequence of most recent 6 frames.
For SAVi, we follow the default approach by running the recurrence on the entire available sequence.

20 40 60 80 100

0

1

2

3

4
·1011

Episode Length

F
L
O
P
s

Encoder FLOPs vs. Episode Length

Ours
SAVi

20 40 60 80 100
0

2,000

4,000

6,000

Episode Length

M
em

or
y
C
on

su
m
p
ti
on

(M
B
) Memory Consumption vs. Episode Length

Ours
SAVi

Figure 14. Analysis of FLOPs incurred and memory consumption of our model relative to SAVi.

From the plots in Fig. 14 and Fig. 3, we can make the following points:

1. First, this remarkable and significant as it says that our method allows processing more information while being faster
simultaneously. While it is true that our model requires more FLOPs, if all FLOPs can be executed in parallel and
efficiently on hardware such as a GPU, then having more FLOPs doesn’t harm speed. This is clear from the wall-clock
time reported in our paper where ours is indeed faster during training than SAVi.

2. Second, despite having fewer FLOPs, SAVi is unable to reap the benefits because it is unstable on longer sequences due
to issues like gradient explosion/vanishing. This is clear from the Fig. 3 (top).

3. Third, today’s best-performing architectures are primarily based on Transformers which also incur greater computation
costs than their RNN-based predecessors. However, the Transformer is still widely used because its benefits outweigh
its costs. We hope to see a similar outcome via our proposed encoder where the benefits of scalability should outweigh
the costs in the long run.

4. Ours is the first step of bringing parallelization to slot learning for videos. It would be an interesting next step to
address this quadratic cost, e.g., by leveraging recent advances like S4 (Gu et al., 2021).

B.7. Complexity of Internal Operations of SAVi versus Ours

Here, we argue why it is fair to compare SAVi versus Ours despite ours requiring greater FLOPs as noted in the previous
section. For this, we first write down the complexity of the internal operations of SAVi and our proposed model in Table 2.
Here, T is the number of time steps in a training episode. We can see that the higher computation of our model is due to
gathering of information from the past inputs which is quadratic in episode length T . This is reasonable since capturing
the temporal dependencies is where attention mechanisms excel over RNNs. On the other hand, the computation used for

16

Parallelized Spatiotemporal Slot Binding for Videos

processing the gathered information (i.e., the MLP) is of the same order as that of SAVi i.e. O(T). For these reasons, we
think that our comparison is fair.

To further ensure a fair comparison, we have used the same number of refinement iterations per time-step in the SAVi
baseline as the number of layers we use for our model PSB. Also, we use an identical hidden size in all compared models.

Table 2. Comparison of Computational Complexity for SAVi and our model PSB.

SAVi PSB (Ours)

Bottom-Up Attention O(T) O(T 2)
Gather information from the past O(T) O(T 2)
Slot interaction (within each time-step) O(T) O(T)
MLP O(T) O(T)

B.8. Inference Complexity

The complexity during inference per each newly arriving input is O(1) for SAVi and O(W 2) for ours (and O(W) if previous
hidden states are cached), where W is the window size for the sliding context window for our model. Note that while
the computation required by our model is greater, however, with GPU parallelization, the practical execution time can be
significantly reduced. We will add this discussion to our revised version. Also, we discuss in the paper the potential of
extending our model to achieve a constant inference cost by adopting SSM models.

B.9. Static and Dynamic Field Decoupling in NeRF Decoder

In Fig. 12, we compare the effect of having separate field models for the static topography and the dynamic objects of the 3D
scene. We find that the static-dynamic decoupling leads to improved representation quality and object-wise decomposition
of the dynamic objects. The benefit of such decoupling is more pronounced in the case of CLEVR-Natural-Ego dataset
which is more visually complex than the CLEVR-Simple dataset.

C. Details of Dynamic 3D Scene Datasets
In this work, we synthesize two dynamic 3D scene datasets to evaluate scene understanding. We provide sample episodes in
Fig. 15. In the following sections, we provide detailed specifications of these datasets.

C.1. Dynamic 3D CLEVR-Simple

The dataset consists of 2000 scene episodes. In each scene episode, the 2-4 objects are randomly instantiated with random
velocities heading towards the center of the arena. As the scene plays out, videos are recorded by 5 pin-hole cameras
randomly positioned on a hemisphere looking toward the origin of the scene. The objects can take one of four possible
shapes: sphere, cylinder, cube, and monkey; one of 32 possible colors; one of 2 possible materials: rubber and metal; and
one of 3 possible sizes. The full video length per episode is 32. We train the models on 6-length episodes randomly cropped
from the 32-length episodes. The dataset is generated using Blender2. We extended the codebase of the original CLEVR
dataset3 to generate this dataset.

C.2. Dynamic 3D CLEVR-Nature-Ego

The dataset consists of 2000 scene episodes. In each scene episode, the 3-5 objects are randomly instantiated with random
heading velocities. An ego object is also instantiated with a random velocity. The ego object is mounted with 6 cameras. As
the scene plays out, the objects can collide with each other, with the static topography, and with the moving ego (which can
conversely affect the motion of the ego object). The videos are recorded by pin-hole cameras. The objects can take one of
six possible shapes: sphere, cylinder, cube, and cone, icosahedron, and torus; one of 32 possible colors; one of 2 possible
materials: rubber and metal; and one of 3 possible sizes. The full video length per episode is 24. We train the models on

2https://www.blender.org
3https://github.com/facebookresearch/clevr-dataset-gen

17

https://www.blender.org
https://github.com/facebookresearch/clevr-dataset-gen

Parallelized Spatiotemporal Slot Binding for Videos

Figure 15. Samples of the Proposed Dynamic 3D Scene Datasets. On the left, we show 5 cameras and 6 time-steps of the Dynamic 3D
CLEVR-Simple dataset. On the right, we show 6 ego-centric cameras and 6 time-steps of the Dynamic 3D CLEVR-Natural-Ego dataset.

6-length episodes randomly cropped from the 24-length episodes. The static topography consists of 4 rooms as visualized in
Fig. 16 and the objects and ego are instantiated in one of the 4 rooms randomly within each episode. Each room consists of
a unique static object such as an elephant, a tree, a cat statue, or a statue of a human face. The scene uses realistic lighting,
background, and materials. The dataset is generated using Blender4. We extended the codebase of the original CLEVR
dataset to generate this dataset.

D. Additional Model Details
D.1. Parallelizable Spatiotemporal Binder

D.1.1. SLOT INITIALIZATION

The slots can be initialized either via learning or by sampling them from a learned Gaussian. We describe the initialization
for both options.

Learned Initialization. We maintain N learned parameters θslot_init
n ∈ RD for n = 1, . . . , N . Then, the NT slots are

initialized as follows.

s
(0)
t,n = θslot_init

n .

That is, the initialization is shared for each n-th slot across all time-steps.

Random Initialization. We maintain learned parameters: mean θslot_init_mean ∈ RD and standard deviation θslot_init_sigma ∈
RD that are shared for all slots. With these mean and standard deviation parameters, we sample N slots from a Gaussian
and then broadcast the N samples across the T time-steps to initialize the TN slots.

ŝ(0)n ∼ N (θslot_init_mean,θslot_init_sigma), ∀n ∈ 1, . . . , N,

s
(0)
t,n = ŝ(0)n , ∀t ∈ 1, . . . , T.

Same as the case of learned initialization, the initialization is shared for each n-th slot across all time-steps.

4https://www.blender.org

18

https://www.blender.org

Parallelized Spatiotemporal Slot Binding for Videos

Figure 16. Environment Map for CLEVR-Nature-Ego Dataset. We illustrate the top-view of the static topography and a randomly
placed ego object that carries 6 cameras: Front_Left, Front, Front_Right, Back_Left, Back, and Back_Right. The ego
and between 3 to 5 randomly chosen object shapes are spawned inside one of the randomly picked rooms. All objects including the ego
are instantiated with a random position and velocity at the start of the episode. Then, the objects and the ego evolve through time under
the influence of Blender’s physics engine. 24-length RGB video recordings from the 6 ego cameras along with their respective camera
poses constitute an episode of the dataset.

D.1.2. BOTTOM-UP ATTENTION

Here, we describe a 1-headed version of the inverted dot-product attention that we employ to implement bottom-up attention
in our proposed architecture.

Q = WQ(Q) ∈ RNQ×D,

K = WK(K) ∈ RNK×D,

V = WV (V) ∈ RNK×D,

A = softmax

(
QKT

√
D

+ β, axis=‘queries’

)
∈ RNQ×NK ,

Ai,j =
Ai,j∑NK

j=1 Ai,j

∈ R,

Attention(Q,K, V) = AV ∈ RNQ×D,

where Q,K, V denote queries, keys, and values, respectively, WQ, WK , and WV denote the linear projection matrices
for the queries, keys and the values, respectively, β denotes the relative positional bias matrix and Attention(Q,K, V)
denotes the result of the attention. The argument axis denotes which axis of the attention weights is the softmax applied to.
In this case, we apply softmax along the axis of queries followed by renormalization across keys in line with the competitive
attention proposed by Locatello et al. (2020).

Multi-Headed Implementation. In the case of multi-headed attention, there are independent linear projection matrices per
head. Furthermore, there is an additional output linear projection matrix WO which takes a concatenation of the outputs of
each head and maps it to an output result. In the multi-headed case, the softmax operation is applied across both queries and
heads. Furthermore, in the multi-headed case, we have distinct, independently learned relative position bias matrices per
each head.

19

Parallelized Spatiotemporal Slot Binding for Videos

Causal Masking. If a causal mask is provided, then the cells in the attention matrix QKT

√
dk

+ β that are meant to be masked
are replaced with −inf.

D.1.3. ATTENTION ALONG TIME AXIS

This attention is implemented via standard multi-headed dot-product attention with causal masking and adding a relative
position bias to the attention matrix.

D.1.4. ATTENTION ALONG OBJECT AXIS

This attention is implemented via standard multi-headed dot-product attention. No causal masking or relative position bias
is required in this case since this is simply the attention between the slots of the same time-step.

D.1.5. NON-LINEARITY

The non-linearity is implemented via a 2-layer MLP. We use the GELU non-linearity (Hendrycks & Gimpel, 2016) in the
intermediate layer of the MLP.

D.1.6. RESIDUAL CONNECTIONS AND LAYER-NORMALIZATIONS

Prior to all attention layers as well as the MLP, we layer-normalize the inputs to the layers. The output of each layer is
added to the value of the main branch before the application of the layer. That is, all operations are performed via residual
connections, allowing our architecture to be potentially scaled to a deep stack containing a large number of layers.

D.1.7. APPLYING TO SEQUENCES LENGTHS BEYOND TRAINING LENGTH

To apply the trained encoder on sequences longer than those shown in training, one may adopt a sliding window approach.

D.2. Object-Centric Learning on 2D Unposed Videos

D.2.1. CNN BACKBONE

The CNN backbone maps each image in a video to a set of features. We adopt the backbone that is also used by Kipf et al.
(2022) and Singh et al. (2022). We describe it in Table 3. Like the previous works (Kipf et al., 2022; Singh et al., 2022), we
add 2D positional embeddings to the CNN output, flatten it to form a set of features, apply layer normalization to the output,
and feed to a 2-layer MLP with hidden size 192 and output size 192.

Table 3. The CNN backbone architecture used for object-centric learning on 2D unposed videos.

Layer Kernel Size Stride Padding Channels Activation

Conv 5× 5 1 2 192 ReLU
Conv 5× 5 1 2 192 ReLU
Conv 5× 5 1 2 192 ReLU
Conv 5× 5 1 2 192 None

D.3. Parallelizable Spatiotemporal Binder

For the proposed PSB layer, we employ the configurations listed in the following Table 4.

D.3.1. SPATIAL BROADCAST DECODER

We implement the spatial broadcast decoder (or simply SBD) in the same manner as Locatello et al. (2020) and Kipf et al.
(2022). The SBD takes slot representations and spatially broadcasts them across a predefined grid, adds positional encodings,
and feeds them through a CNN. The implementation details are summarized in Table 5.

The CNN outputs the RGB image and the alpha mixing logits. We pass the logits through a softmax operation across the N

20

Parallelized Spatiotemporal Slot Binding for Videos

Table 4. PSB Configuration. The table describes the hyperparameters used in the implementation of the PSB encoder for object-centric
learning on 2D unposed videos.

Parameter Value

Model Dimension 192
Number of PSB Layers 3
Number of Attention Heads

- Bottom-Up Attention Heads 1 (for matching capacity with SAVi)
- Time-Axis Attention Heads 4
- Object-Axis Attention Heads 4

MLP Configuration
- Number of Layers 2
- Hidden Dimension 768
- Output Dimension 192

Table 5. Spatial Broadcast Decoder architecture for transforming slot representations into RGB and alpha-mixing logits.

Layer Kernel Size Stride Padding Channels Activation

Slot Normalization - - - - -
Positional Embedding - - - - -

ConvTranspose2d 5× 5 2 2 (Output Padding: 1) 64 ReLU
ConvTranspose2d 5× 5 2 2 (Output Padding: 1) 64 ReLU
ConvTranspose2d 5× 5 2 2 (Output Padding: 1) 64 ReLU
ConvTranspose2d 5× 5 2 2 (Output Padding: 1) 3 + 1 None

slot decodings. The softmax output acts as the mixing weights for the N RGB object images corresponding to the N slots,
respectively. We use the same positional encoding approach as used in Locatello et al. (2020) and Kipf et al. (2022). That is,
the 2D coordinate of each feature is linearly projected to an appropriately sized embedding.

D.3.2. AUTOREGRESSIVE IMAGE TRANSFORMER DECODER

For the autoregressive image transformer decoder, we adopt the implementation of SLATE (Singh et al., 2021; 2022). That
is, conditioned on the slots, we predict the VQ code representation of the image in an autoregressive manner. The VQ code
is obtained via a Discrete VAE trained jointly with the rest of the model with codebook size 4096 as prescribed by Singh
et al. (2021; 2022). The transformer implementation uses 8 layers with 4-heads and a hidden size of 192.

D.4. Object-Centric Learning on 3D Posed Multi-Camera Videos

D.4.1. SET LATENT SCENE REPRESENTATION (SLSR) BACKBONE

The Set Latent Scene Representation or SLSR representation is computed by taking multiple posed views of a specific
time-step and producing a collection or a set of features or latents, thus called Set Latent Scene Representation (Sajjadi
et al., 2021; 2022). This is done by first applying a per-view CNN, flattening the resulting features, stacking these features
together for all the views, and lastly, feeding this collection of features to a transformer.

CNN. In Table 6, we describe the CNN configuration that we use for the 3D Dynamic CLEVR-Simple dataset and in Table 7.

Transformer. The specifications of the cross-view transformer are provided in the Table 8.

D.4.2. PARALLELIZABLE SPATIOTEMPORAL BINDER

For the proposed PSB layer, we employ the configurations listed in the following Table 9.

21

Parallelized Spatiotemporal Slot Binding for Videos

Table 6. Description of the CNN architecture used to compute SLSR for the dynamic 3D CLEVR-Simple dataset.

Layer Kernel Size Stride Padding Channels Activation

GroupNorm - - - 192 -

Residual Block 1
GroupNorm - - - 192 -

Conv2d 5× 5 1 2 192 ReLU
Conv2d 5× 5 1 2 192 -

Residual Block 2
GroupNorm - - - 192 -

Conv2d 5× 5 1 2 192 ReLU
Conv2d 5× 5 1 2 192 -

Size-Halving
GroupNorm - - - 192 -

Conv2d 5× 5 2 2 192 -

Residual Block 3
GroupNorm - - - 192 -

Conv2d 5× 5 1 2 192 ReLU
Conv2d 5× 5 1 2 192 -

Residual Block 4
GroupNorm - - - 192 -

Conv2d 5× 5 1 2 192 ReLU
Conv2d 5× 5 1 2 192 -

D.4.3. NERF DECODER

The NeRF decoder consists of a feedforward network that takes as input i) a slot vector s, ii) 3D coordinate o, and iii) the
ray viewing direction d and outputs a density σ and an RGB color c. We implement this MLP in the following manner.

Encoding Scalars. Before providing the 3D coordinate of the point and the 3D vector that denotes the viewing direction to
an MLP, we would like to encode it as a vector. For this, we use sine-cosine embedding computed in the following manner.

vectorize(s) =



sin(γ1s)
cos(γ1s)
sin(γ2s)
cos(γ2s)

...
sin(γD/2s)
cos(γD/2s)


where γi = π · 2i−1/max_value for i = 1, 2, . . . , D/2, D is the dimensionality of the output vector, and max_value is
a predefined maximum value that the scalar may take. In this work, we choose D = 16.

Network. The network consists of two MLP blocks. The first MLP block takes the embedding of o and the slot vector s and
outputs an intermediate representation. The MLP is specified in Table 10. This intermediate representation is mapped to the
density value σ via a linear head. Next, the same intermediate representation is added to an embedding of the ray direction
d and is given to a second MLP block to output another hidden representation. This hidden representation is mapped to the
color value c via a second linear head. This second MLP block is described in Table 11.

Static-Dynamic Decoupling and the Sky Head. To decouple the static and dynamic fields, we learn a dedicated NeRF
decoder with separate weights that do not consume slots as input. The idea is to allow it to capture the background static
topography that remains fixed across all episodes of the dataset without conditioning on slots whose role is to capture the
dynamic and variable elements of the scene. To implement the static field, we learn two separate decoders, one for the static

22

Parallelized Spatiotemporal Slot Binding for Videos

topography and another for the sky or the far field. For capturing static topography, the decoder implementation is identical
to that described above except that no slot input is given to the network. For implementing the sky field, we take an MLP
architecture identical to the first MLP block of the object field implementation described above (and in Table 10). To this,
we provide an encoding of the ray direction as input (instead of providing an embedding of the 3D point on the ray), take the
output of this MLP, and map it to a color value via a linear head. To obtain the color of an image pixel incorporating the sky
head, we shoot the corresponding ray from the camera, sample Nbins points along the ray, and integrate the colors along the
ray as:

Nbins∑
i=1

Tiαici + TNbins+1csky,

where Ti =
∏i−1

j=1(1− αi) is the transmittance, αi = 1− exp(−σi||oi+1 − oi||2) is the opacity and csky is the sky color
obtained from the sky head for the ray’s viewing direction. An overview of the NeRF with a separate sky head, static head,
and object head is shown in Fig. 17 (left).

Shadow Head. Another element of modeling visually complex scenes is to model the scene lighting and shadows. To
capture the shadows explicitly within the NeRF framework, we can optionally add a shadow head to obtain a shadow
coefficient from the intermediate hidden state output by the first MLP block. The aim of the shadow coefficient ρ is to
suppress the color value that would have been had there been no shadow at that 3D position. Specifically, the following
formula is used to update the shadeless color value of a 3D point.

σ = σstatic +

N∑
n=1

σn, cshadeless =
σstaticcstatic +

∑N
n=1 cnσn

σ
, c =

[
ρstatic

N∏
n=1

ρn

]
cshadeless

D.4.4. SLOTMIXER DECODER

The SlotMixer decoder directly maps an embedding of the ray shooting from the camera and maps it to a color value via a
transformer-like implementation that conditions this function on the slot representation of the scene. Our implementation
follows Sajjadi et al. (2022) whose overview is provided in Fig. 17 (right). For the allocation transformer, we use 3
transformer layers with 4-headed attention and hidden size 192. We follow Sajjadi et al. (2022) in implementing the mixing
block as prescribed in the original paper. To implement the MLP, we use the specification provided in Table 12.

Figure 17. 3D Decoders. Left: Our NeRF decoder is parametrized in terms of three MLPs to model the sky, the static topography and the
objects, respectively. Right: SlotMixer decoder (Sajjadi et al., 2022) directly maps a camera ray to a pixel color conditioned on the slots
via a transformer-like architecture.

D.5. Optimization

To train the models, we use a linear learning rate warm-up in the first 30000 training steps and use exponential decay
thereafter with a half-life of 1M steps. We use a peak learning rate of 3e− 4. All models are trained to 300K steps. We used
a batch size of 24 episodes with 6 time-steps per episode. We use the AdamW optimizer (Loshchilov & Hutter, 2017) with
β1 = 0.9 and β2 = 0.95.

23

Parallelized Spatiotemporal Slot Binding for Videos

E. Additional Evalutation Details
E.1. Permutation-Invariant Slot Linear Probing

To perform permutation-invariant slot linear probing, we are provided with pre-trained and frozen slot representations of
an episode denoted as s1:T,1:N . The ground-truth positions of the scene objects of an episode are denoted by yposition

1:T,1:M ,
where M represents the number of actual objects in the scene. Let s1:T,π represent a permutation of N slots taken M at a
time, applying the same permutation π across all time steps. The first step involves determining the correct permutations
π1, . . . , πB for all episodes within a large batch of B episodes. These permutations are used to correctly assign each slot
to an object’s label for training the linear probes. To determine these permutations, we follow the methodology outlined
in (Dang-Nhu, 2021). We employ an approach akin to the EM algorithm, starting with arbitrary permutations π1, . . . , πB .
During the E-step, linear probes are trained using these permutations to predict the ground truth object positions yposition

1:T,1:M .
Subsequently, in the M-step, we iterate over all possible permutations to identify the one that best minimizes the probing
error. The E and M steps are repeated until convergence is achieved. Finally, the determined permutations π1, . . . , πB are
used to predict all object factors, such as color ycolor

1:T,1:M , shape yshape
1:T,1:M , size ysize

1:T,1:M , etc. and performance is reported.

24

Parallelized Spatiotemporal Slot Binding for Videos

Table 7. Description of the CNN architecture used to compute SLSR for the dynamic 3D CLEVR-Natural-Ego dataset.

Layer Kernel Size Stride Padding Channels Activation

GroupNorm - - - 192 -

Residual Block 1
GroupNorm - - - 192 -

Conv2d 5× 5 1 2 192 ReLU
Conv2d 5× 5 1 2 192 -

Residual Block 2
GroupNorm - - - 192 -

Conv2d 5× 5 1 2 192 ReLU
Conv2d 5× 5 1 2 192 -

Size-Halving
GroupNorm - - - 192 -

Conv2d 5× 5 2 2 192 -

Residual Block 3
GroupNorm - - - 192 -

Conv2d 5× 5 1 2 192 ReLU
Conv2d 5× 5 1 2 192 -

Residual Block 4
GroupNorm - - - 192 -

Conv2d 5× 5 1 2 192 ReLU
Conv2d 5× 5 1 2 192 -

Size-Halving
GroupNorm - - - 192 -

Conv2d 5× 5 2 2 192 -

Residual Block 5
GroupNorm - - - 192 -

Conv2d 5× 5 1 2 192 ReLU
Conv2d 5× 5 1 2 192 -

Residual Block 6
GroupNorm - - - 192 -

Conv2d 5× 5 1 2 192 ReLU
Conv2d 5× 5 1 2 192 -

Parameter Value

Number of Layers 3
Number of Heads 4
Hidden Dimensions 192

Table 8. Cross-View Transformer Specifications.

25

Parallelized Spatiotemporal Slot Binding for Videos

Table 9. PSB Configuration. The table describes the hyperparameters used in the implementation of the PSB encoder for object-centric
learning on dynamic 3D posed multi-camera videos.

Parameter Value

Model Dimension 192
Number of PSB Layers 3
Number of Attention Heads

- Bottom-Up Attention Heads 4
- Time-Axis Attention Heads 4
- Object-Axis Attention Heads 4

MLP Configuration
- Number of Layers 2
- Hidden Dimension 768
- Output Dimension 192

Layer Configuration

LayerNorm 192

Residual Block 1
LayerNorm 192
Linear 192→ 192
ReLU -
Linear 192→ 192

Residual Block 2
LayerNorm 192
Linear 192→ 192
ReLU -
Linear 192→ 192

Table 10. Specifications of the first block of the MLP implementation of the NeRF decoder.

Layer Configuration

LayerNorm 192

Residual Block 1
LayerNorm 192
Linear 192→ 192
ReLU -
Linear 192→ 192

Table 11. Specifications of the second block of the MLP implementation of the NeRF decoder.

26

Parallelized Spatiotemporal Slot Binding for Videos

Layer Configuration

LayerNorm 192

Residual Block 1
LayerNorm 192
Linear 192→ 192
ReLU -
Linear 192→ 192

Residual Block 2
LayerNorm 192
Linear 192→ 192
ReLU -
Linear 192→ 192

Residual Block 3
LayerNorm 192
Linear 192→ 192
ReLU -
Linear 192→ 192

Residual Block 4
LayerNorm 192
Linear 192→ 192
ReLU -
Linear 192→ 192

Table 12. MLP Specifications for the SlotMixer decoder.

27

